
77

How to Write Seemingly Unhygieni and Referentially Opaque Maros with

Syntax-rules

Oleg Kiselyov

�

Software Engineering, Naval Postgraduate Shool, Monterey, CA 93943

oleg�pobox.om, oleg�am.org

Abstrat

This paper details how folklore notions of hygiene and refer-

ential transpareny of R5RS maros are defeated by a sys-

temati attak. We demonstrate syntax-rules that seem to

apture user identi�ers and allow their own identi�ers to be

aptured by the losest lexial bindings. In other words, we

have written R5RS maros that aomplish what ommonly

believed to be impossible. We build on the the fundamental

tehnique by Petrofsky of extrating variables from argu-

ments of a maro. The present paper generalizes Petrofsky's

idea to attak referential transpareny.

This paper also shows how to overload the lambda form.

The overloaded lambda ats as if it was infeted by a virus,

whih propagates through the lambda's body infeting other

lambdas in turn. The virus re-de�nes the maro being am-

ou�aged after eah binding. This rede�nition is the key

insight in ahieving the overall referential opaqueness. Al-

though we eventually subvert all binding forms, we preserve

the semantis of Sheme as given in R5RS.

The novel result of this paper is a demonstration that

although R5RS maros are deliberately restrited in expres-

siveness, they still wield surprising power. We have exposed

faults and the lak of preision in ommonly held informal

assertions about syntax-rule maros, and pointed out the

need for proper formalization. For a pratial programmer

this paper o�ers an enouragement: more and more power-

ful R5RS maros turn out to be possible.

1 Introdution

One of the most attrative and unsurpassed features of Lisp

and Sheme is the ability to greatly extend the syntax of the

ore language and to support domain-spei� notations [14℄.

These syntati extensions are ommonly alled maros. A

speial part of a Lisp/Sheme system, a maro-expander,

systematially redues the extended language to the ore

one.

A naive maro system that merely �nds syntati exten-

sions and replaes them with their expansions an orrupt

�

Current a�liation: Fleet Numerial Meteorology and Oeanogra-

phy Center, Monterey, CA 93943.

Permission to make digital or hard opies, to republish, to post on

servers or to redistribute to lists all or part of this work is granted

without fee provided that opies are not made or distributed for pro�t

or ommerial advantage and that opies bear this notie and the full

itation on the �rst page. To otherwise opy or redistribute requires

prior spei� permission.

Third Workshop on Sheme and Funtional Programming. Otober

3, 2002, Pittsburgh, Pennsylvania, USA.

2002 Oleg Kiselyov.

variable bindings and break the blok struture of the pro-

gram. For instane, free identi�ers in user ode may be in-

advertently aptured by maro-generated bindings, whih

leads to insidious bugs. This danger is very well dou-

mented, for example in [8℄, [1℄. Lisp ommunity has devel-

oped tehniques [1℄ that help make maros safer, but they

rely on e�orts and are of an individual maro program-

mer. The safety is not built into the system. Furthermore,

the tehniques ompliate the maro ode and make it more

bug-prone.

Sheme ommunity has reognized the danger of the naive

maro expansion to the blok struture of Sheme ode. The

ommunity endeavored to develop a maro system that is

safe and respetful of the lexial sope by default. In limited

irumstanes, exeptions to the blok-struture-preserving

poliy of maros are useful and an be allowed. These ex-

eptions however should be statially visible. A number of

experimental maro systems with the above properties have

been built ([8℄, [9℄, [1℄, [2℄, [4℄, [13℄). The least powerful

and the most restritive set of ommon features of these

maro systems has been standardized in R5RS [7℄. An ear-

lier version of that system has been mentioned in the previ-

ous Sheme report, R4RS, and expounded in [3℄. The R5RS

maro system permits no exeptions to the safety poliy (so-

alled, hygiene, see below). Furthermore, R5RS maros are

spei�ed in a restrited pattern language, whih gives the

maros another name: syntax-rules. The pattern language

is di�erent from the ore language and therefore removes the

need for the full Sheme evaluator at maro-expand time.

Therefore, R5RS maros are severely limited in their abil-

ity. The strit safety poliy with no exeptions has lead to

laims that "Sheme's hygieni maro system is a general

mehanism for de�ning syntati transformations that re-

liably obey the rules of lexial sope" [3℄. However, there

has been little work in formalizing this assertion. Only [8℄

took upon the task of proving that the systematial renam-

ing of introdued identi�ers indeed guarantees the hygiene

ondition, in the maro system of [8℄. The latter is not an

implementation of R5RS maros.

Surprising disoveries of R5RSmaros' latent power ques-

tion ommonly held beliefs about syntax-rule maros. For

example, the paper [3℄ laims "The primary limitation of the

hygieni maro system is that it is thoroughly hygieni, and

thus annot express maros that bind identi�ers impliitly....

The loop-until-exit maro that is used as an example of the

low-level maro system in the Revised 4 Report is also a non-

hygieni maro." In 2001, however, Al Petrofsky did express

the loop-until-exit maro in the R5RS system [11℄ (see also

[12℄ for more disussion). Al Petrofsky's artile introdued

78

a general tehnique, Petrofsky extration, of writing maros

that an extrat a spei� binding from their arguments. Al

Petrofsky has also shown how to make suh maros nest.

