
Control Flow Analysis in Scheme

Olin Shivers
Carnegie Mellon University
shivers@cs.cmu.edu

Abstract

Traditional flow analysis techniques, such as the ones typically
employed by optimising Fortran compilers, do not work for
Scheme-like languages. This paper presents a flow analysis
technique — control flow analysis — which is applicable to
Scheme-like languages. As a demonstration application, the
information gathered by control flow analysis is used to per-
form a traditional flow analysis problem, induction variable
elimination. Extensions and limitations are discussed.

The techniques presented in this paper are backed up by
working code. They are applicable not only to Scheme, but
also to related languages, such as Common Lisp and ML.

1 The Task

Flow analysis is a traditional optimising compiler technique
for determining useful information about a program at compile
time. Flow analysis determines path invariant facts about points
in a program. A flow analysis problem is a question of the form:

“What is true at a given point p in my program, in-
dependent of the execution path taken to p from the
start of the program?”

Example domains of interest might be the following:

� Range analysis: What is the range of values that a given
reference to an integer variable is constrained to lie within?
Range analysis can be used, for instance, to do array
bounds checking at compile time.

� Loop invariant detection: Do all possible prior assign-
ments to a given variable reference lie outside its contain-
ing loop?

Over the last thirty years, standard techniques have been de-
veloped to answer these questions for the standard imperative,
Algol-like languages (e.g., Pascal, C, Ada, Bliss, and chiefly

To appear at the ACM SIGPLAN ’88 Conference on Program-
ming Language Design and Implementation, Atlanta, Georgia,
June 22-24, 1988.

Fortran). Representative texts describing these techniques are
[Dragon], and in more detail, [Hecht]. Flow analysis is perhaps
the chief tool in the optimising compiler writer’s bag of tricks;
an incomplete list of the problems that can be addressed with
flow analysis includes global constant subexpression elimina-
tion, loop invariant detection, redundant assignment detection,
dead code elimination, constant propagation, range analysis,
code hoisting, induction variable elimination, copy propaga-
tion, live variable analysis, loop unrolling, and loop jamming.

However, these traditional flow analysis techniques have
never successfully been applied to the Lisp family of computer
languages. This is a curious omission. The Lisp community
has had sufficient time to consider the problem. Flow analysis
dates back at least to 1960, ([Dragon], pp. 516), and Lisp is
one of the oldest computer programming languages currently
in use, rivalled only by Fortran and COBOL.

Indeed, the Lisp community has long been concerned with
the execution speed of their programs. Typical Lisp pro-
grams, such as large AI systems, are both interactive and cycle-
intensive. AI researchers often find their research efforts frus-
trated by the necessity of waiting several hours for their enor-
mous Lisp-based production system or back-propagation net-
work to produce a single run. Since Lisp users are willing to
pay premium prices for special computer architectures specially
designed to execute Lisp rapidly, we can safely assume they are
even more willing to consider compiler techniques that apply
generally to target machines of any nature.

Finally, the problems addressed by flow analysis are relevant
to Lisp. None of the flow analysis problems listed above are
restricted to arithmetic computation; they apply just as well to
symbolic processing. Furthermore, Lisp opens up new domains
of interest. For example, Lisp permits weak typing and run time
type checking. Type information is not statically apparent, as
it is in the Algol family of languages. Type information is
nonetheless extremely important to the efficient execution of
Lisp programs, both to remove run time safety checks of func-
tion arguments, and to open code functions that operate on a
variety of argument types. Thus flow analysis offers a tempt-
ing opportunity to perform type inference from the occurence
of calls to type predicates in Lisp programs.

So it is clear that flow analysis has much potential with re-
spect to compiling Lisp programs. Unfortunately, this potential
has not been realised because Lisp is sufficiently different from
the Algol family of languages that the traditional techniques

Page 1



2 Scheme Flow Analysis

developed for them are not applicable.

Dialects of Lisp can be contrasted with the Algol family in
the following ways:

� Binding versus assignment:
Both classes of language have the same two mechanisms
for associating values with variables: parameter binding
and variable assignment. However, there are differences
in frequency of useage. Algol-family languages tend to en-
courage the use of assignment statements; Lisp languages
tend to encourage binding.

� Functions as first class citizens:
Functions in modern Lisps are data that can be passed as
arguments to procedures, returned as values from function
calls, stored into arrays, etc..

Since traditional flow analysis techniques tend to concen-
trate on tracking assignment statements, it’s clear that the Lisp
emphasis on variable binding changes the complexion of the
problem. Generally, however, variable binding is a simpler,
weaker operation than the extremely powerful operation of side
effecting assignments. Analysis of binding is a more tractable
problem than analysis of assignments, because the semantics of
binding are simpler, and there are more invariants for program-
analysis tools to invoke. In particular, the invariants of the
�-calculus are usually applicable to modern Lisps. fNote Dif-
ficulties with Bindingg

On the other hand, the higher-order, first-class nature of Lisp
functions can hinder efforts even to derive basic flow analysis
information from Lisp programs. I claim it is this aspect of
Lisp which is chiefly responsible for the mysterious absence of
flow analysis from Lisp compilers to date. A brief discussion
of traditional flow analytic techniques will show why this is so.

2 The Problem

Consider the following piece of Pascal code:

FOR i := 0 to 30 DO BEGIN
s := a[i];
IF s < 0 THEN

a[i] := (s+4)^2
ELSE

a[i] := cos(s+4);
b[i] := s+4;
END

Flow analysis requires construction of a control flow graph for
the code fragment (fig. 1).

Every vertex in the graph represents a basic block of code:
a sequence of instructions such that the only branches into the
block are branches to the beginning of the block, and the only
branches from the block occur at the end of the block. The
edges in the graph represent possible transfers of control be-
tween basic blocks. Having constructed the control flow graph,
we can use graph algorithms to determine path invariant facts
about the verteces.

