
57

Robust and Effective Transformation of Letrec

Oscar Waddell
owaddell@cs.indiana.edu

Dipanwita Sarkar
dsarkar@cs.indiana.edu

R. Kent Dybvig
dyb@cs.indiana.edu

Computer Science Department
Indiana University

Bloomington, IN 47408

ABSTRACT
A Scheme letrec expression is easily converted into more
primitive constructs via a straightforward transformation
given in the Revised5 Report. This transformation, unfor-
tunately, introduces assignments that can impede the gener-
ation of efficient code. This paper presents a more judicious
transformation that preserves the semantics of the revised
report transformation and also detects invalid references and
assignments to left-hand-side variables, yet enables the com-
piler to generate efficient code. A variant of letrec that
enforces left-to-right evaluation of bindings is also presented
and shown to add virtually no overhead.

1. INTRODUCTION
Scheme’s letrec permits the definition of mutually recur-
sive procedures and, more generally, mutually recursive ob-
jects that contain procedures [2]. It is also a convenient
intermediate-language representation for internal definitions
and local modules [10]. When used for this purpose, the
values bound by letrec are often a mix of procedures and
nonprocedures.

A letrec expression has the form

(letrec ([x1 e1] ... [xn en]) body)

where each x is a variable and each e is an arbitrary ex-
pression, often but not always a lambda expression. The
Revised5 Report on Scheme [2] defines letrec via the fol-
lowing transformation into more primitive constructs.

(letrec ([x1 e1] ... [xn en]) body)

→ (let ([x1 undefined] ... [xn undefined])

(let ([t1 e1] ... [tn en])

(set! x1 t1)

...

(set! xn tn))

body)

where t1 ... tn are fresh temporaries.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires prior specific
permission.

Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.

Copyright 2002 Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.

This transformation effectively defines the meaning of letrec
operationally; a letrec expression (1) binds the variables
x1 ... xn to new locations, each holding an “undefined”
value, (2) evaluates the expressions e1 ... en in some un-
specified order, (3) assigns the variables to the resulting val-
ues, and (4) evaluates the body. The expressions e1 ... en

and body are all evaluated in an environment that contains
the bindings of the variables, allowing the values to be mu-
tually recursive.

The revised report imposes an important restriction on the
use of letrec: it must be possible to evaluate each of the
expressions e1 ... en without evaluating a reference or as-
signment to any of the variables x1 ... xn. References and
assignments to these variables may appear in the expres-
sions, but they must not be evaluated until after control has
entered the body of the letrec. We refer to this as the
“letrec restriction.” The revised report states that “it is
an error” to violate this restriction. This means that the
behavior is unspecified if the restriction is violated. While
implementations are not required to signal such errors, do-
ing so is desirable. The transformation given above does not
directly detect violations of the letrec restriction. It does,
however, imply a mechanism whereby violations can be de-
tected, i.e., a check for the undefined value can be inserted
before each reference or assignment to one of the left-hand-
side variables occurring within a right-hand side.

The revised report transformation of letrec faithfully im-
plements the semantics of letrec as described in the report,
and it permits an implementation to detect violations of the
letrec restriction. Yet, many of the assignments introduced
by the transformation are unnecessary, and the obvious error
detection mechanism inhibits copy propagation and inlining
for letrec-bound variables.

This paper presents an alternative transformation of letrec
that attempts to minimize the number of introduced assign-
ments. It enables the compiler to generate efficient code
while preserving the semantics of the revised report trans-
formation. The alternative transformation is shown to elimi-
nate most of the introduced assignments and to improve run
time dramatically. The transformation incorporates a mech-
anism for detecting all violations of the letrec restriction
that, in practice, has virtually zero overhead. The trans-
formation assumes that an earlier pass of the compiler has
recorded for each variable binding whether it has been ref-
erenced or assigned, and no other information is required.

58

This paper also investigates the implementation of a variant
of letrec, which we call letrec*, that evaluates the right-
hand sides from left to right and assigns each left-hand side
immediately to the value of the right-hand side. It is often
assumed that this would result in less efficient code; how-
ever, we show that this is not the case in practice. While
there are valid software engineering reasons for leaving the
evaluation order for letrec unspecified, letrec* would be a
useful addition to the language and a reasonable intermedi-
ate representation for internal definitions, where left-to-right
evaluation is often expected anyway.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our transformation in three stages, starting
with a basic version, adding an assimilation mechanism for
nested bindings, and adding valid checks for references and
assignments to left-hand-side variables. Section 3 introduces
the letrec* form and describes its implementation. Sec-
tion 4 presents an analysis of the effectiveness of the various
transformations. Section 5 describes related work. Finally,
Section 6 summarizes the paper and presents our conclu-
sions.

2. THE TRANSFORMATION
The transformation of letrec is developed in three stages.
Section 2.1 describes the basic transformation. Section 2.2
describes a more elaborate transformation that assimilates
let and letrec bindings that are nested on the right-hand
side of a letrec expression. Section 2.3 shows how to effi-
ciently detect violations of the letrec restriction.

The transformation expects that bound variables in the in-
put program are uniquely named. It also assumes that an
earlier pass of the compiler has recorded information about
references and assignments of the bound variables. In our
implementation, these conditions are met by running input
programs through the syntax-case macro expander [1]. If
this were not the case, a simple flow-insensitive pass to per-
form alpha conversion and record reference and assignment
information could be run prior to the transformation algo-
rithm.

The transformation is implemented in two passes. The first
performs the transformation proper, and the second intro-
duces the code that detects violations of the letrec restric-
tion.

2.1 Basic transformation
Each letrec expression (letrec ([x e] ...) body) in an
input program is converted as follows.

1. The expressions e ... and body are converted to pro-
duce e′ ... and body′.

2. The bindings [x e′] ... are partitioned into several
sets:
[xs es] ... simple

[xl el] ... lambda

[xu eu] ... unreferenced

[xc ec] ... complex

3. A set of nested let and fix expressions is formed from
the partitioned bindings:

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

eu ...

(let ([xt ec] ...)

(set! xc xt)

...)

body′))

where xt ... is a set of fresh temporaries, one per xc.
The innermost let is produced only if [xc ec] ... is
nonempty. The expressions eu ... are retained for
their effects.

4. Because the bindings for unreferenced letrec-bound
variables are dropped, all assignments to unreferenced
variables are also dropped.

During the partitioning phase, a binding [x e′] is consid-
ered

simple if x is referenced but not assigned and e′ is a
simple expression;

lambda if x is referenced but not assigned and e′ is a
lambda expression;

unreferenced if no references to x appear in the pro-
gram;

complex if it does not fall into any of the other cate-
gories.

