
Atomic Heap Transactions
and Fine-grain Interrupts

Olin Shivers James W. Clark Roland McGrath
{shivers,sbj,roland}@ai.mit.edu
MIT Artificial Intelligence Laboratory

Abstract

Languages such as Java, ML, Scheme, and Haskell provide
automatic storage management, that is, garbage collection.
The two fundamental operations performed on a garbage-
collected heap are “allocate” and “collect.” Because the
heap is in an inconsistent state during these operations,
they must be performed atomically. Otherwise, a heap client
might access the heap during a time when its fundamental
invariants do not hold, corrupting the heap.

Standard techniques for providing this atomicity guaran-
tee have large latencies and other performance problems that
impede their application in high-performance, interrupt-
laden, thread-based systems applications. In particular, the
standard techniques prevent thread schedulers from switch-
ing threads on VM page faults.

We cast the space of possible implementations into a gen-
eral taxonomy, and describe a new technique that provides a
simple, low-overhead, low-latency interlock. We have imple-
mented this technique in a version of SML/NJ, and, because
of its applicability to thread-based systems, are currently
implementing it in the scheduler of our raw-hardware SML-
based kernel, ML/OS. Our technique can be extended to
provide other atomic sequences besides storage allocation.

1 Introduction

Storage allocation and garbage collection can be difficult
in the presence of interrupts and multi-threaded run-time
environments. In this paper, we will discuss how this is
done, and present a general way of looking at the require-
ments of automatic storage management and program con-
currency. We’ll illustrate with examples from existing lan-
guage implementations. While our examples will be drawn
primarily from Scheme and ML systems, the lessons are
broadly applicable. Fast, low-overhead multi-threaded heap
allocation is a fundamental technology for advanced pro-
gramming languages—these results are just as relevant to
Java, Modula-3, Dylan, Smalltalk, et al. as they are to ML,
Haskell and Scheme. We’ll examine ways that the operat-
ing system and the compiler can collude to make atomic
heap allocation and interrupt handling cheap. Finally, we’ll

To appear in the ACM 1999 International Conference
on Functional Programming (ICFP), September, 1999,
Paris, France.

show a new technique for cheap heap interlock and discuss
its implementation.

Program threads must allocate storage atomically. This
is because the allocation heap is a shared resource, and dur-
ing allocation the heap is in an inconsistent state. If we were
to interrupt or suspend a thread in the middle of an alloca-
tion, then other allocating threads or the garbage collector
could mangle the consistency of the heap.

For example, suppose we have a run-time heap that
is managed by a simple stop-and-copy garbage collector
[Wilson]. The run-time system maintains a frontier pointer
into the heap giving the boundary between allocated and
unused storage in the heap. Storage is allocated simply
by incrementing this pointer and initialising the allocated
block. With this arrangement, a thread does an allocation,
or “cons” operation, with the following simple pseudocode:

1 If heap exhausted, trap to GC
2 r1 := heap pointer
3 increment heap pointer by 2 words
4 store CAR field into r1(0)
5 store CDR field into r1(4)
/* Now r1 contains the allocated and

initialised cons cell. */

• If the thread is suspended after instruction 1, some
other thread will be able to allocate data, possibly ex-
hausting the heap. So when resuming at instruction
2, this thread might actually allocate off the end of
the heap, overwriting other data or causing an address
violation.

• If the thread is suspended after instruction 2, some
other thread may allocate from the heap. When our
thread resumes, r1 will point to already-allocated data,
which will then be overwritten by the cons operation.

• If the thread is suspended after instruction 3, some
other thread may exhaust the heap and trigger a
garbage collection. But the cons cell in r1 hasn’t been
initialised yet—the car and cdr fields contain random
bits. The garbage collector will trace these pointers,
possibly relocating and altering whatever storage to
which they might be pointing.

In short, the heap is a shared resource that needs to be
locked during consing. While our thread is performing the
cons operation, no other heap clients—either other allocator
threads, or the GC thread—can be allowed to operate on the
heap. Heap transactions must be atomic.



