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ABSTRACT
Safe is a clean-slate design for a secure host architecture.
It integrates advances in programming languages, operating
systems, and hardware and incorporates formal methods
at every step. Though the project is still at an early stage,
we have assembled a set of basic architectural choices that
we believe will yield a high-assurance system. We sketch
the current state of the design and discuss several of these
choices.

1. INTRODUCTION
Computer systems remain distressingly insecure. The full
set of reasons is a matter of debate, but one factor that
certainly makes progress more difficult is the numerous
design decisions that were made decades ago and are now
deeply embedded in the hardware and software ecosystem.
We feel the time is ripe to consider an integrated redesign
of the entire system stack, from hardware to applications,
with an eye to simplicity and security throughout.

Our effort is based on two fundamental insights. The
first is that formal methods—detailed, machine-checked
proofs of critical properties—have now matured to the
point where they can play a key role in the design of
serious systems. In particular, we know how to write formal
specifications of the semantics of full-blown instruction sets
and of the higher-level abstractions provided by high-level
programming languages and software services, and we can
build machine-checkable proofs that each layer is correctly
implemented by the software running on the layers beneath
it. These proofs require significant effort, but making
this effort an integral part of the design process has the
salutary effect of exerting significant pressure to streamline
all aspects of the design. The second insight is that recent
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years have seen a rapid increase in hardware resources. We
can now afford to reconsider some of the traditional sources
of complexity in operating systems—e.g., virtual memory,
complex interrupt handling schemes, and manual storage
allocation and deallocation—and use simpler designs for
which proofs are more tractable. Moreover, we can spend
hardware to efficiently enforce desirable policies at the
lowest level of the system—e.g., word-level information flow
tracking and fine-grained, least-privilege protection domains
with cheap domain crossing. The resulting system will not
be suitable for all purposes—it will use more energy and
run slower than systems optimized for high performance or
low power with no regard to safety—but, given the value of
information on today’s systems and the hostile networked
environment in which they must operate, such concessions
for security are now warranted for many systems.

This paper describes the Safe design as it currently
exists, nine months into the project, discusses some of its
more interesting and potentially controversial choices, and
sketches remaining challenges. (Because Safe spans the
range of system layers, the related literature is vast; to
conserve space in this short overview, we cite and discuss
just a few points of comparison.)

2. ARCHITECTURE OVERVIEW
The architecture of the Safe platform, sketched in Figure 1,
comprises three distinct layers. The hardware layer consists
of a microprocessor for a novel instruction set supporting
object-level type safety with unforgeable pointers (capa-
bilities), hardware-enforced distinctions between pointers,
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data, and instructions, and information-flow tracking via
fine-grained tagging. In our tagging scheme, every word in
memory and registers includes both a data payload and a
large (pointer-sized) tag which encodes information about
its type, provenance, and access limitations. These tags
are interpreted by a Tag Management Unit (TMU) that—
on every instruction, in parallel with the processor’s main
data path—looks up the tags on the current instruction, its
operands, and the current program counter in a hardware
rule cache to determine whether the instruction is permitted
and, if so, how its results should be tagged. The hardware
layer also contains a Trusted Platform Module (or a more
general-purpose Hardware Security Module) for handling
operations such as generating and storing cryptographic
keys and performing (non-bulk) encryption.

Concreteware is a thin layer of software that wraps the
facilities of the raw hardware into a clean abstract machine,
on which the rest of the Safe software rests. In particular,
it provides allocation and garbage collection of memory
frames (bounded regions named by unforgeable pointers),
scheduling, and message-passing interprocess communica-
tion. Concreteware also implements a TMU Manager that
is responsible for filling the hardware rule cache, handling
rule cache misses, and generating TMU rules from high-
level access and information-flow policies expressed in a
small domain-specific rule language.

The userware layer includes the bulk of what are usually
thought of as operating-system services (device drivers,
facilities for persistent storage, networking stacks, etc.), as
well as ordinary user programs.

