
41

Reachability-Based Memory Accounting

Adam Wick
awick@cs.utah.edu

Matthew Flatt
mflatt@cs.utah.edu

Wilson Hsieh
wilson@cs.utah.edu

University of Utah, School of Computing
50 South Central Campus Drive, Room 3190

Salt Lake City, Utah 84112–9205

ABSTRACT
Many language implementations provide a mehanism to

express onurrent proesses, but few provide support for

terminating a proess based on its resoure onsumption.

Those implementations that do support termination gener-

ally harge the ost of a resoure to the prinipal that al-

loates the resoure, rather than the prinipal that retains

the resoure. The di�erene matters if prinipals represent

distint but ooperating proesses.

In this paper, we present preliminary results for a ver-

sion of MzSheme that supports termination onditions for

resoure-abusing proesses. Unlike the usual approah to

resoure aounting, our approah assigns �ne-grained (per-

objet) alloation harges to the proess that retains a re-

soure, instead of the proess that alloates the resoure.

1. MOTIVATION
Users of modern omputing environments expet applia-

tions to ooperate in sophistiated ways. For example, users

expet web browsers to launh external media players to

view ertain forms of data, and users expet a word proes-

sor to support ative spreadsheets embedded in other do-

uments. In a onventional operating system, however, pro-

grammers must exert onsiderable e�ort to integrate appli-

ations. Indeed, few software developers have the resoures

to integrate appliations together as well as, for example,

Adobe Arobat in Mirosoft's Internet Explorer.

Implementing ooperating appliations in a onventional

OS is diÆult beause the OS isolates appliations to ontain

malfuntions. Cooperating appliations must overome this

built-in isolation. In ontrast, language run-time systems

(a.k.a. \virtual mahines") typially rely on language safety,

rather than isolation, to ontain malfuntions. Sine VMs

otherwise play the same role as OSes, and sine they lak a

bias towards isolation, safe VMs seem ideally suited as the

platform for a next generation of appliation software.

Mere safety, however, does not provide the level of prote-

tion between appliations that onventional OSes provide.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is grantedwithout fee
provided that copies are not made or distributed for profit orcommercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires priorspecific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Adam Wick, Matthew Flatt, Wilson Hsieh.

Although language-based safety an prevent a program from

trampling on another program's data strutures, it annot

prevent a program from starving another proess or from

leaking resoures. Regardless of the degree of ooperation,

a pratial OS/VM must trak eah appliation's resoure

onsumption and prevent over-onsuming appliations from

taking down the entire system.

A variation on onventional isolation an ertainly enable

resoure traking in a VM. For example, the VM an restrit

values passed from one proess to another to those values

alloated within a ertain pool of memory [1℄. This om-

promise provides something better than a traditional OS, in

that a suitably alloated value an be passed diretly and

safely between appliations. Nevertheless, this kind of iso-

lation ontinues to interfere with ooperation: even if a pro-

gram an move values from one alloation pool to another,

expliit aounting with alloation pools amounts to manual

memory management as in mallo and free. This manual

management enourages narrow ommuniation hannels; in

order to foster ommuniation, appliations must be free to

exhange arbitrary data with potentially omplex alloation

patterns.

We are investigating memory-management tehniques that

plae the responsibility for aounting with the run-time sys-

tem, instead of the programmer, while still enabling ontrol

over an appliation's memory use. The essential idea is that

a garbage olletor an aount for memory use using reah-

ability from an appliation's roots. Thus, an appliation is

harged not for what it alloates, but for what it retains.

This di�erentiation is ritial in systems where one appli-

ation may use memory alloated by another appliation.

The entral design problem is how to deal with these shared

values usefully and eÆiently.

We present preliminary results on our exploration, based

on a new garbage olletor for MzSheme [7℄. Our results

suggest that a garbage olletor an maintain usefully pre-

ise aounting information with a low overhead, but that

the implementation of the rest of the VM requires extra are

to trigger reliable termination of over-onsuming proesses.

This extra are is of the same avor as avoiding referenes

in the VM that needlessly preserve values from olletion.

Setion 2 desribes the existing notion of \proess" within

MzSheme, and Setion 3 desribes our new API for resoure

enforement. Setion 4 desribes in more detail possible a-

ounting poliies behind the API, inluding the two that we

have implemented. Setion 5 reports on our implementa-

tions, and Setion 6 reports on our experiene with them.

Setion 7 presents performane results.

42

2. PROCESSES IN MZSCHEME
In MzSheme, no single language onstrut enompasses

all aspets of a onventional proess. Instead, various or-

thogonal onstruts implement di�erent aspets of proesses:

� Threads implement the exeution aspet of a proess.

The MzSheme thread funtion takes a thunk and re-

ates a new thread to exeute the thunk.