In this example, for instance, we can determine that on all
control paths from START to the dashed block (b[i]:=s+4;
i:=i+1), the expression s+4 is evaluated with no subse-
quent assignments to s. Hence, by caching the result of s+4

�

�

�

�

START

i:=0

i<=30?

s:=a[i]
s<0?

a[i]:=(s+4)ˆ2

b[i]:=s+4
i:=i+1

�

�

�

�

STOP

a[i]:=cos(s+4)
?

-

?

?

?

-

�

-

-

Figure 1: Control flow graph

in a temporary, we can eliminate the redundant addition in
b[i]:=s+4. This information is arrived at through consider-
ation of the paths through the control flow graph.

The problem with Lisp is that there is no static control flow
graph at compile time. Consider the following fragment of
Scheme code:

(let ((f (foo 7 g k))
(h (aref a7 i j)))

(if (< i j) (h 30) (f h)))

Consider the control flow of the if expression. Its graph is:

i<j?

f

h

?

-

After evaluating the conditional’s predicate, control can transfer
either to the function that is the value of h, or to the function
that is the value of f. But what’s the value of f? What’s the
value of h? Unhappily, they are computed at run time.

If we knew all the functions that h and f could possibly be
bound to, independent of program execution, we could build
a control flow graph for the code fragment. So, if we wish
a control flow graph for a piece of Scheme code, we need to
answer the following question: for every function call in the
program, what are the possible lambda expressions that call
could be a jump to? But this is a flow analysis question! So
with regard to flow analysis in Lisp, we are faced with the
following unfortunate situation:

� In order to do flow analysis, we need a control flow graph.

� In order to determine control flow graphs, we need to do
flow analysis.

Oops.

3 CPS: The Hedgehog’s Representation

The fox knows many things, but the hedgehog knows
one great thing.
– Archilocus

The first step towards finding a solution to this conundrum
is to develop a representation for our Lisp programs suitably
adapted to the task at hand. In this section, we will develop an
intermediate representation language, CPS Lisp, which is well
suited for doing flow analyis and representing Lisp programs.
We will handle the full syntax of Lisp, but at one remove:



Scheme Flow Analysis 3

“standard” Lisp is mapped into a much simpler, restricted subset
of Lisp, which has the effect of greatly simplifying the analysis.

In Lisp, we must represent and deal with transfers of control
caused by function calls. This is most important in the Scheme
dialects [R3-Report], where lambda expressions occur with ex-
treme frequency. In the interests of simplicity, then, we adopt
a representation where all transfers of control — sequencing,
looping, function call/return, conditional branching — are rep-
resented with the same mechanism: the tail recursive function
call. This representation is called CPS, or Continuation Passing
Style, and is treated at length in [Declarative].

CPS stands in contrast to the intermediate representation
languages commonly chosen for traditional optimising compil-
ers. These languages are conventionally some form of slightly
cleaned-up assembly language: quads, three-address code, or
triples. The disadvantage of such representations are their ad
hoc, machine-specific, and low-level semantics. The alternative
of CPS was first proposed by Steele in [Rabbit], and further ex-
plored by Kranz, et al. in [ORBIT]. The advantages of CPS lie
in its appeal to the formal semantics of the �-calculus, and its
representational simplicity.

CPS conversion can be referred to as the “hedgehog” ap-
proach, after a quotation by Archilocus. All control and envi-
ronment structures are represented in CPS by lambda expres-
sions and their application. After CPS conversion, the compiler
need only know “one great thing” — how to compile lambdas
very well. This approach has an interesting effect on the prag-
matics of Scheme compilers. Basing the compiler on lambda
expressions makes lambda expressions very cheap, and encour-
ages the programmer to use them explicitly in his code. Since
lambda is a very powerful construct, this is a considerable boon
for the programmer.

In CPS, function calls are tail recursive. That is, they do
not return; they are like GOTOs. If we are interested in the
value computed by a function f of two values, we must pass
f a third argument, the continuation. The continuation is a
function; after f computes its value v, instead of “returning”
the value v, it calls the continuation on v. Thus the continuation
represents the control point which will be transferred to after
the execution of f .

For example, if we wish to print the value computed by
(x + y) � (z + w), we do not write:

(print (* (+ x y) (+ z w)))

instead, we write:

(+ x y (lambda (xy)
(+ z w (lambda (zw)

(* xy zw print)))))

Here, the primitive operations — +, *, and print —
are all redefined to take a continuation as an extra ar-
gument. The first + function calls its third argument,
(lambda (xy) ...) on the sum of its first two arguments,
x and y. Likewise, the second + function calls its third argu-
ment, (lambda (zw) ...) on the sum of its first two ar-
guments, z and w. And the * function calls its third argument,
the print function, on the product of its first two arguments,
x + y, and z + w.

Continuation passing style has the following invariant:

� The only expressions that can appear as arguments to a
function call are constants, variables, and lambda expres-
sions.

Standard non-CPS Lisp can be easily transformed into an
equivalent CPS program, so this representation carries no loss
of generality. Once committed to CPS, we make further sim-
plifications:

� No special syntactic forms for conditional branch.
The semantics of primitive conditional branch is captured
by the primitive function %if which takes one boolean ar-
gument, and two continuation arguments. If the boolean is
true, the first continuation is called; otherwise, the second
is called.

� No special labels or letrec syntax for mutual re-
cursion.
Mutual recursion is captured by the primitive function Y,
which is the “paradoxical combinator” of the �-calculus.

� Side effects to variables are not allowed.
We allow side effects to data structures only. Hence side
effects are handled by primitive functions, and special syn-
tax is not required.

Lisp code violating any of these restrictions is easily mapped
into equivalent Lisp code preserving them, so they carry no
loss of generality. In point of fact, the front end of the OR-
BIT compiler [ORBIT] performs the transformation of standard
Scheme code into the above representation as the first phase of
compilation.