A simple expression contains no occurrences of the variables
bound by the letrec expression and must not be able to
obtain its continuation via call/cc, either directly or indi-
rectly. The former restriction is necessary because simple
expressions are placed outside the scope of the bound vari-
ables. Without the latter restriction, it would be possible to
detect the fact that the bindings are created after the evalu-
ation of a simple right-hand-side expression rather than be-
fore. To enforce the latter restriction, our implementation
simply rules out all procedure calls except those to certain
primitives (not including call/cc).

A fix expression is a variant of letrec that binds only unas-
signed variables to lambda expressions. It represents the
subset of letrec expressions that can be handled easily by
later passes of a compiler. In particular, no assignments
through external variables are necessary to implement mu-
tually recursive procedures bound by fix. Instead, the clo-
sures produced by a fix expression can be block allocated
and “wired” directly together. This leaves the fix-bound
variables unassigned for the duration, thus simplifying op-
timizations such as inlining and loop recognition. fix is
identical to the labels operator handled by Steele’s Rabbit
compiler [9] and the Y operator of Kranz’s Orbit compiler [4,
3] and Rozas’ Liar compiler [7, 8].

The output expression includes calls to void, a primitive
that evaluates to some “unspecified” value. It may be de-
fined as follows.

(define void (lambda () (if #f #f)))

We do not use a special “undefined” value; instead, we use
a different mechanism for detecting violations of the letrec

restriction, as described in Section 2.3.

59

An unreferenced binding [x e′] may be dropped if e′ is sim-
ple or a lambda expression, although the code generated is
the same if a later pass eliminates such expressions when
they are used only for effect, as is the case in our compiler.

2.2 Assimilating nested binding forms
When a letrec right-hand side is a let or letrec expres-
sion, the partitioning described above treats it as complex.
For example,

(letrec ([f (letrec ([g (let ([x 5])

(lambda () ...))])

(lambda () ... g ...))])

f)

is translated into

(let ([f (void)])

(let ([ft (let ([g (void)])

(let ([gt (let ([x 5])

(lambda () ...))])

(set! g gt))

(lambda () ... g ...))])

(set! f ft))

f)

This is unfortunate, since it penalizes programmers who use
nested let and letrec expressions in this manner to express
scoping relationships more tightly.

We’d prefer a translation into the following equivalent ex-
pression.

(let ([x 5])

(fix ([f (lambda () ... g ...)]

[g (lambda () ...)])

f))

Therefore, the actual partitioning used is a bit more com-
plicated. When a binding [x e′] fits immediately into one
of the first three categories, the rules above suffice. The ex-
ception to these rules occurs when x is unassigned and e′

is a let or letrec binding, in which case the transformer
attempts to fold the nested bindings into the partitioned
sets, which leads to fewer introduced assignments and more
direct call optimizations in later passes of the compiler.

When e′ is a fix expression (fix ([xl el] ...) body), the
bindings [xl el] ... are simply added to the lambda parti-
tion and the binding [x body] is added to the set of bindings
to be partitioned.

Essentially, this transformation treats the nested bindings
as if they had originally appeared in the enclosing letrec.
For example,

(letrec ([f ef] [g (fix ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

When e′ is a let expression (let ([x e] ...) body) and
the set of bindings [x e′] ... can be fully partitioned into a
set of simple bindings [xs es] ... and a set of lambda bind-
ings [xl el] ..., we add [xs es] ... to the simple parti-
tion, [xl el] ... to the lambda partition, and [x body] to
the set of bindings to be partitioned.

For example, when ea is a lambda or simple expression,

(letrec ([f ef] [g (let ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

If during this process we encounter a binding [x e] where
x is unassigned and e is a let or fix expression, we simply
fold the bindings in and continue.

While Scheme allows the right-hand sides of a binding con-
struct to be evaluated in any order, the order used must not
involve (detectable) interleaving of evaluation. For possi-
bly assimilated bindings only, the definition of simple must
therefore be modified to preclude effects. Otherwise, the ef-
fects caused by the bindings and body of an assimilated let

could be separated, producing a detectable interleaving of
the assimilated let with the other expressions bound by the
outer letrec.

One situation not handled by this transformation is the fol-
lowing, in which a local binding is used to hold a counter or
other similar piece of state.

(letrec ([f (let ([n 0])

(lambda ()

(set! n (+ n 1))

n))])

body)

We are prevented from assimilating cases like this because
it may be possible to detect the separation of the creation
of the (mutable) binding for n from the evaluation of the
body of the nested let by invoking a continuation created
in another of the letrec bindings that causes the body of
the nested let to be evaluated multiple times. The separa-
tion cannot be detected in the given example, however, since
the body of the nested let is a lambda expression, and as-
similated bindings of lambda expressions are evaluated only
once.

Because it is desirable not to penalize such uses of local
state, we add an additional case to handle this situation.
When e′ is a let expression (let ([x e] ...) body) and
the set of bindings [x e] ... can be fully partitioned into
a set of simple bindings [xs es] ... and a set of lambda

bindings [xl el] ..., except that one or more of the vari-
ables xs ... is assigned, and body is a lambda expression,
we add [xs es] ... to the simple partition, [xl el] ... to
the lambda partition, and [x body] to the set of bindings
to be partitioned.

For example, when ea is a lambda or simple expression, a is
assigned, and eg is a lambda expression,

(letrec ([f ef] [g (let ([a ea]) eg)] [h eh]) body)

is treated as

(letrec ([f ef] [g eg] [a ea] [h eh]) body)

If during this process we encounter a binding [x e] where x

is unassigned and e is a let or fix expression, or if we find
that the body is a let or fix expression, we simply fold the
bindings in and continue.

60

The let and fix expressions produced by recursive trans-
formation of a letrec expression can always be assimilated
if they have no complex bindings. Thus, the assimilation of
let and fix expressions in the intermediate language effec-
tively implements the assimilation of letrec expressions in
the source language.

2.3 Valid checks
According to the Revised5 Report, it must be possible to
evaluate each of the expressions e1 ... en in

(letrec ([x1 e1] ... [xn en]) body)

without evaluating a reference or assignment to any of the
variables x1 ... xn. This is the “letrec restriction” first
mentioned in Section 1.

The revised report states that “it is an error” to violate this
restriction. Implementations are not required to signal such
errors; the behavior is left unspecified. An implementation
may instead assign a meaning to the erroneous program.
Older versions of our system “corrected” erroneous programs
like the following.

(letrec ([x 1] [y (+ x 1)]) (list x y)) ⇒ (1 2)

(letrec ([y (+ x 1)] [x 1]) (list x y)) ⇒ (1 2)

We never liked this behavior, which fell out of an earlier
version of the partitioning algorithm.

