
Multi-return Function Call

Olin Shivers
Georgia Tech College of Computing

shivers@cc.gatech.edu

David Fisher
Georgia Tech College of Computing

dfisher@cc.gatech.edu

Abstract
It is possible to extend the basic notion of “function call” to al-
low functions to have multiple return points. This turns out to
be a surprisingly useful mechanism. This paper conducts a fairly
wide-ranging tour of such a feature: a formal semantics for a min-
imal λ-calculus capturing the mechanism; a motivating example;
a static type system; useful transformations; implementation con-
cerns and experience with an implementation; and comparison to
related mechanisms, such as exceptions, sum-types and explicit
continuations. We conclude that multiple-return function call is not
only a useful and expressive mechanism, both at the source-code
and intermediate-representation level, but is also quite inexpensive
to implement.

Categories and subject descriptors:D.3.3 [Program-
ming languages]: Language Constructs and Features—control
structures, procedures, functions, subroutines and recursion; F.3.3
[Logics and meanings of programs]: Studies of program
constructs—control primitives and functional constructs; D.1.1
[Programming techniques]: Applicative (Functional) Program-
ming; D.3.1 [Programming languages]: Formal Definitions and
Theory—semantics and syntax

General terms: Design, Languages, Performance, Theory

Keywords: Functional programming, procedure call, control
structures, lambda calculus, compilers, programming languages,
continuations

1 Introduction
The purpose of this paper is to explore a particular programming-
language mechanism: adding the ability to specify multiple return
points when calling a function. Let’s begin by introducing this fea-
ture in a minimalist, “essential” core language, which we will call
the “multi-returnλ-calculus” (MRLC). The MRLC looks just like
the standardλ-calculus [2], with the addition of a single form:

l ∈ Lam ::= λx.e
e∈ Exp ::= x | n | l | e1 e2 | /e r1. . .rm. | (e)
r ∈ RP ::= l | #i

An expression is either a variable reference (x), a numeral (n), aλ-
expression (l , of the formλx.e), an application (e1 e2), or our new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’04,September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

addition, a “multi-return form”, which we write as/e r1 . . . rm..1

Additionally, our expression syntax allows for parenthesisation to
disambiguate the concrete syntax. From here on out, however, we’ll
ignore parentheses, and speak entirely of the implied, unambiguous
abstract syntax.

We’ll develop formal semantics for the MRLC in a following sec-
tion, but let’s first define the language informally. An expression is
always evaluated in a context of a number of waiting “return points”
(or “ret-pts”). Return points are established with ther i elements of
multi-return forms, and are specified in our grammar by theRPpro-
ductions: they are eitherλ expressions, or elements of the form “#i”
for positive numeralsi, e.g., “#1”, “#2”, etc.Here are the rules for
evaluating the various kinds of expressions in the MRLC:

• x, n, λx.e
Evaluating a variable reference, a numeral, or aλ-expression
simply returns the variable’s, numeral’s, orλ’s value to the
context’sfirst return point, respectively.

• e1 e2
Evaluating an application first causes the function forme1 to
be evaluated to produce a function value. Then, in a call-by-
name semantics, we pass the expressione2 off to the function.
In a call-by-value semantics, we instead evaluatee2 to a value,
which we then pass off to the function. In either case, the
application of the function to the argument is performed in
the context of the entire form’s return points.

Note that the evaluation ofe1 and, in call-by-value,e2 do not
happen in the outer return-point context. These inner evalu-
ations happen in distinct, single return-point contexts. So, if
we evaluate the expression

(f 6) (g 3)

in a context with five return points, then thef 6 and theg3 ap-
plications themselves are conducted in single ret-pt contexts.
The application off ’s return value tog’s return value, how-
ever, happens in the outer, five ret-pt context.

• /e r1 . . . rm.
The multi-return form is how we establish contexts with mul-
tiple return points. Evaluating such a form evaluates the inner
expressione in a return-point context withm ret-pts, given by
ther i .

If e eventually returns a valuev to a return point of the form
λx.e′, then we bindx to valuev, and evaluate expressione′ in
the original form’s outer ret-pt context.If, however,e returns
v to a ret-pt of the form “#i,” thenv is, instead, passed straight
back to theith ret-pt of the outer context.

1Strictly speaking, the addition of numerals means our language
isn’t as primitive as it could be, but we’ll allow these so that we’ll
have something a little simpler thanλ expressions to use for arbi-
trary constants in our concrete examples.

Consider, for example, evaluating the expression

/(f 6) (λx .x+5) (λy.y∗y).

where we have slightly sugared the syntax with the introduction of
infix notation for standard arithmetic operators. The functionf is
called with two return points. Shouldf return an integerj to the
first, then the entire form will, in turn, returnj +5 to its first ret-pt.
But if f returns to its second ret-pt, then the square ofj will be
returned to the whole expression’s first ret-pt.

On the other hand, consider the expression

/(f 6) (λx .x+5) #7.

Should f return j to its first ret-pt, all will be as before:j +5 will
be returned to the entire form’s first ret-pt. But shouldf return to
its second ret-pt, the returned value will be passed on to the entire
form’s seventh ret-pt. Thus, “#i” notation gives a kind of tail-call
mechanism to the language.

One final question may remain: with the/e r1 . . . rm. multi-ret
form, we have a notation for introducing multiple return points.
Don’t we need a primitive form for selecting and invoking a cho-
sen return point? The answer is that we already have the necessary
machinery on hand. For example, if we wish to write an expression
that returns42 to its third ret-pt, we simply write

/42 #3.

which means “evaluate the expression ‘42’ in a ret-pt context with
a single return point, that being the third return point of the outer
context.” The ability of the#i notation to select return points is
sufficient.

2 An example
To get a better understanding of the multi-return mechanism, let’s
work out an extended example that will also serve to demonstrate
its utility. Consider the common list utilityfilter: (α→bool)
→ α list → α list which filters a list with a given element-
predicate. Here is ML code for this simple function:

fun filter f lis =
let fun recur nil = nil

| recur (x::xs) =
if f x then x :: (recur xs)
else recur xs

in recur lis
end

Now the challenge: let us rewritefilter to be “parsimonious,” that
is, to allocate as few new list cells as possible in the construction
of the answer list by sharing as many cells as possible between the
input list and the result. In other words, we want to share the longest
possible tail between input and output. We can do this by changing
the inner recursion so that it takes two return points. Our function-
call protocol will be:

• Ret-pt #1: unit
output list = input list
The call returns the unit value to its first return point if every
element of the input list satisfies the testf.

• Ret-pt #2: α list
output list is shorter than input list
If some element of the input list does not satisfy the testf, the
filtered result is returned to the second return point.

fun filter f lis =
let fun recur nil = ()

| recur (x::xs) =
if f x
then multi (recur xs)

#1
(fn ans => multi (x::ans) #2)

else multi (recur xs)
(fn () => multi xs #2)
#2

in multi (recur lis)
fn () => lis
#1

end

Figure 1: The parsimonious filter function, written with a multi-
return recursion.