The following example runs two onurrent loops, one

that prints \1"s and another that prints \2"s:

(letre ([loop (lambda (v)

(display v)

(loop v))℄)

(thread (lambda () (loop 1)))

(loop 2))

� Parameters implement proess-spei� settings, suh

as the urrent working diretory. Eah parameter is

represented by a proedure, suh as urrent-diretory,

that gets and sets the parameter value. Every thread

has its own value for eah parameter, so that setting

a parameter value a�ets the value only in the urrent

thread. Newly reated threads inherit initial parame-

ter values based on the urrent values in the reating

thread.

The following example sets the urrent diretory to

"/tmp" while running do-work , then restores the ur-

rent diretory:

1

(let ([orig-dir (urrent-diretory)℄)

(urrent-diretory "/tmp")

(do-work)

(urrent-diretory orig-dir))

Meanwhile, the urrent-diretory setting of other exe-

uting threads is una�eted by the above ode.

� Custodians implement the resoure-management as-

pet of a proess. Whenever a thread objet is reated,

port objet opened, GUI objet displayed, or network-

listener objet started, the objet is assigned to the

urrent ustodian, whih is determined by the urrent-

ustodian parameter. The main operation on a us-

todian is ustodian-shutdown-all, whih terminates all

of the ustodian's threads, loses all of its ports, and

so on. In addition, every new ustodian reated with

make-ustodian is reated as a hild of the urrent us-

todian. Shutting down a ustodian also shuts down all

of its hildren ustodians.

The following example runs hild-work-thunk in its

own thread, then terminates the thread after one se-

ond (also shutting down any other resoures used by

the hild thread):

(let ([hild-ustodian (make-ustodian)℄

[parent-ustodian (urrent-ustodian)℄)

(urrent-ustodian hild-ustodian)

(thread hild-work-thunk)

(urrent-ustodian parent-ustodian)

(sleep 1)

(ustodian-shutdown-all hild-ustodian))

1

Prodution ode would use the parameterize form so that

the diretory is restored if do-work raises an exeption.

A thread's urrent ustodian is not the same as the

ustodian that manages the thread. The latter is de-

termined permanently when the thread is reated. A

thread an, however, hange its urrent ustodian at

any time. In the above example, sine hild-ustodian

is urrent when the hild thread is reated, the hild is

plaed into the management of hild-ustodian. Thus,

(ustodian-shutdown-all hild-ustodian) reliably termi-

nates the hild thread. In addition, if hild-ustodian is

the only ustodian aessible in hild-work-thunk , then

any ustodian, thread, port, or network listener re-

ated by the hild is reliably shut down by (ustodian-

shutdown-all hild-ustodian).

Evaluating (urrent-ustodian) immediately in hild-

work-thunk would produe hild-ustodian, beause the

initial parameter values for the hild thread are in-

herited at the point of thread reation. The hild

thread may then hange its urrent ustodian at any

time, perhaps reating a new ustodian for a grand-

hild thread. Again, if hild-ustodian is the only us-

todian aessible in hild-work-thunk , then newly re-

ated ustodians neessarily fall under the management

of hild-ustodian.

MzSheme inludes additional onstruts to handle other

proess aspets, suh as ode namespaes and event queues,

but those onstruts are irrelevant to aounting.

3. ACCOUNTING API
Aounting information in MzSheme depends only on

ustodians and threads. Aounting depends on ustodians

beause they at as a kind of proess ID for termination pur-

poses. In partiular, sine the motivation for aounting is

to terminate over-onsuming proesses, MzSheme harges

memory onsumption at the granularity of ustodians. A-

ounting also depends on threads, beause threads enom-

pass the exeution aspet of a proess, and the exeution

ontext de�nes the set of reahable values. Thus, the mem-

ory onsumption of a ustodian is de�ned in terms of the

values reahable from the ustodian's threads.

We defer disussion of spei� aounting poliies until the

next setion. For now, given that aounting is attahed to

ustodians, we de�ne a resoure-limiting API that is similar

to Unix proess limits:

� (ustodian-limit-memory ust1 limit-k ust2) installs a

limit of limit-k bytes on the memory harged to the

ustodian ust1 . If there omes a time when ust1

uses more than limit-k bytes, then ust2 is shut down.

Typially, ust1 and ust2 are the same ustodian,

but distinguishing the aounting enter from the ost

enter an be useful when ust1 is the parent of ust2

or vie-versa.

Although ustodian-limit-memory is useful in simple settings,

it does not ompose well. For example, if a parent proess

has 100 MB to work with and its hild proesses typially use

1 MB but sometimes 20 MB, should the parent limit itself

to the worst ase by running at most 5 hildren? And how

does the parent know that it has 100 MB to work with in the

ase of parent-siblings with varying memory onsumption?

