
9

In
orporating S
heme-based Web Programming

in Computer Litera
y Courses

Timothy J. Hi
key

�

Department of Computer S
ien
e

Brandeis University

Waltham, MA 02254, USA

Abstra
t

We des
ribe an approa
h to introdu
ing non-s
ien
e ma-

jors to 
omputers and 
omputation in part by tea
h-

ing them to write applets, servlets, and groupware ap-

pli
ations using a diale
t of S
heme implemented in

Java. The de
larative nature of our approa
h allows

non-s
ien
e majors with no programming ba
kground to

develop surprisingly 
omplex web appli
ations in about

half a semester. This level of programming provides a


ontext for a deeper understanding of 
omputation than

is usually feasible in a Computer Litera
y 
ourse. The


ourse does not require the students to download any

software as all programming 
an be done with S
heme

applets. The instru
tor however must provide a S
heme

server whi
h will run the students' servlets.

1 Introdu
tion

There are two general approa
hes to tea
hing a Com-

puter Litera
y 
lass. The most 
ommon approa
h is

a broad overview of Computer S
ien
e in
luding hard-

ware, software, history, ethi
s, and an exposure to in-

dustry standard oÆ
e and internet software. On the

other end of the spe
trum is the 
lass that fo
uses on

programming in some parti
ular general purpose lan-

guage, (e.g. Javas
ript [12℄, S
heme[5℄, MiniJava[11℄).

The primary disadvantage of the breadth-�rst approa
h

is that it tends to o�er a super�
ial view of 
omputing.

�

This work was supported by the National S
ien
e Founda-

tion under Grant No. EIA-0082393.

Permission to make digital or hard 
opies, to republish, to post

on servers or to redistribute to lists all or part of this work is

granted without fee provided that 
opies are not made or dis-

tributed for pro�t or 
ommer
ial advantage and that 
opies

bear this noti
e and the full 
itation on the �rst page. To oth-

erwise 
opy or redistribute requires prior spe
i�
 permission.

Third Workshop on S
heme and Fun
tional Programming. O
-

tober 3, 2002, Pittsburgh, Pennsylvania, USA.

Copyright 2002 Timothy J. Hi
key.

The depth-�rst programming approa
h on the other hand

often requires a substantial e�ort just to learn the syn-

tax of the language and the semanti
s of the underly-

ing abstra
t model of 
omputation, leaving little time

to look at other aspe
ts of 
omputing su
h as internet

te
hnology or 
omputer ar
hite
ture.

Several authors have re
ently proposed merging these

two approa
hes by using a simpler programming lan-

guage (e.g. S
heme[5℄, [6℄, [7℄) or by using an internet-

based language (e.g. Javas
ript[12℄, MiniJava[11℄).

In this paper we des
ribe a �ve year experiment in 
om-

bining these two approa
hes in a Computer Litera
y


ourse at Brandeis University (CS2a: Introdu
tion to

Computers). We deviate from many Computer Liter-

a
y 
ourses in that we spend very little time dis
ussing

the standard appli
ation programs (e.g. word pro
es-

sors, spreadsheets, email, instant messaging, �le shar-

ing, image pro
essing et
.) It has been our experien
e

that students are able to learn how to use most of these

programs on their own and that use of these appli
a-

tions does not generally require a deep understanding

of 
omputation. In a phrase, we don't tea
h them what

they are going to learn by themselves anyway.

The CS2a:Introdu
tion to Computers 
ourse tea
hes pro-

gramming 
on
epts and uses a small (but powerful) sub-

set of Js
heme[2℄ { a Java-based diale
t of S
heme. The

tight integration of Java with Js
heme allows it to be

easily embedded in Java programs and hen
e makes it

easy for students to implement servlets, applets, and

other web-deliverable appli
ations. Js
heme is an im-

plementation of S
heme in Java (meeting almost all of

the requirements of the R4RS [4℄ S
heme standard). It

also in
ludes two simple synta
ti
 extensions:

� javadot notation: this provides full a

ess to

Java 
lasses, methods, and �elds

� quasi-string notation: this simpli�es the pro-


ess of generating HTML.

The javadot notation provides a transparent a

ess to

Java and the quasi-string notation provides a gentle



10

path from HTML to S
heme for novi
es. It also pro-

vides a 
onvenient syntax for generating 
omplex strings

of other sorts (su
h as SQL queries). These two exten-

sions will be dis
ussed at length below.

Js
heme 
an be a

essed as an interpreter applet (run-

ning on all Java-enabled browsers) or as a Java Network

Laun
hing Proto
ol (JNLP) appli
ation. Both of these

provide one 
li
k a

ess to the Js
heme IDE from stan-

dard browsers. It 
an also be downloaded as a jar �le

and run from the 
ommand line as a standard read-eval-

print-loop program.

Js
heme has been built into a Jakarta Tom
at webserver

as a webapp whi
h allows students to write servlets

and JNLP appli
ations dire
tly in Js
heme. This web-

server typi
ally runs on the instru
tor's ma
hine, but

students 
an easily download and install the server on

their home/dorm PCs as well.

In the sequel, we explain, in detail, how Js
heme 
an be

used to tea
h non-s
ien
e majors in a large le
ture 
lass

how to build servlets and applets in a six week se
tion

of a Computer Litera
y 
ourse. The approa
h des
ribed

here is very similar to the approa
h used in the Autumn

2001, \Introdu
tion to Computers" 
ourse at Brandeis

University, but it re
e
ts 
hanges that will be in
or-

porated in the next year's version of the 
ourse. The


ourse and the underlying language have been evolving

steadily over the past �ve years and will likely 
ontinue

to do so.

This approa
h to tea
hing Computer Litera
y is feasible

be
ause of the de
larative style of programming that is

possible in S
heme, together with the extremely simple

syntax and semanti
s of S
heme.