We believe it is better for an implementation to detect and
report errors rather than to give meaning to technically
meaningless programs. Reporting these errors also helps
users create more portable programs. Fortunately, it turns
out that these errors can be detected with practially no over-
head, as we describe in this section.

It is possible to detect violations of the letrec restriction by
binding each left-hand-side variable initially to a special “un-
defined” value and checking for this value at each reference
and assignment to the variable within the right-hand-side
expressions. This approach introduces many more checks
than are actually necessary. More importantly, it prevents
us from performing the transformations described in Sec-
tions 2.1 and 2.2 and, as a result, may inhibit later passes
from performing various optimizations such as inlining and
copy propagation.

It is possible to analyze the right-hand sides to determine the
set of variables referenced or to perform an interprocedural
flow analysis to determine the set of variables that might
be undefined when referenced or assigned, by monitoring
the flow of the undefined values. With this information, we
could perform the transformations described in Sections 2.1
and 2.2 for all but those variables that might be undefined
when referenced or assigned.

We use a different approach that never inhibits our transfor-
mations and thus does not inhibit optimization of letrec-
bound variables merely because they may be undefined when
referenced or assigned. Our approach is based on two ob-
servations: (1) a separate boolean variable may be used to
indicate the validity of a letrec variable, and (2) we need
just one such variable per letrec; if evaluating a reference
or assignment to one of the left-hand-side variables is in-

valid at a given point, evaluating a reference or assignment
to any of those variables is invalid. With a separate valid
flag, the transformation algorithm can do as it pleases with
the original bindings.

This flag is introduced as a binding of a fresh variable,
valid?, wrapped around the code that evaluates the un-

referenced and complex expressions. If a letrec has no
unreferenced or complex bindings, no valid flag need be in-
troduced. This flag is checked at each point where a valid
check is deemed to be necessary. It is set initially to false,
meaning that references to left-hand-side expressions are not
allowed, and changed to true once control enters the body
of the letrec.

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(let ([valid? #f])

eu ...

(let ([xt ec] ...)

(set! xc xt)

...)

(set! valid? #t))

body′))

In a naive implementation, valid checks would be inserted at
each reference and assignment to one of the left-hand-side
variables within the unreferenced and complex expressions.
A valid check simply tests valid? and signals an error if
valid? is false. For each valid check for a variable x, the
valid check appears as follows.

(unless valid? (error ’x "undefined"))

No checks need to be inserted in the body of the letrec,
since the bindings are necessarily valid once control enters
the body. No checks are required within the right-hand sides
of lambda bindings, since control cannot enter the body of
one of these lambdas except by way of a reference to the cor-
responding left-hand-side variable. Simple bindings contain
no references to the left-hand-side variables.

We can do even better than to limit the valid checks to
the right-hand sides of unreferenced and complex bindings.
To do so, we introduce the notion of protected and unpro-

tected references. A reference (or assignment) to a variable
is protected if it is contained within a lambda expression
that cannot be evaluated and invoked during the evaluation
of an expression. Otherwise, it is unprotected.

Valid checks are introduced during a second pass of the
transformation algorithm. This pass uses a simple top-down
recursive descent algorithm. While processing the unrefer-

enced and complex right-hand sides of a letrec, the left-
hand-side variables of the letrec are considered to be in
one of three states: protected, protectable, or unprotected. A
variable is protectable if references and assignments found
within a lambda expression are safe, i.e., if the lambda ex-
pression cannot be evaluated and invoked before control en-
ters the body of the letrec. Each variable starts out in
the protectable state when processing of the right-hand-side
expression begins.

Upon entry into a lambda expression, all protectable vari-
ables are moved into the protected state, since they can-

61

not possibly require valid checks. Upon entry into an un-
safe context, i.e., one that might result in the evaluation
and invocation of a lambda expression, the protectable vari-
ables are moved into the unprotected state. This occurs,
for example, while processing the arguments to an unknown
procedure, since that procedure might invoke the procedure
resulting from a lambda expression appearing in one of the
arguments.

For each variable reference and assignment, a valid check is
inserted for the protectable and unprotected variables but
not for the protected variables.

This handles well situations such as

(letrec ([x 0]

[f (cons (lambda () x)

(lambda (v) (set! x v)))])

body)

in which f is a sort of locative [6] for x. Since cons does
not invoke its arguments, the references appearing within
the lambda expressions are protected.

It doesn’t handle situations such as the following.

(letrec ([x 0]

[f (let ([g (lambda () x)])

(lambda () (g)))])

body)

In general, we must treat the right-hand side of a let expres-
sion as unsafe, since the left-hand-side variable may be used
to invoke procedures created by the right-hand-side expres-
sion. In this case, however, the body of the let is a lambda

expression, so there is no problem. To handle this situation,
we also record for each let- and fix-bound variable whether
it is protectable or unprotected and treat the corresponding
right-hand side as an unsafe or safe context depending upon
whether the variable is referenced or not. For fix this in-
volves a sort of demand-driven processing, starting with the
body of the fix and proceeding with the processing of any
unsafe right-hand sides.

The original letrec expressions no longer exist by the time
the second pass runs, so the first pass must leave behind suf-
ficient information to allow the second pass to know which
are the original letrec-bound variables and which expres-
sions may require the insertion of valid checks. The actual
output of the first pass is therefore as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(bind-valid-flag (x ...)

eu ...

(let ([xt ec] ...)

(valid-set! xc xt)

...))

body′))

where x ... is the original list of letrec-bound variables.
The bind-valid-flag expression expands into a let expres-
sion binding the variable valid? if any valid checks were in-
serted, otherwise it expands into the code in its body. It also
inserts the assignment to set the valid flag true at the end
of its body if the valid flag is introduced. The valid-set!

expression is used in place of set! for the introduced as-
signments to the complex variables; this tells the second
pass that this is already known to be valid so that no valid
check is inserted for the assignment.

3. FIXED EVALUATION ORDER
The Revised5 Report translation of letrec is designed so
that the right-hand-side expressions are all evaluated be-
fore the assignments to the left-hand-side variables are per-
formed. The transformation for letrec described in the
preceding section loosens this structure, but in such a man-
ner that cannot be detected, because an error is signaled
for any program that prematurely references one of the left-
hand-side variables and because the lifted bindings are im-
mutable and cannot be (detectably) reset by a continuation
invocation.

From a software engineering perspective, the unspecified or-
der of evaluation is valuable because it allows the program-
mer to express lack of concern for the order of evaluation.
That is, when the order of evaluation of two expressions is
unspecified, the programmer is, in effect, saying that neither
counts on the other being done first. From an implementa-
tion standpoint, the freedom to determine evaluation order
may allow the compiler to generate more efficient code.