We recommend that you stop at this point and write the function,
given the recurrence specification above; it is an illuminating ex-
ercise. We’ll embed the multi-return form/e r1 . . . rm. into ML
with the concrete syntax “multi e r1...rm.” The result function
is shown in figure 1. Note the interesting property of this function:
both recursive calls are “semi-tail recursive,” in the sense that one
return point requires a stack frame to be pushed, while the other
is just a pre-existing pointer to someplace higher in the call stack.
However, the two calls differ in which ret-pt is which. In the first
recursion, the first ret-pt is tail-recursive, and the second ret-pt re-
quires a new stack frame. In the second, it is the other way around.

Suppose we were using our parsimoniousfilter function to filter
even numbers from a list. What would the call/return pattern be
for a million-element list of even numbers? The recursion would
perform a million-and-one calls. . . but only a single return! Every
call would pass along the same pointer to the base of the call stack
as ret-pt one; the “recur nil” base case would return through this
pointer, jumping over all intermediate frames straight back to the
stack base.

Similarly, filtering even numbers from a list containing only odd
elements would also performn calls and a single return, driven by
the tail-recursion through the second recursive call’s second return
point.

Filtering mixed lists gives us the desired minimal-allocation prop-
erty we sought; contiguous stretches of elements not in the list are
returned over in a single return. This is possible because multi-
ple return points allow us to distribute codeafter the call over a
conditional test containedinside the call. This combines with the
tail-recursive properties of the “#i” notation to give us the code im-
provement.

There’s an alternate version of this function that uses three re-
turn points, with the following protocol: return unit to ret-pt #1
if output= input; return a list to ret-pt #2 if the output is a proper
tail of the input; and return a list to ret-pt #3 if the output is neither.
We leave this variant as an (entertaining) exercise for the reader.

3 Formal semantics
Having gained a reasonably intuitive feeling for the multi-return
mechanism, it is fairly straightforward to return now to the mini-
malist MRLC and develop a formal semantics for it. We can define
a small-step operational semantics as a binary relation; on Exp.
We’ll first designate integers andλ-expressions as “values” in our

semantics:v∈Val = Z +Lam. Then our core set of transition rules
are defined as follows:

[funapp] (λx.e) e2 ; [x 7→ e2]e

[rpsel]
/v r1 r2 ; /v r1.

[retlam]
/v l. ; l v

[ret1]
/v #1. ; v

[rettail]
//v #i. r1 . . . rm. ; /v ri.

1≤ i ≤m

to which we add standard progress rules to allow reduction in any
term context

[funprog] e1 ; e′1
e1 e2 ; e′1 e2

[argprog] e2 ; e′2
e1 e2 ; e1 e′2

[retprog] e; e′
/e r1 . . . rm. ; /e′ r1 . . . rm.

[bodyprog] e; e′
λx.e; λx.e′

[rpprog] l ; l ′
/e r1 . . . l . . . rm. ; /e r1 . . . l ′ . . . rm.

funapp The funapp schema is the usual “function application”β
rule that actually applies aλ term to the argument.

rpsel The rpsel schema describes how a value being returned se-
lects the context’s first return point.

retlam The retlam schema describes how a value is returned to
a λ return point—theλ expression is simply applied to the
returned value.

rettail The rettail schema describes how a value is returned tail-
recursively through a#i return point. We simply select theith

return point from the surrounding context, collapsing the pair
of nested multi-return contexts together.

ret1 Note that the rettail schema does not apply to all#i returns—
only those that appear nested within another surrounding
multi-return form providing the selected return point. With
only this rule to define returns through#i ret-pts, expressions
such as/(λx.e) #1. 17 would be stuck. The ret1 rule allows
such an expression to progress to(λx.e) 17.

The necessity of this extra rule seems like a small blemish on
the semantics, especially since, as written, it is partially redun-
dant with rettail on expressions of the form//v #1. r1 . . . rm.,
whose transition is covered by both rettail and ret1. This mi-
nor “non-determinancy” is harmless, but we must either cover
it in the details of any confluence proof or eliminate it by in-
troducing surrounding context into the ret1 rule to restrict it
to multi-ret forms appearing within application expressions.
Either way, it’s a bit of extra work.

Nonetheless, it’s a necessary, and, we suggest, illuminating
rule, rather than the sort of structural blemish we’d prefer
to just sweep under the rug. Part of the point of the MRLC
is to provide language-level access to the different continu-
ations that underly the evaluation of the program—albeit in
a way that still manages to keep these continuations firmly
under control. (We’ll return to this theme later.) Consid-
ered from the continuation perspective, evaluation of a func-
tion call hides an implicit continuation, the one passed to the
evaluation of the application’s function subexpression. In En-

glish, this continuation would be rendered as, “Collect the fi-
nal value for this expression; this value must be a function.
Then evaluate the application’s argument, and pass its value
to this function, along with the application’s continuation.”
This implicit continuation is the one indexed by the “#1” in
/(λx.e) #1. 17.

So the rettail rule indexes continuations given by the return
points of a multi-return expression, while ret1 allows us to
index the continuation implicit in the recursive evaluation of
the application’s function expression.

Note a pleasing anti-symmetry between function call and return in
this calculus: application is strict in thefunction (i.e., we need to
know where we are going), while return is strict in thevaluebeing
passed back (i.e., we need to know what we are returning). We can-
not have a sort of “normal-order” return semantics allowing general
non-value expressions to be returned: the non-determinancy intro-
duced would destroy the confluence of the calculus, giving us an
inconsistent semantics. To see this, suppose we added a “call-by-
name return” rule of the form

/e l r2 . . . rm. ; l e

allowing an arbitrary expressione rather than a valuev to be re-
turned through a multi-return form. This would introduce semanti-
cally divergent non-determinism, as shown by the use of our new,
bogus rule and the rettail rule to take the same expression in two
very different directions:

//7 #2. l1 l2. ; l1 /7 #2. (by bad rule)
//7 #2. l1 l2. ; /7 l2. (by rettail rule)

Restricting the progress rules to just funprog and retprog gives us
the call-by-name transition relation;n. The normal-order MRLC
has some interesting and exotic behaviours, but exploring them
is beyond the scope of this paper, so we will press on to the
applicative-order semantics. For call-by-value, we simply restrict
the function-application rule to require the argument to be a value:

[funappv] (λx.e) v ; [x 7→ v]e

To establish the MRLC as a reasonable semantics, we need to en-
sure that the transition relations are confluent. The call-by-value,
call-by-name and full MRLC transition relations are all confluent.
The proofs are beyond the scope of this paper,2 but they are fairly
straightforward variants of the standard confluence proof for theλ-
calculus.

4 Types
Our basic untyped semantics in place, we can proceed to consider-
ation of type systems and static safety. The type system we develop
is a static, monomorphic system. The key feature of this system
is that expressions have, not a single typeτ, but, rather, avector
of types〈τ1 . . .τn〉—one for each return point. Further, we allow
a small degree of subtyping by allowing “holes” (written⊥) in the
vector of result types, meaning the expression will never return to
the corresponding return point. So, if we extended the MRLC to
have if/then forms, along with boolean and string values, then, as-
suming thatb is a boolean expression,

if b then/3 #2. else/“three” #4.