We posit that this web-programming based approa
h

would work with other de
larative languages (e.g. Haskell

or Prolog), but would be infeasible with imperative lan-

guages su
h as Java or Perl. S
heme however is ideally

suited to this appli
ation be
ause of the relative sim-

pli
ity of its syntax and semanti
s, both of whi
h 
an

be stumbling blo
ks for novi
e programmers.

Although the parti
ular languages and te
hniques that

we use may not be the best mat
h at other institutions,

we feel that the general approa
h 
ould be easily repli-


ated using other languages provided 
are is taken to

make the syntax and semanti
s that must be learned as

simple as possible.

2 Related Work

The need for a simple, but powerful, language for tea
h-

ing introdu
tory CS 
ourses has been dis
ussed re
ently

by Roberts [11℄ who argues for a new language, Mini-

java, that provides both a simpler 
omputing model

(e.g. no inner 
lasses, use of wrapper 
lass for all s
alar

values, optional ex
eption throwing) and a simpler run-

time environment (e.g. a read-eval-print loop is pro-

vided).

Js
heme 
an be viewed as an even more radi
al simpli�-


ation of Java in that it repla
es the syntax of Java with

the mu
h simpler syntax of S
heme while maintaining

a

ess to all of the 
lasses and obje
ts of Java.

Another re
ent approa
h for introdu
tory 
ourses is to

use Javas
ript to both tea
h programming 
on
epts and

to provide a vehi
le for dis
ussing other aspe
ts of 
om-

puting su
h as the internet and web te
hnology. For

example, David Reed proposes tea
hing a 
ourse [12℄

in whi
h about 15% of 
lass time is devoted to HTML,

50% to Javas
ript, and 35% to other topi
s in 
omputer

s
ien
e. Our approa
h follows a similar breakdown but

also allows the students to build servlets, applets, and

GUI-based appli
ations.

A third related approa
h is to tea
h S
heme dire
tly as

a �rst 
ourse. The MIT approa
h, pioneered by Abelson

and Sussman [1℄, is not suitable for non-s
ien
e majors

as it requires a mathemati
ally sophisti
ated audien
e.

The approa
h being developed by the PLT group [5℄,

[6℄,[7℄, on the other hand, provides a rigorous introdu
-

tion to S
heme programming but is designed to be a
-


essible to students from all dis
iplines.

In our aproa
h, we provide an introdu
tion to only a

subset of the language (for example, introdu
ing lists

only toward the end). We start by introdu
ing some

high-level de
larative libraries for tea
hing an event-

driven model of GUI 
onstru
tion. The S
heme se
tion

of the 
ourse requires only about 6 weeks. This leaves

half of the 
ourse for standard Computer Litera
y top-

i
s.

3 Goals, Syllabus, and Rationale

Our main goal in tea
hing a Computer Litera
y 
ourse

is to help the students gain a broad understanding of

digital 
omputation. It is our feeling that Computer

Litera
y 
ourses are most e�e
tive if they fo
us on the

fundamental me
hanisms of 
omputing at all levels and

if they ground this theoreti
al material by requiring

the students to build programs using these fundamental


on
epts.

The syllabus 
overs the me
hanisms underlying CMOS

gates and VLSI, the stru
ture and interpretation of as-

sembly language, the design of simple GUI-based ap-

pli
ations, the me
hanisms underlying servlets (in
lud-

ing 
ounters, logs, and auto-generated email), the basi


design and stru
ture of the internet, and the limits of


omputers (e.g. the Halting problem and the Turing

test).



11

We test their understanding of this material using weekly

quizzes, biweekly homework assignments, and a �nal

exam in whi
h they must write and/or tra
e programs

at these various levels (from semi
ondu
tors to servlets).

Before delving into a detailed des
ription of the 
urri
u-

lum we �rst explain what we do not 
over and provide

some justi�
ation for these 
hoi
es.

This 
ourse also does not delve very deep into the soft

aspe
ts of Computing. These topi
s are 
overed in a


ompanion 
ourse (CS33b: Internet and So
iety), whi
h

is fo
used primarily on the so
ial, ethi
al, legal, e
o-

nomi
, politi
al and aestheti
 aspe
ts of 
omputers. It

is our opinion that these issues are best taught in an in-

terdis
iplinary 
ontext. Indeed, the CS33b 
ourse is 
ur-

rently taught by a dozen instru
tors from half a dozen

di�erent departments.

The 
ourse does not tea
h algorithms and data stru
-

tures. Although the students do learn to tra
e through

the exe
ution of fast-exponential pro
edures, g
d 
al
u-

lators, and the "map" fun
tion, we do not tea
h them to

use 
omputers for problem solving. Thus we do not ask

them to write sorting pro
edures or programs to �nd

average grade s
ores, et
.

We do tea
h "rea
tive" programming in this 
ourse,

i.e. programs that intera
t with the user (through GUIs

or HTML forms) and use the user-supplied information

to generate responses and perform simple a
tions (log-

ging, sending email, updating 
ounters, performing sim-

ple 
al
ulations and tests). We also tea
h the students

to understand how to tra
e re
ursive programs whi
h

is a far easier task than learning how to write re
ursive

programs. More pre
isely,the students are required to

be able to write applets and servlets in three languages

(HTML, CSS, S
heme) and to tra
e programs in two

additional "languages" (p
ode assembly language, and

CMOS 
ir
uit diagrams).

The goal in tea
hing them to write "rea
tive" programs

and to tra
e re
ursive programs is to help them under-

stand the deeper issues of 
omputation more 
learly.