In order to address the needs of a parent more diretly

and in a more easily omposed form, we introdue a seond

interfae:

43

� (ustodian-require-memory ust1 need-k ust2) installs

a request for need-k bytes to be available for usto-

dian ust1 . If there omes a time when ust1 would

be unable to alloate need-k bytes, then ust2 is shut

down.

Using ustodian-require-memory, a parent proess an delare

a safety ushion for its own operation but otherwise allow

eah hild proess to onsume as muh memory as is avail-

able. A parent an also ombine ustodian-require-memory

and ustodian-limit-memory to delare its own ushion and

also prevent hildren from using more than 20 MB without

limiting the total number of hildren to 5.

In addition to the two memory-monitoring proedures,

MzSheme provides a funtion that reports a given usto-

dian's urrent harges:

� (urrent-memory-use ust) returns the number of allo-

ated bytes urrently harged to ustodian ust .

4. ACCOUNTING POLICIES

4.1 Reachability
As desribed in the previous setion, we de�ne a usto-

dian's memory onsumption in terms of the values reahable

from the ustodian's threads, as opposed to the values orig-

inally alloated by the threads. In addition, we require that

the ustodian hierarhy propagates aounting harges: if a

ustodian B is harged for a value, then its parent ustodian

is harged for the value as well.

Generally, reahability for aounting oinides with reah-

ability for garbage olletion. In partiular, a value is not

harged to a ustodian if it is aessible through only weak

pointers. Finalization poses no problem for aounting, be-

ause every �nalizer in Mzsheme is reated with respet

to a will exeutor. Running a �nalizer requires an expliit

ation on the exeutor, whih means that a �nalized objet

an be harged to the holder of the �nalizer's exeutor.

Aounting reahability deviates from garbage-olletion

reahability in one respet. If a value is reahable from

thread A only beause thread A holds a referene to thread

B, then B's ustodian is harged and not A's (unless A's us-

todian is an anestor of B's). Similarly, if a value is reahable

by A only through a ustodian C, then C is harged instead

of A's ustodian.

This deviation makes intuitive sense, beause holding a

referene to another proess does not provide any aess to

the proess's values. Moreover, this deviation is neessary

for making aounting useful in our test programs, as we

explain in Setion 6.

4.2 Sharing
In a running system, some values may be reahable from

multiple ustodians. Di�erent aounting poliies might al-

loate harges for shared values in di�erent ways, depending,

on the amount of sharing among ustodians, the hierarhi-

al relationship of the ustodians, the original alloator for

a partiular value or other fators. Among the poliies that

seem useful, we have implemented two:

� The preise poliy harges every ustodian for eah

value that it reahes. If two ustodians share a value,

they are both harged the full ost of the value. For

example, in �gure 1, objets w and z will be harged

to both ustodians A and B, objet x will be harged

to both ustodians B and C, and objet Y will be

harged only to ustodian C.

� The blame-the-hild poliy harges every value to at

least one ustodian, but not every ustodian that reahes

the value. The main guarantee for blame-the-hild ap-

plies to ustodians A and B when A is an anestor of

B ; in that ase, if A and B both reah some value,

then A is harged if and only if B is harged. Mean-

while, if B and C share a value but neither ustodian

is an anestor of the other, then at most one of them

will be harged for the objet. For example, in �gure

1, objet Y will be harged only to ustodian C as in

the preise poliy. Also, sine ustodian B is a hild

of ustodian A, B will neessarily be harged for W

and Z. In the ase of X, sine there is no anestral

relationship between B and C, no guarantees are given

as to whih will be harged.

The preise poliy is the most obvious one, and seems easi-

est to reason about. We have explored the blame-the-hild

poliy, in addition, beause it an be implemented more ef-

�iently than the preise poliy (at least in theory).

The blame-the-hild poliy, despite its impreision, an

work with ustodian-limit-memory to ontrol the memory

onsumption of a single sand-boxed appliation. Sine the

sand-boxed appliation will share only with its parent, a-

ounting will reliably trak onsumption in the sand box.

Blame-the-hild is less useful with ustodian-limit-memory

in a setting of multiple ooperating hildren. In that ase,

a well-behaved, ooperating appliation might inur all of

the ost of all shared values, triggering the termination of

the over-harged hild (possibly leaving the rest stuk, lost

without a ollaborator). However, blame-the-hild always

works well with ustodian-require-memory. With memory

requirements instead of memory limits, how memory harges

are alloated among hildren does not matter.

One poliy that we have not explored is a variant of preise

that splits harges among sharing ustodians. For example,

suppose that x ustodians share a value of size y. With split-

ting, eah of the x ustodians would be harged y=x. This

poliy is normally onsidered troublesome, beause termi-

nating one of the x ustodians triggers a sudden jump in

the ost of the other x � 1. Like blame-the-hild, though,

this poliy might be useful with ustodian-require-memory.