The present paper generalizes Petrofsky's ideas to writing

of seemingly referentially opaque R5RS maros.

A syntati extension by its nature introdues a new lan-

guage, whih may di�er in some aspets from the ore lan-

guage. Can we write a syntax-rule�based extension that

looks like R5RS Sheme but allows seemingly referentially

opaque and non-hygieni maros? Can suh an extended

language still be alled R5RS Sheme? At �rst sight, the an-

swer to both questions is negative. Although R5RS maros

are Turing omplete [6℄, they were regarded as �thoroughly

hygieni� [3℄. Furthermore, the fat that R5RS maros are

written in a restrited pattern language rather than in Sheme

makes them learly inapable of ertain omputations (e.g.,

onatenating strings or symbols). It is impossible to write

an R5RS maro foo suh that (foo a-symbol b-symbol)

expands into a a-b-symbol, where the latter is spelt as

the onatenation of haraters onstituting a-symbol and

b-symbol. It is not possible for an R5RS maro to tell if two

identi�ers have the same spelling. Ostensibly these restri-

tions were put in plae to guarantee and enfore the rules

of lexial sope for maros and their expansions (this sen-

timent was disussed in [1℄). In this paper we demonstrate

that the power of R5RS maros has been underestimated:

We an indeed implement a syntax-rule extension of Sheme

that permits seemingly referentially opaque and unhygieni

maros [12℄. Furthermore, this extended language literally

omplies with R5RS.

The next setion brie�y desribes the notions of hygiene

and referential transpareny of maro expansions. Setion

3 realls Petrofsky extration and its appliation to writ-

ing weakly non-hygieni maros. Setion 4 introdues the

key idea that re-de�ning a maro after eah binding leads

to the overall referential opaqueness. Carrying out suh re-

de�nitions requires overloading of all Sheme binding forms,

in partiular, the lambda itself. Setion 5 aomplishes this

overloading with the help of Petrofsky extration. We demon-

strate an R5RS maro that looks exatly like a areless,

referentially opaque Lisp-style maro. The end result is a

library syntax let-leaky-syntax that lets a programmer

de�ne a syntax-rule maro and designate a free identi�er

from that maro for apture by loal bindings. The �nal

setion disusses what it all means: for maro writers, for

maro users, and for programming language researhers.

2 Hygiene and Referential Transpareny of Maro Expan-

sions

This setion introdues the terminology and the working ex-

amples that are used throughout the paper. We will losely

follow [8℄ in our terminology. A syntati extension, or a

maro (invoation), is a phrase in an extended language dis-

tinguished by its leading token, or keyword. During the

maro-expansion proess the extended language is eventu-

ally redued to the ore Sheme, in one or several steps.

One step in this transformation of a syntati extension is

alled a (maro-) expansion step or a transription step. A

syntati transform funtion (a.k.a. a maro (transformer))

is a funtion de�ned by the maro writer that expands the

lass of syntati extensions introdued by the same key-

word. A transription step, whih is an appliation of a

transformer to a syntati extension, yields a phrase in the

ore language or another syntati extension. The latter

will be expanded in turn. The result of an expansion step

may ontain identi�ers that were not present in the original

syntati extension; we will all them generated identi�ers.

A maro system is alled hygieni, in the general sense, if

it avoids inadvertent aptures of free variables through sys-

temati renaming [3℄. The free variables in question an be

either generated variables, or variables present in maro in-

voations (i.e., user variables). A narrowly de�ned hygiene

is avoiding the apture of user variables by generated bind-

ings. The preise de�nition, a hygiene ondition for maro

expansions (HC/ME), is given in [8℄: "Generated identi�ers

that beome binding instanes in the ompletely expanded

program must only bind variables that are generated at the

same transription step." If a maro system on the other

hand spei�ally avoids apturing of generated identi�ers,

the latter always refer to the bindings that existed when the

maro transformer was de�ned rather to the bindings that

may exist at the point of maro invoations. This property

is often alled referential transpareny.

The rest of the present setion expounds sample R5RS

maros hosen to illustrate HC/ME and referential trans-

pareny. We will be using the examples in the rest of the

paper.

The HC/ME ondition demands that bindings introdued

by maros should not apture free identi�ers in maro ar-

guments. Let us de�ne a sample maro mbi suh that (mbi

body) will expand into (let ((i 10)) body). In the pat-

tern language of R5RS maros, the de�nition reads:

(define-syntax mbi

(syntax-rules ()

((mbi body) (let ((i 10)) body))))

A naive, non-hygieni expansion of (mbi (* 1 i)) would

have produed (let ((i 10)) (* 1 i)). The generated

binding of i would have aptured the free variable i our-

ring in the maro invoation. A hygieni expansion prevents

suh apture through a systemati renaming of identi�ers.

Therefore,

(let ((i 1)) (mbi (* 1 i)))

atually expands to

(let ((i~2 1))

(let ((i~5 10)) (* 1 i~2))

and gives the result 1. The identi�er i~2 is di�erent from

i~5: we will all them identi�ers of di�erent olors.