Ideas from programming languages play a pervasive role
in this design. The hardware and concreteware together
provide a run-time system for Breeze, a high-level language
in which all userware-layer software will be written. More-
over, the concreteware layer itself will be coded almost
entirely in a minimal subset of Breeze, called Tempest,
suitable for systems programming.

Another pervasive concern in the Safe design is the
application of formal, machine-checked verification. Despite
recent successes such as seL4 [9], formal verification of whole
operating systems still requires daunting amounts of effort.
But the Safe architecture offers two opportunities for large
payoffs from significantly smaller amounts of work. First,
in a clean-slate design, we can tune every feature to smooth
the verification task; for example we omit virtual memory
(see 4.2), which caused a significant part of the proof effort
in seL4 [9]. Second, we plan to verify only a limited range
of security-critical properties for a fairly narrow slice of
the system—the Tempest compiler and the concreteware
layer. These proofs will provide strong safety guarantees,
such as memory isolation and dynamic type safety, for
higher-level system components, which in turn will simplify
programmers’ informal reasoning about the security of their
programs.

3. THREAT MODEL
Our assumptions about the attacker’s abilities are different
for the various layers of a Safe system.

We assume a correctly implemented instruction set archi-
tecture (to limit the scope of our verification efforts) and
the absence of hardware-layer tampering, either via supply
chain attacks or via prolonged physical access. However,
we do assume that the attacker controls the system’s (local
or network-attached) persistent storage media. We must

therefore use encryption to ensure the confidentiality and
integrity of stored data. Similarly, we assume that a pre-
constructed concreteware image is loaded at boot time into
read-only memory.

At the user level, we assume there will be malicious code
within the system—that is, there will be many processes
running on behalf of many different principals, and some
of these processes may attempt to compromise the secrecy
or integrity of information created or used by others. Also,
we assume that any secrets that are directly exposed to
such malicious code can potentially be exfiltrated from the
system by some overt or covert means. (This is in contrast
to much of the existing work on language-based security,
which only controls communication of data influenced by
secrets via “official” channels and ignores the possibility
of covert channels.) Moreover, since we do not propose
formal verification of user-level code, even if a principal
trusts the good intentions of the author of some piece of
code, they should assume that the code may contain bugs
or insecurities.

The Safe design focuses on single-host security; we do
not consider attacks at the level of networking protocols.

Although the novel aspects of the Safe design are mostly
focused on threats to confidentiality and integrity, threats
to availability (exhaustion of resources, etc.) are also a
significant concern. We will apply standard mitigation
techniques in this area.

4. DESIGN HIGHLIGHTS

4.1 Language design and information flow
Breeze is a type-safe, mostly-functional language, similar
in spirit to ML, except that it tracks information flow
to support both confidentiality and integrity. Currently,
type-checking and information-flow tracking are dynamic
mechanisms, that directly reflect the capabilities of the
hardware. Ultimately, we plan to add a static type system
that will help guide the task of programming and provide
an extra layer of checking, in keeping with the standard
security principle of defense-in-depth.

Breeze encourages programming in a mostly-functional
style, for a number of reasons. First, garbage-collected,
immutable data structures simplify reasoning about safety
and security properties: once a property is established, we
don’t need to worry about the data structure changing
and invalidating the property. Second, a mostly functional
language simplifies the development of concurrent code by
supporting sharing and minimizing the need for synchro-
nization.

The Safe system tracks information flow to enforce
programmer-supplied constraints on which data values
may be read in which parts of the system. Approaches to
information-flow tracking can be split roughly into two cate-
gories: programming language-based techniques [13], which
are generally fine-grained and static, and techniques used in
operating systems (e.g., [10, 4]), which are coarse-grained
and dynamic. In contrast, both Breeze and the Safe
hardware support dynamic enforcement of fine-grained in-
formation flow, as done in [2]: indeed, a low-level dynamic
approach allows our platform to run programs that were
not statically checked or compiled with our compiler. This
has several advantages: it makes our attack model more
realistic, removes the compiler from the TCB, and allows
us to track information flow even in very low-level systems
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code that must be written in assembly.
One of the challenges of building a new system based on