It is sometimes convenient, however, for the values of a set
of letrec bindings to be established in a particular order.
This seems to occur most often in the translation of inter-
nal definitions into letrec. For example, one might wish
to define a procedure and use it to produce the value of a
variable defined further down in a sequence of definitions.

(define f (lambda ...))

(define a (f ...))

One can nest binding contours to order bindings, but this
is often inconvenient and prevents the sequenced bindings
from being mutually recursive. It is therefore interesting to
consider a variant of letrec that performs its bindings in
a left-to-right fashion. Scheme provides a variant of let,
called let*, that sequences evaluation of let bindings; we
therefore call our version of letrec that sequences letrec

bindings letrec*. The analogy to let* is imperfect, since
let* also nests scopes whereas letrec* maintains the mu-
tual recursive scoping of letrec.

letrec* can be transformed into more primitive constructs
in a manner similar to letrec using a variant of the Revised5

Report transformation of letrec.

(letrec* ([x1 e1] ... [xn en]) body)

→ (let ([x1 undefined] ... [xn undefined])

(set! x1 e1)

...

(set! xn en)

body)

This transformation is actually simpler, in that it does not
include the inner let binding a set of temporaries to the
right-hand-side expressions. This transformation would be
incorrect for letrec, since the assignments are not all in the
continuation of each right-hand-side expression, as in the
revised report transformation. Thus, call/cc could be used
to expose the difference between the two transformations.

62

The basic transformation given in Section 2.1 is also easily
modified to implement the semantics of letrec*. As before,
the expressions e ... and body are converted to produce
e′ ... and body′, and the bindings are partitioned into sim-

ple, lambda, unreferenced, and complex sets. The difference
comes in the structure of the output code. If there are no
unreferenced bindings, the output is as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(set! xc ec)

...

body′))

where the assignments to xc are ordered as the bindings
appeared in the original input.

If there are unreferenced bindings, the right-hand sides of
these bindings are retained, for effect only, among the as-
signments to the complex variables in the appropriate order.

The more elaborate partitioning of letrec expressions to
implement assimilation of nested bindings as described in
Section 2.2 is compatible with the transformation above, so
the implementation of letrec* does not inhibit assimilation.

On the other hand, a substantial change to the introduction
of valid flags is necessary to handle the different semantics of
letrec*. This change is to introduce one valid flag for each
unreferenced and complex right-hand side, in contrast to one
per letrec expression. The valid flag for a given expression
represents the validity of references and assignments to the
corresponding variable and all subsequent variables bound
by the letrec. This may result in the introduction of more
valid flags but should not result in the introduction of any
additional valid checks. Due to the nature of letrec*, in
fact, there will likely be fewer valid checks and possibly fewer
actual valid-flag bindings.

As with letrec, the first pass of the transformation algo-
rithm inserts bind-valid-flag expressions to tell the sec-
ond pass where to insert valid flags and checks. If there are
no unreferenced bindings, the output is as follows

(let ([xs es] ... [xc (void)] ...)

(fix ([xl el] ...)

(set! xc

(bind-valid-flag (xc+ ...)

ec))

...

body′))

where xc+ ... represents the sublist of original left-hand-
side variables from xc on. If there are unreferenced bindings,
the right-hand sides are inserted into the code in the proper
sequence, each wrapped in a bind-valid-flag expression
that lists all variables from the next referenced variable on.

The second pass operates as before: no changes are needed
to support letrec*.

4. RESULTS
We have implemented the complete algorithm described in
Section 2 and incorporated it as two new passes in the Chez
Scheme compiler. The first pass performs the transforma-

tions described in Sections 2.1 and 2.2, and the second pass
inserts the valid checks described in Section 2.3. We have
also added a letrec* form that guarantees left-to-right eval-
uation as described in Section 3 and a compile-time param-
eter that allows internal definitions (including those within
modules) to be expanded into letrec* rather than letrec.

We measured the performance of the benchmark programs
using several transformations:

• the standard Revised5 Report (R5RS) transformation;

• a modified R5RS transformation (which we call “easy”)
that treats “pure” (lambda only) letrec expressions as
fix expressions and reverts to the standard transfor-
mation for the others;

• versions of R5RS and “easy” with naive valid checks;

• our transformation with and without assimilation and
with and without valid checks; and

• our transformation with assimilation and valid checks,
treating all letrec expressions as letrec* expressions.

Not surprisingly, the benchmark programs still run in the
system that treats letrec as letrec*, since none contain
code that detects the failure of that system to be faithful to
the Revised5 Report transformation. (Some of the tests in
our test suite did fail, but only because they were there to
keep our compiler honest in this regard.)

We compare these systems along several dimensions: run
time, compile time, code size, number of introduced as-
signments, number of valid checks, and numbers of bind-
ings classified as lambda, complex, simple, and unreferenced.
Run times were determined by averaging three runs for each
benchmark; programs were configured so that each run re-
quired at least two seconds. Code size was determined by
recording the size of the actual code objects written to com-
piled files. Compile times were recorded for a single com-
pilation of each benchmark, with the exception of the com-
piler bootstrapping benchmark (chezscheme), where three
such runs were averaged. With the exception of chezscheme,
similix, and texer, each benchmark was placed within a
module form, converting top-level definitions to internal def-
initions. A few programs that relied on left-to-right evalu-
ation of top-level definitions were edited so that they could
run successfully in all of the systems.

The results are given in Tables 1–4. Programs in these tables
are listed in sorted order, with larger programs (in terms of
object code) after smaller ones. The run-time results show
that the transformation is successful in reducing run-time
overhead in many cases and never increases overhead, even
with valid checks enabled. Using the “easy” transforma-
tion to catch pure letrec expressions is also effective, but
our transformation is even more effective, with noticible im-
provements on several benchmarks, including lattice-jw,
ray, maze, and conform.

Using our algorithm, run times are almost identical with or
without valid checks, so strict enforcement of the letrec

63

restriction is achieved with practically no overhead. Most
of the benchmarks require no valid flags and few require a
substantial number of valid checks. In contrast, naive valid
checks significantly reduce the performance of the R5RS and
“easy” transformations in some cases.

For our compiler, the most substantial program in our test
suite, assimilating nested bindings allows the transformation
to decrease the number of introduced assignments by 17%.
Moreover, this allows the transformation to eliminate all of
the valid checks that would otherwise be inserted. Assimila-
tion of nested bindings does not seem to benefit run times,
however. This is somewhat disappointing, but may simply
indicate that few of the benchmarks try to express scoping
relationships more tightly, perhaps even because of a fear
that the resulting code would not be as efficient. We believe
it is an important optimization, nevertheless, as one of many
“bullets in [the compiler’s] gun” [5] that are not generally
applicable but are very useful in certain circumstances.