The referential transpareny faet demands that gener-

ated free identi�ers should not be aptured by loal bindings

that surround the expansion. To be more preise, if a maro

expansion generates a free identi�er, the identi�er refers to

the binding ourrene in the environment of the maro's

de�nition. For example, given the de�nitions

(define foo 1)

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

The form (let ((foo 2)) (mfoo)) expands into

(let ((foo~1 2))

foo)

and yields 1 when evaluated. The loal let binds foo of a

di�erent olor, and therefore, does not apture foo gener-

ated by the maro mfoo.

79

3 Petrofsky Extration

In 2001 Al Petrofsky posted an artile [11℄ that demon-

strated how to irumvent a weak form of hygiene. The

present paper generalizes Petrofsky's idea to attak referen-

tial transpareny. For ompleteness and referene this se-

tion systematially derives the Petrofsky tehnique. We aim

to write a maro mbi so that (mbi 10 body) expands into

(let ((i 10)) body) and the binding of i aptures free

ourrenes of i in the body. We assume that there are

no other bindings of i in the sope of (mbi 10 body), or i

was de�ned early in the global sope and was not re-de�ned

sine. This assumption is the distintion between the weak

hygiene and the true one.

Developing even weakly non-hygieni maros is halleng-

ing. We annot just write

(define-syntax mbi

(syntax-rules ()

((_ val body) (let ((i val)) body))))

beause (mbi 10 (* 1 i)) will expand into

(let ((i~5 10)) (* 1 i))

where i in (* 1 i) refers to the top-level binding of i or

remains unde�ned. However, we an expliitly pass a maro

the identi�er to apture:

(define-syntax mbi-i

(syntax-rules ()

((_ i val body) (let ((i val)) body))))

In that ase,

(mbi-i i 10 (* 1 i))

expands into

(let ((i 10)) (* 1 i))

and the apture ours. Hene to irumvent the hygiene in

the weak sense, we only need to �nd a way to onvert an

invoation of mbi into an invoation of mbi-i. The maro

mbi-i requires the expliit spei�ation of the identi�er to

apture � whih we an get by extrating the identi�er i,

together with its olor, from the argument of mbi. That is

the essene and the elegane of the Petrofsky's idea. One

we have the rightly olored ourrene of i, we an use it in

the binding form and e�et the apture.

The extration of olored identi�ers from a form is done

by a maro extrat, Fig. 1. This maro is the workhorse of

the hygiene irumvention strategy. We also need a maro

that extrats several identi�ers, extrat* (Fig. 2). Now we

an de�ne:

(define-syntax mbi-dirty-v1

(syntax-rules ()

((_ _val _body)

(let-syntax

((ont

(syntax-rules ()

((_ (symb) val body)

(let ((symb val)) body)))))

(extrat i _body (ont () _val _body))))))

so that

(mbi-dirty-v1 10 (* 1 i))

expands into

(let ((i~11 10)) (* 1 i~11))

and evaluates to 10, as expeted.

The maro mbi-dirty-v1 seems to do the job, but it has

a �aw. It does not nest:

(mbi-dirty-v1 10

(mbi-dirty-v1 20 (* 1 i)))

expands into

(let ((i~16 10))

(let ((i~17~25~28 20)) (* 1 i~16)))

and evaluates to 10 rather than to 20 as we might have

hoped. The outer invoation of mbi-dirty-v1 reates a

binding for i � whih violates the weak hygiene assumption.

Petrofsky [11℄ has shown how to overome this problem as

well: we need to re-de�ne mbi-dirty-v1 in the sope of the

new binding to i. Hene we need a maro that re-de�nes it-

self in its own expansion. We however fae a problem: If the

outer invoation of mbi-dirty-v1 re-de�nes itself, this redef-

inition has to apture the inner invoation of mbi-dirty-v1.

We already know how to do that, by extrating the olored

identi�er mbi-dirty-v1 from the outer maro's body. We

need thus to extrat two identi�ers: i and mbi-dirty-v1.

We arrive at the following ode:

; A maro that re-defines itself in its expansion:

; (mbi-dirty-v2 val body)

; expands into

; (let ((i val)) body)

; and also re-defines itself in the sope of body.

; myself-symb, i-symb are olored ids extrated

; from the 'body'

(define-syntax mbi-dirty-v2

(syntax-rules ()

((_ _val _body)

(letre-syntax

((doit ; ontinuation from extrat*

(syntax-rules ()

((_ (myself-symb i-symb) val body)

(let ((i-symb val)) ; first bind 'i'

(let-syntax ; re-define oneself

((myself-symb

(syntax-rules ()

((_ val__ body__)

(extrat*

(myself-symb i-symb)

body__

(doit () val__ body__))))))

body))))))

(extrat* (mbi-dirty-v2 i) _body

(doit () _val _body))))))

Therefore

(mbi-dirty-v2 10

(mbi-dirty-v2 20 (* 1 i)))

now expands to

80

; extrat SYMB BODY CONT

; BODY is a form that may ontain an ourrene of an identifier that

; refers to the same binding ourrene as SYMB.