For instan
e, one of the applet programs we present is a

simple "Psy
hiatrist" simulator whi
h they are en
our-

aged to modify. This provides a 
ontext for a deeper

dis
ussion of arti�
ial intelligen
e, ethi
s, and the Tur-

ing problem. For another example, when we dis
uss

the substitution model of S
heme the students are re-

quired to tra
e re
ursive programs with fun
tion param-

eters (e.g. map). This paves the way for a dis
ussion of

the Halting problem. We 
onsider the 
onsequen
es of

extending the S
heme language by adding a primitive

pro
edure (halts? F X) whi
h returns true if (F X)

eventually returns an answer and false if it throws an

ex
eption or does not return. In parti
ular, we look at

the following program:

(define (skepti
 Q)

(if (halts? Q Q) (skepti
 Q) 'ha))

(skepti
 skepti
)

The tra
e of (skepti
 skepti
) yields the expe
ted


ontradi
tion whi
h then leads to a dis
ussion of the lim-

its of 
omputation. It is true that the skepti
 example

only makes sense in the 
ontext of a S
heme whi
h pro-

vides sour
e 
ode a

ess to all pro
edures and 
losures,

but the impossibility of adding a re
ursive "halts?" pro-


edure still illustrates well the limits of 
omputation.

We usually 
ouple this le
ture with a 
lassroom exer-


ise in whi
h the students must prove that the instru
-

tor 
an not tell the future. The proof 
onsists of asking

the instru
tor to predi
t the student's behavior using

the same strategy as the "skepti
" pro
edure.

A rough outline of the syllabus, whi
h shows the 
ontext

of the web-programming part of the 
ourse is shown

below.

� 1 week HTTP and the stru
ture of the Inter-

net: IP addresses, ports, so
kets, servi
es, routers,

gateways. Use of telnet, dig, tra
eroute, ping,

ports
an to illustrate these issues.

� 2 weeksHTML/CSS { the thirty non-style HTML

tags and 10 basi
 CSS properties. Copyright is-

sues.

� 3 weeks S
heme Servlets { quasi-string nota-

tion, abstra
tion, 
onditional exe
ution, lists, �le

I/O, email, database a

ess. Se
urity, priva
y,


ookies, ethi
s.

� 3 weeks S
heme Applets/Groupware { GUI


omponents, layout, 
allba
ks, animation, network-

ing primitives, groupware 
omponents. Do
tor ap-

plet, Turing Test. Halting problem. Substitution

model. Software li
enses.

� 1 week Assembly Language/P
ode - von Neu-

mann ar
hite
ture, memory-mapped peripherals,

memory, speed, bandwidth, 
a
heing, super-s
alar

ar
hite
tures. Operating Systems, �le systems,

time sharing, ...

� 1 week CMOS/Logi
 Cir
uits - semi
ondu
tors

(P/N-type), gates, 
ir
uits, adders, lat
hes and

bits.

Observe that the 
ourse 
ontains a sign�
ant amount of

non-S
heme material that would be found in most typi-


al Computer Litera
y 
ourses (su
h as 
opyright issues

and ethi
al questions dealing with servers), but with

this programming-based approa
h these issues are more

meaningful as the students are able to write servers that


reate logs and must deal with the resulting ethi
al ques-

tions.

4 Courseware

The main language used in the 
ourse is Js
heme

1

[2, 3,

8℄, an open sour
e implementation of S
heme in Java.

1

http://js
heme.sour
eforge.net



12

SYNTACTIC CONSTRUCT JAVA MEMBER EXAMPLE

"." at the end 
onstru
tor (Font. NAME STYLE SIZE)

"." at the beginning instan
e method (.setFont COMP FONT)

"." at beginning, "$" at end instan
e field (.first$ '(1 2))

"." only in the middle stati
 method (Math.round 123.456)

".
lass" suffix Java 
lass Font.
lass

"$" at end, no "." at beg. stati
 field Font.BOLD$

"$" in the middle inner 
lass java.awt.geom.Point2D$Double.
lass

"$" at the beginning pa
kageless 
lass $ParseDemo.
lass

"#" at the end a

ess private data Symbol.#

Figure 1: Java re
e
tors in Js
heme

It is almost 
ompletely 
ompliant with the R4RS stan-

dard

2

[4℄ and also provides full a

ess to Java using the

Java Re
e
tor syntax shown in Figure 1. Js
heme also

provides full a

ess to Java thread and ex
eption han-

dling. The following example illustrates the ease with

whi
h one 
an a

ess Java libraries in Js
heme. It im-

plements a simple multi-threaded \e
ho servi
e" on a

spe
i�ed port and 
at
hes/reports any errors that may

arise in ea
h thread:

(define (e
hoserver N)

(let ((SS (java.net.ServerSo
ket. N)))

(let loop ()

(let ((S (.a

ept SS)))

(.start

(java.lang.Thread.

(lambda()

(tryCat
h

(let*

((in (java.io.BufferedReader.

(java.io.InputStreamReader.

(.getInputStream S))))

(out (java.io.PrintStream.

(.getOutputStream S))))

(.println out (.readLine in))

(.
lose S))

(lambda(e)

(.println java.lang.System.out$

(.toString e))))))))

(loop))))

The 
ourse uses a small but powerful subset of S
heme

and also relies on only a few sele
ted Java re
e
tors and

a small GUI-building library. For 
ontrol 
ow and ab-

stra
tion it uses define, set!, lambda, if,
ond, 
ase,

let*. For primitives, it uses arithmeti
 operators and


omparisons, a simple GUI-building library (providing

de
larative a

ess to Swing 
omponents, events, and

layout managers).