We have not explored the ost-splitting poliy beause it

seems expensive to implement, and it does not appear to

o�er any advantage over blame-the-hild.

4.3 Timing
Ideally, a poliy should guarantee the termination of a us-

todian immediately after it violates a limit or requirement.

A naive implementation of this guarantee obviously annot

work, as it amounts to a full olletion for every alloation.

The poliies that we have implemented enfore limits and

requirements only after a full olletion. Consequently, a

ustodian an overrun its limit temporarily. This tempo-

rary overrun seems to ause no problems in pratie, be-

ause a ustodian that alloates lots of memory (and thus

might violate limits or requirements) tends to trigger fre-

quent olletions. Furthermore, a failure in alloation for

any ustodian triggers a garbage olletion whih will then

terminate usage o�enders to satisfy the alloation.

44

A W

X

Y

Z

B

C

Custodians Roots Heap

Figure 1: An example set of ustodians and roots with a small heap

One potential problem is that a hild overrun ould push

its parent past a limit, where terminating the hild earlier

might have saved the parent. Another problem is that a

hild overrun may our at a time when ustodians annot

be safely terminated. These potential problems have not ap-

peared in pratie, primarily beause programmers annot

know the exat ost of values and must inlude signi�ant

safety margins. Nevertheless, the problems merit further

investigation.

5. IMPLEMENTATION
The implementation of both the preise and blame-the-

hild poliies proeeds roughly as follows:

2

1. When a thread is reated, the reating thread's urrent

ustodian is reorded in the new thread.

2. The olletor's mark proedure treats thread objets

as roots and as it marks from eah thread, it harges

the thread's ustodian.

3. After olletion, the olletor heks the aumulated

harges against registered memory limits and require-

ments. The olletor shedules ustodians for destru-

tion (on the next thread-sheduling boundary) aord-

ing to the omparison results.

Our two implementations di�er only in the details of step

2. We �rst desribe the implementation of preise aount-

ing, then the implementation of blame-the-hild aounting.

Finally, we disuss the impat of generational garbage ol-

letion on the algorithms.

5.1 Precise Accounting
For preise aounting, the olletor reserves spae in the

header of eah objet to reord the objet's set of harged

2

The algorithms desribed should work in any olletion sys-

tem. We use the terminology of a mark/sweep style olletor

to simplify the desription.

oObject CS

CSm CSm CSmCSm CSm

Figure 2: Mark queue with an objet

ustodians (CS

o

in �gure 2). During olletion, the mark

queue ontains objets paired with the ustodian set to be

harged for the objet. Initially, the harged set for all ob-

jets is the empty set. The initial mark queue ontains all

thread objets, where eah thread is paired to the harged

set ontaining only the thread's ustodian.

When mark propagation reahes an objet (see �gure 2),

the harged set in the objet's header (CS

o

) is ompared

to the harge used in marking (CS

m

). If the harge set

for marking is a subset of the harged set CS

o

in the objet

header, no further work is performed for the objet.

3

Other-

wise, the union of the sets is omputed and installed into the

objet's header, and harges for the objet are shifted from

the old set (if it is non-empty) to the unioned set. Mark-

ing ontinues with the objet's ontent using the unioned

set. After marking is omplete, all garbage objets have an

empty harged set, and the harges aumulated for eah

set an be relayed bak to the set members.

3

If the objet ontains a harge set, then it has been marked,

and the mark propagation has either already been done or

is queued. Sine the item's harged set is a superset of the

mark's harge set, then no additional information is avail-

able and no further work needs to be done.

45

In the ase of a single ustodian, the above algorithm de-

generates to plain garbage olletion, sine the only possible

harge sets are the empty set and the set ontaining the one

ustodian. In the ase of ustodians, olletion potentially

requires revisions to the harged set of every objet. Thus,

in the worst ase, olletion requires O(� r) time, where r

is the size of reahable memory and is the size of the set

of all ustodians. An entire heap ontaining only a single

linked list with every thread pointing to the head of the list

is an example of this worst ase.

5.2 Blame-the-child
Unlike preise aounting, blame-the-hild aounting re-

quires only linear time in the amount of live memory. Roughly,

the blame-the-hild implementation works in the same way

as the preise implementation, exept that objets with non-

empty harge sets are never re-marked. This hange is

enough to ahieve linear time olletion.

To ompletely implement the blame-the-hild poliy, the

olletor sorts the set of ustodians before olletion so that

desendents preede anestors. Then, the threads of eah

ustodians are taken individually. Eah thread is marked

and the marks are propagated as far as possible before on-

tinuing with the next threads. Due to this ordering, objets

reahable from both a parent and hild will be �rst reahed

by traing from the hild's threads, and thus harged to the

hild. One olletion is omplete, harges to hild ustodi-

ans are propagated bak to their parents.