; CONT is a form of the shape (K-HEAD K-IDL . K-ARGS)

; where K-IDL and K-ARGS are S-expressions representing lists or the

; empty list.

; The maro extrat expands into

; (K-HEAD (extr-id . K-IDL) . K-ARGS)

; where extr-id is the extrated olored identifier. If the symbol SYMB does

; not our in BODY at all, extr-id is idential to SYMB.

(define-syntax extrat

(syntax-rules ()

((_ symb body _ont)

(letre-syntax

((tr

(syntax-rules (symb)

; Found our 'symb' -- exit to ontinuation

((_ x symb tail (ont-head symb-l . ont-args))

(ont-head (x . symb-l) . ont-args))

((_ d (x . y) tail ont) ; if body is a omposite form,

(tr x x (y . tail) ont)) ; look inside

((_ d1 d2 () (ont-head symb-l . ont-args))

(ont-head (symb . symb-l) . ont-args)) ; symb does not our

((_ d1 d2 (x . y) ont)

(tr x x y ont)))))

(tr body body () _ont)))))

Figure 1: Maro extrat: Extrat a olored identi�er from a form

; extrat* SYMB-L BODY CONT

; where SYMB-L is the list of identifiers to extrat, and BODY and CONT

; has the same meaning as in extrat, see above.

;

; The maro extrat* expands into

; (K-HEAD (extr-id-l . K-IDL) . K-ARGS)

; where extr-id-l is the list of extrated olored identifiers. The extration

; itself is performed by the maro extrat.

(define-syntax extrat*

(syntax-rules ()

((_ (symb) body ont) ; only one id: use extrat to do the job

(extrat symb body ont))

((_ _symbs _body _ont)

(letre-syntax

((ex-aux ; extrat id-by-id

(syntax-rules ()

((_ found-symbs () body ont)

(reverse () found-symbs ont))

((_ found-symbs (symb . symb-others) body ont)

(extrat symb body

(ex-aux found-symbs symb-others body ont)))

))

(reverse ; reverse the list of extrated ids

(syntax-rules () ; to math the order of SYMB-L

((_ res () (ont-head () . ont-args))

(ont-head res . ont-args))

((_ res (x . tail) ont)

(reverse (x . res) tail ont)))))

(ex-aux () _symbs _body _ont)))))

Figure 2: Maro extrat*: Extrat several olored identi�ers from a form

81

(let ((i~26 10)) (let ((i~52 20)) (* 1 i~52)))

and evaluates to 20.

The maro mbi-dirty-v2 is still only weakly unhygieni.

If we evaluate

(let ((i 1))

(mbi-dirty-v2 10 (* 1 i)))

we obtain

(let ((i 1)) (let ((i~3~22~29 10)) (* 1 i)))

whih evaluates to 1 rather than 10.

4 Towards the Referential Opaqueness: a mylet Form

In this setion, we attak referential transpareny by writ-

ing a maro that seemingly allows free identi�ers in its ex-

pansion to be aptured by the losest lexial binding. To be

more preise, we want to write a maro mfoo that expands in

an identi�er foo in suh a way so that the form (let ((foo

2)) (let ((foo 3)) (list foo (mfoo)))) would evaluate

to the list (3 3). The key insight is a shift of fous from

the maro mfoo to the binding form let. The maro mfoo

is trivial:

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

We will onentrate on re-de�ning the binding form to per-

mit a referentially opaque apture. To make suh rede�ni-

tion easier, we introdue in this setion a ustom binding

form mylet. The next setion shall show how to make the

regular let at as mylet.

The goal of this setion is therefore developing a binding

form mylet so that (mylet ((foo 2)) (mylet ((foo 3))

(list foo (mfoo)))) would evaluate to the list (3 3). To

make this possible, the expression should expand as follows:

(let ((foo 2))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-aount-for-

redefined-foo-and-mfoo)

(let ((foo 3))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-aount-for-

redefined-foo-and-mfoo)

(list foo (mfoo))

))

Di�erent bindings of a variable are typeset in di�erent fonts.

The expansion of the form mylet therefore binds foo and

then re-de�nes the maro mfoo within the sope of the new

binding. This mfoo will generate the identi�er foo that refers

to that loal binding. The rede�nition of mfoo after a bind-

ing is the key insight. It makes it possible for the expansion

of the targeted maro to ontain identi�ers whose bindings

are not inserted by the same maro. The proess of de�ning

and rede�ning maros during the expansion of mylet looks

similar to the proess desribed in the previous Setion.

Therefore, we take the maro mbi-dirty-v2 as a prototype

for the design of mylet. A generator (whih helps us de-

�ne and re-de�ne the maro mfoo) and the maro mylet are

given on Fig. 3. With these de�nitions, (mylet ((foo 2))

(mylet ((foo 3)) (list foo (mfoo)))) expands to ((lambda

(foo~47) ((lambda (foo~92) (list foo~92 foo~92)) 3))

2) and evaluates to (3 3). The result demonstrates that

(mfoo) indeed expanded to foo that was aptured by the

loal binding. The maro mfoo seems to have inserted an

opaque referene to the binding of foo. Beause mylet

onstantly re-generates itself, it nests. The following test

demonstrates the nesting and the apturing by the expan-

sion of (mfoo) of the losest lexial binding:

(mylet ((foo 3))

(mylet ((thunk (lambda () (mfoo))))

(mylet ((foo 4)) (list foo (mfoo) (thunk)))))

This expression evaluates to (4 4 3). The expansion of

(mfoo) within the losure thunk refers to the variable foo

that was lexially visible at that time.