information flow is the wide variety of specific information-
flow mechanisms that have been explored in the literature;
in particular, the form of the labels attached to data values,
the “label model,” varies widely. This is natural, since the
label model is essentially a small domain-specific language
for expressing low-level security policies, and we might ex-
pect these to vary from between applications and between
application-level and systems-level code. To retain flexibil-
ity, we are working to define a generalized label model—that
is, a common interface that can be instantiated with many
of the concrete label models described in the literature—
along roughly the same lines as HAILS [?]. Both Breeze
and the Safe hardware are parametric with respect to this
interface. The instance that we have used most heavily
so far is a variant of the Myers-Liskov decentralized label
model [13].

Many information-flow systems use taint-tracking mecha-
nisms [17], which are only able to track explicit flows—flows
that involve direct copying of sensitive information from
one data structure to another. Others, including Safe, also
track implicit flows [8]—situations where the program’s
control state depends on secret data. A benefit of deal-
ing with implicit flows is that we get a crisp statement of
the security guarantee provided by the information-flow
tracking mechanism: a noninterference theorem [6], stating
(roughly) that the sensitive inputs of a program cannot
influence its public outputs.

However, the noninterference theorem comes with some
significant limitations. First, the termination-insensitive
form (which is the one we are considering, termination-
sensitive noninterference being much harder to check) is
weaker in the presence of concurrent processes; for instance,
a process can learn whether another process has died, per-
haps as a result of testing some secret bit, by watching for
(the absence of) side effects. Second, even in the single-
threaded case, it only applies to release of information via
channels that are captured by the formal operational seman-
tics of the language; other channels—in particular, timing
channels—are not excluded. These limitations mean that
the simple story sometimes found in papers on information
flow (“We allow the attacker’s code to see and manipulate
secret values, but that’s OK because any data the attacker
writes as a result will also be labeled, and this will ulti-
mately prevent the attacker from exfiltrating it because
we’ll check the label at the point when it is about to get
written over the network...”) is dangerously misleading as a
basis for building secure systems. Rather, the information-
flow analysis must be supplemented with some form of
access control mechanism, which programmers can use to
prevent secret data from even being seen by untrusted code.
Concretely, this is accomplished in Safe by performing
the access checks (“Does the authority of the current exe-
cution context include the right to read data tagged with
this label?”) not only at system boundaries, but at every
point where the value of a secret might affect the program’s
internal behavior. These checks are performed by the TMU
(Section 4.2) in parallel with the computation. For example,
in order to add two integers, Alice must have access rights
to both values.

In the Breeze design, we are exploring a number of ideas
that are traditionally associated with capability-based sys-
tems [12], as well as ideas traditionally associated with

access control. Our flexible information-flow framework
and hardware support can express a wide range of possibil-
ities, and we will exploit this to experiment with different
mechanisms to contain and reason about information flow.
For example, fine-grained capability passing makes it easy
to dynamically create subsytems and assign them least-
privilege access, while access control can be embedded in
labels that are attached to values, and makes it possible to
define end-to-end properties, absolutely limiting where a
capability may flow.

Two major problems with information flow remain to be
addressed. Declassification is required for any realistic sys-
tem and obviously breaks noninterference if allowed without
restraints: its interaction with end-to-end information-flow
policies is a research challenge. And, as mentioned above,
unrestricted concurrency is problematic, providing means
for exploiting termination channels.

4.2 Hardware structures
The Safe hardware has roots in architectures such as the
Lisp machine [1]. Its unconventional structure is a result
of shifting and refining the boundaries between operating
system, language run-time and hardware through a co-
design process; this recalls the Cambridge CAP and CMU
Hydra/C.mmp efforts as described by Levy [12].