Techniques for locking the heap all reflect the same basic
fact of life: heap allocation is ubiquitous. If a thread is sus-
pended while holding the heap lock, every other thread in
the program will block at the very next allocation. This usu-
ally doesn’t take long. For example, the SML/NJ [SML/NJ]
implementation of Standard ML allocates procedure frames
and boxes floating-point numbers in the heap. SML/NJ
programs allocate a word of storage about every four in-
structions. So it’s not very likely that any thread in the
system is going to be able to complete more than a handful
of instructions before blocking on the heap. SML/NJ is an
extreme example, but the fact remains that programs writ-
ten in most advanced languages cons very frequently, and
it is thus unacceptable to allow a heap lock to become a
system bottleneck.

The ubiquity of storage allocation has some implications:

• Acquiring and releasing the heap must be very cheap.
A two-word cons operation can be implemented in four
instructions, so a locking protocol that requires four
instructions doubles the cost of consing. Heap alloca-
tion should be roughly competitive with stack alloca-
tion in implementations that do not use a stack. Sys-
tem calls are typically at least two orders of magnitude
more expensive than this, so bracketing the allocation
code with system calls to lock and unlock the heap will
swamp the cost of the actual allocation with the cost
of the locking.

• Because access to the heap is all but required for
threads to proceed, threads cannot be suspended while
holding the heap lock. There are several ways to ar-
range for this, which we can call “abort,” “commit,”
and “side-step:”1

– Abort: If the thread is suspended while holding
the lock, the heap transaction can be aborted.
The lock is released, and when the thread re-
sumes, it must retry the allocation.

– Commit: If the thread is suspended while hold-
ing the lock, the heap transaction can be run to
completion before actually suspending the thread,
thus releasing the lock.

– Side-step: The heap can be restructured for par-
allel access, eliminating the bottleneck. As we’ll
see, however, this can only partially be done.

This taxonomy essentially covers all implementations of pro-
gramming languages that provide garbage collection and al-
low interrupt handlers or other forms of program concur-
rency. Let’s consider each of these approaches and their
tradeoffs.

2 Aborting the transaction

An early implementation of SML/NJ used the following
clever technique [LockFree]. Let us suppose we keep the
current heap-allocation pointer in a register, fp. The heap
is bounded above by a trap-on-write guard page, so no test
is required for heap exhaustion; assume that cons-cell point-
ers are tagged by setting the two low bits to 11. Allocating
a two-element record on a byte-addressable machine looks
like this:

1Or, backwards, forwards, and sideways.

Register r1: result cons
assignments r2: car

r3: cdr
fp: heap frontier pointer

fp[4] := r3 ; store cdr (& trap if GC)
fp[0] := r2 ; store car
r1 := fp+3 ; ans is fp + type tag
fp := fp+8 ; bump frontier pointer

Now, this instruction sequence has an interesting prop-
erty: it can be aborted any time before the final fp incre-
ment by simply starting the whole operation over again.
That is, there is no need to “undo” or “roll back” any
computations—we can abort the transaction at any point
by simply walking away from it. This keeps the allocation
sequence lean; there is no need to keep a log or other side-
information to assist the roll-back operation. A key feature
of this sequence is that the final operation is the one that
commits the transaction to external visibility—the frontier
pointer in the fp register is the state that is shared be-
tween different allocation operations in different threads. It
is atomically updated by the last instruction in the sequence.

Aborting the transaction requires only that we reset the
thread’s resumption PC to the beginning of the allocation
sequence. When a thread is interrupted, the interrupt han-
dler examines the interrupted code. If the instruction se-
quence is a storage-allocation sequence, the handler scans
backwards looking for the start of the cons operation, and
the resumption PC for the suspended thread is reset to this
point, thus releasing the implicit lock. Notice that cons
operations have a very stylised form—they are the only op-
erations that do a store to an offset from the fp register, for
example. This makes it feasible for the interrupt handler to
examine the code stream to check for an allocation sequence.