Compile time increases are modest for our algorithm, with or
without valid checks and assimilation. In many cases, the
compile times are less, even though more effort is clearly
expended in the new passes than is required to do the R5RS
transformation. This is because our transformation enables
more optimizations by later passes, leading to smaller code
and an overall reduction in compile times.

The numbers for letrec* indicate that there is no overhead
in practice for fixing the order of evaluation, even though
our compiler reorders expressions when possible to improve
the generated code. This is likely due in part to the rela-
tively few cases where our translation of letrec* actually
introduces constraints on the evaluation order. In addition,
almost no valid flags and checks are required for letrec*.
So while the implementation of letrec* may require more
valid flags in principle, it requires fewer in practice, since
the fixed evaluation order eliminates the need for most valid
checks and the flags used to support them.

As shown in Table 1, the “easy” algorithm, which is attrac-
tive for its simplicity, often introduces many more assign-
ments than are necessary, since not all letrec bindings are
lambda expressions. Naively enforcing the letrec restric-
tion also introduces far more valid checks than necessary,
even when pure letrec expressions are recognized.

Our algorithm identifies “simple” bindings in many of the
benchmarks and avoids introducing assignments for these.
Moreover, it avoids introducing assignments for pure lambda
bindings that happen to be bound by the same letrec that
binds a simple binding. In several cases, assimilating nested
let and letrec bindings allows the algorithm to assign more
of the bindings to the lambda or simple partitions.

5. RELATED WORK
Much has been written about generating efficient code for
ideal recursive binding forms, like our fix construct or the
Y combinator, that bind only lambda expressions. Yet virtu-
ally nothing has been written explaining how to cope with
the reality of arbitrary letrec expressions, e.g., by trans-
forming them into one of these ideal forms. Moreover, noth-
ing has been written describing efficient strategies for de-

tecting violations of the “letrec restriction.”

Steele [9] developed strategies for generating good code for
mutually recursive procedures bound by a labels form that
is essentially our fix construct. Because labels forms are
present in the input language handled by his compiler, he
does not describe the translation of general letrec expres-
sions into labels.

Kranz [4, 3] also describes techniques for generating effi-
cient code for mutually recursive procedures expressed in
terms of the Y operator. He describes a macro transforma-
tion of letrec that introduces assignments for any right-
hand side that is not a lambda expression and uses Y to
handle those that are lambda expressions. This transforma-
tion introduces unnecessary assignments for bindings that
our algorithm would deem simple. His transformation does
not attempt to assimilate nested binding constructs. The Y

operator is a primitive construct recognized by his compiler,
much as fix is recognized by our compiler.

Rozas [7, 8] shows how to generate good code for mutu-
ally recursive procedures expressed in terms of Y without
recognizing Y as a primitive construct, that is, with Y it-
self expressed at the source level. He does not discuss the
process of converting letrec into this form.

6. CONCLUSION
We have presented an algorithm for transforming letrec ex-
pressions into a form that enables the generation of efficient
code while preserving the semantics of the letrec transfor-
mation given in the Revised5 Report on Scheme [2]. The
transformation avoids many of the assignments produced
by the Revised5 Report transformation by converting many
of the letrec bindings into simple let bindings or into a
“pure” form of letrec, called fix, that binds only unas-
signed variables to lambda expressions. fix expressions are
the basis for several optimizations, including block alloca-
tion and internal wiring of closures. We have shown the al-
gorithm to be effective at reducing the number of introduced
assignments and improving run time with little compile-time
overhead.

The algorithm also inserts “valid checks” to implement the
letrec restriction that no reference or assignment to a left-
hand-side variable can be evaluated in the process of evaluat-
ing the right-hand-side expressions. It inserts few checks in
practice and adds practically no overhead to the evaluation
of programs that use letrec. More importantly, it does not
inhibit the optimizations performed by subsequent passes.
Most Scheme implementations currently omit such checks,
but this paper shows that the checks can be performed even
in compilers that are geared toward high-performance ap-
plications.

We have also introduced a variant of letrec, called letrec*,
that establishes the values of each variable in sequence from
left-to-right. letrec* may be implemented with a small
modification to the algorithm for implementing letrec. We
have shown that, in practice, our implementation of letrec*
is as efficient as letrec, even though later passes of our com-
piler take advantage of the ability to reorder right-hand-side
expressions. This is presumably due to the relatively few

64

cases where our translation of letrec* actually introduces
constraints on the evaluation order, but in any case, debunks
the commonly held notion that fixing the order of evaluation
hampers production of efficient code for letrec.

While treating letrec expressions as letrec* clearly vio-
lates the Revised5 Report semantics for letrec, we wonder
if future versions of the standard shouldn’t require that in-
ternal definitions be treated as letrec* rather than letrec.
Left-to-right evaluation order of definitions is often what
programmers expect and would make the semantics of in-
ternal definitions more consistent with external definitions.
We have shown that there would be no significant perfor-
mance penalty for this in practice.

7. REFERENCES
[1] Dybvig, R. K., Hieb, R., and Bruggeman, C.

Syntactic abstraction in Scheme. Lisp and Symbolic

Computation 5, 4 (1993), 295–326.

[2] Kelsey, R., Clinger, W., and Rees, J. A.

Revised5 report on the algorithmic language Scheme.
SIGPLAN Notices 33, 9 (1998), 26–76.

[3] Kranz, D. A. Orbit, An Optimizing Compiler for

Scheme. PhD thesis, Yale University, May 1988.

[4] Kranz, D. A., Kelsey, R., Rees, J. A., Hudak,

P., Philbin, J., and Adams, N. I. Orbit: an
optimizing compiler for Scheme. SIGPLAN Notices,

ACM Symposium on Compiler Construction 21, 7
(1986), 219–233.

[5] Peyton Jones, S. L., and Santos, A. A
transformation-based optimiser for Haskell. Science of

Computer Programming 32, 1–3 (1998), 3–47.

[6] Rees, J. A., Adams, N. I., and Meehan, J. R. The

T Manual. Yale University, New Haven, Connecticut,
USA, 1984. Fourth edition.

[7] Rozas, G. J. Liar, an Algol-like compiler for Scheme.
S. B. Thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of
Technology, Jan. 1984.

[8] Rozas, G. J. Taming the Y operator. In Proceedings

of the 1992 ACM Conference on Lisp and Functional

Programming (San Francisco, USA, June 1992),
pp. 226–234.

[9] Steele Jr., G. L. Rabbit: a compiler for Scheme.
MIT AI Memo 474, Massachusetts Institute of
Technology, Cambridge, Mass., May 1978.