Our hardware architecture provides tagged memory and
high-level abstractions such as capabilities, principals, and
direct support for first-class functions. In contrast to (and
informed by) earlier attempts such as the ill-fated Intel
i432 [7], we believe the abundance of hardware today allows
us to provide these advanced features without compromis-
ing performance. We include a generous register set and
L1 cache, perform tag checking on hardware in parallel
with operation, and we believe we can make authority-
changing procedure calls as fast as conventional procedure
calls. These improvements should eliminate the key sources
of measured performance overhead in the i432 [5].

In the Safe architecture, every word is associated with
a tag. Unlike previous tagged architectures which used a
small number of bits and a fixed interpretation, we use
pointer-sized tags so that we can associate an arbitrary
data structure with a value. The meaning of a tag is not
fixed in advance; instead, programmable rules cached in the
hardware Tag Management Unit specify the meaning of tags.
This genericity permits tags to be used for a wide variety
of purposes—as types, capabilities, information flow labels,
access control specifiers, etc. In parallel with instruction
execution, the processor routes the tags of the operands
(including the PC) to the TMU to validate that the current
authority has sufficient privileges to read the values of the
operands and to execute the current instruction on them.
At the same time, the TMU computes what tags should be
placed on the resulting value and on the program counter.
This is another example of spending plentiful hardware; in
the common case where the rule is in the cache, the security
check adds no time to the computation. This genericity
should allow us to explore a wide range of fine-grained type-
and security-policies for both systems and applications.
Current challenges include designing high-level notations
that compile down to TMU rules and developing effective
programming idioms with small enough working sets to fit
in the TMU’s hardware rule cache.

Pointers to memory frames are provided as abstract,
opaque data structures. Arbitrary pointers cannot be cre-
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ated by anyone except a privileged memory allocation au-
thority in the concreteware; in this respect they resemble
abstract types in programming languages and capabilities
in operating systems. Moreover, all pointers are fat point-
ers [3] holding base and bounds metadata, which permits
safe pointer dereferencing by performing bounds checks
directly in the hardware.

Two other essential features of the hardware are author-
ities and gates. An authority is a name associated with
a set of capabilities and resources that can be used when
performing a set of instructions. A gate is a low-level repre-
sentation of a function that closes over an environment and
an authority, similar to a gate in Multics [14]; a gate call is
used to invoke the function, at the same time switching to
the authority under which the gate was created. Possession
of a pointer to a gate serves as an object-level capability for
performing some action with an authority other than your
own. For example, Alice may pass a gate to an untrusted
principal Bob that, when executed, encrypts and declassi-
fies data under Alice’s authority. Thus, Bob gains a limited
capability for declassification, but protected by encryption
and under Alice’s control. Hardware support for gates with
TMU mediation allows domain crossing to be as inexpensive
as a procedure call, removing one of the classic performance
impediments to fine-grained compartmentalization.

The basic ALU and memory operations are generic RISC
instructions. The novelty lies in how they are mediated by
the hardware tags, authorities, and rules. We are also ex-
ploring native hardware support for threads, timer manage-
ment, communication channels, and limited transactions.

4.3 Concreteware and system software
Because concreteware is subject to formal verification, many
design decisions for the system-level components aim to
simplify key interfaces such as scheduling, IPC, process
isolation, and persistent storage.

Another fundamental concreteware service is interprocess
communication via unidirectional, order-preserving chan-
nels. A desirable future improvement will be to enhance
channel performance by integrating hardware-accelerated
message passing. Hardware-accelerated frame copying, a
Safe version of DMA, is another attractive direction.

As a further simplification, the current Safe design does
not rely on virtual memory for process isolation. Instead,
because pointers are not forgeable, it is easy to provide isola-
tion between mutually suspicious processes running in a sin-
gle address space by limiting access to sensitive references—
a core idea of traditional capability systems [12].

The initial persistent storage model for SAFE is an object
store, rather than a traditional file system. We have ten-
tatively adopted a model reminiscent of the Hydra Object
Storage System [15] system, in which every object exists
either in memory or as a persisted “passive” version. In ac-
cordance with the threat model in Section 3, passivization
requires encryption to ensure confidentiality and integrity.

