
77

How to Write Seemingly Unhygieni
 and Referentially Opaque Ma
ros with

Syntax-rules

Oleg Kiselyov

�

Software Engineering, Naval Postgraduate S
hool, Monterey, CA 93943

oleg�pobox.
om, oleg�a
m.org

Abstra
t

This paper details how folklore notions of hygiene and refer-

ential transparen
y of R5RS ma
ros are defeated by a sys-

temati
 atta
k. We demonstrate syntax-rules that seem to

apture user identi�ers and allow their own identi�ers to be

aptured by the
losest lexi
al bindings. In other words, we

have written R5RS ma
ros that a

omplish what
ommonly

believed to be impossible. We build on the the fundamental

te
hnique by Petrofsky of extra
ting variables from argu-

ments of a ma
ro. The present paper generalizes Petrofsky's

idea to atta
k referential transparen
y.

This paper also shows how to overload the lambda form.

The overloaded lambda a
ts as if it was infe
ted by a virus,

whi
h propagates through the lambda's body infe
ting other

lambdas in turn. The virus re-de�nes the ma
ro being
am-

ou�aged after ea
h binding. This rede�nition is the key

insight in a
hieving the overall referential opaqueness. Al-

though we eventually subvert all binding forms, we preserve

the semanti
s of S
heme as given in R5RS.

The novel result of this paper is a demonstration that

although R5RS ma
ros are deliberately restri
ted in expres-

siveness, they still wield surprising power. We have exposed

faults and the la
k of pre
ision in
ommonly held informal

assertions about syntax-rule ma
ros, and pointed out the

need for proper formalization. For a pra
ti
al programmer

this paper o�ers an en
ouragement: more and more power-

ful R5RS ma
ros turn out to be possible.

1 Introdu
tion

One of the most attra
tive and unsurpassed features of Lisp

and S
heme is the ability to greatly extend the syntax of the

ore language and to support domain-spe
i�
 notations [14℄.

These synta
ti
 extensions are
ommonly
alled ma
ros. A

spe
ial part of a Lisp/S
heme system, a ma
ro-expander,

systemati
ally redu
es the extended language to the
ore

one.

A naive ma
ro system that merely �nds synta
ti
 exten-

sions and repla
es them with their expansions
an
orrupt

�

Current a�liation: Fleet Numeri
al Meteorology and O
eanogra-

phy Center, Monterey, CA 93943.

Permission to make digital or hard
opies, to republish, to post on

servers or to redistribute to lists all or part of this work is granted

without fee provided that
opies are not made or distributed for pro�t

or
ommer
ial advantage and that
opies bear this noti
e and the full

itation on the �rst page. To otherwise
opy or redistribute requires

prior spe
i�
 permission.

Third Workshop on S
heme and Fun
tional Programming. O
tober

3, 2002, Pittsburgh, Pennsylvania, USA.

2002 Oleg Kiselyov.

variable bindings and break the blo
k stru
ture of the pro-

gram. For instan
e, free identi�ers in user
ode may be in-

advertently
aptured by ma
ro-generated bindings, whi
h

leads to insidious bugs. This danger is very well do
u-

mented, for example in [8℄, [1℄. Lisp
ommunity has devel-

oped te
hniques [1℄ that help make ma
ros safer, but they

rely on e�orts and
are of an individual ma
ro program-

mer. The safety is not built into the system. Furthermore,

the te
hniques
ompli
ate the ma
ro
ode and make it more

bug-prone.

S
heme
ommunity has re
ognized the danger of the naive

ma
ro expansion to the blo
k stru
ture of S
heme
ode. The

ommunity endeavored to develop a ma
ro system that is

safe and respe
tful of the lexi
al s
ope by default. In limited

ir
umstan
es, ex
eptions to the blo
k-stru
ture-preserving

poli
y of ma
ros are useful and
an be allowed. These ex-

eptions however should be stati
ally visible. A number of

experimental ma
ro systems with the above properties have

been built ([8℄, [9℄, [1℄, [2℄, [4℄, [13℄). The least powerful

and the most restri
tive set of
ommon features of these

ma
ro systems has been standardized in R5RS [7℄. An ear-

lier version of that system has been mentioned in the previ-

ous S
heme report, R4RS, and expounded in [3℄. The R5RS

ma
ro system permits no ex
eptions to the safety poli
y (so-

alled, hygiene, see below). Furthermore, R5RS ma
ros are

spe
i�ed in a restri
ted pattern language, whi
h gives the

ma
ros another name: syntax-rules. The pattern language

is di�erent from the
ore language and therefore removes the

need for the full S
heme evaluator at ma
ro-expand time.

Therefore, R5RS ma
ros are severely limited in their abil-

ity. The stri
t safety poli
y with no ex
eptions has lead to

laims that "S
heme's hygieni
 ma
ro system is a general

me
hanism for de�ning synta
ti
 transformations that re-

liably obey the rules of lexi
al s
ope" [3℄. However, there

has been little work in formalizing this assertion. Only [8℄

took upon the task of proving that the systemati
al renam-

ing of introdu
ed identi�ers indeed guarantees the hygiene

ondition, in the ma
ro system of [8℄. The latter is not an

implementation of R5RS ma
ros.

Surprising dis
overies of R5RSma
ros' latent power ques-

tion
ommonly held beliefs about syntax-rule ma
ros. For

example, the paper [3℄
laims "The primary limitation of the

hygieni
 ma
ro system is that it is thoroughly hygieni
, and

thus
annot express ma
ros that bind identi�ers impli
itly....