In our implementation, the blame-the-hild implementa-

tion also inurs a smaller per-objet overhead, sine objet

headers need not ontain a harge set. During marking, ex-

atly one ustodian is harged at a time, so that harges

an be aumulated diretly to the ustodian. Eah objet

needs only a mark bit, as in a normal olletor.

A naive implementation of blame-the-hild allows an ob-

vious seurity hole. By reating sari�ial hildren, a malev-

olent ustodian may arbitrarily delay its destrution when

it uses too muh memory. Suh hildren would have point-

ers bak into the malevolent ustodian's spae so that they

would be blamed for its bad behavior. These, then, would

be killed instead of the parent.

Several possible mehanisms an be used to keep this from

happening, and we simply hose the easiest one from an

implementation perspetive. They are:

1. Plae an order on the list of limits and requirements so

that older ustodians are killed �rst. In this ase, the

parent will be killed before the hildren, so reating

sari�ial hildren is useless.

2. Kill every ustodian that breaks a limit or requirement,

rather than just one. Sine a hild's usage is inluded

in the parent's usage, both will be killed.

3. Choose a random ordering. In this way, a malevolent

program would have no guarantee that the above tati

would work.

Our implementation hooses the seond tati.

5.3 Generational Collection
After a full olletion is �nished and aounting is om-

plete, omparing harges to registered limits and require-

ments is simple. Therefore, the olletor an guarantee that

a ustodian is terminated after the �rst garbage olletion

yle after whih a limit or requirement is violated. This

implies that there may be some delay between the dete-

tion of a violation and the atual violation. However, if the

program is alloating this delay will be small, as frequent

alloation will quikly trigger a garbage olletion.

Aounting information after a minor olletion is nees-

sarily impreise, however, sine the minor olletion does not

examine the entire heap. Previously omputed sets of usto-

dians for older objets might be used regardless of hanges

sine their promotion to an older generation. This old in-

formation may arbitrarily skew aounting. Worse, in the

blame-the-hild implementation desribed above, the olle-

tor does not preserve harges in objet headers, so there

is no information for older generations available to partial

olletions (exept those that relaim only the nursery).

Our implementation therefore enfores limits and require-

ments only after a full olletion. This hoie an delay

enforement by several olletions, but should not introdue

any new inherent potential for limit overruns, sine overruns

must lead to a full olletion eventually.

6. EXPERIENCE
To determine the usefulness of our aounting poliies in

realisti environments, we wrote and modi�ed several pro-

grams to take advantage of aounting. One program simply

tests the ability of a parent to kill an easily sand-boxed hild.

A seond program, DrSheme, tests hild ontrol where the

parent and hild work losely together. A third program,

a web server allowing arbitrary servlet plug-ins, tests hild

ontrol with some ooperation among the hildren.

6.1 Simple Kill Test
In the simple kill test, the main proess reates a single

sub-ustodian, plaes a 64 MB limit on the sub-ustodian's

memory use, and reates a single thread in the sub-ustodian

that alloates an unbounded amount of memory:

(let ([hild-ustodian (make-ustodian)℄)

(ustodian-limit-memory hild-ustodian

(� 64 1024 1024) hild-ustodian)

(urrent-ustodian hild-ustodian)

(thread-wait ; bloks until the thread ompletes

(thread (lambda ()

(let loop ()

(+ 1 (loop)))))))

Sine aounting works, the hild ustodian is destroyed,

whih in turn halts the hild thread, and the entire program

ompletes. If aounting were not suessful, then the pro-

gram would not terminate. Under both of our aounting

system implementations, we �nd this program terminates.

Unfortunately, it terminates several garbage olletion y-

les after the limit is atually violated.

Although simple, this program presents two items of in-

terest. First, it shows that the blame-the-hild poliy an

work, and that it allows the natural reation of parent/hild

pairs where the parent wishes to limit its hildren. Seond,

the program shows that generational olletion does delay

the detetion of resoure overruns.

Safety nets in our garbage olletor assure that a program

does not run out of available memory before its limit is no-

tied, but in systems with tight memory requirements, our

tehnique may not be aeptable. We are investigating ways

46

to detet overruns more quikly.

6.2 DrScheme
The DrSheme programming environment onsists of one

or more windows, where eah window is split into two parts.

The top part of the window is used to edit programs. The

bottom part is an interative Sheme interpreter loop where

the program an be tested. Eah interpreter (one per win-

dow frame) is run under its own ustodian. With a single

line of ode, we modi�ed DrSheme to onstrain eah inter-

preter to 16 MB of memory.