Many fundamental questions remain open about how to
structure the operating system. For example, meta-level
operations such as debugging and logging are especially
sensitive because they could be used to undermine infor-
mation flow. A systematic design for secure and robust
error handling remains to be explored, as does secure intro-
spection of process status. Finally, separation of privilege
and minimization of shared state naturally pushes the OS
design towards that of a distributed system; we are still

exploring the full impact of this line of thought.

5. ATTACKS
To illustrate the mechanisms we have described, we briefly
consider several sorts of attacks (following the terminology
of the Mitre Common Weakness Enumeration database)
and sketch how each is addressed by Safe.

Buffer-overflow attacks—and more generally, object and
control-flow integrity violations—are completely prevented
by object-level type safety, which is dynamically enforced
through a combination of pointer bounds and tag checking.

Data-leakage attacks are addressed with a combination
of information-flow tracking (for automatically maintaining
connections between data values and their associated usage
policies) and access control checks (for limiting the flow of
sensitive information to untrusted code, which may try to
leak it over covert channels).

SQL injections can also be avoided using the primitive
information-flow tracking facilities of the platform—using
integrity taints, for example, to check that SQL queries
have been sanitized before execution.

Bypassing authorization checks is rendered difficult by
having the hardware directly implement the necessary
checks. The question of misconfiguration of privileges re-
mains challenging; however, fine-grained decomposition of
privileges minimizes the damage of any individual miscon-
figured check.

Hijacking privileged processes is addressed in multiple
layers of the system. Least-privilege design helps mini-
mize the effects of breaches; end-to-end information-flow
tracking allows potentially malicious low-integrity inputs
to be identified and treated with greater care; and type
safety together with read-only code segments prevents code
injection, return-to-libc, and other forms of control-flow
hijacking.

Exploitable race conditions are a common, difficult prob-
lem with concurrent systems. There is no silver bullet for
this class of vulnerabilities, but we can eliminate many
low-level race conditions by allowing inter-process com-
munication only via message passing, not shared mutable
memory.

6. THE ROLE OF VERIFICATION
The design space for Safe is large and full of subtle tradeoffs.
In the face of this complexity, we believe that the use of
formal techniques can significantly enhance the coherence
of the design and increase confidence in the decisions we
are making. (Of course, we also require experimentation
and testing, which yield complementary insights.)

The specification of the Safe instruction set architecture
will be the project’s most critical formal artifact, serving
as the contract between the hardware and software sides of
the system. It will be written as a program in the language
of the Coq proof assistant, phrased in a low-level style that
permits “extraction” into an executable symbolic simulator
for validation of the hardware. (Formal verification of the
hardware is beyond our current scope.)

We hope to formally verify the Tempest compiler, fol-
lowing the CompCert [11] verified C compiler; this will
ease the burden of verifying the concreteware by allowing
reasoning directly on its Tempest source. (In this respect
we differ from the Verve project [16], where the low-level
parts of the system, for which memory safety was verified,
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were written in assembly.) We will attack the concrete-
ware verification task by building and verifying a stack
of increasingly abstract specifications on top of the Coq
specification of the ISA—the first one abstracting away
memory management, the second scheduling, etc.; the top
of this stack will be a specification of the abstract machine
presented by the concreteware to the rest of the software
in the system.

7. STATUS
The majority of our effort so far has gone into the de-
sign and implementation of the Breeze language and the
ISA, with accompanying formal specifications, interpreters
and simulators. In particular, we have already defined a
Coq semantics for the ISA, from which we can extract an
executable simulator; we will use this simulator to cross-
validate our FPGA-based implementation of the Safe hard-
ware. This brings us closer to an end-to-end functional
system prototype.

We have also made progress on the formal verification
side: we started verifying the correctness of a scheduler
for a subset of the full ISA, and some theorems like nonin-
terference for fragments of Breeze have been mechanically
verified.

Our main current effort consists in developing user-level
and system-level applications: this will not only allow us
to validate the usability of the mechanisms that the Safe
system offers, but also permit us to start writing potential
attacks against these programs to stress-test the protection
mechanisms we are designing.
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