[10] Waddell, O., and Dybvig, R. K. Extending the
scope of syntactic abstraction. In Conference Record

of the Twenty Sixth Annual ACM Symposium on

Principles of Programming Languages (Jan. 1999),
pp. 203–213.

65

bindings in each partition
Introduced assignments Valid checks easy A N

R5RS easy A N S R5RS easy A N S λ c λ c s u λ c s u

fxtak 2 – – – – 5 – – – – 2 – 2 – – – 2 – – –
tak 2 – – – – 5 – – – – 2 – 2 – – – 2 – – –
div-iter 10 – – – – 14 – – – – 10 – 9 – – 1 9 – – 1
cpstak 3 – – – – 5 – – – – 3 – 3 – – – 3 – – –
takl 7 3 3 3 3 8 – – – – 4 3 4 3 – – 4 3 – –
ctak 3 – – – – 6 – – – – 3 – 3 – – – 3 – – –
mbrot 8 – – – – 7 – – – – 8 – 8 – – – 8 – – –
deriv 4 – – – – 8 – – – – 4 – 4 – – – 4 – – –
destruct 9 – – – – 8 – – – – 9 – 9 – – – 9 – – –
fxtriang 13 7 4 4 4 6 – – – – 6 7 6 4 3 – 6 4 3 –
fft-f 8 – – – – 7 – – – – 8 – 8 – – – 8 – – –
fft-d 11 – – – – 12 – – – – 11 – 11 – – – 11 – – –
dderiv 8 – – – – 4 – – – – 8 – 8 – – – 8 – – –
triang 13 7 4 4 4 6 – – – – 6 7 6 4 3 – 6 4 3 –
lattice 22 14 – 1 – 37 29 – – – 8 14 21 – 2 – 19 1 2 –
boyer 25 23 2 2 2 50 48 – – – 2 23 22 2 – 1 22 2 – 1
boyer-jw 23 22 4 4 4 67 66 – – – 1 22 19 4 – – 19 4 – –
browse 20 8 1 1 1 33 21 – – – 12 8 19 1 – – 19 1 – –
traverse 47 38 5 5 5 69 60 – – – 9 38 39 5 – 3 39 5 – 3
lattice-jw 22 10 – 1 – 33 19 – – – 12 10 23 – – – 21 1 – –
fft-g 11 4 – – – 9 2 – – – 7 4 8 – 3 – 8 – 3 –
ray 34 27 2 2 2 92 84 – – – 7 27 32 2 – – 32 2 – –
fxpuzzle 34 11 11 11 11 20 – – – – 23 11 22 11 – 1 22 11 – 1
graphs 32 – – – – 38 – – – – 32 – 28 – – 4 28 – – 4
tcheck 35 32 3 3 3 84 79 – – – 3 32 22 3 12 – 22 3 10 –
simplex 32 1 – – – 67 – – – – 31 1 31 – 1 – 31 – 1 –
graphs-jw 20 – – – – 24 – – – – 20 – 20 – – – 20 – – –
maze 83 62 1 1 1 183 161 – – – 21 62 68 1 3 11 68 1 3 11
maze-jw 85 – – – – 37 – – – – 85 – 74 – – 11 74 – – 11
puzzle 34 11 11 11 11 20 – – – – 23 11 22 11 – 1 22 11 – 1
earley 75 – – – – 117 – – – – 75 – 73 – – 2 73 – – 2
splay 13 – – – – 17 – – – – 13 – 13 – – – 13 – – –
matrix 49 26 – 2 – 64 34 – – – 23 26 49 – – 2 45 2 – 2
conform 104 82 5 5 5 261 240 – – – 22 82 91 5 5 3 91 5 5 3
matrix-jw 37 10 – 1 – 50 14 – – – 27 10 38 – – – 36 1 – –
peval 55 41 3 3 3 175 134 – – – 14 41 44 3 8 – 44 3 8 –
nucleic-sorted 265 236 2 2 2 7 2 – – – 29 236 124 2 60 79 124 2 60 79
nucleic-star 265 260 5 5 5 743 738 – – – 5 260 124 5 57 79 124 5 57 79
fxtakr 101 – – – – 401 – – – – 101 – 101 – – – 101 – – –
em-imp 103 47 1 1 1 204 148 – – – 56 47 94 1 7 1 94 1 7 1
nucleic-jw 48 34 5 5 5 173 160 80 80 – 14 34 38 5 4 1 38 5 4 1
em-fun 102 62 1 1 1 264 224 – – – 40 62 94 1 7 – 94 1 7 –
lalr 349 292 3 6 3 303 245 – – – 57 292 186 3 16 163 166 6 15 163
takr 101 – – – – 401 – – – – 101 – 101 – – – 101 – – –
nbody 58 6 – – – 79 – – – – 52 6 56 – 2 – 56 – 2 –
interpret 122 110 1 1 1 267 251 – – – 12 110 119 1 2 – 119 1 2 –
dynamic 201 187 2 2 2 561 548 – – – 14 187 144 2 41 14 144 2 41 14
texer 146 80 13 18 13 592 497 – – – 66 80 132 13 7 – 126 18 2 –
similix 527 141 – 1 – 1705 322 – – – 386 141 484 – 36 8 483 1 35 8
ddd 1161 550 14 45 14 3063 2164 2 2 2 611 550 1182 14 10 124 982 45 10 124
softscheme 1049 865 132 134 132 3382 2793 – 8 – 184 865 858 132 47 147 798 134 43 147
chezscheme 2411 1289 140 169 140 6051 4339 – 18 – 1122 1289 2137 140 110 114 2039 169 89 114

Table 1: Number of introduced assignments and valid checks for the straightforward R5RS transformation, the
modified R5RS transformation (easy) described in Section 4, and for the Assimilating (A), Non-assimilating
(N), and Sequential letrec* (S) variants of our transformation. Also shown are the number of bindings in the
lambda (λ), complex (c), simple (s), and unreferenced (u), partitions for the modified R5RS transformation
and for our transformation with and without assimilation. (All bindings are complex in standard R5RS
transformation.) Since assimilation incorporates both nested let and letrec bindings, the total number of
bindings may be greater when assimilation is enabled.