2

strings are not mutable, and 
all/

 is only implemented for

try/
at
h like appli
ations

4.1 S
heme Servlets

Files whi
h appear in the Js
heme webserver student

dire
tory with the extension ".servlet" are treated as

Js
heme expressions whi
h are evaluated to generate the

html to send ba
k to the 
lient. After working with this

model for a while, we found that the need to 
ombine

s
heme and text resulted in programs 
ontaining large

numbers of string-append's and quoted strings (with

many quoted quotes). In response to this somewhat


onfusing syntax, we introdu
ed a slight synta
ti
 ex-

tension to S
heme whi
h allows 
urly bra
es fg to be

used in pla
e of double quotes for strings. Moreover,

inside a fg string, any s
heme expressions appearing

within square bra
kets [℄, are evaluated and appended

into the string. These two devi
es make use of the unas-

signed out�x operators [℄ and fg, and allow for a more


on
ise method for 
onstru
ting strings in S
heme. We


all this quasi-string notation

3

For example, using quasi-string notation we 
an write

(define (my-li NAME IMAGEFILE COST)

{<div style="ba
kground:rgb(0,150,150)">

<table width="100%">

<tr><td>

<a href="[IMAGEFILE℄">

<img sr
="[IMAGEFILE℄"

alt="[NAME℄" width="150"></a><br>

</td><td> <h1 style="ba
kground:lightgreen;


olor:bla
k">[NAME℄</h1>

</td><td style="text-align:right">

Cost: $[COST℄ </td></tr></table>

</div> <br> <br> <br>

})

whi
h is equivalent to the following (less elegant) stan-

dard S
heme expression. Note in parti
ular the 
onfu-

sion that arises from the need to quote double quotes.

In the quasi-string syntax, it is mu
h easier to verify the

synta
ti
 
orre
tness of the resulting 
ode.

3

The quasi-string notation is a synta
ti
 variant on Bru
e R

Lewis' Beautiful Report Language (BRL) Syntax. Our approa
h

is based on the quasiquote/unquote approa
h for 
onstru
ting

lists in S
heme.



13

(define (my-li NAME IMAGEFILE COST)

(string-append

"<div style=\"ba
kground:rgb(0,150,150)\">

<table width=\"100%\">

<tr><td>

<a href=\""

IMAGEFILE

"\">

<img sr
=\""

IMAGEFILE

"\"

alt=\""

NAME

"\" width=\"150\"></a><br>

</td><td> <h1 style=\"ba
kground:lightgreen;


olor:bla
k\">"

NAME

"</h1>

</td><td style=\"text-align:right\">

Cost: $"

COST

" </td></tr></table>

</div> <br> <br> <br>

"))

The quasi-string notation is similar to the quasiquote

syntax used to 
onstru
t s-expressions in S
heme.

4.1.1 Dynami
 
ontent

The �rst non-trivial examples of servlets that we provide

are servlets that in
lude runtime generated data (su
h

as the 
urrent date, or information from the HTML

headers, like the 
lient operating system). For exam-

ple, by en
losing their HTML in 
urly bra
es, 
hang-

ing the extension from html to servlet, they 
an add

this dynami
 
ontent to their page just by in
luding the

[(java.util.Date.)℄ expression into their HTML.

{<html>

<head><title>Date/Time</title></head>

<body>

Current lo
al time is

[(java.util.Date.)℄

</body>

</html>}

Evaluating this expression yields

<html>

<head><title>Date/Time</title></head>

<body>

Current lo
al time is

Fri Sep 07 09:33:30 EDT 2001

</body>

</html>

These small synta
ti
 
hanges provide a gentle intro-

du
tion to servlets that, as we will show below, leads

naturally to abstra
tion, 
onditional exe
ution, and ex-

pression evaluation.

4.1.2 Introdu
ing Abstra
tion

On
e the idea of dynami
 
ontent is 
learly established,

we move on to abstra
tion and show how to use the

"de�ne" form to 
reate "s
heme tags." This simple and

powerful idea only requires an understanding of the sub-

stitution model of s
heme evaluation, and yet allows

students to start writing and sharing new HTML tag li-

braries, written in S
heme. For example, Figure 2 shows

a typi
al and simple library that in
ludes a generi
 web-

page pro
edure and a 
aptioned image pro
edure.

;; loadmylib.servlet

(define (
img C I) ;; 
aptioned images

{<table border=5>

<tr><td>

<img sr
="[I℄" alt="[C℄">

</td></tr>

<tr><td>[C℄

</td></tr> </table>})

(define (generi
-page Title CSS Body)

{<html>

<head><title> [Title℄</title>

<style type="text/
ss" media="s
reen">

<!-- [CSS℄ --></style></head>

<body> [Body℄</body>

</html>})

Figure 2: An HTML abstra
tion library

An example of the use of this simple library is shown

in Figure 3. The bene�ts of this sort of abstra
tion be-


ome even greater when the abstra
tions start using so-

phisti
ated inline-CSS style attributes to 
reate a highly

stylized HTML 
omponents.

(begin

(generi
-page "Pets"

"body {ba
kground:bla
k;
olor:white}

h1{border: thi
k solid red}"

{<h1>Pets</h1>

[(list

(
img "Snappy" "snappy.jpg")

(
img "Pepper" "pepper.jpg")

(
img "Missy" "missy.jpg")

(
img "Kitty" "kitty.jpg")

(
img "Tarzan" "dog17.jpg"))℄

})

Figure 3: Using HTML abstra
tion libraries



14

This te
hnique for abstra
ting HTML is well-known is

Lisp/S
heme web programming (e.g. LAML[10℄, BRL

4

)

and is similar to Server-Side In
ludes in JSP

5

or the

publishing model of the Zope environment

6

.

4.1.3 Introdu
ing User Intera
tion

The next pedagogi
al step is to introdu
e the notion of

using HTML forms to send data from the user to the

servlet.

To simplify the 
omputational model for novi
e stu-

dents, Js
heme provides easy a

ess to form parameters

using the (servlet (p1 p2 ...) ....) ma
ro whi
h

binds the variables p1,... to the strings asso
iated

with the form parameters of the same names. This al-

lows one to easily write servlets that pro
ess form data

from webpages. This also proves to be a good time to

introdu
e the notion of 
onditional exe
ution (using if,


ond, and 
ase):

(servlet (password bg fg words)

(
ase password

((#null) ; first visit to page, make form

(generi
-page {
olor viewer form} {}

{<h1>pw-prote
ted 
olor viewer</h1>

<form method=post a
tion="demo1.servlet">

pw <input type=text name="pw"><p>

bg <input type=text name="bg"><p>

fg <input type=text name="fg"><p>

text<textarea name="words">

Enter text to view here</textarea>

<input type=submit>

</form>}))

(("
ool!") ;; 
orre
t pw, pro
ess data

(generi
-page "
olor viewer"

"body {ba
kground:[bg℄;
olor:[fg℄}"

words))

(else ;; in
orre
t password, 
omplain!