These restrictions leave us with a fairly simple language to
deal with: There are only five syntactic entities: lambdas, vari-
ables, primops, constants and calls (fig. 2), and two basic se-
mantic operations: abstraction and application.

� Lambda expressions: (lambda var-set call)

� Variable references: foo, bar, . . .

� Constants: 3, "doghen", ’(a 3 elt list), . . .

� Primitive Operations: +, %if, Y, . . .

� Function calls: ( fun arg� )
where fun is a lambda, var, or primop, and the args are
lambdas, vars, or constants.

Figure 2: CPS language grammar

� Lambda Expressions:
A lambda expression has the syntax
(lambda var-set call), where var-set is a list of vari-
ables, e.g. (n m a), and call is a function call. A lambda
expression denotes a function.

� Function Calls:
A function call has the syntax ( fun arg1 . . . argn ) for
n � 0. fun must be a function, and the argi must be args.
[see below]

– Function:
A function is a lambda expression, a variable refer-
ence, or a primop.



4 Scheme Flow Analysis

– Args:
An argument is a lambda expression, a variable ref-
erence, or a constant.

� Primitive Operations:
A primop denotes some primitive function, and is given
by a predefined identifier, e.g., +, %if.

� Variables:
Variables have the standard identifier syntax.

� Constants:
Constants have no functional interpretation, and so have
syntax and semantics of little relevance to our analysis.
I use integers, represented by base 10 numerals, in my
examples.

Note that this syntax specification relegates primops to sec-
ond class status: they may only be called, not used as data,
or passed around as arguments. This leads to no loss of gen-
erality, since everywhere one would like to use the + primop
as data, for instance, one can instead use an equivalent lambda
expression: (lambda (a b c) (+ a b c)).

The reason behind splitting out primops as second class is
fairly operational: we view primops as being small, open-
codeable types of objects. Calls to primops are where compu-
tation actually gets done. There are other formulations possible
with first-class primops, with corresponding flow analytic solu-
tions. Relegating primops to second class status simplifies the
presentation of the analysis technique presented in this paper.

Note also that the definition of CPS Lisp implies that the
only possible body a lambda expression can have is a function
call. This is directly reflected in our syntax specification.

A restatement of the syntactic invariants in our representa-
tion:

� A lambda’s body consists of a single function call.

� A function call’s arguments may only be lambdas, vari-
ables, or constants. That is, nested calls of the form:
(f (g a) (h b)) are not allowed.

Some Primops:

%if, test: As discussed above, %if is a primop taking three ar-
guments: a boolean, and two continuations. If the boolean
is true, the first continuation is called, otherwise the second
continuation is called.

%if can have specialised test forms that take a non-
boolean first argument, and perform some test on it, e.g.
(test-zero? x f g) calls f if x is zero, otherwise
g. (test-nil? y h k) calls h if y is nil, otherwise
k.

Y: Y is the CPS version of the �-calculus “paradoxical combi-
nator” fixpoint function. The CPS definition is tricky, and
is best arrived at in stages. Consider the following use of
the non-CPS fixpoint operator:

(Y (lambda (f)
(lambda (n)

(if (zero? n) 1
(* n (f (- n 1)))))))

Y returns the fixpoint of its argument, i.e. that function f 0

such that (lambda (f) ...) applied to f 0 yields f 0.
However, if we convert (lambda (f) ...) to CPS
notation, we get:

(lambda (f k)
(k (lambda (n c)

(test-zero? n
(lambda () (c 1))
(lambda ()

(- n 1 (lambda (n1)
(f n1 (lambda (a)

(* a n c))
))))))))

Note that our functional doesn’t return a value (since no
CPS function returns a value). Instead, it calls its con-
tinuation k on its computed value. So the “fixpoint” of
our new, CPS functional is that function f 0 such that
(lambda (f k) ...) applied to f 0 and some con-
tinuation c, calls c on f 0. That is, calling the continuation
on f 0 is equivalent to returning f 0. We can generalise
our notion of “fixpoint” to include groups of mutually re-
cursive functions by allowing our functional to take more
than one non-continuation argument, i.e. a “fixpoint” of
some CPS function (lambda (f g h c) ...) is a
collection of three functions, f 0, g0, and h0, such that if
(lambda (f g h c) ...) is applied to f 0, g0, h0 ,
and some continuation k, then f 0, g0 , and h0 will be passed
to the continuation k.

So our CPS version of the Y combinator looks like:

(Y (lambda (f g h k) (k f-definition
g-definition
h-definition))

c)

The result of this example is to call continuation
c on three values, the fixpoints f 0, g0 , and h0 of
(lambda (f g h k) ...).

Figure 3 shows two complete examples using the CPS Y
operator. fNote CPS and Triplesg

4 Control Flow Analysis: A Technique

Our intermediate representation defined, we can now proceed
to develop a technique for deriving the control flow information
present in a Scheme program. The solution to the dilemma of
section 1 is to use a flow technique which will “bootstrap” the
control flow graph into being. As is typical in flow analysis
problems, our solution may err, as long as it errs conserva-
tively. That is, it may introduce spurious edges into the control
flow graph, but may not leave out edges representing transfers
of control that could actually occur during execution of the
program.

The intuition is that once we determine the control flow graph
for the Lisp function, we can then use it to do other, standard
data flow analyses. We refer to the problem of determining
the control flow graph for the purposes of subsequent data flow
analysis as control flow analysis. (This intuition will only be
partially borne out. The limitations of control flow analysis
will be discussed in section 8.)