2As with other omitted proofs, full details will be given in a
forthcoming technical report.

would have principal type vector〈⊥, int,⊥,string〉, meaning, “this
expression either returns an integer to its second ret-pt, or a string to
its fourth ret-pt; it never returns to any other ret-pt.” For that matter,
this expression has any type vector of the form〈α, int,β,string〉, for
any typesα andβ. We lift this base form of subtyping to MRLC
functions with the usual contravariant/covariant subtyping rule on
function types.

Let us write
⇀
τ to mean a finite vector of types with holes allowed

for some of the elements. More precisely,
⇀
τ is a finite partial map

from the naturals to types, where we write
⇀
τ [i] = ⊥ to mean thati

is not in the domain of
⇀
τ . Then our domain of types is

τ ∈ T ::= int | τ→⇀
τ .

(Notice that⊥ is not a type itself.)

Types and type vectors are ordered by the inductively-definedv
and~v subtype relations, respectively:

intv int
τsupv τsub

⇀
τ sub~v⇀

τ sup

τsub→
⇀
τ sub v τsup→

⇀
τ sup

We define
⇀
τ sub~v⇀

τ sup to hold when

∀i ∈ Dom(
⇀
τ sub) . i ∈ Dom(

⇀
τ sup)∧

⇀
τ sub[i]v

⇀
τ sup[i].

In other words, type vector
⇀
τ a is consistent with (is a sub-type-

vector of) type vector
⇀
τ b if

⇀
τ a is pointwise consistent with

⇀
τ b.

We now have the machinery in place to define a basic type sys-

tem, given by the judgementΓ ` e :
⇀
τ , meaning “expressione has

type-vector
⇀
τ in type-environmentΓ.” Type environments are sim-

ply finite partial maps from variables to types. The type-judgment
relation is defined by the following schemata:

Γ ` n : 〈int〉 Γ ` x : 〈Γx〉 x∈ Dom(Γ)

Γ[x 7→ τ] ` e :
⇀
τ

Γ ` λx.e :
〈

τ→⇀
τ
〉

Γ ` e1 :
〈

τ→⇀
τ
〉

Γ ` e2 :
⇀
τ2

Γ ` e1 e2 :
⇀
τapp

⇀
τ2 ~v 〈τ〉
⇀
τ ~v⇀

τapp

Γ ` e :
⇀
τe

Γ ` r j :
〈

τ j → ⇀
τ j

〉
(∀r j ∈Lam)

Γ ` /e r1 . . . rm. :
⇀
τ

⇀
τec[j] =

{
τ j r j ∈Lam
⇀
τ [i] r j = #i

⇀
τe ~v ⇀

τec
⇀
τ j ~v⇀

τ

The type system, as we’ve defined it, is designed for the call-by-
value semantics, and is overly restrictive for the call-by-name se-
mantics. Development of a call-by-name type system is beyond the
scope of this paper; we simply remark that it requires function types
to take a type vector on theleft side of the arrow, as well as the right
side. We have established the type-safety of the call-by-value sys-
tem by the usual subject-reduction technique. The theorem guaran-
tees that a well-typed program will never attempt to return a value
to a non-existent return point, or to one that expects a value of the
wrong type. The proof is completely standard and contains no tech-
nical surprises or unusual (or even interesting) insights.

The type system can be extended to handle parametric polymor-
phism with no great difficulty, and algorithmW can be straightfor-
wardly adapted to infer types in a Hindley-Milner system for the
MRLC [10]. We have also proved the correctness of this variant
of algorithm W. The extension amounts to using a variant of row
polymorphism [18] on the types of the hidden, second-class contin-
uation tuples.

As a final remark before leaving types, it’s amusing to pause and
note that one of the charms of this type system is that it provides a
type for expressions whose evaluation never terminates: the empty
type vector〈〉.3

5 Transformations
Besides the usualλ-calculus transformations enabled by theβ and
η rules in their various forms (general, CBN and CBV), the pres-
ence of multi-return context as an explicit syntactic element in the
MRLC provides for new useful transformations. For example, the
“ret-comp” transform allows us to collapse a pair of nested multi-ret
forms together:

//e r1 . . . rn. r ′1 . . . r ′m. = /e r′′1 . . . r ′′n. [ret-comp]

where

r ′′i =
{

r ′j r i = # j
λx./(r i x) r ′1 . . . r ′m. (x fresh) r i ∈ Lam

This equivalence shows how tail-calls collapse out an intermediate
stack frame. In particular, it illustrates how a term of the form/e.
eats all surrounding context, freeing the entire pending stack of call
frames represented by surrounding multi-return contexts. Thus a
function call that takes no return points and so never returns can
eagerly free the entire run-time stack.

Another useful equivalence is the mirror transform:

l e = /e l. [mirror]

Note that the mirror transform does not hold for the normal-order
semantics—shiftinge from its non-strict role as an application’s
argument to its strict role in a multi-ret form can change a termi-
nating expression into a non-terminating one. Since both positions
are strict in the call-by-value semantics, the problem does not arise
there.

These equivalences are useful to allow tools such as compilers to
manipulate and integrate terms in a fine-grained manner (as we’ll
see in the following section). We have established that these trans-
forms preserve meaning with respect to the CBV semantics. To
briefly sketch the proof, we show that the transition relation that is
the union of each transformation (performed at any subterm within
a term) and the set of call-by-value transitions is confluent; in addi-
tion, a single transformation does not make a non-terminating ex-
pression terminating (in the CBV-only system), or vice-versa. In
order to show that the combined semantics are confluent, we invoke
the Hindley-Rosen lemma, which states that if two commuting re-
lations are confluent, then their union is confluent. The rest of the
proof is done simply by cases.

3Not every such expression can be assigned this type, of
course. . .

6 Anchor pointing and encoding in the pc
Consider compiling the programming-language expression “x<5”
in the two contexts “f(x<5)” and “if x<5 then ...else ...”
In the first context, we want to evaluate the expression, leaving a
true/false value in one of the machine’s registers. In the second
context, we want to evaluate the inequality, branching to one or
another location in the program based on the outcome—in other
words, rather than encode the boolean result as one of a pair of
possible values in a general-purpose register, we wish to encode it
as a pair of possible addresses in the program counter. Compiler
writers refer to this distinction as “eval-for-value” and “eval-for-
control” [4].

Not only do programs have these two ways ofconsumingbooleans,
they also have corresponding means ofproducing them. On
many processors, the conditional “x<5” will be produced by a
conditional-branch instruction—thus encoded in the pc—while the
boolean function call “isLeapYear(y)” will produce a boolean
value in one of the general-purpose machine registers—thus en-
coded as a value.

Matching up and optimally interconverting between the different
kinds of boolean producers and consumers is one of the standard
tasks of good compilers. In the functional world, the technique for
doing so relies on a transformation called “anchor pointing,” [17, 9]
defined for nested conditional expressions—sometimes called “if-
of-an-if.” The transformation is

if (if a then b else c)
then d
else e

⇒
if a
then (if b then d else e)
else (if c then d else e)

although we usually also replace the expressionsd ande with calls
to let-bound thunksλ .d andλ .e to avoid replicating large chunks
of code (where we write “” to suggest a fresh, unreferenced “don’t-
care” variable for the thunk, in the style of SML). In the original
form, theb andc expressions are evaluated for value; in the trans-
formed result,b andc are evaluated for control.