(generi
-page "ERROR"

" body {
olor:red;ba
kground:bla
k}"

{<h1>WRONG PASSWORD<h1>

Go ba
k and try again!}))))

Figure 4: A password prote
ted page

For example, after a week of HTML instru
tion we have

found that beginning students easily 
reate HTML forms

and it is then a small step to the servlet in Figure 4

whi
h either generates a form or generates a response

to the form, depending on whether the form parameter

has been given a value by the browser.

4

http://brl.sour
eforge.net

5

http://java.sun.
om/produ
ts/jsp

6

http://www.zope.org

4.1.4 Expression Evaluation

The next step is to introdu
e numeri
al 
omputation

into servlets. An example, of the type of program the

students are able to 
onstru
t at this level is shown in

Figure 5 below.

(servlet (in
hes pounds)

(if (equal? in
hes #null)

;; first visit to page, 
reate form

(generi
-page {
olor viewer form} {}

{<h1>BMI Cal
ulator</h1>

<form method=post a
tion="bmi.servlet">

height:

<input type=text name="in
hes"> in
hes<br>

weight:

<input type=text name="weight">pounds<br>

<input type=submit>

</form>})

;; else 
ompute BMI, display results

(let*( (h-in-m (* in
hes 0.0254))

(w-in-kg (/ pounds 2.2))

(bmi (/ w-in-kg (* h-in-m h-in-m))))

(generi
-page "Body Mass Index"

" body {ba
kground:rgb(255,235,215)}"

{<h1>Body Mass Index<h1>

With a height of [in
hes℄ in
hes and

a weight of [pounds℄ pounds, your

Body Mass Index is [bmi℄ <br>

Note: a BMI over 25 indi
ates you may be

overweight, while a BMI over 30 indi
ates

that your weight may 
ause signifi
ant health

problems!}))))

Figure 5: A sample quasi-string servlet

This requires two new ideas:

� evaluation of arithmeti
 s-expressions

7

� introdu
tion of intermediate variables using let*

This is admittedly a big step. At this point we review

the substitution model to explain how expression evalu-

ation pro
eeds, and we introdu
e an environment model

to explain the semanti
s of the let* expression.

For students to be able to write this type of servlet

they need to learn to use pre�x S
heme arithmeti
 ex-

pressions and to use the servlet and 
ase ma
ros.

4.1.5 System Intera
tion

We have also added a few additional primitives for writ-

ing or appending s
heme terms to a �le, and for reading

7

The servlet ma
ro automati
ally 
onverts numerals to Java

numbers, thus pounds and in
hes are numbers



15

a �le either as a string or as a list of s
heme terms. These

allow students to easily write logs and 
ounters as in

Figure 6. This example also shows the send-mail pro-


edure whi
h allows the students to spe
ify the "from",

"to", "subje
t" �elds and give a quasi-string for the

body.

(servlet()

(let* ((
 (read-from-file "
ounter" 0))

(d (list 
 (Date.)

(.getRemoteHost request))))

(write-to-file "
ounter" (+ 1 
))

(append-to-file "log" d)

(send-mail

"tjhi
key�brandeis" "nobody�brandeis"

"
ounter" {You got a hit: [d℄!})

{<html><body>

This list has been visited by <xmp>

[(read-string-from-file "log" "")</xmp>

and you are visitor number [(+ 1 
)℄

Figure 6: Logs and Counters in test.servlet

In order to simplify the problem of asso
iating log and


ounter �les to servlets, these primitives read and write

from �les whose pre�x is the name of the servlet. Thus,

for the log and 
ounters example, the "log" �le would

be named "test.servlet log" and the 
ounter would be

"test.servlet 
ounter". The students 
an also use library

pro
edures that allow absolute addresses for �les, but

this is dis
ouraged.

4.1.6 Data Stru
tures and map

Students naturally want to handle list-style data (e.g.

multiple 
he
kboxes in form data). This leads naturally

into a des
ription of "map" and also to table abstra
-

tions. We �nd it useful to introdu
e map before 
ar,


dr, 
ons, sin
e it provides a powerful and intuitively


lear operation and does not require an understanding

of re
ursion. Moreover, as the examples in Figure 7

below illustrate, the map pro
edure gives the students

most of what they need to handle lists of data values.

There is also a map* pro
edure whi
h uses a generalized

map that 
onverts Java 
olle
tion obje
ts into lists, and

hen
e 
an be used with arrays, hashtables, et
.

(define (li x) {<li>[x℄</li>})

(define (lis L) (map li L))

(define (ul L) {<ul>[(lis L)℄</ul>})

(define (ol L) {<ol>[(lis L)℄</ol>})

(define (td X) {<td>[X℄</td>})

(define (tds Ts) (map td Ts))

(define (tr Ts) {<tr> [(tds Ts)℄ </tr>})

(define (trs Rs) (map tr Rs))

(define (table Rs) {<table> [(trs Rs)℄ </table>})

Figure 7: Generating lists and tables

4.2 S
heme Applets

After spending about three weeks studying servlets, we

turn to 
lient-side 
omputing. The tom
at server has

been 
on�gured so that any s
heme program that ends

with ".applet" is transformed into a Js
heme applet

and runs on the 
lient's browser. Likewise, Js
heme

programs that end in "snlp" are 
onverted into Java

Network Proto
ol format whi
h will be automati
ally

downloaded and run in the Java Web Start plugin.