Scheme Flow Analysis 5

(lambda (n k) ; Call K on N!
;; Y calls continuation (LAMBDA (G)...) on
;; fixpoint of (LAMBDA (F C) ...).
;; (LAMBDA (M K1) is factorial code.
(y (lambda (f c)

(c (lambda (m k1)
(test-zero? m

(lambda () (k1 1))
(lambda ()

(- m 1 (lambda (m1)
(f m1 (lambda (a)

(* a m k1))
))))))))

(lambda (g) (g n k))))

(lambda (n k) ; Call K on N!
(y (lambda (f c)

(c (lambda (m a k1)
(test-zero? m

(lambda () (k1 a))
(lambda ()

(* a m (lambda (a1)
(- m 1 (lambda (m1)

(f m1 a1 k1))
))))))))

(lambda (g) (g n 1 k))))

(a) Recursive factorial (b) Iterative factorial

Figure 3: Two factorial functions using the CPS Y operator

As an initial approximation, let’s discuss control flow anal-
ysis for a Scheme that does not allow side effects, even side
effects to data structures. This allows us to avoid worrying
about functions that “escape” into data structures, to emerge
who-knows-where. Later in the paper, we will patch our side-
effectless solution up to include side-effects.

The point of using CPS Lisp for an intermediate representa-
tion is that all transfers of control are represented by function
call. Thus the control flow problem is defined by the following
question:

For each call site c in program P, what is the set L(c)
of lambda expressions that c could be a call to? I.e.,
if there is a possible execution of P such that lambda
l is called from call site c, then l must be an element
of L(c).

The definition of the problem does not define a unique func-
tion L. The trivial solution is the function L(c) = AllLambdas,
i.e. the conclusion that all lambdas can be reached from any
call site. What we want is the tightest possible L. It is possi-
ble, in fact, to construct algorithms that compute the smallest
L function for a given program. The catch lies in determin-
ing when to halt the algorithm. In general, then, we must be
content with an approximation to the optimal solution.

Let ARGS be the set of arguments to calls in program P,
and LAMBDAS be the set of lambda expressions in P. That
is, ARGS is the set of variables and lambda expressions in P
(we assume variables names are unique here, i.e. that variables
have been �-converted to unique names.) We define a function
Defs : ARGS ! P(LAMBDAS). Defs(a) gives all the lambda
expressions that a could possibly evaluate to. That is,

Defs[(lambda . . .)] = f(lambda . . . )g

Defs[primop] = fprimopg

Defs[v] = fl j v bound to lambda lg

L is trivially determined from Defs. In a call c :(f a1 . . . an) ,
L(c) is just Defs(f ).

4.1 Handling Lambda

Defs can be given with a recursive definition: In
a call c :(f . . . ai . . .) , 8l 2 Defs(f ) of the form
(lambda (. . . vi. . .) . . . ),

Defs(ai) � Defs(vi) [LAM]

I.e. if lambda l can be called from call site c, then l’s ith variable
can evaluate to any of the lambdas that c’s ith argument can
evaluate to.

What we are doing here is willfully confusing closures with
lambda expressions. A lambda expression is not a function;
it must be paired with an environment to produce a function.
When we speak of “calling a lambda expression l,” we really
mean: “calling some function f which is a closure of lambda
expression l.” An alternate view is that we are reducing a
potentially infinite set of functions to a finite set by ‘folding’
together the environments of all functions constructed from the
same lambda expression. This issue will be dealt with in detail
in a later section.

4.2 Handling Primops

It can be seen from the definition of Defs that we are
flowing information about which lambdas are called from
which call sites. But this is not the whole story. Not
all function calls happen at call sites. Consider the frag-
ment (+ a b (lambda (s) (f a s))). Where is
(lambda (s) (f a s)) called from? It is called from
the innards of the + primop; there is no corresponding call site
in the program syntax to mark this. We need to endow primops
with special internal call sites to mark calls to functions that
happen internal to the primop. Different primops have differ-
ent calling behavior with respect to their arguments: + calls its
third argument only. %if calls its second and third arguments.
Y has even more complex behavior. So we model each primop
specially.

For each call to each primop c :(primop arg1. . . ), we as-
sociate a related set of internal call sites ic1; . . . ; icn for the
primop’s use. Most normal primops, e.g. +, have a single



6 Scheme Flow Analysis

internal call site, which marks the call to the primop’s contin-
uation. %if has two internal call sites, one for the consequent
continuation, and one for the alternate continuation.

Let icj
p;c be the jth internal call site for the primop p called

at call site c.

An ordinary primop — e.g. +, cons, aref — takes its
single continuation as its last argument. Any lambda which
that last argument could evaluate to, then, can be called
from the internal call site of the primop. That is, in call
c :(primop arg1. . . cont),

Defs(cont) � L(ic1
primop;c) [PRIM]

%if is a special primop, in that it takes two continuations as
arguments, either of which can be branched to from inside the
%if. %if has two internal call sites, the first for the consequent
continuations, and the second for the alternate continuations.
So there are two propagation conditions for an occurence of
%if, c :(%if pred cons alt). Any lambda the consequent
continuation can evaluate to can be called from the first internal
call site:

Defs(cons) � L(ic1
%if;c

) [IF-1]

Any lambda the alternate continuation can evaluate to can be
called from the second internal call site:

Defs(alt) � L(ic2
%if;c

) [IF-2]

The propagation condition for the Y operator is more compli-
cated. The Y primop is not available to the user; it is only in-
troduced during CPS conversion of labels expressions. The
CPS transformation for labels expressions turns

(labels ((f f-lambda)
(g g-lambda))

body)

with continuation kont into:

(Y (lambda (huaskt f g c)
(c (lambda (k) body)

f-lambda
g-lambda)))

(lambda (bodyfun hunoz hukairz)
(bodyfun kont))

where hunoz, hukairz, and huaskt are unreferenced —
ignored dummy variables.