This “locking” protocol is absolutely minimal in some
sense: it doesn’t require any instructions at all on the part
of the thread! An n-word block of memory can be allocated
and initialised in n + 2 instructions, which is competitive
with stack allocation. It’s a clever instance of having the
compiler and the operating system work together to achieve
very low-overhead storage allocation.2 However this scheme
has some severe problems:

• Interrupt overhead is increased a lot. Examining the in-
terrupted instruction stream, parsing the instructions,
and scanning backwards is a lot of processing. It also
requires going to memory—and almost certainly miss-
ing cache on a Harvard architecture, since the instruc-
tions are not likely to be in the D-cache.

Operating-systems research has shown the utility of
lightweight, fine-grained interrupts occurring at sub-
millisecond intervals [Qua]. The overhead of the abort
technique makes interrupts very heavyweight. It is im-
possible to have schedulers that rely upon information
gathered by low-overhead, fine-grained interrupts, or
to have threads that service high-bandwidth real-time
I/O sources, such as CD-rate audio streams, video, or
other time-domain media. But these are precisely the
kind of applications for which we’d like to provide ro-
bust implementations based on advanced languages.

2Compare this four-instruction cons to the cost of malloc’ing and
initialising a two-word record in C. The C allocation will probably
cost two or three orders of magnitude more than the ML one.

2



Note that interrupt overhead is what’s increased, not
interrupt latency. The thread doesn’t have to be
checked and possibly reset until it is about to be re-
scheduled—the interrupt handler is free to run imme-
diately.

• It’s tricky, very machine and operating-system depen-
dent, and difficult to port. This, in fact, is what led
to later SML/NJ implementations abandoning this ap-
proach in favor of simpler, less aggressive techniques.

3 Commit

An alternative to aborting an interrupted atomic transac-
tion is to proceed and commit the transaction—run it to
completion—before taking the interrupt. This is a very pop-
ular implementation technique, due to its simplicity. Among
others, the T 3.0 implementation of Scheme [T, Orbit] uses
a commit strategy, and it has also been adopted by later
releases of SML/NJ, as well as the Berkeley Spur parallel
microprocessor. The T and SML/NJ variants of this tech-
nique have interesting differences.

In T, consing is performed by calling a bit of hand-
written assembler “millicode” using a custom subroutine
linkage known to the compiler. The cons routine sets a lock
bit in memory, and performs the cons. The operating sys-
tem’s asynchronous signals are all mapped to the same han-
dler, which is another bit of hand-written assembler in the T
run-time kernel. When an interrupt (a Unix signal) arrives,
the handler code checks the lock bit. If the lock bit is clear, it
is safe to interrupt, and the handler vectors out to the actual
Scheme procedure registered for that signal. If the lock bit
is set, the thread is in the middle of a cons, so the handler
just sets a pending bit, stores the signal information, and
immediately returns, resuming the thread. After the cons
operation is completed, when the heap is returned to a con-
sistent state, the epilogue of the cons routine clears the lock
bit and then checks the pending bit. If an interrupt is pend-
ing, the cons routine then belatedly transfers to the handler
code and the thread takes the interrupt. (This technique was
later extended to a slightly more general setting by Bershad
and others, for general atomic sequences [Unimutex], and in
the operating-system community is sometimes referred to as
“software interrupts.”)

Another variant of run-to-completion is the technique
of “safe-points.” Interrupts are only allowed at particular
compiler-selected safe points in the code, where the thread
polls to check for pending interrupts. Current releases of
SML/NJ use this technique. Storage allocation is open-
coded. Interrupts are only allowed at the entrance to ex-
tended basic blocks (that is, a tree of code with the only
entrance at the root). At the beginning of every block, there
is code that checks to see if the heap has enough free stor-
age to execute the block, jumping to the garbage collector if
not. This check can typically be done in one or two instruc-
tions. Once execution gets past this instruction, the code
tree is executed atomically, so all storage allocation within
the code tree proceeds with no further limit checks.

When a signal arrives, the interrupt handler resets the
heap-limit register to make it appear to the thread that the
heap is exhausted. The signal is recorded, and the thread
resumed. The next heap check fails, and the garbage collec-
tor is responsible for dispatching to the deferred interrupt
handler instead of initiating a garbage collection.