Initial experiments with the single-line hange did not pro-

due the desired result, even with preise aounting. After

opening several windows, and after making one interpreter

alloate an unbounded amount of memory, every interpreter

ustodian in DrSheme terminated. Investigation revealed

the problem:

� Eah interpreter holds a referene into the DrSheme

GUI. For example, the value of the parameter urrent-

output-port is a port that writes to the text widget for

the interation half of the window. The text widget

holds a referene to the whole window, and all open

Drsheme windows are hained together.

� Eah window maintains a referene to the interpreter

thread, ustodian, and other interpreter-spei� val-

ues, inluding the interpreter's top-level environment.

Due to these referenes, every interpreter thread reahes ev-

ery other interpreter's data through opaque losures and ob-

jets, even though programs running in di�erent interpreters

annot interfere with eah other. Hene, in the preise a-

ounting system, every thread was harged for every value

in the system, whih obviously defeats the purpose of a-

ounting.

Correting the problem required only a slight modi�ation

to DrSheme. We modi�ed it so that a window retains only

weak links to interpreter-spei� values. In other words, we

disallow diret referenes from the parent to the hild. Thus

a hild may trae referenes bak to the parent's values, but

will never trae these referenes bak down to another hild.

Finding the parent-to-hild referenes in DrSheme|a fairly

large and omplex system|required only a ouple of hours

with garbage-olletor instrumentation. The atual hanges

required only a half hour. In all, �ve referenes were hanged:

two were onverted into weak links, two were extraneous and

simply removed, and one was removed by pushing the value

into a parameter within the hild's thread.

Breaking links from parent to hild may seem bakward,

but breaking links in the other diretion would have required

far too muh work to be pratial. For example, we ould not

easily modify the interpreter-owned port to weakly referene

the DrSheme window. The port requires aess to many in-

ternal strutures within the GUI widget. Indeed, suh a on-

version would amount to the �le-desriptor/handle approah

of onventional operating systems|preisely the kind of de-

sign that we are trying to esape when implementing oop-

eration.

6.3 Web Server
In the DrSheme arhiteture, hildren never ooperate

and share data. In the web server, however, onsiderable

sharing exists between hild proesses. Whenever a server

onnetion is established, the server reates a fresh usto-

dian to take harge of the onnetion. If the onnetion

requires the invoation of a servlet, then another fresh us-

todian is reated for the servlet's exeution. However, the

servlet ustodian is reated with the same parent as the

onnetion ustodian, not as a hild of the onnetion usto-

dian, beause a servlet session may span onnetions. Thus,

a onnetion ustodian and a servlet ustodian are siblings,

and they share data beause both work to satisfy the same

request.

The preise aounting system performs well when a servlet

alloates an unbounded amount of memory. The o�ending

servlet is killed right after alloating too muh memory, and

the web server ontinues normally.

The blame-the-hild system performs less well, in that

the servlet kill is sometimes delayed, but works aeptably

well for our purposes. The delayed kill with blame-the-hild

arises from the sibling relationship between the onnetion

ustodian and the servlet ustodian. When the servlet runs,

the onnetion is sometimes blamed for the servlet's memory

use. In pratie, this happens often. The result is that

the onnetion is killed, and then the still-live memory is

not harged to the servlet until the next garbage olletion.

This example points again to the need for better guarantees

in terms of the time at whih aounting harges trigger

termination, whih is one subjet of our ongoing work.

7. PERFORMANCE EVALUATION
Memory aounting inurs some ost, with trade-o�s in

terms of speed, spae usage, and aounting auray. To

measure these osts, we have implemented these two mem-

ory aounting systems within MzSheme.

4

Our olletor is

a generational, opying olletor[8℄ implemented in C. This

olletor is designed for prodution-level systems; it an han-

dle all situations that the default MzSheme garbage olle-

tor handles, inluding �nalizers whih may resurret dying

objets. For analysis purposes, the olletor an be tuned

statially to behave as one the following:

� NoAnt: The base-line olletor. No memory a-

ounting funtionality is inluded in this olletor.

� Preise: The base-line olletor plus the memory a-

ounting system desribed in setion 5.1.

� BTC: The base-line olletor plus the memory blame-

the-hild aounting system desribed in setion 5.2.

We evaluate the spae usage, auray and time penalty of

the BTC and Preise olletors on the following benh-

mark programs:

� Prod: An implementation of a produer/onsumer

system, with �ve produers and �ve onsumers paired

o�. A di�erent ustodian is used for eah produing or

onsuming thread. This ase overs situations wherein

sibling ustodians share a large piee of ommon data;

in this ase, they share a ommon queue.

� Kill: A basi kill test for aounting. A hild usto-

dian is reated and a limit is plaed on its memory use.

4

Aounting builds on the \preisely" olleted variant of

MzSheme, instead of the \onservatively" olleted variant.