Since Y is only introduced into the program text in a con-
trolled fashion, we can make particular assumptions about the
syntax of its arguments. In particular, we can assume that
f-lambda and g-lambda are lambda expressions, and not vari-
ables. This restriction can be relaxed with the addition of a
small amount of extra machinery.

We call the functional which is Y’s second argument the
fixpointer. Y’s propagation condition has three parts. For an
occurence of the Y primop:

c :(Y (lambda (v1 . . . vn k) (k f1 . . . fn)) cont)

1. Y calls the fixpointer from its internal continuation call
site:

(lambda (v1 . . . vn k) . . .) 2 L(icY;c) [Y-1]

2. Y’s continuation is passed to the fixpointer as its continu-
ation argument:

Defs(cont) � Defs(k) [Y-2]

3. Extract the args to the call to k, i.e. the definitions fi of
the label functions vi, and for each lambda fi, pass ffig

in as the fixpointer’s ith argument:

fi 2 Defs(vi) [Y-3]

4.3 Handling External References

Besides call sites, lambda expressions and primops, there are
two other special syntactic values we must represent in our
analysis. We need a way to represent unknown functions that
are passed into our program from the outside world at run time.
In addition, we need a call site to correspond to calls to func-
tions that happen external to the program text. For example,
suppose we have the following fragment in our program

(foo (lambda (k) (k 7))

If foo is free over the program, then in general we have no idea
at compile time what functions foo could be bound to at run
time. The call to foo is essentially an escape from the program
to the outside world, and we must record this fact. We do this
by including XLAMBDA, the external lambda, in Defs[foo].
Further, since (lambda (k) (k 7)) is passed out of the
program to external routines, it can be called from outside the
program. This is represented with a special call site, XCALL,
the external call. We record that (lambda (k) (k 7)) is
in L(XCALL).

Functions such as (lambda (k) (k 7)) in the above
example that are passed to the external lambda have escaped
to program text unavailable at compile time, and so can be
called in arbitrary, unobservable ways. They have escaped close
scrutiny, and in the face of limited information, we are forced
simply to assume the worst. We maintain a set ESCAPED of
escaped functions, which initially contains XLAMBDA and the
top level lambda of the program. The rules for the external
call, the external lambda and escaped functions are simple:

1. Any escaped function can be called from the external call:

ESCAPED � L(XCALL) [X-1]

2. Any escaped function may be applied to any es-
caped function: 8l 2 ESCAPED of the form
(lambda (. . . vi . . .) . . .),

ESCAPED � Defs(vi) [X-2]

This provides very weak information, but for external functions
whose properties are completely unknown at compile time, it
is the best we can do. (On the other hand, many external func-
tions, e.g. print, or length, have well known properties.
For instance, both print and length only call their contin-
uations. Thus, their continuations do not properly escape. Nor
are their continuations passed escaped functions as arguments.
It is straightforward to extend the analysis presented here to
utilise this stronger information.)



Scheme Flow Analysis 7

5 Two Examples

Consider the program

(lambda () (if 5 (+ 3 4) (- 1 2)))

which evaluates to 7. In CPS form, this is:

(lambda (k1) (%if 5 (lambda () (+ 3 4 k1))
(lambda () (- 1 2 k1))))

Labeling all the lambda expressions and call sites for reference,
we get:

l1:(lambda (k1)
c1:(%if 5 l2:(lambda () c2:(+ 3 4 k1))

l3:(lambda () c3:(- 1 2 k1))))

ESCAPED is initially fXLAMBDA; l1g. Our escaped func-
tion rules tell us that l1 can be called from XCALL, or that
l1 2 L(XCALL), and that fl1;XLAMBDAg � Defs(k1). The
propagation condition for %if gives us that %if’s first inter-
nal call site, ic1

%if, calls l2, i.e. l2 2 L(ic1
%if), and %if’s

second internal call site, ic2
%if, calls l3, i.e. l3 2 L(ic2

%if).
The propagation condition for + gives us that ic+ contains
Defs(k1) = fl1;XLAMBDAg, or that +’s internal continuation
call can transfer control to l1 or the XLAMBDA. Similarly, we
derive for - that L(ic

�

) contains fl1; XLAMBDAg. This com-
pletes the control flow analysis for the program.

Consider the infinite loop:

(labels ((f (lambda (n) (f n))))
(f 5))

With top-level continuation *k*, this is CPSised into:

(lambda (*k*)
(Y (lambda (ignore-b f k1)

(k1 (lambda (k2) (f 5 k2))
(lambda (n k3) (f n k3))))))

(lambda (b ignore-f) (b *k*))

Labelling all the call sites for reference:

(lambda (*k*)
c1:(Y (lambda (ignore-b f k1)

c2:(k1 (lambda (k2) c3:(f 5 k2))
(lambda (n k3) c4:(f n k3))))))

(lambda (b ignore-f) c5:(b *k*))

Y’s internal call site is labelled icY. After performing the prop-
agations, we get:

L(XCALL) = f(lambda (*k*) . . . );XLAMBDAg

L(c1) = fYg

L(icY) = f(lambda (ignore-b f k1) . . . )g

L(c2) = f(lambda (b ignore-f) . . .)g

L(c3) = f(lambda (n k3) (f n k3)g

L(c4) = f(lambda (n k3) (f n k3)g

L(c5) = f(lambda (k2) (f 5 k2))g

6 Side Effects

For the purposes of doing control flow analysis of Lisp, track-
ing side effects is not of primary importance. Since Lisp makes
variable binding convenient and cheap, side effects occur rel-
atively infrequently. (This is especially true of well written
Lisp.) The pieces of Lisp we are most interested in flow

analysing — inner loops — use side effects primarily for updat-
ing iteration variables, which are rarely functional values. The
control flow of inner loops is usually explicitly written out, and
tends not to use functions as first class citizens.