5 Ahieving the Referential Opaqueness: Rede�ning All Bind-

ing Forms

The previous setion showed that we an indeed write a

seemingly referentially opaque R5RS maro, if we resort to

ustom binding forms. R5RS does not prohibit us how-

ever from re-de�ning the standard binding forms let, let*,

letre and lambda to suit our nefarious needs. We need

to 'overload' just one form: the fundamental binding form

lambda itself.

This overloading is done by a maro defile, whih de�les

its body (Appendix B). It is worth noting a few fragments

from the maro's long ode. The �rst one

(letre-syntax

...

(lambda-native ; apture the native lambda

(syntax-rules ()

((_ . args) (lambda . args))))

does what it looks like: it aptures the native lambda, whih

is needed to e�et bindings. Another fragment is:

(letre-syntax

...

(let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letre-symb

lambda-symb) . args))))

A top-level maro glet (Appendix A) is a let with an extra

�rst argument. This argument is the �environment�, the list

of ustom-bound let and lambda identi�ers for use in the

maro expansion. The de�nition of glet is taken from R5RS

verbatim, with the pattern modi�ed to aount for the extra

�rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letre lambda) ; the extra arg

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letre lambda)

tag ((name val) ...) body1 body2 ...)

((letre

((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

82

; Maro: make-mfoo NAME SYMB BODY

; In the sope of BODY, define a maro NAME that expands into an identifier SYMB

(define-syntax make-mfoo

(syntax-rules ()

((_ name symb body)

(let-syntax

((name

(syntax-rules ()

((_) symb))))

body))))

; (mylet ((var init)) body)

; expands into

; (let ((var init)) body')

; where body' is the body wrapped in the re-definitions of mylet and the maro mfoo.

(define-syntax mylet

(syntax-rules ()

((_ ((_var _init)) _body)

(letre-syntax

((doit ; The ontinuation from extrat*

(syntax-rules () ; mylet-symb, et. are extrated from body

((_ (mylet-symb mfoo-symb foo-symb) ((var init)) body)

(let ((var init)) ; bind the 'var' first

(make-mfoo mfoo-symb foo-symb ; now re-generate the maro mfoo

(letre-syntax

((mylet-symb ; and re-define myself

(syntax-rules ()

((_ ((var_ init_)) body_)

(extrat* (mylet-symb mfoo-symb foo-symb) (var_ body_)

(doit () ((var_ init_)) body_))))))

body)))

))))

(extrat* (mylet mfoo foo) (_var _body)

(doit () ((_var _init)) _body))))))

Figure 3: Maros make-mfoo and mylet

83

The maro glet therefore relates the let form and the

lambda preisely as R5RS does; glet however substitutes

our ustom-bound lambda. Finally, the overloaded lambda

is de�ned as follows:

(letre

...

(lambda-symb ; re-defined, infeted lambda

(syntax-rules ()

((_ _vars _body)

(letre-syntax

((doit (syntax-rules ()

((_ (mylet-symb mylet*-symb

myletre-symb mylambda-symb

mymfoo-symb myfoo-symb)

vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate

(mylet-symb mylet*-symb

myletre-symb mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extrat* (let-symb let*-symb letre-symb

lambda-symb mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

We are relying on the previously aptured lambda-native to

reate bindings. After that we immediately rede�ne all our

maros in the updated environment. The orrupted lambda

ats as if it were infeted by a virus: every mentioning of

lambda "transribes" the virus and auses it to spread to

other binders within the body.

The following are a few exerpts from the de�le maro

regression tests. An expression

(defile

(let ((foo 2)) (list (mfoo) foo)))

expands into

((lambda (foo~186) (list foo~186 foo~186)) 2)

and preditably evaluates to (2 2). The expansion of (mfoo)

has indeed aptured a loally-bound identi�er. All the in-

feted lambdas are gone: the expansion result is the regular

Sheme ode. Furthermore,

(defile

(let ((foo 2))

(let ((foo 3) (bar (list (mfoo) foo)))

(list foo (mfoo) bar))))

evaluates to (3 3 (2 2)) and

(defile

(let ((foo 2))

(list

((letre

((bar (lambda () (list foo (mfoo))))

(foo 3))

bar))

foo (mfoo))))

to ((3 3) 2 2). The de�led let and letre indeed at

preisely as the standard ones. Finally,

(defile

(let* ((foo 2)

(i 3)

(foo 4)

; will apture binding of foo to 4

(ft (lambda () (mfoo)))

(foo 5)

; will apture the arg of ft1

(ft1 (lambda (foo) (mfoo)))

(foo 6))

(list foo (mfoo) (ft) (ft1 7) '(mfoo))))

evaluates to the expeted (6 6 4 7 (mfoo)). In all these

examples, the expansion of (mfoo) aptures the losest (lo-

al) lexial binding of the variable foo. All the examples

run with the Bigloo 2.4b interpreter and ompiler and with

Sheme48.