SML’s safe points are an interesting contrast with T’s
locking. T code can be interrupted anywhere except at spe-
cific points (inside the allocation millicode); SML can not be
interrupted anywhere except at specific points (basic block
entries). The Berkeley Spur system used hardware assist to
provide a system more or less equivalent to T’s.

The safe-points approach has some advantages relative to
interrupt-anywhere implementations, such as abort&retry:

• Reduced GC-information requirements
When a copying garbage collector starts a collection,
it needs precise information about which values in the
register set are live pointers that need to be traced,
copied, and relocated, and which values are non-
pointers which should be left unaltered.

Any time a thread is suspended, some other thread
or interrupt handler could trigger a garbage collection.
This means the garbage collector must be able to re-
cover register-usage information about every code point
at which a thread can be suspended. A fine-grained in-
terrupt model allows any instruction to be a suspend-
able code point. This means the garbage collector must
be able to determine for every instruction what the reg-
ister usage is. This is a lot of extra information to keep
around, unless we choose to statically partition the reg-
isters into traceable and non-traceable sets. (If we also
allow for the possibility of “derived pointers,” i.e., val-
ues that point into the middle of data structures, the
register-annotation needs increase even further.)

A safe-points approach, like SML/NJ’s, allows thread
suspension only at a small number of points. The com-
piler records a register-use mask only for these safe
points. By increasing the granularity of thread suspen-
sion, the space overhead for GC information is reduced
a great deal.

• Tolerant of imprecise interrupts
A general feature of a safe-points interlock is that reg-
ister state is not changed while the thread is suspended
by a real hardware/OS interrupt (e.g., which may have
subsequently triggered a garbage collection). Proces-
sors that make it hard for user code to capture and
manipulate the processor state of an interrupted com-
putation can make it impossible to correctly forward
all pointers at GC-time. By polling for interrupts at
safe-points, we can guarantee the processor state is in
a well-known, easily-understood configuration.

On the other hand, all run-to-completion techniques have
some major disadvantages, which are particularly serious for
the safe-points approach.

• Increased interrupt latency
Deferring interrupts, obviously, increases the time to
respond to an incoming interrupt. This is most serious
in the safe-points approach. In T’s approach, inter-
rupts are only deferred if they occur during an alloca-
tion, but in SML/NJ’s safe-points approach, interrupts
are always deferred to the end of the basic block. Fur-
thermore, if we try to drive down the cost of the polling
by polling less frequently, we drive up the latency (Fee-
ley has treated the optimisation of this tradeoff in the
context of his Gambit Scheme system in some detail
[Feeley].)

3



• Page fault
A major flaw with run-to-completion is that a thread
cannot always immediately proceed forwards. If a
thread page-faults while holding the heap lock, other
threads cannot run while the missing page is being
brought in from disk. The only way to release the heap
lock is to run forwards—and that requires the missing
page. So, even though there may be dozens of threads
ready to run, the system remains completely locked for
the milliseconds it takes to do disk I/O.

This problem could be finessed in the millicode ap-
proach by requiring the OS to lock the allocation mil-
licode into main memory. This cannot be done in
the safe-points approach since the inlined allocation se-
quences occur throughout the code.

This is the major advantage that abort&retry has over
safe-points. The abort&retry allocation sequences are
carefully crafted so that they can be trivially aborted,
even in situations where the process cannot proceed
forwards. So we can use abort&retry in systems where
the thread-scheduler handles page faults by switching
threads. As our research group works with an experi-
mental SML-based operating-system kernel, this is crit-
ical for our needs. This is the principle reason why it is
worth dealing with the imprecise-interrupt difficulties
raised by allowing interrupts to occur anywhere.