In the MRLC, we can get this effect by introducing primitive “con-
trol” functions. The%if function consumes a boolean, and returns
to a pair of unit return points:/(%if b) rthen relse.. In other words,
it is the primitive operator that converts booleans from a value en-
coding to a pc encoding. The anchor-pointing transformation trans-
lates to this setting:

/(%if /(%if a) λ .b λ .c.) d e.
⇒
/(%if a) λ ./(%if b) d e.

λ ./(%if c) d e..

This transform, in fact, is easily derived from the basic ret-comp
and mirror transforms, plus some simple constant-folding on%if
applications to boolean constants. (You may enjoy working this out
for yourself.) We can also definen-way case branches with multi-
return functions; for an intermediate representation for a language
such as SML, we would probably want to provide one such func-
tion for each sum-of-products datatype declaration, to case-split and
disassemble elements of the introduced type.

Recall that some boolean functions are primitively implemented on
the processor with instructions that encode the result in the pc—
integer comparison operations are an example. We can express this
at the language level by arranging for the primitive definitions of
these functions similarly to provide their results encoded in the pc.
For example, the exported< function can be defined in terms of an

underlying primitive%< function that encodes its result in the pc
using multiple return points:

< = λx y. /(%< x y) (λ .true) (λ .false).

With similar control-oriented definitions for the short-circuiting
boolean syntax forms

x and y ≡ /(%if x) λ .y λ .false.
x or y ≡ /(%if x) λ .true λ .y .
not = λx. /(%if x) λ .false λ .true.

the anchor-pointing transform is capable of optimising the transi-
tions from encoded-as-value to encoded-as-pc.

For example, suppose we start out with a conditional expression
that uses a short-circuit conjunction:

if (0 <= i) and (i < n) then e1 else e2

First, we expand the “and” into its if/then/else form, and rewrite our
infix conditionals into canonical application syntax:

if (if (<= 0 i) then (< i n) else false)
then e1
else e2

(Note the tell-tale if-of-an-if that signals an opportunity to shift to
evaluation for control.) Next, we translate the if/then/else syntax
into its functional multi-return equivalent:

/(%if /(%if (<= 0 i))
λ .(< i n)
λ .false.

λ .e1
λ .e2.

andβ-reduce the eval-for-control versions of the<= and< functions:

/(%if /(%if /(%<= 0 i) λ .true λ .false.)
λ ./(%< i n) λ .true λ .false.
λ .false.)

λ .e1
λ .e2.

Now we have atriply-nested conditional expression. Apply the
anchor-pointing transform to the second%if and the%<= condi-
tionals. This, plus a bit of constant folding, leads to:

/(%if /(%<= 0 i) λ ./(%< i n) λ .true
λ .false.

λ .false.
λ .e1
λ .e2.

Now we apply anchor-pointing to the first%if and the%<= applica-
tion, leading to:

/(%<= 0 i) λ ./(%if /(%< i n) λ .true
λ .false.)

λ .e1
λ .e2.

λ ./(%if false)
λ .e1
λ .e2..

Applying anchor-pointing to the first arm of the%<= conditional,
and constant-folding to the second arm gives us:

/(%<= 0 i) λ ./(%< i n)
λ ./(%if true) λ .e1 λ .e2.
λ ./(%if false) λ .e1 λ .e2..

λ .e2.

Some simple constant folding reduces this to the final simplified
form that expresses exactly the control paths we wanted:

/(%<= 0 i) λ ./(%< i n) λ .e1 λ .e2.
λ .e2.

Note one of the nice effects of handling conditionals this way: we
no longer need a special syntactic form in our language to handle
conditionals; function calls suffice. The ability of multi-return func-
tion call to handle conditional control flow in a functional manner
suggests it would be a useful mechanism to have in a low-level in-
termediate representation. CPS representations can also manage
this feat, but at the cost of significantly more powerful machin-
ery: they expose continuations as denotable, expressible, first-class
values in the language. The multi-return extension is a more con-
trolled, limited linguistic mechanism.

7 Compilation issues
Compiling a programming language that has the multi-return fea-
ture is surprisingly trouble-free. Standard techniques work well
with only small modifications required to exploit some of the op-
portunities provided by the new mechanism.

7.1 Stack management

Calling subroutines involves managing the stack—allocating and
deallocating frames. Typically, modern compilers distinguish be-
tween tail calls and non-tail calls in their management of the stack
resource. The presence of multiple return points, however, intro-
duces some new and interesting possibilities: semi-tail calls and
even super tail calls.

In the multi-return setting, there are three main cases for passing
return points to a function call:

• All ret-pts passed to called function
E.g., /(f 5) #1 #3 #2 #1.
If a function call simply passes along all of its context’s return
points, in a tail-call setting, then this is simply a straight tail
call. The current stack frame can be immediately recycled
into f ’s frame, and thus there is no change in the number of
frames on the stack across the call.

• Ret-pts are strict subset of caller’s ret-pts
E.g., /(f 5) #6 #4.
However, we can have a tail call that drops some of the call-
ing context’s return points. In this case, the caller can drop
frames, collapsing the stack back to the highest of the sur-
viving frames. In this way, a call can be “super tail recursive,”
with the stack actually shrinking across a call. This aggressive
resource reclamation does require a small amount of run-time
computation: in order to “shrink-wrap” the stack prior to the
call, the caller must compute the minimum of the surviving re-
turn points, since there’s no guaranteed order on their position
in the stack.

• Some ret-pts areλ expressions
If any return point is aλ expression, then we must push stack
frames to hold the pending state needed when these return
points are resumed. However, we can still shrink-wrap the

stack prior to allocating these return frames, if some of the
calling context’s return points are also going dead at this call.
The ability to mix#i andλ return points in a given call means
we can have calls that are semi-tail calls—both pushing new
frames and reclaiming existing ones.

7.2 Procedure-call linkage

The MRLC makes it clear that multiple return points can be em-
ployed as a control construct at different levels of granularity, from
fine-grained conditional branching to coarse-grained procedure-call
transfers. This is analogous to the use ofλ-expressions in functional
languages, which can be used across a wide spectrum of control
granularity. Just as withλ-expressions, a good compiler should be
able to efficiently support uses of the multi-return construct across
this entire spectrum.

The most challenging case is the least static and largest-grain one:
passing multiple return points via a general-purpose procedure-call
linkage to a procedure. There are three cases determining the pro-
tocol used to pass return points to procedures:

• 1 ret-pt (1 register+sp)
In the normal, non-multi-return case, where we are only pass-
ing a single return point to a procedure, we need one register
(or stack slot) for the return pc. Since the pending frame to
which we will return is the one just below the called proce-
dure’s current frame, the stack pointer does double duty, in-
dicating both the location of the pending frame as well as the
allocation frontier for the current frame.

• > 1 ret-pt (2n registers+sp)
In general, however, we pass each return point as a frame-
pointer/return-pc pair of values, either in registers or stack
slots, just as with parameters (which should come as no sur-
prise to those accustomed to continuation-based compilers,
since function-call continuations are just particular kinds of
parameters).