8

.

"John Doe"

"http://www.johndoe.
om"

"years->se
s 
al
ulator"

"Convert age in years to age in se
onds"

"http://www.johndoe.
om/jd.gif"

(jlib.JLIB.load)

(define t (maketagger))

(define w (window "years->se
s"

(menubar

(menu "File"

(menuitem "quit"

(a
tion (lambda(e) (.hide w))))))

(border

(north (label "Years->Se
onds Cal
ulator"

(Helveti
aBold 60)))

(
enter

(table 3 2

(label "Years:")

(t "years" (textfield "" 20))

(label "Se
onds:")

(t "se
s" (label ""))

(button "Compute" (a
tion(lambda(e)

(let*

((y (readexpr (t "years")))

(s (* 365.25 24 60 60 y)))

(writeexpr (t "se
s") s))))))))))

(.pa
k w)

(.show w)

Figure 8: A sample SNLP program

Js
heme has also been extended to allow students to

learn to implement simple programs with Graphi
al User

Interfa
es. We have written a library, JLIB, that pro-

vides de
larative a

ess to the AWT pa
kage (There is

also a version for the Swing pa
kage). An example of a

simple S
heme program using this library is shown be-

low in Figure 8. The �rst �ve lines of the program listed

above are strings that provide do
umentation about this

program whi
h is required by the Java Network Laun
h-

ing Proto
ol (JNLP).

8

http://java.sun.
om/produ
ts/javawebstart



16

4.2.1 JLIB

The JLIB model is based on �ve fundamental 
on
epts:

� COMPONENTS { there are a small number of

ways to 
onstru
t basi
 
omponents (buttons, win-

dows, ...)

� LAYOUTS { there are a small number of ways to

layout basi
 
omponents (row, 
ol, table, grid, ...)

� ACTIONS { there is a simple me
hanisms for as-

so
iating an a
tion to a 
omponent

� PROPERTIES { there are easy ways for setting

the font and 
olor of 
omponents

� TAGS { this is a me
hanism for giving names to


omponents while they are being laid out.

Another key idea is that operations on all 
omponents

should be as uniform as possible. For example, there are

pro
edures "readstring" and "writestring" whi
h allow

one to read a "string" from a 
omponent, and write

a string onto a 
omponent. Thus "writestring" 
an


hange the string on a label, a button, a text�eld, a

textarea. It 
an also 
hange the title of a window or add

an item to a 
hoi
e 
omponent. Likewise, readstring re-

turns the label of a button, the text in a textarea or

text�eld, the text of the 
urrently sele
ted item in a


hoi
e, the title of a window, and the text of a label.

The readexpr and writeexpr pro
edures are similar, but

they allow reading and writing of S
heme expressions

on GUI 
omponents. For example, the following snip-

pet of 
ode de�nes a button whi
h 
hanges state when

pushed:

(define (flip x)

(
ase x

(("on") "off")

(("off") "on")))

(define B

(button "off" (a
tion (lambda(e)

(writestring B (flip (readstring B)))))))

JLIB provides pro
edures for ea
h of the main GUI wid-

gets (window, button, menubar, label) and it also pro-

vides pro
edures for spe
ifying layouts (e.g. border, 
en-

ter, row, 
ol, table). The �rst few arguments of these

pro
edures are mandatory (e.g. window must have a

string argument, text�eld requires a string and a inte-

ger number of 
olumns). The remaining arguments are

optional and 
an appear in any order. Examples are

fonts, ba
kground 
olors, and a
tions.

The JLIB pa
kage provides a \tagger" pro
edure whi
h

allows one to give names to 
omponents in situ

� (define t (maketagger)) 
reates a tagger,

� (t NAME OBJ) assigns the NAME to the OBJ and

� (t NAME) looks up the OBJ with that NAME.

This makes the 
ode more de
larative be
ause the name

for a text�eld appears with its 
onstru
tor in the expres-

sion that 
reates the GUI.

4.2.2 Graphi
s and Animation

We also provide a simple graphi
s library providing a
-


ess to a 
anvas with an o�s
reen bu�er. The draw-

ing primitives are the Java instan
e methods of the

java.awt.Graphi
s 
lass. The "
anvas" pro
edure is a

JLIB pro
edure that 
reates a 
anvas with an o�s
reen

bu�er a

essed by (.bufferg$ 
) and whi
h 
an be

drawn to the s
reen using (.repaint 
). The program

in Figure 9 shows a simple example drawing a red ball

moving a
ross a blue ba
kground.

(jlib.JLIB.load)

(define 
 (
anvas 400 400))

(define w (window "graphi
s1"

(border

(
enter 
)

(south

(button "draw"

(a
tion (lambda(e)

(run-it drawballs))))))))

(define (run-it F) (.start (Thread. F)))

(define (drawballs) (drawball 200))

(define (drawball N)

(define g (.bufferg$ 
)) ;get graphi
s obje
t

(.setColor g blue)

(.fillRe
t g 0 0 1000 1000) ;; 
lear ba
kground

(.setColor g red)

(.fillOval g N N 100 100) ;draw red disk

(.repaint 
) ; 
opy buffer to s
reen

(Thread.sleep 100L) ;; pause 0.1 se


(if (> N 0) (drawball (- N 1))) ;; loop

)

(.resize w 400 400)

(.show w)

Figure 9: Graphi
s programming

The run-it pro
edure is used when the students write

animations. They seem to understand the notion of

multi-threaded programming in the 
ontext of having

several animations ea
h running in their own thread

9

9

We also have a version of run-it that looks for errors and

reports them in a debugging window.