4 Abort revisited: a new technique

The problems with abort&retry are that interrupt overhead
is too high, and the implementation is too complex. The
problems with run-to-completion are that interrupt latency
is too high, and the bad interaction with page faults. All of
these problems can be fixed with an alternative lightweight
heap interlock, at a cost of one instruction per allocation.
The interlock depends upon the fact that the heap frontier
pointer is kept in a register, and can thus be updated atom-
ically with no overhead. The idea is to keep the lock bit
in the low bit of the register that holds the frontier pointer.
Heap allocation is typically double-word aligned, so the bot-
tom three bits are always 000, and thus available to be used
by the compiler. We will use one of these bits: if the low
bit is set, then the heap is locked. A transaction is aborted
by clearing the lock bit and resetting the thread’s PC to the
beginning of the transaction.

Assume the machine is byte-addressable, the heap is
word-aligned, cons cells are tagged with the low two bits
11, and that heap overflow is detected with a trap-on-write
guard page. Here is what a two-word cons operation looks
like in this scheme:

Register r1: result cons
assignments r2: car

r3: cdr
fp: heap frontier pointer

fp := fp+1 ; engage interlock (*)
fp[3] := r3 ; store cdr (& trap if GC) (*)
fp[-1] := r2 ; store car (*)
r1 := fp+2 ; result = fp + tag - lock (*)
fp := fp+7 ; commit op & clear interlock

The heap is locked anytime the frontier pointer’s low bit is
1. When a thread is interrupted, the handler checks fp. If

the low bit is set, the thread’s resume PC must be reset to
the beginning of the sequence. So if we interrupt after any
of the (*) instructions, we resume at the beginning.

The fundamental trick is that we simultaneously clear the
interlock and commit the transaction with one, atomic in-
struction (fp := fp+7). It can never be the case that we’ve
released the lock but haven’t committed the transaction, or
vice versa. Since a heap allocation has to bump the fron-
tier pointer anyway, that instruction comes for free, so the
whole locking overhead is one instruction—the initial incre-
ment that engages the interlock. Even better, it is a simple
register operation that doesn’t require leaving the processor
and going to memory.

Now our handler overhead is very low: just check one
bit of a register. The handler doesn’t have to go to memory
for the check. It doesn’t have to do any parsing or back-
wards scanning of the interrupted instruction stream—none
of the high-overhead, hard-to-port complexity that the first
interlocking scheme required.

There are several ways the interrupt handler can deter-
mine the restart address. One technique is to attach a sorted
vector of restart addresses to every unit of compiled code.
When the interrupt handler has to break a lock and reset
a thread, it simply does a fast binary search on this table.
The binary-search reset code doesn’t actually examine the
instruction stream, so it doesn’t depend on the particulars
of the instruction set. This makes it much more portable.

We can shift the expense from the interrupt handler to
the allocator by alternately requiring the cons sequence to
initially store the retry address in some standard register
or memory location where it can be retrieved quickly if the
interrupt handler decides to abort the transaction. This low-
ers the cost of the abort, at the price of adding one cycle to
each cons operation. Note that the retry store is not part of
the atomic sequence—it can be hoisted, scheduled, removed
from loops or otherwise shifted to some convenient location
that dominates the transaction. The retry store doesn’t have
any data dependency on any other instruction—the retry
PC is only ever fetched by the interrupt handler.

5 Side-step and PCLSR

The final possibility is to side-step the problem entirely: re-
structure the heap data structures to eliminate the need to
serialise access to the heap. Then threads do not need to
lock the heap at all.

We can accomplish this by giving each thread its own
chunk of storage for allocation. When a thread exhausts its
private allocation area, it gets another from the global heap.
Now, threads only need to serialise when they are getting
private allocation areas from the global heap, which should
be two or three orders of magnitude less frequently. The
compiler can arrange to allocate only small structures from
the private area; large structures can be allocated from the
global heap. This decreases internal fragmentation, and still
amortises the cost of heap synchronisation over large blocks.

This sort of approach is commonly used in garbage-
collected thread packages implemented for multiprocessors.
For example, the experimental concurrent collector imple-
mented at DEC SRC on the Firefly [RTC-GC] and the gen-
eral ML-threads package written for SML/NJ [ML-threads]
both use this idea.