However, if a procedure has more than one return point, we
cannot always statically determine which one will be the
topmost pending frame on the stack when the function is
executed—in fact, this could vary from call to call. So we
must separate the rôle of the stack pointer from that of the
registers that hold the frame pointers of the return points. The
stack pointer is used forallocation—it indicates the frontier
between allocated storage and unused, available memory. The
return frame pointers are fordeallocation—they indicate back
to where the stack will be popped on a return.

Registers used by the function-call protocol for return points
can be drawn from the same pool used for parameters, over-
flowing into stack slots for calls with many return points or
parameters. Thus a call that took many return points might
still be accomplished in the register set, if the call did not take
many parameters, andvice versa. We might wish to give pa-
rameters priority over ret-pts when allocating registers in the
call protocol on the grounds that (1) only one of the ret-pt val-
ues will be used and (2) invoking a ret-pt is the last thing the
procedure will do, so the ret-pt will most likely be referenced
later than the parameters. (Neither of these observations is al-
ways true; they are merely simple and reasonable heuristics.
For example, a procedure may access multiple ret-pts in order
to pass them to a fully or partially tail-recursive call. If the
call is only partially tail-recursive, then the procedure may
subsequently resume after the call, accessing other parame-

ters. These issues can be addressed by more globally-aware
parameter- and register-management techniques.)

• 0 ret-pt (0 registers+sp)
This singular case has a particularly efficient implementation:
not only can we avoid passing any ret-pc values, we can also
reclaim the entire stack, by resetting sp to point to the original
stack base!

Besides being an interesting curiosity, we can actually use this
property, in situations involving the spawning of threads, to
indicate to the compiler the independence of a spawned thread
from the spawning thread’s stack. We have wished for this
feature on multiple occasions when writing systems programs
in functional languages.

Note that ret-pt registers, being no different from parameter reg-
isters, are available for general-purpose use inside the procedure
body. Code that doesn’t use multiple return points can use the reg-
isters for other needs. Multi-return function call is a pay-as-you-go
feature.

7.3 Static analyses

There are some interesting static-analysis possibilities that could
reveal useful information about resource use in this function-call
protocol. For example, it might be possible to do a sort of live/dead
analysis of return points to increase the aggressiveness of the pre-
call “shrink wrapping” of stack frames. An analysis that could order
return points by their stack location could eliminate the min compu-
tation used to shrink-wrap the stack over multiple live return points.
We have not, however, done any significant work in this direction.

7.4 Callee-saves register management

One of the difficulties with the efficient compilation of exceptions is
the manner in which they conflict with callee-saves register use. If
a procedureP stores a callee-saves register away in the stack frame,
an exception raised during execution of a dynamically-nested pro-
cedure call cannot throw directly to a handler aboveP’s frame—the
saved register value would be lost. Either the callee-saves regis-
ters must be dumped out to the stack for retrieval after the handler-
protected code finishes, or the control transfer to the exception’s
handler must instead “unwind” its way up from the invoking stack
frame, restoring saved-away callee-saves registers on the way out.
The first technique raises the cost of establishing a handler scope,
while the second raises the cost of invoking an exception.

In contrast, it’s fairly simple to manage callee-saves registers in the
multi-return setting. As with any function-call protocol (even the
traditional single-return one) supporting constant-stack tail-calls,
any tail call must restore the callee-saves registers to their entry
values before transferring control to the called procedure (so tail-
calls have some of the requirements of calls, and some of the re-
quirements of returns). Multi-return procedure calls allow for a
new possibility beyond “tail call” and “non-tail call:” the “semi-tail
call,” which pushes framesandpasses along existing return points,
e.g.,

/(f 5) (λx.e) #1..

We must treat this case with the tail-call restriction by restoring
all callee-saves registers to their entry values prior to transferring
control to f in order to keep from “stranding” callee-saves values
in a skipped frame shouldf return through its second return point.

So, in short, the simple tail-call rule for managing callee-saves reg-
isters applies with no trouble in the multi-return case. Note, how-
ever, that this rule does have a cost in our new, semi-tail call setting:
the presence of the “#1” in the example above means we can’t use
callee-saves registers to pass values between the(f 5) call point and
theλx.e return point.

8 Actual use
The multiple-return mechanism is useful for many more programs
than the single filter function we described in section 2. Other ex-
amples would be:

• compiler tree traversals that might or might not alter the code
tree;

• algorithms that insert and delete elements in an ordered-tree
set;

• search algorithms usually expressed with explicit success
and failure continuations—these can be expressed more suc-
cinctly, and run on the stack, without needing to heap-allocate
continuations.

Scheme programmers frequently write functions that take multiple
continuations as explicit functional parameters, accepting the awk-
ward notational burden and run-time overhead of heap-allocated
continuations (which are almost always used in a stack-like man-
ner). This longstanding practice also gives some indication of the
utility of multiple return points.

We’ve found that once we’d added the mechanism to our mental
“algorithm-design toolkit,” opportunities to use it tend to pop up
with surprising frequency. As an example, we are currently in the
midst of implementing a standard Scheme library for sorting [16].
This library contains a function for deleting adjacent identical ele-
ments in a linked list—which exactly fits the pattern we exploited
in the “parsimonious filter” example. Since Scheme does not have
multi-return function calls, our implementation of this function is
more complex and less efficient than it needs to be.

Shao, Reppy and Appel have shown [15] how to use multiple con-
tinuations to unroll recursions and loops in a manner that allows
functions to pack lists into larger allocation blocks4. The cost of
explicit continuations rendered this impractical when conditional
control information must be distributed past multiple continua-
tions; the more restricted tool of the MRLC’s multiple-return points
would make this feasible.

When casting about for a larger example to try out in practice,
however, one particular use took us by storm: LR parser genera-
tors [3]. A parser generator essentially is a compiler that translates
a context-free grammar to a program for a particular kind of ma-
chine, a push-down automaton (PDA), just as a regular-expression
matcher compiles regular expressions into a program for a finite-
state automaton. For our purposes, we can describe a PDA as a
machine that has three instructions: shift, goto, and reduce. Now,
once we have our PDA program, we have two options for executing
it. One path is to implement a PDA in the target language (say, for
example, C), encode the PDA program as a data structure, and then
run the PDA machine on the program. That is, we execute the PDA
program with an interpreter.

4It’s a curious but ultimately coincidental fact that their paper
uses the same filter-function example shown in section 2—for a
completely different purpose.

The other route, of course, is to compile: translate the PDA program
down to the target language. The attraction of compiling to the
target language is the transitivity of compilation—we usually have
a compiler on hand that will then map the target language all the
way down to machine language, and so we could run our parser at
native-code speeds.

Translating PDA programs to standard programming languages,
however, has problems. Let’s take each of the three PDA instruc-
tions in turn. The “shifts” instruction means “save the current
state on the stack, then transfer to states.” This one is easy to
represent, encoding state in the pc: if we represent each parser
state with a different procedure, then “shift” is just function call.
The “gotos” instruction, similarly, is just a tail-recursive function
call. How about reduce? The “reducen” instruction means “popn
states off the stack, and transfer control to thenth (last) state thus
popped.” Here is where we run into trouble. Standard programming
languages don’t provide mechanisms for cheaply returning several
frames back in the call stack. Worse, the value ofn used when re-
ducing from a given state can vary, depending upon the value of the
next token in the stream. So a particular state might wish to return
three frames back if the next token is a right parenthesis, but five
frames back if it is a semicolon.