The loop-until-exit ma
ro that is used as an example of the

low-level ma
ro system in the Revised 4 Report is also a non-

hygieni
 ma
ro." In 2001, however, Al Petrofsky did express

the loop-until-exit ma
ro in the R5RS system [11℄ (see also

[12℄ for more dis
ussion). Al Petrofsky's arti
le introdu
ed

78

a general te
hnique, Petrofsky extra
tion, of writing ma
ros

that
an extra
t a spe
i�
 binding from their arguments. Al

Petrofsky has also shown how to make su
h ma
ros nest.

The present paper generalizes Petrofsky's ideas to writing

of seemingly referentially opaque R5RS ma
ros.

A synta
ti
 extension by its nature introdu
es a new lan-

guage, whi
h may di�er in some aspe
ts from the
ore lan-

guage. Can we write a syntax-rule�based extension that

looks like R5RS S
heme but allows seemingly referentially

opaque and non-hygieni
 ma
ros? Can su
h an extended

language still be
alled R5RS S
heme? At �rst sight, the an-

swer to both questions is negative. Although R5RS ma
ros

are Turing
omplete [6℄, they were regarded as �thoroughly

hygieni
� [3℄. Furthermore, the fa
t that R5RS ma
ros are

written in a restri
ted pattern language rather than in S
heme

makes them
learly in
apable of
ertain
omputations (e.g.,

on
atenating strings or symbols). It is impossible to write

an R5RS ma
ro foo su
h that (foo a-symbol b-symbol)

expands into a a-b-symbol, where the latter is spelt as

the
on
atenation of
hara
ters
onstituting a-symbol and

b-symbol. It is not possible for an R5RS ma
ro to tell if two

identi�ers have the same spelling. Ostensibly these restri
-

tions were put in pla
e to guarantee and enfor
e the rules

of lexi
al s
ope for ma
ros and their expansions (this sen-

timent was dis
ussed in [1℄). In this paper we demonstrate

that the power of R5RS ma
ros has been underestimated:

We
an indeed implement a syntax-rule extension of S
heme

that permits seemingly referentially opaque and unhygieni

ma
ros [12℄. Furthermore, this extended language literally

omplies with R5RS.

The next se
tion brie�y des
ribes the notions of hygiene

and referential transparen
y of ma
ro expansions. Se
tion

3 re
alls Petrofsky extra
tion and its appli
ation to writ-

ing weakly non-hygieni
 ma
ros. Se
tion 4 introdu
es the

key idea that re-de�ning a ma
ro after ea
h binding leads

to the overall referential opaqueness. Carrying out su
h re-

de�nitions requires overloading of all S
heme binding forms,

in parti
ular, the lambda itself. Se
tion 5 a

omplishes this

overloading with the help of Petrofsky extra
tion. We demon-

strate an R5RS ma
ro that looks exa
tly like a
areless,

referentially opaque Lisp-style ma
ro. The end result is a

library syntax let-leaky-syntax that lets a programmer

de�ne a syntax-rule ma
ro and designate a free identi�er

from that ma
ro for
apture by lo
al bindings. The �nal

se
tion dis
usses what it all means: for ma
ro writers, for

ma
ro users, and for programming language resear
hers.

2 Hygiene and Referential Transparen
y of Ma
ro Expan-

sions

This se
tion introdu
es the terminology and the working ex-

amples that are used throughout the paper. We will
losely

follow [8℄ in our terminology. A synta
ti
 extension, or a

ma
ro (invo
ation), is a phrase in an extended language dis-

tinguished by its leading token, or keyword. During the

ma
ro-expansion pro
ess the extended language is eventu-

ally redu
ed to the
ore S
heme, in one or several steps.

One step in this transformation of a synta
ti
 extension is

alled a (ma
ro-) expansion step or a trans
ription step. A

synta
ti
 transform fun
tion (a.k.a. a ma
ro (transformer))

is a fun
tion de�ned by the ma
ro writer that expands the

lass of synta
ti
 extensions introdu
ed by the same key-

word. A trans
ription step, whi
h is an appli
ation of a

transformer to a synta
ti
 extension, yields a phrase in the

ore language or another synta
ti
 extension. The latter

will be expanded in turn. The result of an expansion step

may
ontain identi�ers that were not present in the original

synta
ti
 extension; we will
all them generated identi�ers.

A ma
ro system is
alled hygieni
, in the general sense, if

it avoids inadvertent
aptures of free variables through sys-

temati
 renaming [3℄. The free variables in question
an be

either generated variables, or variables present in ma
ro in-

vo
ations (i.e., user variables). A narrowly de�ned hygiene

is avoiding the
apture of user variables by generated bind-

ings. The pre
ise de�nition, a hygiene
ondition for ma
ro

expansions (HC/ME), is given in [8℄: "Generated identi�ers

that be
ome binding instan
es in the
ompletely expanded

program must only bind variables that are generated at the

same trans
ription step." If a ma
ro system on the other

hand spe
i�
ally avoids
apturing of generated identi�ers,

the latter always refer to the bindings that existed when the

ma
ro transformer was de�ned rather to the bindings that

may exist at the point of ma
ro invo
ations. This property

is often
alled referential transparen
y.

The rest of the present se
tion expounds sample R5RS

ma
ros
hosen to illustrate HC/ME and referential trans-

paren
y. We will be using the examples in the rest of the

paper.

The HC/ME
ondition demands that bindings introdu
ed

by ma
ros should not
apture free identi�ers in ma
ro ar-

guments. Let us de�ne a sample ma
ro mbi su
h that (mbi

body) will expand into (let ((i 10)) body). In the pat-

tern language of R5RS ma
ros, the de�nition reads:

(define-syntax mbi

(syntax-rules ()

((mbi body) (let ((i 10)) body))))

A naive, non-hygieni
 expansion of (mbi (* 1 i)) would

have produ
ed (let ((i 10)) (* 1 i)). The generated

binding of i would have
aptured the free variable i o

ur-

ring in the ma
ro invo
ation. A hygieni
 expansion prevents

su
h
apture through a systemati
 renaming of identi�ers.