We must point out that the de�led examples behave as if

(mfoo), unless quoted, were just the identi�er foo. In other

words, as if mfoo were de�ned as a non-hygieni, referen-

tially opaque maro

(define-maro (mfoo) foo)

To be able to apture a generated identi�er by a loal bind-

ing, we need to know the name of that identi�er and the

name of a maro that generates it. We also need to e�e-

tively wrap the defile maro around vitim's ode. We

an do that expliitly as in the examples above. We an

also aomplish the wrapping impliitly, e.g., by re-de�ning

the top-level let or other suitable form so as to insert the

invoation of defile at the right spot. It goes without say-

ing that we assume no bindings to the identi�ers foo, mfoo,

let, letre, let*, and lambda between the point the maro

defile is de�ned and the point it is invoked.

It is possible to remove the dependene of the maro

defile on ad ho identi�ers suh as foo and mfoo. We an

pass the targeted maro and the identi�er to be aptured

by the losest lexial binding as arguments to defile. We

arrive at a form let-leaky-syntax (Appendix C), whih is

illustrated by the following two examples. An expression

(let-leaky-syntax

bar

((mbar

(syntax-rules () ((_ val) (+ bar val)))))

(let ((bar 1)) (let ((bar 2)) (mbar 2))))

evaluates to 4, whereas

(let-leaky-syntax

quux

((mquux (syntax-rules ()

((_ val) (+ quux quux val)))))

(let* ((bar 1) (quux 0) (quux 2)

(lquux (lambda (x) (mquux x)))

(quux 3)

(lquux (lambda (quux) (mquux quux))))

(list (+ quux quux) (mquux 0) (lquux 2)

(lquux 5))))

evaluates to the list (6 6 6 15). The form let-leaky-syntax

is similar to let-syntax. The former takes an additional

�rst argument, an identi�er from the body of the de�ned

syntax-rules. This designated identi�er will be aptured by

the losest lexial binding within the body of let-leaky-syntax.

The examples show that the variable is aptured indeed. In

84

partiular, the maro mquux in the last example expands to

an expression that adds the value of an identi�er quux twie

to the value of the mquux's argument. Beause the iden-

ti�er quux was designated for apture by the losest loal

binding, a proedure (lambda (quux) (mquux quux)) e�e-

tively triples its argument.

We have thus demonstrated the syntax form let-leaky-

syntax that de�nes a maro with a spei� variable exepted

from the hygieni rules. The form let-leaky-syntax is a

library syntax, developed exlusively with R5RS (hygieni)

maros.

6 Disussion

In this setion we will disuss the impliations of the de-

�le maro. First however we have to assure the reader that

defile is legal: it fully omplies with R5RS and does not

rely on unspei�ed behavior. Indeed, the maro de�le is

written entirely in the pattern language of R5RS. Re-binding

of syntax keywords lambda, let, let*, and letre is not

prohibited by R5RS. On the ontrary, R5RS spei�ally

states that there are no reserved keywords, and syntati

bindings may shadow variable bindings and other syntati

bindings. Furthermore, re-de�ned let, let*, and letre

forms relate to the lambda form preisely as the R5RS forms

do. The re-de�ned lambda form is also in ompliane with

its R5RS desription ([7℄, Setion 4.1.4).

One an argue that our re-de�ned lambda leads to a vi-

olation of the onstraint that R5RS plaes on the maro

system: "If a maro transformer inserts a free referene to

an identi�er, the referene refers to the binding that was vis-

ible where the transformer was spei�ed, regardless of any

loal bindings that may surround the use of the maro."

This paragraph however applies exatly as it is to the de-

�led maros. In the ode,

(define foo 1)

(defile

(let ((foo 2)) (list (mfoo) foo)))

the identi�er foo inserted by the expansion of the maro

mfoo indeed refers to the binding of foo that was visible

when the maro mfoo was de�ned. The twist is that the

de�nition of the maro mfoo happened right after the loal

binding of foo. Despite mfoo being an R5RS, referentially

transparent maro, the overall result is equivalent to the

expansion of a referentially opaque maro.

The maro de�le indeed has to surround the vitim's

ode. One an therefore objet if we merely reate our own

'little language' that resembles Sheme but does not guar-

antee referential transpareny of maro expansions. How-

ever, suh a little language was presumed impossible with

syntax rules [2℄[3℄! Any maro by de�nition extends the

language. The extended language is still expeted to obey

ertain onstraints. The impetus for hygieni maros was

spei�ally to reate a maro system with guaranteed hy-

gieni onstraints. Although syntax-rules are Turing om-

plete, ertain omputations, for example, determining if two

identi�ers are spelled the same, are outside of their sope.

It was a ommon belief therefore that syntax-rules are thor-

oughly hygieni [3℄.