Giving each thread its own private allocation area does
not completely remove the need for synchronisation. Appli-

4



cation threads can now allocate concurrently amongst them-
selves, but they must still serialise with the collector thread.
When the garbage collector runs, every live thread in the ad-
dress space must have its heap data in a consistent state. So
we can’t completely parallelise the heap. Threads must still
take a lock when allocating from their private areas, using
either the abort&retry or the run-to-completion techniques
discussed earlier. What’s new is that each thread effectively
has its own distinct lock, which it shares with the garbage
collector.

Because application threads are independent, they only
need to have their locks broken when they are suspended in
mid-cons and a GC happens, not each time they are sus-
pended. If a thread is suspended while allocating data in
its private area, and it is resumed before a GC occurs, the
allocation can pick up right where it left off. Presumably,
garbage collections happen much less frequently than inter-
rupts, so the lock-breaking overhead associated with many,
many thread suspensions vanishes.

With this technique, we can take the view that the
garbage collector is the agent responsible for forcing the
other threads to relinquish their heap locks. The run-time
system can do this by maintaining an internal list of all live
threads which the garbage collector can scan before starting
its collection. However, this would increase the GC startup
time, which is a problem for real-time incremental collec-
tors. Maintaining the list also increases the amount of work
that must be done when forking new threads.

However, if threads lock using abort&retry, then the
collector can break locks on the fly, as it traces through
the heap and discovers suspended thread activation records.
This notion of forcing a thread into a consistent state on
demand, providing an atomic view of critical operations, is
called PCLSRing the thread, a term taken from the general
“PCLSR” mechanism in the ITS operating system, and de-
scribed in an unpublished but influential note by Bawden
[PCLSR].

This approach spreads the lock-breaking work out incre-
mentally over the entire collection process, and also elimi-
nates the need to break the locks of threads that have be-
come garbage, since the collector never sees them. It also
interacts well with generational collectors: a generational
collector can assume that only threads in the newest gener-
ation can hold locks. Threads copied to older generations
have their locks broken. Whenever a thread is suspended, a
new activation record is allocated in the newest generation.

PCLSRing cons operations depends critically upon us-
ing abort&retry. If heap locks were broken using run-to-
completion, the garbage collector would be in the position of
running threads forwards a little bit in the middle of garbage
collection, while the collector has the heap in an inconsistent
state. This is a lock conflict: the thread wants to run hold-
ing its heap lock while the collector simultaneously holds the
lock.

Giving each thread its own private allocation area does
have a drawback: VM thrashing. Multi-threaded applica-
tions commonly have many threads. Researchers at DEC
SRC have reported that typical applications can have tens
or hundreds of threads [Modula-3]. If Java succeeds as a se-
rious commercial implementation language, this will become
increasingly common. If each thread has a several-kilobyte
private allocation area, the virtual memory system is in dan-
ger of being overloaded as the actual processors (or under-
lying OS threads) switch amongst the application threads,
each allocating from a different region of virtual memory.

6 Implementation

We have built a prototype implementation of our lock-bit
technique for SML/NJ running on a Sparc with George’s
MLRisc code generator [MLRisc]. We added a code-
annotation facility to build the associated tables we needed
containing PC restart addresses and register data.

While functional, our implementation is fairly crude.
For example, we have made no effort to be clever about
how we store our tables of retry addresses and other data.
Our tables are large: For each instruction we store a retry
address (zero for non-consing code), an integer specifying
how many slots in the thread’s block of temporary stor-
age are being used for register spills, and the basic block’s
heap requirement, a value that is checked before resuming
the code after an interrupt. This is a tremendously inef-
ficient, redundant representation, quadrupling the size of
the compiled binaries. The basic technique allows for much
tighter, compressed information. (For example, Diwan, et
al. have reported on various techniques to efficiently store
fine-grain register information for garbage-collection pur-
poses [Diwan+ ]. A recent effort has shown the ability to
reduce roughly equivalent annotation tables to 20% of code
size for the x86 [JavaGC].) We did simplify our annotation
requirements by statically partitioning the register set into
traced, “descriptor” registers, and untraced, “raw” registers.