Therefore,

(let ((i 1)) (mbi (* 1 i)))

a
tually expands to

(let ((i~2 1))

(let ((i~5 10)) (* 1 i~2))

and gives the result 1. The identi�er i~2 is di�erent from

i~5: we will
all them identi�ers of di�erent
olors.

The referential transparen
y fa
et demands that gener-

ated free identi�ers should not be
aptured by lo
al bindings

that surround the expansion. To be more pre
ise, if a ma
ro

expansion generates a free identi�er, the identi�er refers to

the binding o

urren
e in the environment of the ma
ro's

de�nition. For example, given the de�nitions

(define foo 1)

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

The form (let ((foo 2)) (mfoo)) expands into

(let ((foo~1 2))

foo)

and yields 1 when evaluated. The lo
al let binds foo of a

di�erent
olor, and therefore, does not
apture foo gener-

ated by the ma
ro mfoo.

79

3 Petrofsky Extra
tion

In 2001 Al Petrofsky posted an arti
le [11℄ that demon-

strated how to
ir
umvent a weak form of hygiene. The

present paper generalizes Petrofsky's idea to atta
k referen-

tial transparen
y. For
ompleteness and referen
e this se
-

tion systemati
ally derives the Petrofsky te
hnique. We aim

to write a ma
ro mbi so that (mbi 10 body) expands into

(let ((i 10)) body) and the binding of i
aptures free

o

urren
es of i in the body. We assume that there are

no other bindings of i in the s
ope of (mbi 10 body), or i

was de�ned early in the global s
ope and was not re-de�ned

sin
e. This assumption is the distin
tion between the weak

hygiene and the true one.

Developing even weakly non-hygieni
 ma
ros is
halleng-

ing. We
annot just write

(define-syntax mbi

(syntax-rules ()

((_ val body) (let ((i val)) body))))

be
ause (mbi 10 (* 1 i)) will expand into

(let ((i~5 10)) (* 1 i))

where i in (* 1 i) refers to the top-level binding of i or

remains unde�ned. However, we
an expli
itly pass a ma
ro

the identi�er to
apture:

(define-syntax mbi-i

(syntax-rules ()

((_ i val body) (let ((i val)) body))))

In that
ase,

(mbi-i i 10 (* 1 i))

expands into

(let ((i 10)) (* 1 i))

and the
apture o

urs. Hen
e to
ir
umvent the hygiene in

the weak sense, we only need to �nd a way to
onvert an

invo
ation of mbi into an invo
ation of mbi-i. The ma
ro

mbi-i requires the expli
it spe
i�
ation of the identi�er to

apture � whi
h we
an get by extra
ting the identi�er i,

together with its
olor, from the argument of mbi. That is

the essen
e and the elegan
e of the Petrofsky's idea. On
e

we have the rightly
olored o

urren
e of i, we
an use it in

the binding form and e�e
t the
apture.

The extra
tion of
olored identi�ers from a form is done

by a ma
ro extra
t, Fig. 1. This ma
ro is the workhorse of

the hygiene
ir
umvention strategy. We also need a ma
ro

that extra
ts several identi�ers, extra
t* (Fig. 2). Now we

an de�ne:

(define-syntax mbi-dirty-v1

(syntax-rules ()

((_ _val _body)

(let-syntax

((
ont

(syntax-rules ()

((_ (symb) val body)

(let ((symb val)) body)))))

(extra
t i _body (
ont () _val _body))))))

so that

(mbi-dirty-v1 10 (* 1 i))

expands into

(let ((i~11 10)) (* 1 i~11))

and evaluates to 10, as expe
ted.

The ma
ro mbi-dirty-v1 seems to do the job, but it has

a �aw. It does not nest:

(mbi-dirty-v1 10

(mbi-dirty-v1 20 (* 1 i)))

expands into

(let ((i~16 10))

(let ((i~17~25~28 20)) (* 1 i~16)))

and evaluates to 10 rather than to 20 as we might have

hoped. The outer invo
ation of mbi-dirty-v1
reates a

binding for i � whi
h violates the weak hygiene assumption.

Petrofsky [11℄ has shown how to over
ome this problem as

well: we need to re-de�ne mbi-dirty-v1 in the s
ope of the

new binding to i. Hen
e we need a ma
ro that re-de�nes it-

self in its own expansion. We however fa
e a problem: If the

outer invo
ation of mbi-dirty-v1 re-de�nes itself, this redef-

inition has to
apture the inner invo
ation of mbi-dirty-v1.

We already know how to do that, by extra
ting the
olored

identi�er mbi-dirty-v1 from the outer ma
ro's body. We

need thus to extra
t two identi�ers: i and mbi-dirty-v1.

We arrive at the following
ode:

; A ma
ro that re-defines itself in its expansion:

; (mbi-dirty-v2 val body)

; expands into

; (let ((i val)) body)

; and also re-defines itself in the s
ope of body.

; myself-symb, i-symb are
olored ids extra
ted

; from the 'body'

(define-syntax mbi-dirty-v2

(syntax-rules ()

((_ _val _body)

(letre
-syntax

((doit ;
ontinuation from extra
t*

(syntax-rules ()

((_ (myself-symb i-symb) val body)

(let ((i-symb val)) ; first bind 'i'

(let-syntax ; re-define oneself

((myself-symb

(syntax-rules ()

((_ val__ body__)

(extra
t*

(myself-symb i-symb)

body__

(doit () val__ body__))))))

body))))))

(extra
t* (mbi-dirty-v2 i) _body

(doit () _val _body))))))

Therefore

(mbi-dirty-v2 10

(mbi-dirty-v2 20 (* 1 i)))

now expands to

80

; extra
t SYMB BODY CONT

; BODY is a form that may
ontain an o

urren
e of an identifier that

; refers to the same binding o

urren
e as SYMB.