66

R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.16 .81 .81 .81 .81 .81 .81 .81
tak 1.00 1.12 .87 .87 .87 .87 .87 .87 .87
div-iter 1.00 1.05 .93 .93 .93 .93 .93 .93 .93
cpstak 1.00 1.03 .85 .85 .85 .85 .85 .85 .85
takl 1.00 1.23 .71 .71 .71 .71 .71 .71 .71
ctak 1.00 1.02 .89 .89 .89 .89 .89 .89 .89
mbrot 1.00 1.01 .99 .99 .98 .99 .99 .98 .99
deriv 1.00 1.02 .97 .97 .96 .96 .96 .96 .96
destruct 1.00 1.05 .81 .82 .81 .81 .81 .81 .81
fxtriang 1.00 1.15 .87 .87 .81 .80 .80 .80 .81
fft-f 1.00 1.01 .91 .91 .91 .91 .91 .91 .91
fft-d 1.00 1.00 .99 .99 .99 .99 .99 .99 .99
dderiv 1.00 1.03 .94 .94 .94 .94 .94 .94 .94
triang 1.00 1.11 .90 .91 .85 .85 .85 .85 .85
lattice 1.00 1.04 .53 .54 .52 .53 .52 .53 .52
boyer 1.00 1.13 .88 .92 .86 .86 .86 .86 .86
boyer-jw 1.00 1.18 1.00 1.18 .96 .96 .96 .96 .96
browse 1.00 1.01 .97 .97 .94 .94 .94 .94 .94
traverse 1.00 1.10 1.05 1.09 .97 .97 .97 .97 .97
lattice-jw 1.00 1.04 .80 .84 .28 .28 .28 .28 .28
fft-g 1.00 1.01 .88 .89 .88 .88 .88 .88 .88
ray 1.00 1.09 .99 1.06 .76 .75 .75 .75 .76
fxpuzzle 1.00 1.15 .76 .76 .77 .77 .77 .77 .77
graphs 1.00 1.00 .39 .60 .39 .39 .39 .39 .39
tcheck 1.00 1.01 .99 1.00 .96 .96 .96 .96 .96
simplex 1.00 1.06 .55 .56 .54 .54 .54 .54 .54
graphs-jw 1.00 1.01 .54 .54 .54 .54 .54 .54 .54
maze 1.00 1.12 .79 .83 .55 .55 .55 .55 .55
maze-jw 1.00 1.03 .70 .70 .70 .70 .70 .70 .70
puzzle 1.00 1.10 .89 .88 .88 .88 .88 .88 .88
earley 1.00 1.03 .73 .73 .73 .73 .73 .73 .73
splay 1.00 1.00 .77 .77 .77 .77 .77 .77 .77
matrix 1.00 .99 .62 .63 .59 .59 .59 .59 .59
conform 1.00 1.13 .92 1.09 .38 .38 .38 .38 .38
matrix-jw 1.00 1.01 .68 .68 .60 .60 .60 .60 .60
peval 1.00 1.08 .93 .98 .78 .78 .78 .78 .78
nucleic-sorted 1.00 .99 .98 .99 .74 .74 .74 .74 .74
nucleic-star 1.00 1.08 1.00 1.09 .76 .76 .76 .76 .76
fxtakr 1.00 1.56 .72 .73 .73 .73 .72 .73 .73
em-imp 1.00 1.05 .75 .77 .66 .66 .66 .66 .66
nucleic-jw 1.00 1.00 1.00 1.00 .99 .98 .98 .98 .99
em-fun 1.00 1.04 .77 .81 .69 .69 .69 .69 .69
lalr 1.00 1.03 .89 .90 .82 .81 .82 .81 .82
takr 1.00 1.17 .56 .56 .56 .56 .56 .56 .56
nbody 1.00 1.01 .72 .72 .66 .66 .66 .66 .66
interpret 1.00 1.20 1.02 1.00 .90 .90 .91 .91 .90
dynamic 1.00 1.01 .97 1.01 .93 .93 .93 .93 .93
texer 1.00 .91 .55 .58 .53 .53 .53 .53 .53
similix 1.00 1.02 1.00 1.01 .97 .97 .96 .96 .96
ddd 1.00 1.03 1.00 .99 .97 .96 .97 .96 .98
softscheme 1.00 1.17 .96 1.14 .79 .79 .79 .80 .79
chezscheme 1.00 1.10 .75 .84 .65 .66 .66 .65 .65

Table 2: Run time of the code produced by the various algorithms, normalized to the R5RS baseline.

67

R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.30 .90 .90 .90 .90 .90 .90 .90
tak 1.00 1.24 .91 .91 .91 .91 .91 .91 .91
div-iter 1.00 1.21 .47 .55 .47 .47 .47 .47 .47
cpstak 1.00 1.18 .93 .75 .93 .93 .93 .93 .93
takl 1.00 1.24 .83 .83 .83 .83 .83 .83 .83
ctak 1.00 1.19 .95 .95 .95 .95 .95 .95 .95
mbrot 1.00 1.15 .72 .80 .72 .72 .72 .72 .72
deriv 1.00 1.19 .96 .96 .96 .96 .96 .96 .96
destruct 1.00 1.12 .68 .74 .68 .68 .68 .68 .68
fxtriang 1.00 1.10 .84 .86 .77 .77 .77 .77 .77
fft-f 1.00 1.11 .69 .73 .69 .69 .69 .69 .69
fft-d 1.00 1.17 .82 .84 .82 .82 .82 .82 .82
dderiv 1.00 1.07 1.15 1.15 1.15 1.15 1.15 1.15 1.15
triang 1.00 1.08 .88 .90 .83 .83 .83 .83 .83
lattice 1.00 1.29 .94 1.20 .61 .64 .61 .64 .61
boyer 1.00 1.39 .99 1.37 .63 .63 .63 .63 .63
boyer-jw 1.00 1.52 1.00 1.52 .76 .76 .76 .76 .76
browse 1.00 1.24 .91 1.07 .76 .76 .76 .76 .76
traverse 1.00 1.35 .99 1.22 .57 .57 .57 .57 .57
lattice-jw 1.00 1.21 .92 1.06 .73 .76 .73 .76 .73
fft-g 1.00 1.07 1.05 1.08 .98 .98 .98 .98 .98
ray 1.00 1.40 .97 1.29 .54 .54 .54 .54 .54
fxpuzzle 1.00 1.13 .74 .76 .74 .74 .74 .74 .74
graphs 1.00 1.17 .72 .83 .72 .72 .72 .72 .72
tcheck 1.00 1.43 .98 1.38 .77 .77 .77 .77 .77
simplex 1.00 1.27 .60 .65 .59 .59 .59 .59 .59
graphs-jw 1.00 1.10 .71 .71 .71 .71 .71 .71 .71
maze 1.00 1.46 .94 1.29 .46 .46 .46 .46 .46
maze-jw 1.00 1.10 .46 .46 .46 .46 .46 .46 .46
puzzle 1.00 1.09 .87 .88 .87 .87 .87 .87 .87
earley 1.00 1.28 .49 .52 .49 .49 .49 .49 .49
splay 1.00 1.08 .86 .86 .86 .86 .86 .86 .86
matrix 1.00 1.18 .91 1.01 .67 .71 .67 .71 .67
conform 1.00 1.49 .94 1.41 .51 .51 .51 .51 .51
matrix-jw 1.00 1.15 .88 .92 .80 .80 .80 .80 .80
peval 1.00 1.40 .95 1.26 .76 .76 .76 .76 .76
nucleic-sorted 1.00 1.01 .96 .97 .39 .39 .39 .39 .39
nucleic-star 1.00 1.56 .99 1.55 .40 .40 .40 .40 .40
fxtakr 1.00 1.54 .59 .59 .59 .59 .59 .59 .59
em-imp 1.00 1.25 .93 1.07 .66 .66 .66 .66 .66
nucleic-jw 1.00 1.32 .95 1.25 .90 .90 .64 .64 .64
em-fun 1.00 1.33 .99 1.24 .68 .68 .68 .68 .68
lalr 1.00 1.18 .92 1.06 .53 .54 .53 .54 .53
takr 1.00 1.38 .72 .72 .72 .72 .72 .72 .72
nbody 1.00 1.10 1.01 1.01 .98 .98 .98 .98 .98
interpret 1.00 1.30 .99 1.27 1.09 1.09 1.09 1.09 1.09
dynamic 1.00 1.34 1.02 1.36 1.16 1.16 1.16 1.16 1.16
texer 1.00 1.28 .94 1.16 .93 .93 .93 .93 .93
similix 1.00 1.19 .94 .98 .91 .91 .91 .91 .91
ddd 1.00 1.21 .93 1.08 .81 .87 .78 .87 .81
softscheme 1.00 1.23 .98 1.18 .87 .89 .87 .88 .87
chezscheme 1.00 1.18 .98 1.11 .96 .97 .96 .97 .96