To be more preise, the argument that syntax-rules an-

not in priniple implementmaros suh as let-leaky-syntax

was informally advaned in [2℄. That paper desribed a

maro-expansion algorithm that is used in several R5RS

Sheme systems, inluding Bigloo. Inidentally, the algo-

rithm aounts for the possibility that the binding forms

lambda and let-syntax may be rede�ned by the user. The

paper [2℄ informally argues that the algorithm satis�es two

hygiene onditions: (1) "It is impossible to write a high-level

maro that inserts a binding that an apture referenes

other than those inserted by the maro," and (2) �It is im-

possible to write a high-level maro that inserts a referene

that an be aptured by bindings other than those inserted

by the maro." Unfortunately, the paper does not state the

onditions with su�ient preision, whih preludes a for-

mal proof. The notion of 'inserting a binding' is parti-

ularly vague. The ommon folklore interpretation of the

onditions is that generated bindings an apture only the

identi�ers that are generated at the same transription step.

Had this interpretation been true, let-leaky-syntax would

have been impossible. However, the interpretation is false

and Petrofsky's loop maro is a ounter-example [12℄. Sev-

eral examples in Setion 4 demonstrated the apture of gen-

erated identi�ers aross transription steps.

It is interesting to ask if it is possible to reate a maro

system that is provable hygieni, whih provably does not

permit triks suh as the one in this paper. The paper [8℄

showed that if we do not allow maros to expand into the

de�nitions of other maros, we an design a maro system

that is provably hygieni. A MaroML paper [5℄ laimed

that being generative seems to be a neessary ondition for a

maro extension to maintain strong invariants (stati typing,

in the ontext of MaroML). A generative maro an build

forms from its arguments but annot deonstrut or inspet

its arguments.

We onlude that the subjet of maro hygiene is not at

all deided, and more researh is needed to preisely state

what hygiene formally means and whih preisely assuranes

it provides.

For a pratial programmer, we o�er the let-leaky-syntax

library form. The form lets the programmer write a new

lass of powerful syntati extensions with the standard R5RS

syntax-rules, without resorting to lower-level maro faili-

ties. In general, the pratial maro programmer will hope-

fully view the onlusions of this paper as an enouragement.

We should realize the informal and narrow nature of many

assertions about R5RS maros. We should not read into

R5RS more than it atually says. Thus we an write more

and more expressive maros than we were previously led to

believe [12℄.

Aknowledgment

I am greatly indebted to Al Petrofsky for numerous dis-

ussions, whih helped improve both the ontent and the

presentation of the paper. Speial thanks are due to Alan

Bawden for extensive omments and the invaluable advie.

I would like to thank Olin Shivers and the anonymous re-

viewers for many helpful omments and suggestions. This

work has been supported in part by the National Researh

Counil Researh Assoiateship Program, Naval Postgradu-

ate Shool, and the Army Researh O�e under ontrats

38690-MA and 40473-MA-SP.

Referenes

[1℄ Alan Bawden and Jonathan Rees. Syntati losures.

In Pro. 1988 ACM Symposium on Lisp and Funtional

Programming, pp. 86-95.

[2℄ William Clinger and Jonathan Rees. Maros that work.

In Pro. 1991 ACM Conferene on Priniples of Pro-

gramming Languages, pp. 155-162.

85

[3℄ William Clinger. Maros in Sheme. Lisp Pointers,

IV(4):25-28, Deember 1991.

[4℄ R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.

Syntati abstration in Sheme. Lisp and Symboli

Computation 5(4):295-326, 1993.

[5℄ S. Ganz, A. Sabry, W. Taha: Maros as Multi-Stage

Computations: Type-Safe, Generative, Binding Maros

in MaroML. Pro. Intl. Conf. Funtional Programming

(ICFP'01), pp. 74-85. Florene, Italy, September 3-5

(2001).

[6℄ Erik Hilsdale and Daniel P. Friedman. Writing maros

in ontinuation-passing style. Sheme and Funtional

Programming 2000. September 2000.

[7℄ R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 Report

on the Algorithmi Language Sheme, J. Higher-Order

and Symboli Computation, Vol. 11, No. 1, September,

1998.

[8℄ Eugene E. Kohlbeker Jr., Daniel P. Friedman,

Matthias Felleisen, and Brue Duba. Hygieni maro

expansion. In Pro. 1986 ACM Conferene on Lisp and

Funtional Programming, pp. 151-161.

[9℄ Eugene E. Kohlbeker and M. Wand. Maro-by-

example: Deriving syntati transformations from their

spei�ations. In Pro. 14th ACM SIGACT-SIGPLAN

symposium on Priniples of programming languages,

pp. 77 - 84, 1987.