; CONT is a form of the shape (K-HEAD K-IDL . K-ARGS)

; where K-IDL and K-ARGS are S-expressions representing lists or the

; empty list.

; The ma
ro extra
t expands into

; (K-HEAD (extr-id . K-IDL) . K-ARGS)

; where extr-id is the extra
ted
olored identifier. If the symbol SYMB does

; not o

ur in BODY at all, extr-id is identi
al to SYMB.

(define-syntax extra
t

(syntax-rules ()

((_ symb body _
ont)

(letre
-syntax

((tr

(syntax-rules (symb)

; Found our 'symb' -- exit to
ontinuation

((_ x symb tail (
ont-head symb-l .
ont-args))

(
ont-head (x . symb-l) .
ont-args))

((_ d (x . y) tail
ont) ; if body is a
omposite form,

(tr x x (y . tail)
ont)) ; look inside

((_ d1 d2 () (
ont-head symb-l .
ont-args))

(
ont-head (symb . symb-l) .
ont-args)) ; symb does not o

ur

((_ d1 d2 (x . y)
ont)

(tr x x y
ont)))))

(tr body body () _
ont)))))

Figure 1: Ma
ro extra
t: Extra
t a
olored identi�er from a form

; extra
t* SYMB-L BODY CONT

; where SYMB-L is the list of identifiers to extra
t, and BODY and CONT

; has the same meaning as in extra
t, see above.

;

; The ma
ro extra
t* expands into

; (K-HEAD (extr-id-l . K-IDL) . K-ARGS)

; where extr-id-l is the list of extra
ted
olored identifiers. The extra
tion

; itself is performed by the ma
ro extra
t.

(define-syntax extra
t*

(syntax-rules ()

((_ (symb) body
ont) ; only one id: use extra
t to do the job

(extra
t symb body
ont))

((_ _symbs _body _
ont)

(letre
-syntax

((ex-aux ; extra
t id-by-id

(syntax-rules ()

((_ found-symbs () body
ont)

(reverse () found-symbs
ont))

((_ found-symbs (symb . symb-others) body
ont)

(extra
t symb body

(ex-aux found-symbs symb-others body
ont)))

))

(reverse ; reverse the list of extra
ted ids

(syntax-rules () ; to mat
h the order of SYMB-L

((_ res () (
ont-head () .
ont-args))

(
ont-head res .
ont-args))

((_ res (x . tail)
ont)

(reverse (x . res) tail
ont)))))

(ex-aux () _symbs _body _
ont)))))

Figure 2: Ma
ro extra
t*: Extra
t several
olored identi�ers from a form

81

(let ((i~26 10)) (let ((i~52 20)) (* 1 i~52)))

and evaluates to 20.

The ma
ro mbi-dirty-v2 is still only weakly unhygieni
.

If we evaluate

(let ((i 1))

(mbi-dirty-v2 10 (* 1 i)))

we obtain

(let ((i 1)) (let ((i~3~22~29 10)) (* 1 i)))

whi
h evaluates to 1 rather than 10.

4 Towards the Referential Opaqueness: a mylet Form

In this se
tion, we atta
k referential transparen
y by writ-

ing a ma
ro that seemingly allows free identi�ers in its ex-

pansion to be
aptured by the
losest lexi
al binding. To be

more pre
ise, we want to write a ma
ro mfoo that expands in

an identi�er foo in su
h a way so that the form (let ((foo

2)) (let ((foo 3)) (list foo (mfoo)))) would evaluate

to the list (3 3). The key insight is a shift of fo
us from

the ma
ro mfoo to the binding form let. The ma
ro mfoo

is trivial:

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

We will
on
entrate on re-de�ning the binding form to per-

mit a referentially opaque
apture. To make su
h rede�ni-

tion easier, we introdu
e in this se
tion a
ustom binding

form mylet. The next se
tion shall show how to make the

regular let a
t as mylet.

The goal of this se
tion is therefore developing a binding

form mylet so that (mylet ((foo 2)) (mylet ((foo 3))

(list foo (mfoo)))) would evaluate to the list (3 3). To

make this possible, the expression should expand as follows:

(let ((foo 2))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-a

ount-for-

redefined-foo-and-mfoo)

(let ((foo 3))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-a

ount-for-

redefined-foo-and-mfoo)

(list foo (mfoo))

))

Di�erent bindings of a variable are typeset in di�erent fonts.

The expansion of the form mylet therefore binds foo and

then re-de�nes the ma
ro mfoo within the s
ope of the new

binding. This mfoo will generate the identi�er foo that refers

to that lo
al binding. The rede�nition of mfoo after a bind-

ing is the key insight. It makes it possible for the expansion

of the targeted ma
ro to
ontain identi�ers whose bindings

are not inserted by the same ma
ro. The pro
ess of de�ning

and rede�ning ma
ros during the expansion of mylet looks

similar to the pro
ess des
ribed in the previous Se
tion.

Therefore, we take the ma
ro mbi-dirty-v2 as a prototype

for the design of mylet. A generator (whi
h helps us de-

�ne and re-de�ne the ma
ro mfoo) and the ma
ro mylet are

given on Fig. 3. With these de�nitions, (mylet ((foo 2))

(mylet ((foo 3)) (list foo (mfoo)))) expands to ((lambda

(foo~47) ((lambda (foo~92) (list foo~92 foo~92)) 3))

2) and evaluates to (3 3). The result demonstrates that

(mfoo) indeed expanded to foo that was
aptured by the

lo
al binding. The ma
ro mfoo seems to have inserted an

opaque referen
e to the binding of foo. Be
ause mylet

onstantly re-generates itself, it nests. The following test

demonstrates the nesting and the
apturing by the expan-

sion of (mfoo) of the
losest lexi
al binding:

(mylet ((foo 3))

(mylet ((thunk (lambda () (mfoo))))

(mylet ((foo 4)) (list foo (mfoo) (thunk)))))

This expression evaluates to (4 4 3). The expansion of

(mfoo) within the
losure thunk refers to the variable foo

that was lexi
ally visible at that time.