Table 3: Size of the object code produced by the various algorithms, normalized to the R5RS baseline.

68

R5RS R5RS easy A N A N S
Checks: no naive no naive yes yes no no yes

fxtak 1.00 1.00 .50 1.00 .50 .50 1.00 .50 .50
tak 1.00 .50 .50 1.00 .50 .50 .50 1.00 .50
div-iter 1.00 .50 1.00 .50 1.00 .50 .50 .50 .50
cpstak 1.00 1.00 1.00 1.00 .50 1.00 1.00 .50 1.00
takl 1.00 1.00 .50 1.00 1.00 1.00 .50 .50 1.00
ctak 1.00 .50 .50 1.00 .50 .50 1.00 .50 1.00
mbrot 1.00 1.00 1.00 .67 .67 1.00 .67 1.00 1.00
deriv 1.00 1.00 1.00 1.00 1.00 1.00 .50 .50 1.00
destruct 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
fxtriang 1.00 1.00 1.00 1.50 1.50 1.00 1.00 .50 1.00
fft-f 1.00 .75 .75 .75 .75 .75 .75 .75 .75
fft-d 1.00 1.00 1.00 1.00 1.00 1.00 .50 1.00 1.00
dderiv 1.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 1.00
triang 1.00 1.50 1.50 1.00 .50 1.00 1.00 1.00 1.50
lattice 1.00 1.33 1.00 1.00 .67 1.00 1.00 1.00 1.00
boyer 1.00 1.25 1.00 1.00 1.00 .50 .75 .50 .50
boyer-jw 1.00 1.67 1.00 1.67 1.33 1.33 .67 .67 1.33
browse 1.00 1.33 .67 1.00 .67 1.00 1.00 .67 1.00
traverse 1.00 1.25 1.00 1.25 .75 .75 .75 .50 .75
lattice-jw 1.00 .75 1.00 .75 1.00 1.00 1.00 1.00 1.00
fft-g 1.00 1.00 1.50 1.50 1.50 1.00 1.50 1.50 1.00
ray 1.00 1.17 1.00 .83 .67 .83 .83 .83 .83
fxpuzzle 1.00 1.33 1.33 1.33 1.33 1.33 1.00 1.33 1.33
graphs 1.00 1.00 1.00 .80 1.00 1.00 .80 1.00 1.00
tcheck 1.00 1.50 1.00 1.25 1.00 1.00 1.00 1.25 1.25
simplex 1.00 1.14 .86 1.00 1.00 .86 .86 .86 .86
graphs-jw 1.00 .83 .83 .83 .83 .83 .83 .83 .67
maze 1.00 1.56 1.11 1.33 .89 .89 .89 .89 .89
maze-jw 1.00 .90 .70 .60 .60 .80 .80 .80 .80
puzzle 1.00 1.67 1.33 1.67 1.67 1.67 1.33 1.67 1.33
earley 1.00 1.40 .90 1.00 .90 1.00 .80 .90 1.00
splay 1.00 1.29 1.00 1.14 1.14 1.14 1.00 1.00 1.14
matrix 1.00 1.14 .86 1.14 .86 .86 1.00 1.00 .86
conform 1.00 1.36 .91 1.36 .73 .73 .73 .73 .73
matrix-jw 1.00 1.17 1.17 1.17 1.17 1.17 1.17 .83 1.17
peval 1.00 1.36 1.00 1.36 1.09 1.00 1.09 1.09 1.09
nucleic-sorted 1.00 1.00 1.03 1.07 .77 .77 .77 .77 .73
nucleic-star 1.00 1.41 1.00 1.38 .76 .76 .79 .76 .79
fxtakr 1.00 1.91 1.45 1.45 1.45 1.45 1.45 1.45 1.45
em-imp 1.00 1.25 1.00 1.12 .88 .88 .81 .75 .75
nucleic-jw 1.00 1.09 .95 .95 .95 .95 .91 .91 .82
em-fun 1.00 1.25 1.00 1.25 .88 .88 .88 .81 .88
lalr 1.00 1.11 1.00 1.14 .86 .89 .86 .89 .86
takr 1.00 1.29 1.06 1.06 1.06 1.06 1.06 1.06 1.06
nbody 1.00 1.06 1.00 1.06 1.12 1.12 1.12 1.00 1.06
interpret 1.00 1.17 .96 1.12 1.08 1.00 1.08 1.08 1.00
dynamic 1.00 1.32 1.05 1.32 1.29 1.29 1.16 1.13 1.26
texer 1.00 1.24 1.02 1.16 1.07 1.07 1.02 1.02 1.09
similix 1.00 1.16 1.01 1.04 .98 1.03 .98 .97 .98
ddd 1.00 1.19 .97 1.14 .91 .98 .87 .97 .91
softscheme 1.00 1.30 .99 1.27 1.01 1.02 .96 .96 1.01
chezscheme 1.00 1.17 1.01 1.16 1.10 1.10 1.09 1.08 1.10

Table 4: Total compile times, normalized to the R5RS baseline. The coarse granularity of the timing mech-
anism gives us poor differentiation among many of the times, since compile times for most of the programs
are very small.