47

Preise BTC

Test # of owner sets Additional required spae # of owner sets Additional required spae

Web 360 60,054 bytes 360 30,570 bytes

Prod 35 3,842 bytes 21 1,130 bytes

DrSheme 15 6100 bytes 9 5076 bytes

PSearh 4 266 bytes 3 186 bytes

Kill 2 146 bytes 2 146 bytes

Figure 3: Additional spae requirements for aounting.

NoAnt BTC Preise

Time S.D. Time S.D. % slowdown Time S.D. % slowdown

Web 1.30 0.05 1.77 0.06 36.2% 1.80 0.06 38.5%

Prod 2.60 0.05 1.31 0.04 n/a 1.41 0.04 n/a

DrSheme 23.10 0.14 23.55 0.11 1.7% 43.19 1.73 87.0%

PSearh 2.33 0.12 2.41 0.12 3.4% 2.42 0.13 3.9%

Kill n/a n/a 1.74 0.03 n/a 1.76 0.04 n/a

Figure 4: Timing results in seonds of user time with standard deviations. Where appliable, the table

provides a perentage slowdown relative to the NoAnt olletor. All benhmark programs were run on

a 1.8Ghz Pentium IV with 256MB of memory, running under FreeBSD 4.3 and MzSheme (or DrSheme)

version 200pre19.

Under the hild ustodian, memory is then alloated

until the limit is reahed. This ase overs the situ-

ation wherein proper aounting is neessary for the

proper funtioning of a program.

� PSearh: A searh program that seeks its target us-

ing both breadth-�rst and depth-�rst searh and uses

whihever it �nds �rst. This ase is inluded to on-

sider situations where there are a small number of

ustodians, but those ustodians have large, unshared

memory use.

� Web: A web server using ustodians. This test was

inluded as a realisti example where ustodians may

be neessary. The server is initialized, and then three

threads eah request a page 200 times. Every thread

on the server side whih answers a query is run in its

own ustodian.

� DrSheme: A program, run inside DrSheme, that

reates three ustodian/thread pairs and starts a new

DrSheme proess in eah.

7.1 Space Usage
Regardless of the implemented poliy, some additional

spae is required for memory aounting. Spae is required

internally to trak the ustodian of registered roots, and to

trak owner sets. In the ase of Preise, additional spae

may be required for objets whose headers do not ontain

suÆient unused spae to hold the owner set information for

the objet.

In our tests, the spae requirements usually depend on the

number of owner sets. Figure 3 shows the amount of spae

required for eah of our test ases. These numbers show the

additional spae overhead traking, roughly, the number of

owner sets in the system. The numbers for DrSheme do

not sale with the others beause the start-up proess for

the underlying GUI system installs a large number of roots.

As expeted, the additional spae needed for preise a-

ounting is somewhat larger than the spae required for

blame-the-hild aounting. This spae is used for union

sets (owner sets whih are derived as the union of two owner

sets), and the blame-the-hild implementation never per-

forms a set union. The di�erene thus depends entirely upon

the number of ustodians and the sharing involved.

The MzSheme distribution inludes a garbage olletor

that is tuned for spae. In partiular, it shrinks the headers

of one ommon type of objet, but this shrinking leaves no

room for owner set information. Compared to the spae-

tuned olletor, the NoAnt and the aounting olletors

require between 15% and 35% more memory overall.

7.2 Accuracy
To hek the auray of memory aounting for di�erent

olletors, we tested eah program under the preise sys-

tem and ompared the results to the blame-the-hild sys-

tem. The results were exatly as expeted: the blame-the-

hild algorithm aounts all the shared memory to one ran-

dom hild. For example, in DrSheme, preise aounting

showed that around 49 MB of data was shared among the

hildren. Under BTC, one of the ustodians (and not nees-

sarily the same one every time) and its parent were harged

49 MB, but the other two hild ustodians were harged only

for loal data (around 80 KB eah).

7.3 Time efficiency
To measure the trade-o� between the auray of aount-

ing information and the exeution speed of the olletor (and

hene the program as a whole), we reorded the total run-

ning time of the test programs. Figure 4 shows the results

of these benhmarks.

In every ase, preise aounting takes additional time.

The amount of additional time depends on the number of

ustodians, the amount of sharing among the ustodians,

and the size of the data set. In Web, Prod, PSearh,

and Kill, the ustodians and heap are arranged so that the

additional penalty of preise aounting (that is, the penalty

beyond that of BTC aounting) is minimal. The greatest

slowdown in those ases, around two perent, is forWeb. In

48

ontrast, for ases where there is onsiderable sharing and

the heap is large, the penalty for preise aounting an be

quite large. DrSheme �ts this pro�le, and the slowdown

for preise aounting is preditably quite high.

Blame-the-hild aounting also inurs a performane penalty.