5 A
hieving the Referential Opaqueness: Rede�ning All Bind-

ing Forms

The previous se
tion showed that we
an indeed write a

seemingly referentially opaque R5RS ma
ro, if we resort to

ustom binding forms. R5RS does not prohibit us how-

ever from re-de�ning the standard binding forms let, let*,

letre
 and lambda to suit our nefarious needs. We need

to 'overload' just one form: the fundamental binding form

lambda itself.

This overloading is done by a ma
ro defile, whi
h de�les

its body (Appendix B). It is worth noting a few fragments

from the ma
ro's long
ode. The �rst one

(letre
-syntax

...

(lambda-native ;
apture the native lambda

(syntax-rules ()

((_ . args) (lambda . args))))

does what it looks like: it
aptures the native lambda, whi
h

is needed to e�e
t bindings. Another fragment is:

(letre
-syntax

...

(let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letre
-symb

lambda-symb) . args))))

A top-level ma
ro glet (Appendix A) is a let with an extra

�rst argument. This argument is the �environment�, the list

of
ustom-bound let and lambda identi�ers for use in the

ma
ro expansion. The de�nition of glet is taken from R5RS

verbatim, with the pattern modi�ed to a

ount for the extra

�rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letre
 lambda) ; the extra arg

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letre
 lambda)

tag ((name val) ...) body1 body2 ...)

((letre

((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

82

; Ma
ro: make-mfoo NAME SYMB BODY

; In the s
ope of BODY, define a ma
ro NAME that expands into an identifier SYMB

(define-syntax make-mfoo

(syntax-rules ()

((_ name symb body)

(let-syntax

((name

(syntax-rules ()

((_) symb))))

body))))

; (mylet ((var init)) body)

; expands into

; (let ((var init)) body')

; where body' is the body wrapped in the re-definitions of mylet and the ma
ro mfoo.

(define-syntax mylet

(syntax-rules ()

((_ ((_var _init)) _body)

(letre
-syntax

((doit ; The
ontinuation from extra
t*

(syntax-rules () ; mylet-symb, et
. are extra
ted from body

((_ (mylet-symb mfoo-symb foo-symb) ((var init)) body)

(let ((var init)) ; bind the 'var' first

(make-mfoo mfoo-symb foo-symb ; now re-generate the ma
ro mfoo

(letre
-syntax

((mylet-symb ; and re-define myself

(syntax-rules ()

((_ ((var_ init_)) body_)

(extra
t* (mylet-symb mfoo-symb foo-symb) (var_ body_)

(doit () ((var_ init_)) body_))))))

body)))

))))

(extra
t* (mylet mfoo foo) (_var _body)

(doit () ((_var _init)) _body))))))

Figure 3: Ma
ros make-mfoo and mylet

83

The ma
ro glet therefore relates the let form and the

lambda pre
isely as R5RS does; glet however substitutes

our
ustom-bound lambda. Finally, the overloaded lambda

is de�ned as follows:

(letre

...

(lambda-symb ; re-defined, infe
ted lambda

(syntax-rules ()

((_ _vars _body)

(letre
-syntax

((doit (syntax-rules ()

((_ (mylet-symb mylet*-symb

myletre
-symb mylambda-symb

mymfoo-symb myfoo-symb)

vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate

(mylet-symb mylet*-symb

myletre
-symb mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extra
t* (let-symb let*-symb letre
-symb

lambda-symb mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

We are relying on the previously
aptured lambda-native to

reate bindings. After that we immediately rede�ne all our

ma
ros in the updated environment. The
orrupted lambda

a
ts as if it were infe
ted by a virus: every mentioning of

lambda "trans
ribes" the virus and
auses it to spread to

other binders within the body.

The following are a few ex
erpts from the de�le ma
ro

regression tests. An expression

(defile

(let ((foo 2)) (list (mfoo) foo)))

expands into

((lambda (foo~186) (list foo~186 foo~186)) 2)

and predi
tably evaluates to (2 2). The expansion of (mfoo)

has indeed
aptured a lo
ally-bound identi�er. All the in-

fe
ted lambdas are gone: the expansion result is the regular

S
heme
ode. Furthermore,

(defile

(let ((foo 2))

(let ((foo 3) (bar (list (mfoo) foo)))

(list foo (mfoo) bar))))

evaluates to (3 3 (2 2)) and

(defile

(let ((foo 2))

(list

((letre

((bar (lambda () (list foo (mfoo))))

(foo 3))

bar))

foo (mfoo))))

to ((3 3) 2 2). The de�led let and letre
 indeed a
t

pre
isely as the standard ones. Finally,

(defile

(let* ((foo 2)

(i 3)

(foo 4)

; will
apture binding of foo to 4

(ft (lambda () (mfoo)))

(foo 5)

; will
apture the arg of ft1

(ft1 (lambda (foo) (mfoo)))

(foo 6))

(list foo (mfoo) (ft) (ft1 7) '(mfoo))))

evaluates to the expe
ted (6 6 4 7 (mfoo)). In all these

examples, the expansion of (mfoo)
aptures the
losest (lo-

al) lexi
al binding of the variable foo. All the examples

run with the Bigloo 2.4b interpreter and
ompiler and with

S
heme48.