While this is hard to do in Java or SML or other typical program-
ming languages, it can be done in assembler [13]. The problem with
a parser generator that produces assembler is that it isn’t portable,
and, worse, has integration problems—the semantic actions embed-
ded inside the grammar are usually written in a high-level language.
For these reasons, standard parsers such as Yacc or Bison [8] usu-
ally go the interpreter route: the grammar is converted to a C table
which is interpreted by a PDA written in C.

Multi-return calls solve this problem nicely—they give us exactly
the extra expressiveness we need to return to multiple places back
on the stack. When our compiled PDA program does a shift by
calling a procedure, it passes the return points that any reduction
from that state forward might need.

To gain experience with multi-return procedure calls, we started
with a student compiler for Appel’s Tiger language [1], which one
of us (Shivers) uses to teach the undergraduate compiler course at
Georgia Tech. Tiger is a fairly clean Pascal-class language. The stu-
dent compilers are written in SML, produce MIPS assembly, and
feature a coalescing, graph-coloring register allocator. One grad-
uate of the undergraduate compiler course took his compiler and
modified it to add a multi-return capability to the language. This al-
lowed us to completely try out the notion of adding multiple-return
points to a language, from issues of concrete syntax, through static
analysis, translation and execution, giving us a tool for experiments.
Designing the syntactic extensions was a trivial exercise, requiring
only the addition of the multi-ret form itself and modification of
the declaration form for procedures. We designed the syntax exten-
sions with our “pay-as-you-go” criteria in mind—code that doesn’t
use multiple return points looks just like standard Tiger code.

A second undergraduate modified a LALR parser-generator tool
written in Scheme by Dominique Boucher, adding two Tiger back-
ends, one compiling the recogniser to multi-return Tiger code, and
the other producing a standard “table&PDA” implementation. The
only non-obvious part of this task is the analysis to determine which
return points must be passed to a given state procedure. This is
a simple fixed-point computation over the PDA’s state machine.
(Specifically, a state procedure must be passed return points for any
reduction it might perform, plus return points to satisfy the needs
of any state to which it might, in turn, shift.)

Input
input size
(symbols)

non-MR
parser MR parser

MR parser
with inlining

loop 18 78,151 9,336 8,915
matmul 121 114,987 36,025 33,386
8queens 235 164,693 70,797 65,505
merge 409 219,649 99,743 89,486
large 1,868 802,008 366,498 324,459

Table 1. Performance measurement for standard/table-driven
and multi-return-based LALR parsers generated from the
Tiger grammar. Timings are instruction counts, measured on
the SPIM Sparc simulator. Input samples are (1) a simple loop,
(2) matrix multiply, (3) eight-queens, (4) mergesort, (5) samples
2–4 replicated multiple times.

We then built two parsers to recognise the Tiger grammar (a rea-
sonably complex grammar which we happened to have convenient
to hand). The parser keeps pending state information, which drives
execution control decisions on the procedure call stack, and uses
a separate, auxiliary stack to store the values produced and con-
sumed by the semantic actions. We were pleased to discover that
the return-point requirements for our sample grammars were very
limited. Of the 137 states needed to parse the Tiger grammar, 106
needed only one return point; none needed more than two. Reduc-
tions in real grammars, it seems, are sparse.

The compiled parser, of course, ran significantly faster than the in-
terpreted one. The compiled PDA parsed our sample input 2.5–3.5
times faster than the interpreted PDA (see table 1). One source of
speedup was the fact that when a state is only shifted into from one
other state, the Tiger compiler saw it as a procedure only called
from one site, and would inline the procedure. This happens quite
frequently in real grammars—78% of the Tiger-grammar states can
be inlined. Representing the parser directly in a high-level language
allowed it to be handled by general-purpose optimisations.

These simple experiments provide only the most basic level of eval-
uation, in the sense that a real, end-to-end implementation has been
successfully constructed with no serious obstacles cropping up un-
foreseen, and that it performs roughly as expected.

There is still much we could have done that we have not yet done.
We did not, for example, arrange for our parsers to execute semantic
actions while parsing—they are simply recognisers. This shows off
the efficiency of the actual parsing machinery to best advantage.
Our basic intent was simply to exercise the multi-ret mechanism,
which function our parsers performed admirably.

9 Variations
We’ve covered a fair amount of ground in our rapid tour of the
multi-return mechanism, providing views of the feature from mul-
tiple perspectives. But we’ve left many possibilities unexplored.
We’ve pointed out some of these along the way, such as normal-
order semantics or static analyses.

9.1 Return-point syntax

One variation we have not discussed is the syntactic restriction of
return points toλ expressions. This is not a fundamental require-
ment. The entire course of work we’ve laid out goes through just
as easily if we allow return points to be any expression at all (i.e.,
r ∈ RP ::= e | #i) and change the semantics schema for returning
values in an equally trivial manner:

/v e r2 . . . rm. ; e v.

However, it doesn’t seem to add much to the expressiveness of the
language to allow return points to be true computations themselves
(that is, function applications). One can alwaysη-expand a return
point of the forme1 e2 to λx.(e1 e2) x. But allowing general expres-
sions for return points does introduce issues of strictness and non-
termination into the semantics of return that were not there before,
and this, in turn, restricts some of the possible transformations.

A third possibility borrows from SML’s “value restriction:” restrict
return points to be eitherλ expressions or variable references [11].
Variable references are useful ret-pts for real programming, as they
give the ability to name and then use “join points” in multiple lo-
cations. This seems somewhat more succinct than the awkward
alternate of binding the join point to a name, and then referring to
it with η-expanded return points in the desired locations.

Restricting return-point expressions toλ expressions and variable
references eliminates code blowup in transformations, since large
ret-pt expressions can be let-bound and replaced by a name before
replication. It eliminates issues of control effect, since both forms
of expression can be guaranteed to evaluate in a small, finite amount
of time. For a real programming language, we prefer this syntax
best.

9.2 By-name binding

In our design, theith ret-pt of a form is established by making it
the ith subformr i of the multi-ret expression/e r1 . . . rm.. This is
somewhat analogous to passing arguments to procedures by posi-
tion, (instead of by name, as is allowed in Modula-3 or Common
Lisp), e.g., when we call a print function, we must know that the
first argument is the output channel, and the following argument is
the string to be printed.

As a design exercise, one might consider a multi-return form based
on some sort of by-name binding mechanism for return points,
rather than the MRLC’s positional design, with its associated nu-
meric “#i” references. This turns out to be trickier and more awk-
ward than one might initially suppose. By-name binding introduces
the issue of requiring a new and distinct name space for return
points. More troubling is the issue of scope and name capture—
such a design would have to require that return-point bindings be
dynamically, rather than lexically, scoped, to prevent lexical cap-
ture of a return point by a procedure passed upward. This would
be counter-intuitive to programmers used to lexically-scoped name
binding. Nor would it buy much, we feel. Control is typically a
sparer space than data. It may be useful to bind a few return points
at a call-point, but one does not typically need simultaneously to
bind thousands, or even dozens.