To further editorialise, I believe that the updating of loop
variables is a task best left to loop packages such as Waters’
LetS [LetS] or the Yale Loop [YLoop], where the actual up-
dating technique can be left to the macro writer to implement
efficiently, and ignored by the application programmer. Even
the standard Common Lisp and Scheme looping construct, do,
permits a binding interpretation of its iteration variable update
semantics.

For these reasons, we can afford to settle for a solution that
is merely correct, without being very informative. Therefore,
the control flow analysis presented here uses a very weak tech-
nique to deal with side effects. The CPS transformation dis-
cussed in section 3 removes all side effects to variables. Only
side effects to data structures are allowed. All side effects and
accesses to data structures are performed by primops. Among
these primops are cons, rplaca, rplacd, car, cdr, vref,
and vset. We divide these into two sets: data stashers, and
data fetchers. Stashers, such as cons, rplaca, rplacd,
and vset, take functions and tuck them away into some data
structure. Fetchers — car, cdr, vref — fetch functions
from some data structure.

The analysis takes the simple view that once a function is
stashed into a data structure, it has escaped from the anal-
yser’s ability to track it. It could potentially be the value of
any data structure access, or escape outside the program to the
ESCAPED set. Thus we have two rules for side effects:

1. Any lambda passed to a stasher primop is included in the
ESCAPED set.

(cons a d kont)) [S-1]

Defs(a); Defs(d) � ESCAPED

(vset vec index val kont)) [S-2]

Defs(val) � ESCAPED

etc:

2. A fetcher primop can pass any ESCAPED function to its
continuation:

(fetcher . . . cont)) [F-1]

8(lambda (x) ...) 2 Defs(cont);

ESCAPED � Defs(x)

In a sense, stashers and fetchers act as black and white holes:
values disappear into stasher primops and pop out at fetcher
primops.

7 Induction Variable Elimination: An Application

Once we’ve performed control flow analysis on a program, we
can use the information gained to do other data flow analyses.
Control flow analysis by itself does not provide enough infor-
mation to do all the data flow problems we might desire — the
limitations of control flow analysis are discussed in the section
8 — but we can still solve some useful problems.



8 Scheme Flow Analysis

As an example, consider induction variable elimination. In-
duction variable elimination is a technique used to transform
array references inside loops into pointer incrementing opera-
tions. For example, suppose we have the following C routine:

int a[50][30];

example() {
integer r, c;
for(r=0; r<50; r++)

for(c=0; c<30; c++)
a[r][c] = 4;

}

The example function assigns 4 to all the elements of array
a. The array reference a[r][c] on a byte addressed machine
is equivalent to the address computation a+4*(c+30*r).
This calculation requires two multiplications and two additions.
By replacing the array indices with a pointer variable, we can
remove the entire address calculation:

example() {
integer *ptr;
for(ptr=a; ptr<a+1500; ptr++)

*ptr = 4;
}

Induction variable elimination is a technique for automati-
cally performing the above transformation. The Lisp variant
uses control flow analysis.

A basic induction variable (BIV) family is a set of variables
B = fv1; . . . ; vng obeying the following constraints:

1. Every call site that calls one of the vi’s lambda ex-
pression may only call one lambda expression. In
terms of the Defs and L functions given earlier, this is
equivalent to stating that for all call sites c such that
(lambda (. . . vi . . .) ...) 2 L(c) for some vi, L(c)
must be a singleton set:

8call site’s c; vi 2 B

(lambda (. . . vi . . .) ...) 2 L(c) ) jL(c)j = 1

2. Each vi may only have definitions of the form b (constant
b), and a + vj (vj 2 B, constant a). This corresponds to
stating that vi’s lambda must be one of:

� Called from a call site that simply binds vi to a con-
stant:
((lambda (x vi z) ...) foo 3 bar).

� The continuation of a + call, with vj and a constant
for addends:
(+ vj a (lambda (vi) ...)).

� The continuation of a - call, with vj and a constant
for subtrahend and minuend:
(- vj a (lambda (vi) ...)).

� Called from a call site that simply binds vi to some
vj, e.g.:
((lambda (x vi z) ...) foo vj bar)
(This is a special case of a = 0).

Given the control flow information, it is fairly simple to com-
pute sets of variables satisfying these constraints.

A dependent induction variable (DIV) family is a set of vari-
ables B0 = fwig together with a function f (n) = a + b � n (a,b
constant) and a BIV family B = fvig such that:

� For each wi, every definition of wi is wi = f (vj) for some
vj 2 B.

We call the value f (vi) the dependent value.

We can introduce three sets of new variables, fzig, fxig, and
fyig. The zi and xi track the dependent value, and the yi are
introduced as temporaries to help update the basic variable. In
the following description, we use for illustration the following
piece of Lisp code:

(+ v1 4 (lambda (v2)
^ ... ^
| (* 3 v2|(lambda (w1) ...))))
| | ^
+-------------+ DIV w1 defined
BIVs v1 & v2 to be 3*v2.

with associated function f (n) = 3 � n.

We perform the following transformations on the code:

� Introduce zi into the vi lambda expression:
Modify each lambda that binds one of the vi to simultane-
ously bind the corresponding value f (vi) to zi.
Binding site (lambda (v2) ...) becomes:
(lambda (v2 z2) ...)

� Introduce code to compute zj = f (vj) from zi = f (vi)
when vj is computed from vi

All call sites who have continuations binding one of the
vi (i.e. call sites that step the BIV family) are modified to
update the corresponding zi value. Temporary variables xi

and yi are used to serially compute the new values.
Call site (+ v1 4 k) becomes:

(+ z1 12 (lambda (x2)
(+ v1 4 (lambda (y2)

(k y2 x2)))))

� Replace computation of DIV wi from vj with simple
binding:
Since zj = f (vj), we can remove the computation of wj

from vj, and simply bind wj to zj. Dependent variable com-
putation (* v2 3 (lambda (w1) ...)) becomes:
((lambda (w1) ...) z2) and z2 can be � substi-
tuted for w1.