We must point out that the de�led examples behave as if

(mfoo), unless quoted, were just the identi�er foo. In other

words, as if mfoo were de�ned as a non-hygieni
, referen-

tially opaque ma
ro

(define-ma
ro (mfoo) foo)

To be able to
apture a generated identi�er by a lo
al bind-

ing, we need to know the name of that identi�er and the

name of a ma
ro that generates it. We also need to e�e
-

tively wrap the defile ma
ro around vi
tim's
ode. We

an do that expli
itly as in the examples above. We
an

also a

omplish the wrapping impli
itly, e.g., by re-de�ning

the top-level let or other suitable form so as to insert the

invo
ation of defile at the right spot. It goes without say-

ing that we assume no bindings to the identi�ers foo, mfoo,

let, letre
, let*, and lambda between the point the ma
ro

defile is de�ned and the point it is invoked.

It is possible to remove the dependen
e of the ma
ro

defile on ad ho
 identi�ers su
h as foo and mfoo. We
an

pass the targeted ma
ro and the identi�er to be
aptured

by the
losest lexi
al binding as arguments to defile. We

arrive at a form let-leaky-syntax (Appendix C), whi
h is

illustrated by the following two examples. An expression

(let-leaky-syntax

bar

((mbar

(syntax-rules () ((_ val) (+ bar val)))))

(let ((bar 1)) (let ((bar 2)) (mbar 2))))

evaluates to 4, whereas

(let-leaky-syntax

quux

((mquux (syntax-rules ()

((_ val) (+ quux quux val)))))

(let* ((bar 1) (quux 0) (quux 2)

(lquux (lambda (x) (mquux x)))

(quux 3)

(l
quux (lambda (quux) (mquux quux))))

(list (+ quux quux) (mquux 0) (lquux 2)

(l
quux 5))))

evaluates to the list (6 6 6 15). The form let-leaky-syntax

is similar to let-syntax. The former takes an additional

�rst argument, an identi�er from the body of the de�ned

syntax-rules. This designated identi�er will be
aptured by

the
losest lexi
al binding within the body of let-leaky-syntax.

The examples show that the variable is
aptured indeed. In

84

parti
ular, the ma
ro mquux in the last example expands to

an expression that adds the value of an identi�er quux twi
e

to the value of the mquux's argument. Be
ause the iden-

ti�er quux was designated for
apture by the
losest lo
al

binding, a pro
edure (lambda (quux) (mquux quux)) e�e
-

tively triples its argument.

We have thus demonstrated the syntax form let-leaky-

syntax that de�nes a ma
ro with a spe
i�
 variable ex
epted

from the hygieni
 rules. The form let-leaky-syntax is a

library syntax, developed ex
lusively with R5RS (hygieni
)

ma
ros.

6 Dis
ussion

In this se
tion we will dis
uss the impli
ations of the de-

�le ma
ro. First however we have to assure the reader that

defile is legal: it fully
omplies with R5RS and does not

rely on unspe
i�ed behavior. Indeed, the ma
ro de�le is

written entirely in the pattern language of R5RS. Re-binding

of syntax keywords lambda, let, let*, and letre
 is not

prohibited by R5RS. On the
ontrary, R5RS spe
i�
ally

states that there are no reserved keywords, and synta
ti

bindings may shadow variable bindings and other synta
ti

bindings. Furthermore, re-de�ned let, let*, and letre

forms relate to the lambda form pre
isely as the R5RS forms

do. The re-de�ned lambda form is also in
omplian
e with

its R5RS des
ription ([7℄, Se
tion 4.1.4).

One
an argue that our re-de�ned lambda leads to a vi-

olation of the
onstraint that R5RS pla
es on the ma
ro

system: "If a ma
ro transformer inserts a free referen
e to

an identi�er, the referen
e refers to the binding that was vis-

ible where the transformer was spe
i�ed, regardless of any

lo
al bindings that may surround the use of the ma
ro."

This paragraph however applies exa
tly as it is to the de-

�led ma
ros. In the
ode,

(define foo 1)

(defile

(let ((foo 2)) (list (mfoo) foo)))

the identi�er foo inserted by the expansion of the ma
ro

mfoo indeed refers to the binding of foo that was visible

when the ma
ro mfoo was de�ned. The twist is that the

de�nition of the ma
ro mfoo happened right after the lo
al

binding of foo. Despite mfoo being an R5RS, referentially

transparent ma
ro, the overall result is equivalent to the

expansion of a referentially opaque ma
ro.

The ma
ro de�le indeed has to surround the vi
tim's

ode. One
an therefore obje
t if we merely
reate our own

'little language' that resembles S
heme but does not guar-

antee referential transparen
y of ma
ro expansions. How-

ever, su
h a little language was presumed impossible with

syntax rules [2℄[3℄! Any ma
ro by de�nition extends the

language. The extended language is still expe
ted to obey

ertain
onstraints. The impetus for hygieni
 ma
ros was

spe
i�
ally to
reate a ma
ro system with guaranteed hy-

gieni

onstraints. Although syntax-rules are Turing
om-

plete,
ertain
omputations, for example, determining if two

identi�ers are spelled the same, are outside of their s
ope.

It was a
ommon belief therefore that syntax-rules are thor-

oughly hygieni
 [3℄.