17

4.3 Networking Abstra
tions

After spending two weeks mastering the JLIB library we

introdu
e network programming using a simple model

where applets 
ommuni
ate by sending s
heme terms to

ea
h other through a group-server. Sin
e applets are

only able to open so
kets on their host server, we must

run the group-server on the same ma
hine that man-

ages the students' applets. The students 
onne
t to this

group-server using the make-group-
lient pro
edure:

(define S

(make-group-
lient Name Group Host Port))

This 
reates an obje
t, S, that 
an 
ommuni
ate with

the group-server. To send the s
heme terms key b 


... to the server, one evaluates the expression

(S 'send key b 
 ...)

The �rst term, key, is used as a �lter. Indeed, the group-

server boun
es ba
k every message it re
eives to all the

members of the group. A member 
an spe
ify how to

handle a message using the add-listener method

(S 'add-listener key

(lambda (key . restargs ) ...))

This method indi
ates that the indi
ated pro
edure should

be 
alled on ea
h message that arrives from the server

with the spe
i�ed key.

This model builds on the student's experien
e with 
all-

ba
ks in GUI's and with reading/writing on GUI 
om-

ponents. The analogy is that "send" is like writing to a


omponent and "add-listener" is like adding an a
tion.

An example of the kind of applet that is explained in


lass is the 
hat applet shown in Figure 10. In the most

re
ent semester we did not require students to write an

applet using networked 
ommuni
ation, but several stu-

dents 
hose to write su
h applets for their �nal proje
t.

The best example was a pi
tionary program whi
h al-

lowed any number of students to join in a game of pi
-

tionary using a shared whiteboard as well as private and

group 
hats. This program was written by a student

with no previous programming experien
e and made use

of almost all of the examples we had given previously in

the 
ourse.

In the 
oming year we plan on introdu
ing networked


ommuni
ation using the notion of groupware 
ompo-

nents. These are textareas and 
anvases whi
h are shared

among several users on the network. This approa
h may

provide an even simpler model of network programming

that builds more dire
tly on their understanding of GUI

programs.

(jlib.JLIB.load)

(jlib.Networking.load)

(define (
hatwin

UserName ChatGroup Host Port)

(define t (maketagger))

(define S (make-group-
lient

UserName ChatGroup Host Port))

(define w (window "test"

(
ol

(button "quit" (a
tion (lambda (e)

(S 'logout) (.hide w))))

(t "
hatarea" (textarea 20 50))

(t "
hatline" (textfield "" 50

(a
tion (lambda(e)

(S 'send "
hat" (string-append

UserName ": "

(readstring (t "
hatline"))))

(writeexpr (t "
hatline") "")

)))))))

(S 'add-listener "
hat" (lambda R

(appendlnexpr (t "
hatarea") R)))

(.pa
k w) (.show w)

w)

(define (rand N)

(Math.round (* N (Math.random))))

(
hatwin

(string-append "user-" (rand 1000))

"
hat"

(.getHost (.getDo
umentBase thisApplet))

23456)

Figure 10: A multi-room 
hat program

5 Student Evaluation Strategies

We have used several te
hniques to a

ommodate the

non-s
ien
e students that are a majority in this 
lass.

The homework assignments allow students to exer
ise

their 
reativity in 
reating a web artifa
t (webpage,

servlet, applet, appli
ation) whi
h must meet some gen-

eral 
riteria. For example, in one assignment they are

required to 
reate a servlet that uses several spe
i�


form tags (in HTML) and generates a webpage in whi
h

some arithmeti
 
omputation is performed. This en-


ourages a bri
olage approa
h to learning programming


on
epts whi
h seems to appeal to non-s
ien
e majors.

The 
ourse features weekly quizzes whi
h take an oppo-

site approa
h. The students are shown a simple web ar-

tifa
t and asked to write the 
ode for it during a twenty

minute in-
lass quiz. This pra
ti
e helps keep the stu-

dents from falling behind in the 
lass and also helps


ounterbalan
e the openness of the homework assign-

ments.

The �nal exam is based on the weekly quizzes so the

quizzes also prepare students for the exam. The 
ourse

provides a high level of tea
hing assistant support and

uses peers who have 
ompleted the 
ourse in a previous

year. The students post their homework assignments on



18

the web and are thereby able to learn from ea
h other,

while the 
reativity requirement and the sheer joy of


reating keeps 
opying to a minimum.

In the most re
ent 
lass the three hour open-notes �nal

exam required students to write a webpage, a S
heme

servlet, a S
heme applet, and to tra
e through S
heme


ode, a logi
 
ir
uit, and a CMOS 
ir
uit. The goal of

the exam was to test their ability to synthesize solutions

to problems using the tools they had learned.

5.1 Pitfalls

The 
ourse requires a substantial investment in TA re-

sour
es and in 
lass preparation time as there is no text-

book for the 
ourse. Indeed the 
ourse has been heavily

revised ea
h year to in
lude more web programming.

We are 
urrently working on a textbook whi
h should

lessen the 
lass preparation time.

The fa
t that the 
ourse is taught as a large le
ture


ourse makes it diÆ
ult to keep tra
k of the students

who are doing poorly. This is partly ameliorated by

weekly quizzes whi
h help tra
k student performan
e.

Smaller 
lass sizes or se
tionals might make it easier to

tra
k students, but would require a greater 
ommitment

of staÆng resour
es.

The 
urrent version of software tools used in the 
ourse

(debuggers, help systems, et
.) are not as well-suited for

novi
e programmers as are other more mature systems

(e.g. DrS
heme), but they are available as applets so

there is a tradeo� between ease of a

ess and ease of

use. We are strongly 
onsidering porting the 
lass to

DrS
heme and/or other S
heme systems.

Although the 
ourse 
overs a great deal of material and

requires the students to demonstrate their mastery of it

in timed quizzes and exams as well as substantial home-

work proje
ts, the grades are always highly skewed to-

ward the top. This suggests that the 
lass should be

taught in two or more se
tions as the very best stu-

dents are 
learly not being suÆ
iently 
hallenged. For

these students a modi�ed version of the 
ourse whi
h in-


luded more "algorithmi
" 
omputer s
ien
e would be

ideal. This would, again, require a greater 
ommitment

of department resour
es to the non-major 
ourse o�er-

ings.