In both DrSheme and PSearh, the penalty is small. In

Web, the penalty is signi�ant. The di�erene between the

former two tests and the latter one is primarily in the num-

ber of owner sets they use. The penalty di�erene, then, may

result from ahe e�ets during aounting. Sine owner-

set spae usage is kept in a table, this table may beome

large enough that it no longer �ts in ahe. By reading

and writing to this table on every mark, a large number

of owner sets imply onsiderably more ahe pressure and

hene ahe misses. In ongoing work, we are investigating

this possibility.

The strange ase in our results is Prod. In this ase,

the work of aounting atually speeds up the program. In

ongoing work we are trying to determine the ause of the

speed-up.

8. RELATED WORK
Reent researh has foused on providing hard resoure

boundaries between appliations to prevent denial-of-servie.

For example, the Ka�eOS virtual mahine [1℄ for Java pro-

vides the ability to preisely aount for memory onsump-

tion by appliations. Similar systems inlude MVM [5℄,

Alta [2℄, and J-SEAL2 [4℄. This line of work is limited in that

it onstrains sharing between appliations to provide tight

resoure ontrols. Suh restritions are neessary to exeute

untrusted ode safely, but they are not exible enough to

support high levels of ooperation between appliations.

More generally, the existing work on resoure ontrols|

inluding JRes [6℄ and researh on aounting prinipals in

operating systems, suh as the work on resoure ontain-

ers [3℄|addresses only resoure alloation, and does not

trak atual resoure usage.

9. CONCLUSIONS
We have presented preliminary results on our memory-

aounting garbage olletion system for MzSheme. Our

approah harges for resoure onsumption based on the re-

tention of values, as opposed to alloation, and it requires

no expliit delaration of sharing by the programmer. Our

poliy de�nitions apply to any runtime system that inludes

a notion of aounting priniples that is tied to threads,

In the long run, we expet our blame-the-hild aount-

ing poliy to beome the default aounting mehanism in

MzSheme. It provides aounting information that seems

preise enough for many appliations, and it an be imple-

mented with a minimal overhead.

The main question for ongoing work onerns the timing

of aounting heks. Our urrent implementation heks for

limit violations only during full olletions, and the harges

for a terminated ustodian are not transferred until the fol-

lowing full olletion. Both of these e�ets delay the en-

forement of resoure limits in a way that is diÆult for

programmers to reason about, and we expet that muh

better guarantees an be provided to programmers.

A seond question onerns the suitability of weak links

for breaking aounted sharing between a parent and hild,

and perhaps between peers. The urrent approah of weak-

ening the parent-to-hild links worked well for our test pro-

grams, but we need more experiene with ooperating ap-

pliations.

The olletors desribed in this paper are distributed with

versions 200 and above of the PLT distribution of Sheme for

Unix.

5

Interative performane of the aounting olletors

is omparable to the performane of the default olletor,

although some pause times (partiularly when doing preise

aounting) are notieably longer.

10. REFERENCES
[1℄ G. Bak, W. C. Hsieh, and J. Lepreau. Proesses in

Ka�eOS: Isolation, resoure management, and sharing

in Java. In Proeedings of the 4th Symposium on

Operating Systems Design and Implementation, San

Diego, CA, Ot. 2000. USENIX.

[2℄ G. Bak, P. Tullmann, L. Stoller, W. C. Hsieh, and

J. Lepreau. Java operating systems: Design and

implementation. In Proeedings of the USENIX 2000

Tehnial Conferene, pages 197{210, San Diego, CA,

June 2000.

[3℄ G. Banga, P. Drushel, and J. C. Mogul. Resoure

ontainers: A new faility for resoure management in

server systems. In Pro. ACM Symposium on Operating

System Design and Implementation, Feb. 1999.

[4℄ W. Binder, J. G. Hulaas, and A. Villaz�on. Portable

resoure ontrol in java: The J-SEAL2 approah. In

Pro. ACM Conferene on Objet-Oriented

Programming, Systems, Languages, and Appliations,

pages 139{155, 2001.

[5℄ G. Czajkowski and L. Dayn�es. Multitasking without

ompromise: a virtual mahine evolution. In Pro.

ACM Conferene on Objet-Oriented Programming,

Systems, Languages, and Appliations, pages 125{138,

2001.

[6℄ G. Czajkowski and T. von Eiken. JRes: A resoure

aounting interfae for Java. In Pro. ACM

Conferene on Objet-Oriented Programming, Systems,

Languages, and Appliations, pages 21{35, 1998.

[7℄ M. Flatt. PLT MzSheme: Language manual. Tehnial

Report TR97-280, Rie University, 1997.

http://download.plt-sheme.org/do/.

[8℄ P. R. Wilson. Uniproessor garbage olletion

tehniques. In Pro. Int. Workshop on Memory

Management, number 637, Saint-Malo (Frane), 1992.

Springer-Verlag.

5

Con�gure with --enable-aount and make the 3m target.