There is no shame in positional binding: besides its simplicity, it
has been serving the needs of programmers as a parameter-passing
mechanism in the lion’s share of the world’s programming lan-
guages since the inception of the field.

10 Comparisons
There are several linguistic mechanisms that are similar in nature
to multi-return function call. Four are exceptions, explicit continu-
ations, sum types and the weak continuations of C--.

10.1 Exceptions

Exceptions are an alternate way to implement multiple returns. We
can, for example, write thefilter example using them. This is

clear, since exceptions are just a second continuation to the main
continuation used to evaluate an expression.

However, exceptions are, in fact, semantically different from mul-
tiple return points. They are a more heavyweight, powerful mecha-
nism, which consequently increases their implementation overhead
and makes them harder to analyze. This is because exceptions are
used to implementnon-localcontrol transfers, something that can-
not be done with multi-ret function calls. For example, consider the
expression

sin(1/f(x))

If f raises an exception, the program can abort the entire, pending
reciprocal-and-then-sine computation by transferring control to a
handler further back in the control chain.

Multi-ret function calls, in contrast, do not have this kind of global,
dynamic scope. They do not permit non-local control flow—if a
function is called, it returns. This makes them easier to analyze and
permits the kind of transformations that encourage us to use them
to represent fine-grained control transfers such as local conditional
branches—in short, they make for a better wide-spectrum, general-
purpose control representation, as opposed to a control mechanism
tuned for exceptional transfers.

The difference between exceptions and multi-ret function calls
shows up in the formal semantics, in the transition rule for appli-
cations. In a form(f a), the evaluations off , a, and the actual
function call all share the same exception context. In the MRLC,
however, they each have different ret-pt contexts. This is the key
distinction.

(Note that we can, by dint of a global program transformation, im-
plement exceptions using multi-ret constructs. . . just as we can im-
plement exceptions using only regular function calls, by turning the
entire program inside-out with a global CPS transform. This fact
of formal interconvertibility amounts to more of a compilation step
than a particularly illuminating observation about practical compar-
ison at the source-code level.)

10.2 CPS and explicit continuations

We can also implement examples such as our parsimoniousfilter
function by using explicit continuations. This, however, is apply-
ing far too powerful a mechanism to the problem. Explicit con-
tinuations typically require heap allocation, which destroys the ef-
ficiency of the technique. With multi-return function calls, there
is never any issue with the compiler’s ability to stack-allocate call
frames. No analysis required; success is guaranteed. The multi-ret
mechanism is carefully designed to provide much of the benefit of
explicit continuations while still keeping continuations implicit and
out of sight. Once continuations become denotable, expressible el-
ements of our language, the genie is out of the bottle, and even
powerful analyses will have a difficult time reining it back in.

Note, also, that the MRLC still allows function calls to be syntac-
tically composable,i.e., we can nest function calls:f (g(x)). This
is the essence of direct style; the essence of CPS is turning this off,
since function calls never return. As a result, CPS is much, much
harder for humans to read. While we remain very enthusiastic about
the use of CPS as a low-level internal representation for programs,
it is a terrible notation for humans.

In short, explicit continuations are ugly, heavyweight and powerful,
while multi-return function call is clearer, simpler, lighter weight,
and less powerful.

10.3 Sum types

Providing multiple return points to a function call is essentially pro-
viding a vector of continuations to a function instead of just one. As
Filinski has pointed out [5], a product type in continuation space is
equivalent to a sum type in value space. For example, we can regard
the%if function as being the converter between these two forms for
the boolean sum type.

So any function we can write with multiple continuations we could
also write by having the function return a value taken from a sum
type. For example, ourfilter function’s recursion could return a
value from this SML datatype:

datatype Identical | Sublist of α list

But this misses the point—without the tail-recursive property of the
#i syntax, and the ability to distribute the post-call conditionally-
dependent processing across a branch that happens inside the re-
cursion, we miss the optimisation that motivated us to write the
function in the first place.

Perhaps we should write programs using sum-type values and hope
for a static analysis to transform the code to use an equivalent prod-
uct of continuations. Perhaps this might be made to work in local,
simple cases—much is possible if we invoke the mythical “suffi-
ciently optimising compiler.” But even if we had such a compiler,
it would still be blocked by control transfers that occur across com-
pilation/analysis units of code.

The important point is that the power of a notation lies in its abil-
ity to allow decisions to be expressed.5 This is the point of the
word “intensional” in the “intensional typing” movement that swept
the programming-language community in the 1990’s [12]. Having
multi-return function calls allows us to choose between value en-
codings and pc encodings, as desired. It is a specific instantiation
of a very general and powerful programming trick: anytime we can
find a means of encoding information in the pc, we have new ways
to improve the speed of our programs. Run-time code generation,
first-class functions, and first-class continuations can all be simi-
larly viewed as means of encoding information in the pc.

Filinski’s continuation/value duality underlies our mechanism; but
the mechanism is nonetheless what provides the distinction to the
programmer—a desireable and expressive distinction.

10.4 C-- weak continuations

Peyton Jones, Ramsey and others have developed a language, C--,
intended to act as a portable, high-level back-end notation for com-
pilers [14]. C-- has a control construct called “weak continuations”
which has similarities to the multi-return mechanism we’ve pre-
sented. Weak continuations allow the programmer to name multi-
ple return points within a procedure body, and then pass these as
parameters to a procedure call. However, there are several distinc-
tions between C--’s weak continuations and the MRLC’s multi-ret
mechanism.

Weak continuations are denotable, expressible values in the lan-
guage. They can be named, and produced as the value of expres-
sions. This makes them a dangerous construct—it is quite possible

5It is also true that the power of a notation lies in its ability to
allow decisions to be glossed over or left locally undetermined.

to write a C-- program that invokes a control-transfer to a procedure
whose activation frame has already been popped from the stack.
(C-- also has a labelled stack-unwinding mechanism, but this does
not seem to permit the tail-recursive passing of unwind points, so it
is not eligible as a general-purpose MRLC mechanism.)

There is also a difference of granularity. Languages and compil-
ers based onλ-calculus representations tend to assume thatλ ex-
pressions and function-call are very lightweight, fine-grain mech-
anisms. Someλ expressions written by the programmer turn into
heap-allocated closures, but others turn into jumps, while still oth-
ers simply become register-allocation decisions, and others van-
ish entirely. Programmers rely on the fact thatλ expressions are
a general-purpose mechanism that is mapped down to machine
code in a variety of ways, some of which express very fine-grain,
lightweight control and environment structure.

The MRLC is consistent with this design philosophy. While we
have discussed at some length the implementation of multi-return
function calls with multiple stack pointers, it should be clear from
the extended “anchor-pointing” example of section 6 that multi-
return calls fits into this picture of function call as a general-purpose
control construct. The translation of a multi-ret procedure call into
a machine call instruction, passing multiple stack pointers, lies at
the large-granularity, heavyweight end of the implementation spec-
trum, analogous to the implementation of aλ expression as a heap-
allocated closure.