Our implementation inserts code at the beginning of ev-
ery basic block to check for heap overflow; in addition, when
the interrupt system resumes an interrupted thread, it also
re-performs the heap-overflow check, driven by a PC anno-
tation. This somewhat clumsy arrangement was simple to
implement, given that the stock SML/NJ system came with
the basic-block heap checks already in place. Our original
intention was later to eliminate the space and time overhead
of polling by using a trap-on-write guard page to detect heap
overflow. (This is not, however, certain to be an improve-
ment: standard operating systems typically make it fairly
expensive to service memory faults from user code. Depend-
ing on the frequency of interrupts, the frequency of checks,
and other parameters, synchronous checks can actually be
cheaper.) However, as we’ll discuss later, we have subse-
quently reworked the entire design to such a degree that we
are abandoning this entire branch of code development for
a fresh start on an aggressive, new implementation. So we
left our original overflow-detection strategy in place and are
moving on.

A final detail is that SML/NJ uses a fairly sophisticated
generational garbage collector. Our technique for imple-
menting the atomic write barrier required by the collector
is discussed in a following section.

7 Performance

We ran several tests to compare the performance of our fine-
grain interrupt, abort-based system with the stock SML/NJ
commit system, which uses run-to-completion and polls for
interrupts at every basic block boundary. Our tests were run
on a 200MHz dual-Sparc system with 1024 Mb of memory
running Solaris 2.5.1.

We compiled a suite of standard SML programs twice:
once with the stock SML/NJ safe-points mechanism, and
once with our abort mechanism. Table 1 shows the number
of basic blocks in each program, the average basic block size
(statically), the size of the largest basic block, the largest

5



number of registers spilled by a basic block, the average
number of bytes heap-allocated per block (statically), and
the largest heap allocation in a single basic block.

We ran these programs several times with no signals,
and then again, with very high rates of signal delivery, in
order to compute the amount of time spent servicing inter-
rupts with no-op signal handlers. However, our measure-
ments had such variance as to be almost completely useless
(table 2). In some cases, the interrupted process even ran
faster than the uninterrupted process! About all we learn
from these measurements is that the fine-grained abort ma-
chinery seems to be roughly comparable to the stock commit
machinery. Without significantly more precise timing facil-
ities than those provided by Solaris on a Sparc, it will be
difficult to obtain higher-quality measurements.

Finally, we ran the programs with no interrupts at all
simply to measure the locking overhead. Our fine-grained
abort implementation necessarily runs slower than the stock
SML/NJ commit strategy: we did not remove the per-basic-
block heap-limit check, but we added one instruction of lock-
ing overhead per allocation, and increased register pressure
by statically partitioning the register set. However, the num-
bers in table 3 show that the extra cost is fairly cheap. We
caution against drawing much from these early numbers be-
yond the observation that the allocation mechanism is cur-
rently roughly comparable to SML/NJ’s stock system. We
have hopes that our next implementation, described in sec-
tion 9, will actually be able to provide fine-grain interrupt
service more cheaply than the current stock SML/NJ com-
mit system. Of course, we’ll repeat that allocation schemes
that use an abort model have one qualitative performance
benefit relative to commit models: thread schedulers can be
page-fault aware, switching threads to hide disk latency on
page faults. The milliseconds spent waiting for one page to
come in from disk can pay for a lot of locking overhead.

8 Variations

8.1 Generational collectors and store lists

There is a third heap operation we must consider, besides
allocation and collection: side effects such as stores to mu-
table cells. This has extra implications in systems that use
generational collectors. In these systems, updates to data
structures living in old generations must be noted for consid-
eration as extra roots by the collector. When the GC needs
to collect a young generation, it scans these extra roots look-
ing for old-generation data structures that have been altered
to contain pointers to new-generation data. The two actions
of logging the write for the GC and actually performing it
must be atomic.

There is a variety of techniques for logging the write oper-
ation. In “card-marking” systems, side-effecting operations
also set a bit in a table indicating a dirty page (or “card”)
that must be scanned by the GC. Other systems maintain
a “store list” or “store vector” of addresses that have been
written since the last GC; logging a write in a store-list sys-
tem involves allocating a new entry recording the write and
linking it onto the head of the store list. Still other systems
use page-protection tricks and arrange for fault handlers to
mark an entire VM page as dirty.