To be more pre
ise, the argument that syntax-rules
an-

not in prin
iple implementma
ros su
h as let-leaky-syntax

was informally advan
ed in [2℄. That paper des
ribed a

ma
ro-expansion algorithm that is used in several R5RS

S
heme systems, in
luding Bigloo. In
identally, the algo-

rithm a

ounts for the possibility that the binding forms

lambda and let-syntax may be rede�ned by the user. The

paper [2℄ informally argues that the algorithm satis�es two

hygiene
onditions: (1) "It is impossible to write a high-level

ma
ro that inserts a binding that
an
apture referen
es

other than those inserted by the ma
ro," and (2) �It is im-

possible to write a high-level ma
ro that inserts a referen
e

that
an be
aptured by bindings other than those inserted

by the ma
ro." Unfortunately, the paper does not state the

onditions with su�
ient pre
ision, whi
h pre
ludes a for-

mal proof. The notion of 'inserting a binding' is parti
-

ularly vague. The
ommon folklore interpretation of the

onditions is that generated bindings
an
apture only the

identi�ers that are generated at the same trans
ription step.

Had this interpretation been true, let-leaky-syntax would

have been impossible. However, the interpretation is false

and Petrofsky's loop ma
ro is a
ounter-example [12℄. Sev-

eral examples in Se
tion 4 demonstrated the
apture of gen-

erated identi�ers a
ross trans
ription steps.

It is interesting to ask if it is possible to
reate a ma
ro

system that is provable hygieni
, whi
h provably does not

permit tri
ks su
h as the one in this paper. The paper [8℄

showed that if we do not allow ma
ros to expand into the

de�nitions of other ma
ros, we
an design a ma
ro system

that is provably hygieni
. A Ma
roML paper [5℄
laimed

that being generative seems to be a ne
essary
ondition for a

ma
ro extension to maintain strong invariants (stati
 typing,

in the
ontext of Ma
roML). A generative ma
ro
an build

forms from its arguments but
annot de
onstru
t or inspe
t

its arguments.

We
on
lude that the subje
t of ma
ro hygiene is not at

all de
ided, and more resear
h is needed to pre
isely state

what hygiene formally means and whi
h pre
isely assuran
es

it provides.

For a pra
ti
al programmer, we o�er the let-leaky-syntax

library form. The form lets the programmer write a new

lass of powerful synta
ti
 extensions with the standard R5RS

syntax-rules, without resorting to lower-level ma
ro fa
ili-

ties. In general, the pra
ti
al ma
ro programmer will hope-

fully view the
on
lusions of this paper as an en
ouragement.

We should realize the informal and narrow nature of many

assertions about R5RS ma
ros. We should not read into

R5RS more than it a
tually says. Thus we
an write more

and more expressive ma
ros than we were previously led to

believe [12℄.

A
knowledgment

I am greatly indebted to Al Petrofsky for numerous dis-

ussions, whi
h helped improve both the
ontent and the

presentation of the paper. Spe
ial thanks are due to Alan

Bawden for extensive
omments and the invaluable advi
e.

I would like to thank Olin Shivers and the anonymous re-

viewers for many helpful
omments and suggestions. This

work has been supported in part by the National Resear
h

Coun
il Resear
h Asso
iateship Program, Naval Postgradu-

ate S
hool, and the Army Resear
h O�
e under
ontra
ts

38690-MA and 40473-MA-SP.

Referen
es

[1℄ Alan Bawden and Jonathan Rees. Synta
ti

losures.

In Pro
. 1988 ACM Symposium on Lisp and Fun
tional

Programming, pp. 86-95.

[2℄ William Clinger and Jonathan Rees. Ma
ros that work.

In Pro
. 1991 ACM Conferen
e on Prin
iples of Pro-

gramming Languages, pp. 155-162.

85

[3℄ William Clinger. Ma
ros in S
heme. Lisp Pointers,

IV(4):25-28, De
ember 1991.

[4℄ R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.

Synta
ti
 abstra
tion in S
heme. Lisp and Symboli

Computation 5(4):295-326, 1993.

[5℄ S. Ganz, A. Sabry, W. Taha: Ma
ros as Multi-Stage

Computations: Type-Safe, Generative, Binding Ma
ros

in Ma
roML. Pro
. Intl. Conf. Fun
tional Programming

(ICFP'01), pp. 74-85. Floren
e, Italy, September 3-5

(2001).

[6℄ Erik Hilsdale and Daniel P. Friedman. Writing ma
ros

in
ontinuation-passing style. S
heme and Fun
tional

Programming 2000. September 2000.

[7℄ R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 Report

on the Algorithmi
 Language S
heme, J. Higher-Order

and Symboli
 Computation, Vol. 11, No. 1, September,

1998.

[8℄ Eugene E. Kohlbe
ker Jr., Daniel P. Friedman,

Matthias Felleisen, and Bru
e Duba. Hygieni
 ma
ro

expansion. In Pro
. 1986 ACM Conferen
e on Lisp and

Fun
tional Programming, pp. 151-161.

[9℄ Eugene E. Kohlbe
ker and M. Wand. Ma
ro-by-

example: Deriving synta
ti
 transformations from their

spe
i�
ations. In Pro
. 14th ACM SIGACT-SIGPLAN

symposium on Prin
iples of programming languages,

pp. 77 - 84, 1987.

[10℄ Al Petrofsky,

Oleg Kiselyov. Re: Widespread bug (arguably) in letre

when an initializer returns twi
e. Messages posted on a

newsgroup
omp.lang.s
heme on May 21, 2001 10:30:34

and 14:56:49 PST. http://groups.google.
om/groups?-

selm=7eb8a
3e.0105210930.21542605%40posting.google.
om

http://groups.google.
om/groups?-

selm=87ae468j7x.fsf%40app.dial.idiom.
om

[11℄ Al Petrofsky. How to write seemingly unhygieni

ma
ros using syntax-rules. A message posted on

a newsgroup
omp.lang.s
heme on November 19,

2001 01:23:33 PST. http://groups.google.
om/groups?-

selm=87o�z
dwt.fsf%40radish.petrofsky.org

[12℄ Al Petrofsky. Re: Holey ma
ros! (was Re:
hoi
e for

embed-

ding S
heme implementation?). A message posted on a

newsgroup
omp.lang.s
heme on May 22 2002 10:21:31

-0700. http://groups.google.
om/groups?-

selm=874rh0p084.fsf%40radish.petrofsky.org

[13℄ Jonathan A. Rees. Implementing lexi
ally s
oped

ma
ros. Lisp Pointers. 'The S
heme of Things' (
ol-

umn), 1993.