[10℄ Al Petrofsky,

Oleg Kiselyov. Re: Widespread bug (arguably) in letre

when an initializer returns twie. Messages posted on a

newsgroup omp.lang.sheme on May 21, 2001 10:30:34

and 14:56:49 PST. http://groups.google.om/groups?-

selm=7eb8a3e.0105210930.21542605%40posting.google.om

http://groups.google.om/groups?-

selm=87ae468j7x.fsf%40app.dial.idiom.om

[11℄ Al Petrofsky. How to write seemingly unhygieni

maros using syntax-rules. A message posted on

a newsgroup omp.lang.sheme on November 19,

2001 01:23:33 PST. http://groups.google.om/groups?-

selm=87o�zdwt.fsf%40radish.petrofsky.org

[12℄ Al Petrofsky. Re: Holey maros! (was Re: hoie for

embed-

ding Sheme implementation?). A message posted on a

newsgroup omp.lang.sheme on May 22 2002 10:21:31

-0700. http://groups.google.om/groups?-

selm=874rh0p084.fsf%40radish.petrofsky.org

[13℄ Jonathan A. Rees. Implementing lexially soped

maros. Lisp Pointers. 'The Sheme of Things' (ol-

umn), 1993.

[14℄ Olin Shivers. A universal sripting framework, or

Lambda: the ultimate 'little language'. In "Conur-

reny and Parallelism, Programming, Networking, and

Seurity," Leture Notes in Computer Siene 1179, pp

254-265, Editors Joxan Ja�ar and Roland H. C. Yap,

1996, Springer.

Appendix A

The following are de�nitions of let, let* and letre taken

almost verbatim from R5RS. The only di�erene is in ustom-

bound let, let*, letre and lambda identi�ers, whih we

expliitly pass to the glet maros in the �rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letre lambda)

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letre lambda)

tag ((name val) ...) body1 body2 ...)

((letre ((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

(define-syntax glet*

(syntax-rules ()

((_ mynames () body1 body2 ...)

(let () body1 body2 ...))

((_ (let let* letre lambda)

((name1 val1) (name2 val2) ...) body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...) body1 body2 ...)))))

; A shorter implementations of letre [10℄

(define-syntax gletre

(syntax-rules ()

((_ (mlet let* letre lambda)

((var init) ...) . body)

(mlet ((var 'undefined) ...)

; the native let will do fine here

(let ((temp (list init ...)))

(begin (set! var (ar temp))

(set! temp (dr temp))) ...

(let () . body))))))

86

Appendix B

1

; This maro defiles its body.

; It overloads all the let-forms and the lambda, and defines a non-hygieni maro 'mfoo'. Whenever any

; binding is introdued, the let-forms, the lambdas and 'mfoo' are re-defined. The overloaded lambda ats

; as if it were infeted by a virus, whih keeps spreading within lambda's body to infet other lambda's there.

(define-syntax defile

(syntax-rules ()

((_ dbody)

(letre-syntax

((do-defile

(syntax-rules () ; all the overloaded identifiers

((_ (let-symb let*-symb letre-symb lambda-symb mfoo-symb foo-symb) body-to-defile)

(letre-syntax

((let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letre-symb lambda-symb)

. args))))

(let*-symb ; Redefinition of let*

(syntax-rules ()

((_ . args)

(glet* (let-symb let*-symb letre-symb lambda-symb)

. args))))

(letre-symb ; Redefinition of letre

(syntax-rules ()

((_ . args)

(gletre (let-symb let*-symb letre-symb lambda-symb)

. args))))

(lambda-symb ; re-defined, infeted lambda

(syntax-rules ()

((_ _vars _body)

(letre-syntax

((doit

(syntax-rules ()

((_ (mylet-symb mylet*-symb myletre-symb

mylambda-symb mymfoo-symb

myfoo-symb) vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate in the body

(mylet-symb mylet*-symb myletre-symb

mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extrat* (let-symb let*-symb letre-symb lambda-symb

mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

(lambda-native ; apture the native lambda

(syntax-rules () ((_ . args) (lambda . args))))

)

body-to-defile)))))

(extrat* (let let* letre lambda mfoo foo) dbody

(do-defile () dbody))

))))

1

The urrent implementation of the maro defile does not orrupt bindings that are reated by internal define, let-syntax and letre-syntax

forms. There are no tehnial obstales to orrupting those bindings as well. To avoid lutter, the present ode does not detet a possible shadowing

of the maro mfoo by a loal binding. The full ode with validation tests is available at http://pobox.om/~oleg/ftp/Sheme/dirty-maros.sm.

87

Appendix C

Given below is the implementation of a library syntax let-leaky-syntax. It is based on a slightly modi�ed version of

the maro defile. The latter uses parameters leaky-maro-name, leaky-maro-name-gen, and aptured-symbol instead of

hard-oded identi�ers mfoo, make-mfoo and foo.

(define-syntax defile-what

(syntax-rules ()

((_ leaky-maro-name leaky-maro-name-gen aptured-symbol dbody)

(letre-syntax

((do-defile

... similar to the defile maro, Appendix B ...

(extrat*

(let let* letre lambda

leaky-maro-name aptured-symbol) dbody (do-defile () dbody))))))

(define-syntax let-leaky-syntax

(syntax-rules ()

((_ var-to-apture ((dm-name dm-body)) body)

(let-syntax

((dm-generator

(syntax-rules ()

((_ dmg-name var-to-apture dmg-outer-body)

(let-syntax

((dmg-name dm-body))

dmg-outer-body)))))

(defile-what

dm-name dm-generator var-to-apture body)

))))

88