Notice that fwig [ fzig [ fxig now form a new BIV family,
and may trigger off new applications.

For example, consider the loop of figure 4(a). It is converted
to the partial CPS of (b). Now, fng is a BIV family, and
fmg is a DIV family dependent on fng, with f (n) = 3n. A
wave of IVE transformation gives us the optimised result of
(c). Analysis of (c) reveals that f3n; 3n’;3n%g is a BIV
family, and fpg is a DIV family, with f (n) = 4 + n. Another
wave of IVE gives us the (d). If we examine (d), we notice that
3n, 3n’, and 3n% are never used, except to compute values
for each other. Another analysis using control flow information,
Useless Variable Elimination spots these useless variables; they
can be removed, leaving the optimised result of (e).



Scheme Flow Analysis 9

(labels ((f (lambda (n) (if (< n 50)
(if (= (aref a n) n) (f (+ n 1))

(block (print (+ 4 (* 3 n)))
(f (+ n 2))))))))

(f 0))
(a) Before

(labels ((f (lambda (n)
(if (< n 50)

(if (= (aref a n) n) (+ n 1 f)
(* 3 n (lambda (m) (+ 4 m (lambda (p) (print p)

(+ n 2 f))))))))))
(f 0))

(b) Partial CPS conversion

(labels ((f (lambda (n 3n)
(if (< n 50)

(if (= (aref a n) n)
(+ 3n 3 (lambda (3n’)

(+ n 1 (lambda (n’) (f n’ 3n’)))))
(+ 4 3n (lambda (p) (print p)

(+ 3n 6 (lambda (3n%)
(+ n 2 (lambda (n%)

(f n% 3n%)))))))
)))))

(f 0 0))
(c) IVE wave 1

(labels ((f (lambda (n 3n 3n+4)
(if (< n 50)

(if (= (aref a n) n)
(+ 3n+4 3 (lambda (3n+4’)

(+ 3n 3 (lambda (3n’) (+ n 1 (lambda (n’)
(f n’ 3n’ 3n+4’)))))))

(block
(print 3n+4)
(+ 3n+4 6 (lambda (3n+4%)

(+ 3n 6 (lambda (3n%) (+ n 2 (lambda (n%)
(f n% 3n% 3n+4%)))))))))))))

(f 0 0 4))
(d) IVE wave 2

(labels ((f (lambda (n 3n+4)
(if (< n 50)

(if (= (aref a n) n)
(+ 3n+4 3 (lambda (3n+4’) (+ n 1 (lambda (n’) (f n’ 3n+4’)))))
(block
(print 3n+4)
(+ 3n+4 6 (lambda (3n+4%) (+ n 2 (lambda (n%)

(f n% 3n+4%)))))))))))
(f 0 4))

(e) After

Figure 4: Example IVE application



10 Scheme Flow Analysis

8 Limitations and Extensions

This paper is the first in a series intended to develop general
flow analysis optimisations for Scheme-like languages. The
basic control flow analysis technique of section 4 can be devel-
oped in many directions. In this section, I will sketch several
of these directions, which are beyond the scope of this paper,
and will be published in future reports.

8.1 First Order Closures: An Improvement

Control flow analysis attempts to deal with infinite structures
by approximation. We would like to flow around functions.
But the set of functions that a given program can produce is
infinite. Consider the following infinite loop:

(labels ((f (lambda (g)
(f (lambda ()

(+ (g) (g)))))))
(f (lambda () 1)))

g is bound to the infinite set of functions ff (x) = 2n
jn � 0g

So, in general, there is no way to perfectly answer the ques-
tion “what are all the functions called from a given call site?”
The analysis technique presented in section 4 uses the approx-
imation that identifies all functions that have the same “code,”
i.e. the functions that are closed over the same lambda expres-
sion.

We can use finer grained approximations, expending more
work to gain more information. To borrow a technique from
[Hudak1], we can track multiple closures over the same lambda.
Since it’s clear that in the real lambda semantics, a finite pro-
gram can give rise to unbounded numbers of closures, we must
identify some real closures together.

In the zeroth order control flow analysis (0CFA) presented
in section 4, we identified all closures over a lambda together.
In the first order case (1CFA), the contour created by calling
a lambda from call point c1 is distinguished from the contour
created by calling that lambda from call point c2. Closures over
these two contours are distinct.

A full treatment of 1CFA will be found in the forthcoming
CMU tech report1 based on this conference paper.

8.2 Environment Flow Analysis

Although control flow analysis provides enough information to
perform some traditional flow analysis optimisations on Scheme
code, e.g. induction variable elimination, it is not sufficient to
solve the full range of flow analysis problems. Why is this?

Traditional flow analysis techniques assume a single, flat en-
vironment over the program text. New computed values are
communicated from one portion of the program to another by
side-effecting and referencing global variables. Thus, any two
references to the same variable refer to the same binding of that
variable. This is, for instance, the model provided by assembly
code.

Our technique, however, uses a different intermediate repre-
sentation, CPS applicative-order �-calculus. Here, the situation

1Due to space limits, the description of Useless Variable Elimination and the
algorithm for finding BIV families are also deferred to the tech report.

is not so simple. The indefinite extent of variable bindings im-
plies that we can have simultaneous multiple bindings of the
same variable. For instance, consider the following perverse
example:

(let ((f (lambda (h x)
(if (zero? x) (h)

(lambda () x)))))
(f (f nil 3) 0))

The first call to f, (f nil 3) returns a closure over
(lambda () x), in an environment [x/3]. This function is
then used as an argument to the second, outer call to f, where
it is bound to the variable h. Suppose we naively picked up
information from the conditional (zero? x) test, and flowed
x = 0 and x 6= 0 down the THEN arm and the ELSE arm of
the if, respectively. This would work in the single flat envi-
ronment model of assembler. In our example, however, we are
undone by the power of the lambda. After ensuring that x = 0
in the THEN arm of the (if (zero? x)...) conditional,
we jump off to h, and evaluate x, which inconveniently per-
sists in evaluating to 3, not 0. The one variable has multiple
simultaneously extant values. Confusing two bindings of the
same variable can lead us to draw incorrect conclusions.