[14℄ Olin Shivers. A universal s
ripting framework, or

Lambda: the ultimate 'little language'. In "Con
ur-

ren
y and Parallelism, Programming, Networking, and

Se
urity," Le
ture Notes in Computer S
ien
e 1179, pp

254-265, Editors Joxan Ja�ar and Roland H. C. Yap,

1996, Springer.

Appendix A

The following are de�nitions of let, let* and letre
 taken

almost verbatim from R5RS. The only di�eren
e is in
ustom-

bound let, let*, letre
 and lambda identi�ers, whi
h we

expli
itly pass to the glet ma
ros in the �rst argument.

(define-syntax glet

(syntax-rules ()

((_ (let let* letre
 lambda)

((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...) val ...))

((_ (let let* letre
 lambda)

tag ((name val) ...) body1 body2 ...)

((letre
 ((tag (lambda (name ...) body1 body2 ...)))

tag) val ...))))

(define-syntax glet*

(syntax-rules ()

((_ mynames () body1 body2 ...)

(let () body1 body2 ...))

((_ (let let* letre
 lambda)

((name1 val1) (name2 val2) ...) body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...) body1 body2 ...)))))

; A shorter implementations of letre
 [10℄

(define-syntax gletre

(syntax-rules ()

((_ (mlet let* letre
 lambda)

((var init) ...) . body)

(mlet ((var 'undefined) ...)

; the native let will do fine here

(let ((temp (list init ...)))

(begin (set! var (
ar temp))

(set! temp (
dr temp))) ...

(let () . body))))))

86

Appendix B

1

; This ma
ro defiles its body.

; It overloads all the let-forms and the lambda, and defines a non-hygieni
 ma
ro 'mfoo'. Whenever any

; binding is introdu
ed, the let-forms, the lambdas and 'mfoo' are re-defined. The overloaded lambda a
ts

; as if it were infe
ted by a virus, whi
h keeps spreading within lambda's body to infe
t other lambda's there.

(define-syntax defile

(syntax-rules ()

((_ dbody)

(letre
-syntax

((do-defile

(syntax-rules () ; all the overloaded identifiers

((_ (let-symb let*-symb letre
-symb lambda-symb mfoo-symb foo-symb) body-to-defile)

(letre
-syntax

((let-symb ; R5RS definition of let

(syntax-rules ()

((_ . args)

(glet (let-symb let*-symb letre
-symb lambda-symb)

. args))))

(let*-symb ; Redefinition of let*

(syntax-rules ()

((_ . args)

(glet* (let-symb let*-symb letre
-symb lambda-symb)

. args))))

(letre
-symb ; Redefinition of letre

(syntax-rules ()

((_ . args)

(gletre
 (let-symb let*-symb letre
-symb lambda-symb)

. args))))

(lambda-symb ; re-defined, infe
ted lambda

(syntax-rules ()

((_ _vars _body)

(letre
-syntax

((doit

(syntax-rules ()

((_ (mylet-symb mylet*-symb myletre
-symb

mylambda-symb mymfoo-symb

myfoo-symb) vars body)

(lambda-native vars

(make-mfoo mymfoo-symb myfoo-symb

(do-defile ; proliferate in the body

(mylet-symb mylet*-symb myletre
-symb

mylambda-symb

mymfoo-symb myfoo-symb)

body)))))))

(extra
t* (let-symb let*-symb letre
-symb lambda-symb

mfoo-symb foo-symb)

(_vars _body)

(doit () _vars _body))))))

(lambda-native ;
apture the native lambda

(syntax-rules () ((_ . args) (lambda . args))))

)

body-to-defile)))))

(extra
t* (let let* letre
 lambda mfoo foo) dbody

(do-defile () dbody))

))))

1

The
urrent implementation of the ma
ro defile does not
orrupt bindings that are
reated by internal define, let-syntax and letre
-syntax

forms. There are no te
hni
al obsta
les to
orrupting those bindings as well. To avoid
lutter, the present
ode does not dete
t a possible shadowing

of the ma
ro mfoo by a lo
al binding. The full
ode with validation tests is available at http://pobox.
om/~oleg/ftp/S
heme/dirty-ma
ros.s
m.

87

Appendix C

Given below is the implementation of a library syntax let-leaky-syntax. It is based on a slightly modi�ed version of

the ma
ro defile. The latter uses parameters leaky-ma
ro-name, leaky-ma
ro-name-gen, and
aptured-symbol instead of

hard-
oded identi�ers mfoo, make-mfoo and foo.

(define-syntax defile-what

(syntax-rules ()

((_ leaky-ma
ro-name leaky-ma
ro-name-gen
aptured-symbol dbody)

(letre
-syntax

((do-defile

... similar to the defile ma
ro, Appendix B ...

(extra
t*

(let let* letre
 lambda

leaky-ma
ro-name
aptured-symbol) dbody (do-defile () dbody))))))

(define-syntax let-leaky-syntax

(syntax-rules ()

((_ var-to-
apture ((dm-name dm-body)) body)

(let-syntax

((dm-generator

(syntax-rules ()

((_ dmg-name var-to-
apture dmg-outer-body)

(let-syntax

((dmg-name dm-body))

dmg-outer-body)))))

(defile-what

dm-name dm-generator var-to-
apture body)

))))

88