We are advocating more than thepragmaticgoal of allowing pro-
cedure calls to return to higher frames on the stack. We are advo-
cating extending the general-purpose programming construct ofλ
expressions to include multiway branching—asemanticextension.
This is an intermediate point between regularλ-calculus forms and
full-blown CPS—a design point that we feel strikes a nice balance
between the multiple goals of power, expressiveness, analysability
and readability.

This distinction between C--’s weak continuations and the MRLC’s
multi-ret construct is not accidental. Both languages were carefully
designed to a purpose. C-- is not intended for human program-
ming; it is intended for programs produced by compilers. Thus
C-- provides a menu of control constructs that can be chosen once
the compiler has analysed its source program and committed to a
particular choice for every control transfer in the original program.
Thus, also, C-- is able to export dangerous, unchecked constructs,
by pushing the requirements for safety back to the higher-level lan-
guage that was the original program. The attraction of the MRLC’s
general mechanism is the attraction ofλ—a general-purpose con-
struct that allows for a particular, local use to be implemented in a
variety of ways, depending on surrounding context and other global
considerations.

C-- would make a great target for the MRLC, but the compiler tar-
geting C-- would translate uses of the MRLC multi-return mech-
anism to a wide array of C-- constructs: if/then/else statements,
loops, gotos, simple function calls. . . and weak continuations.

10.5 FORTRAN

Computational archaeologists may find it of interest that the idea
of passing multiple return points to a function goes back at least
as far asFORTRAN 77 [7], which allows subroutines (but not
“functions”—the distinction being that functions return values,
while subroutines are called only for effect) to be passed alter-
nate return points. Note, however, that these subroutines are not

reentrant, the return points cannot be passed to subsequent calls in
a tail-recursive manner, andFORTRAN’s procedure abstractions—
subroutine and function, both—are not general, first-class, express-
ible values.

11 Conclusion
The multiple-return function call has several attractions:

• It has wide-spectrum applicability, from fine-grain conditional
control flow, to large-scale interprocedural transfers. This
spectrum is supported by the simplicity of the model, which
enables optimising transformations to manipulate the control
and value flow of the computation.

• It is not restricted to a small niche of languages. It is as well
suited to Pascal or Java as it is to SML or Scheme.

• It is expressive, allowing the programmer to clearly and effi-
ciently shift between control and value encodings of a com-
putation. It enables the expression of algorithms that are dif-
ficult to otherwise write with equal efficiency. As we’ve men-
tioned previously, thefilter function is not the only such
example—functional tree traversals, backtracking search, per-
sistent data structure algorithms, and LR parsers are all algo-
rithms that can be expressed succinctly and efficiently with
multiple return points. Multiple return points bring most uses
of the general technique of explicit continuation passing into
the realm of the efficient.

• The expressiveness comes with no real implementation cost.
The compilation story for multi-ret function calls has no ex-
otic elements or heavy costs; standard technology works well.
Procedure call frames can still be allocated on a stack; stan-
dard register-allocation techniques work.

• It is a pay-as-you-go feature in terms of implementation. If
a language provides multi-ret function calls, the feature only
consumes run-time resources when it is used—essentially, a
pair of registers are required across procedure transfers for
each extra return point used in the linkage.

• It is a pay-as-you-go feature in terms of syntax. Programmers
can still write nested function calls, and the notation only af-
fects the syntax at the points where the feature is used.

We feel it is a useful linguistic construct both for source-level,
human-written programming languages, and compiler internal rep-
resentations. In short, it is an expressive new feature. . . but surpris-
ingly affordable.

12 Acknowledgements
The Tiger compiler and parser tool we described in section 8 was
implemented, in part, by Eric Mickley and Shyamsundar Jayara-
man, using code written by David Zurow, Lex Spoon and Do-
minique Boucher. Matthias Felleisen provided useful discussions
on the semantics and type issues of the MRLC, as well as its impact
on A-normal form. Peter Lee alerted us to the impact of exceptions
on callee-saves register allocation. Chris Okasaki and Ralf Hinze
pointed out entire classes of algorithms where efficient multi-return
function call could be exploited. Zhong Shao and Simon Peyton
Jones provided helpful discussions of weak continuations. Several
anonymous reviewers provided thoughtful and detailed comments
that improved the final version of this paper.

13 References
[1] Andrew W. Appel.Modern Compiler Implementation in ML.

Cambridge University Press, 1999.

[2] Henk Barendregt.The Lambda Calculus.North Holland, re-
vised edition, 1984.

[3] F. DeRemer and T. Pennello. Efficient Computation of
LALR(1) Look-Ahead Set. TOPLAS, vol. 4,no. 4, October
1982.

[4] C. Fisher and R. LeBlanc.Crafting a Compiler. Benjamin
Cummings, 1988.

[5] Andrzej Filinksi. Declarative Continuations and Categorical
Duality. Master’s thesis, Computer Science Department, Uni-
versity of Copenhagen (August 1989). DIKU Report 89/11.

[6] C. Flanagan, A. Sabry, B. Duba and M. Felleisen. The essence
of compiling with continuations. Proceedings of the SIG-
PLAN 1993 Conference on Programming Language Design
and Implementation, 1993, 237–247.

[7] American National Standard Programming Language FOR-
TRAN. X3.9-1978, American National Standards Institute,
Inc., April, 1978. Available athttp://www.fortran.com/
F77_std/rjcnf.html

[8] S. C. Johnson. Yacc—yet another compiler compiler. Tech
report CSTR-32, AT&T Bell Laboratories, Murray Hill, NJ.

[9] David Kranz, et al. ORBIT: An optimizing compiler for
Scheme. InProceedings of the SIGPLAN ’86 Symposium on
Compiler Construction,published asSIGPLAN Notices21(7),
pages 219–233. Association for Computing Machinery, July
1986.

[10] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375, Au-
gust 1978.

[11] R. Milner, M. Tofte, R. Harper, D. MacQueen.The Definition
of Standard ML (Revised)MIT Press, 1997.

[12] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML.
1996 SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 181–192, Philadelphia, May
1996.

[13] Thomas J. Pennello. Very fast LR parsing. InProceedings
of the SIGPLAN ’86 Symposium on Compiler Construction,
pages 145–151, 1986.

[14] Norman Ramsey and Simon Peyton Jones. A single inter-
mediate language that supports multiple implementations of
exceptions.Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementation,
in SIGPLAN Notices, 35(5):285–298, June 2000.

[15] Zhong Shao, John H. Reppy, and Andrew W. Appel. Un-
rolling Lists. In Proceedings of the 1994 ACM Confer-
ence on Lisp and Functional Programming, Orlando, Florida,
pages 185–195, June 1994.

[16] Olin Shivers. SRFI-32: Sort libraries. Scheme Request
for Implementation 32, available at URLhttp://srfi.
schemers.org/. Forthcoming.

[17] Guy L. Steele Jr.RABBIT: A Compiler for SCHEME.Tech-
nical Report 474, MIT AI Lab, May 1978.

[18] Mitchell Wand. Complete type inference for simple objects,
In Proceedings of the Second Symposium on Logic in Com-
puter Science,Ithaca, New York, pages 37–44, June 1987.