This problem prevents us from using plain control flow anal-
ysis to perform an important flow analysis optimisation for
Lisp: type inference. We would like to perform deductions
of the form:

;; references to x in f are int refs
(if (integer? x) (f) (g))

Unfortunately, as demonstrated above, we can’t safely make
such inferences.

What is missing is environment information. We need to
know which references to a variable occur in the same envi-
ronment. For example, consider the lambda expression:

(lambda (0:x)
(cond ((zero? 1:x)

(print 2:x) (* 3:x 4))
(t (+ 4:x 7))))

There is no execution path of a program containing the above
lambda such that reference 2:x occurs in the same environment
as reference 4:x. On the other hand, in all execution paths,
reference 2:x occurs in the same environment as reference
3:x.

We cannot do general data flow analysis unless we can un-
tangle the multiple environments that variables can be bound
in. This is not surprising. As is pointed out in [Declarative],
lambda serves a dual semantic role of providing both control
and environment structure. Control flow analysis has provided
information about only one of these structures. We must also
gather information about the relationships among the binding
environments established during program execution.

The exact nature of the environment information we need is
succinctly captured in the lastref function:

For a reference r to variable v, what is LR(r), the set
of possible immediately prior references to the same
binding of v?



Scheme Flow Analysis 11

Lastref information provides just enough information to dis-
entangle the multiple environments that can be created over a
given variable. If we had lastref information, we could, for
example, correctly perform type inference. Deriving lastref in-
formation is referred to as environment flow analysis.

A complete treatment of the environment problem, and tech-
niques for computing the lastref function are beyond the scope
of this paper. The next paper in this flow analysis series, En-
vironment Flow Analysis in Scheme, will treat the environment
problem, showing its solution, and the application of the lastref
function to performing general flow analysis, including type
inference as a demonstration example.

8.3 Mathematics

The mathematics of Scheme control, environment, and data
flow analysis is captured by abstract semantic interpretations
[Cousot] [Hudak2]. This will be the topic of another paper.

9 Acknowledgements

I would like to thank my advisor, Peter Lee, for carefully re-
viewing several drafts of this paper.

Notes

fNote Difficulties with Bindingg
For all its pleasant properties, Lisp binding does introduce a
problem that surfaces when we attempt to find applications for
flow analysis-derived information, namely that lexical scoping
coupled with “upward” functions gives the programmer very
tight control over environments. This can frustrate optimising
techniques involving code motion, where we might decide we
would like to move a computation to a given control point p,
only to find that the variables appearing in the computation are
not available in the environment obtaining at p.

This problem does not arise with Algol-like languages, since
their internal representations are typically close to assembly
language. The environment is a single, large flat space, hence
a given variable is visible over the entire body of code. Some
further consequences of this difference are discussed in subsec-
tion 8.2.

fNote CPS and Triplesg
CPS looks a lot like triples: generally, the code is broken down
into primitive operations, which take the variables or constants
they are applied to, and a continuation that specifies the variable
to receive the computed value. CPS differs from triples in the
following ways:

1. The continuation actually serves two roles. (1) It speci-
fies the the variable to receive the value computed by the
primitive operation. (2) It specifies where the control point
will transfer to after executing the primitive operation. In
triples this is split out.

2. A triple side-effects its target. A continuation binds its
variable.

3. Continuations have runtime definitions; triples can be com-
pletely determined at compile time.

References

[Dragon] Aho, Ullman. Principles of Compiler Design.
Addison-Wesley (1977).

[Hecht] Hecht, Matthew S. Data Flow Analysis of Com-
puter Programs. American Elsevier (New York,
1977).

[R3-Report] J. Rees & W. Clinger, Ed.. “The Revised3 Re-
port on the Algorithmic Language Scheme.” SIG-
PLAN Notices 21(12) (Dec. 1986), pp. 37–79.

[Declarative] Steele, Guy L. Lambda: The Ultimate Declar-
ative. AI Memo 379. MIT AI Lab (Cambridge,
November 1976).

[Rabbit] Guy L. Steele. Rabbit: A Compiler for Scheme.
AI-TR-474. MIT AI Lab (Cambridge, May
1978).

[ORBIT] Kranz, David, et al. “Orbit: An Optimizing
Compiler for Scheme.” Proceedings of SIGPLAN
’86 Symposium on Compiler Construction (June
1986), pp. 219–233.

[LetS] Waters, Richard C. LETS: an Expressional Loop
Notation. AI Memo 680. MIT AI Lab (Cam-
bridge, October 1982).

[YLoop] Online documentation for the T3 implementation
of the Yloop package is distributed by its cur-
rent maintainer: Prof. Chris Riesbeck, Yale CS
Dept. (riesbeck@yale.arpa).

[Hudak1] Hudak, Paul. “A Semantic Model of Reference
Counting and its Abstraction.” Proceedings of
the 1986 ACM Conference on Lisp and Func-
tional Programming (August 1986).

[Hudak2] Hudak, Paul. Collecting Interpretations of Ex-
pressions (Preliminary Version). Research Report
YALEU/DCS/RR-497. Yale University (August
1986).

[Cousot] P. Cousot and R. Cousot. “Abstract interpreta-
tion: a unified lattice model for static analysis
of programs by construction or approximation of
fixpoints.” 4th ACM Symposium on Principles of
Programming Languages (1977), pp. 238–252.