6 Lessons learned

Overall the most surprising aspe
t of the 
ourse is that

these non-s
ien
e students have been able to learn how

to write servlets, applets, and appli
ations in S
heme,

all within a 6 week unit of a 13 week semester. Al-

though they have not delved deeply into "algorithmi
"


omputer s
ien
e, most of the students do thoroughly

understand the me
hanism by whi
h a 
omputer pro-

gram 
an spe
ify the appearan
e and fun
tionality of

simple applets and servlets. They also understand the

notion of a formal semanti
s (the substitution model)

for a 
omputer language and the idea of the evolution

of a pro
ess as a model of 
omputation as in SICP [1℄.

The primary reasons for the su

ess of this approa
h

seems to be two-fold:

� S
heme redu
es 
ognitive overload. By us-

ing a subset of S
heme we eliminate the problem

of learning 
ompli
ated syntax (as one must only

mat
h parens (of various sorts) and quotes and

the Js
heme IDEs help one do this) and also min-

imize the problem of learning the underlying ab-

stra
t ma
hine due to the de
larative nature of the

language. They 
an understand the S
heme pro-

grams they write using a 
ombination of the sub-

stitution model with an intuitive notion of obje
ts

(window, buttons, label, menus), events (button

pushes, 
hoi
e sele
tions), and simple operations

on these obje
ts (reading/writing data from GUI


omponents or HTML �elds). If we were to use

Java for this 
lass they would be exposed to a

mu
h more 
ompli
ated model with di�erent kinds

of methods (stati
/instan
e/
onstru
tor), variables

(stati
/instan
e �elds, lo
al variables, parameters),

types (
lasses, interfa
es, s
alars), and a dizzying

array of pa
kages. The use of Js
heme redu
es all

of the Java libraries to a set of primitive pro
e-

dures and greatly redu
es 
ognitive overload.

� JS
heme makes applets and servlets easily

a

essible to non-majors. By using a S
heme

implemented in Java we are able to maintain strong

student interest by embedding S
heme in applets,

servlets, and JNLP appli
ations and thereby al-

lowing the students to develop web artifa
ts that

are usually only a

essible to upper level Com-

puter S
ien
e majors. Most of these types of ap-

pli
ations 
ould be made a

essible through other

S
heme implementations. Applets would require a

plug-in, but students would probably be just as ex-


ited (if not more ex
ited) about 
reating double-


li
kable GUI appli
ations in S
heme, whi
h would

not require a plug-in.

A
knowledgment

I would like to a
knowledge the support of the steadily

growing Js
heme 
ommunity, in
luding my 
o-developers

Ken Anderson and Peter Norvig. I would also like to

thank the referees of S
heme2002 for their detailed 
om-

ments as well as the referees from the ICFP02 
onfer-

en
e, who provided some ex
ellent suggestions for im-

proving the paper, even though it was not a

epted to

ICFP02. Finally, I'd like to thank the 1000+ students

who have explored the possibilities of S
heme applets



19

and servlets with me in various introdu
tory 
lasses over

the past �ve years.

Referen
es

[1℄ H. Abelson and J. Sussman. Stru
ture and Inter-

pretation of Computer Programs MIT Press.

[2℄ Kenneth R. Anderson, Timothy J. Hi
key, Peter

Norvig \Silk: A Playful Combination of S
heme

and Java" Pro
eedings of the Workshop on S
heme

and Fun
tion Programming Ri
e University, CS

Dept. Te
hni
al Report 00-368, September 2000.

[3℄ Ken Anderson and Timothy J. Hi
key, \Re
e
ting

Java into S
heme" Pro
eedings of Re
e
tion 99,

Springer-Verlag, Le
ture Notes in Computer S
i-

en
e, v. 1616, 1999.

[4℄ William Clinger and Jonathan Rees, editors.

\The revised

4

report on the algorithmi
 language

S
heme." In ACM Lisp Pointers 4(3), pp. 1-55,

1991

[5℄ Robert Bru
e Findler, John Clements, Corma


Flanagan, Matthew Flatt, Shriram Krishnamurthi,

Paul Ste
kler, Matthias Felleisen. DrS
heme: a

programming environment for S
heme. Journal of

Fun
tional Programming 12(2): 159-182 (2002)

[6℄ Robert Bru
e Findler, Corma
 Flanagan, Matthew

Flatt, Shriram Krishnamurthi, and Matthias

Felleisen. DrS
heme: a pedagogi
 programming en-

vironment for S
heme. Pro
. 1997 Symposium on

Programming Languages: Implementations, Log-

i
s, and Programs, 1997.

[7℄ Matthias Felleisen, Robert Bru
e Findler, Matthew

Flatt, Shriram Krishnamurthi. How to Design Pro-

grams. MIT Press, 2001.

[8℄ Timothy J. Hi
key, Peter Norvig, and Ken Ander-

son \LISP - a Language for Internet S
ripting and

Programming", (.ps.gz 130K) in LUGM'98: Pro-


eedings of Lisp in the Mainstream, Nov. 1998,

Berkeley, CA.

[9℄ Timothy J. Hi
key, Ri
hard Alterman, John Lang-

ton. \TA Groupware" Te
h. Rep. CS-02-222, CS

Dept. Brandeis University, 2002.

[10℄ Kurt Normark, \Programming World Wide Web

pages in S
heme" Sigplan Noti
es, vol. 34, no. 12,

1999.

[11℄ Eri
 Roberts. An overview of MiniJava. in

SIGCSE'00 ACM Digital Library, 2000.

[12℄ David Reed. Rethinking CS0 with Javas
ript. in

SIGCSE'00 ACM Digital Library, 2000.



20