Store vectors and card-marking techniques can be made
atomic with their accompanying side-effects using the same
techniques we’ve used to make allocation atomic. However,

store lists are not amenable to these techniques. The prob-
lem is that performing a store operation in a store-list system
involves three actions: (1) doing the actual store, (2) allo-
cating the new log entry, and (3) linking the new log entry
onto the head of the GC’s global store list. We are unable to
express such a sequence without performing side effects that
would need to be rolled back in the event of an abort. We’ve
lost the magic property found in our allocation sequences of
being able to abort the operation simply by abandoning the
computation.

For our SML/NJ implementation on a Sparc, we man-
aged a hack. The only instruction whose effect would need
to be rolled back in the event of an abort is the instruc-
tion that moves the newly allocated store-list entry into the
store-list register sl. We placed this instruction at the end
of the sequence, just before the final commit/lock-clearing
instruction. It’s easy for the interrupt handler to detect the
rare occasion that a thread is interrupted in the one posi-
tion that would require rollback work, between the final two
instructions. This is the case when sl = fp − 1 and the
heap is locked. When this happens, the interrupt handler
aborts the transaction by both undoing the update to sl
and resetting the PC. (We could probably have done bet-
ter by arranging for the interrupt handler to go ahead and
commit the transaction in this case.) Here is the code for
updating the cell whose address is in r1 with the value in
r2, using a store-list write barrier:

fp += 1 /* Lock heap. */
*r1 := r2 /* Do the store. */
fp[-1] := r1 /* Alloc & init new */
fp[3] := sl /* store-list entry. */
sl := fp-1 /* Update store-list reg. */
fp += 7 /* Unlock heap. */

In general, however, we do not recommend implementing
write barriers for generational GC’s with store lists; we in-
tend to abandon this in our next implementation.

8.2 Parallelisation

A limitation of these schemes is that they only work for
uniprocessors. Uniprocessors, however, are an extremely im-
portant case. You probably have one on your desk, and may
carry around several on your person. We can adapt these
techniques to multiprocessors by giving each processor its
own allocation area, forcing parallel allocation to happen
in different areas of memory. Doligez and Leroy, for ex-
ample, have reported on other related issues surrounding
storage management in a parallel implementation of Caml
[ParaCaml].

8.3 Run-to-completion and lightweight locking

Note that we can apply our bit-locking trick to implement
T’s interrupt-anywhere, run-to-completion allocation, which
would even allow us to open-code the allocation sequences.
This is an improvement, but unless we can guarantee that
the entire allocation sequence is present in main memory,
still leaves open the issue of bad interactions with page faults
and thread scheduling.

8.4 Hardware support

Some processor architectures have “predicate registers,” a
bank of one-bit registers that can be used to tag instructions.

6



If the indicated predicate register is set, the instruction is
taken; if it is clear, the instruction is “squashed,” or skipped.
Predicate registers are useful to avoid branch stalls, allowing
one to schedule small if-then-else-join control flow graphs
(called “hammocks”) by simply co-scheduling both branches
of the conditional interleaved in the same stream, with one
branch’s code dependent on a predicate register, and the
other branch dependent on its complement.

We can exploit predicate registers when they appear in
general purpose processors to implement the opportunistic
strategy of our abort&retry locking protocol by using them
in a non-standard way. Note the important property of the
allocation sequence: if the sequence is interrupted, we must
not execute any of the following instructions in the sequence,
but must instead retry from the beginning of the sequence.

We can achieve this with predicate registers in the fol-
lowing way. We tag all of the atomic instructions in the
sequence with a predicate register that is reserved by the
interrupt system. We lock the heap by setting this pred-
icate register at the beginning of the allocation sequence,
and then proceed to perform the allocation. The interrupt
handler clears the predicate register, thus shutting down
any remaining portion of the sequence. Finally, the com-
piler places a branch instruction at the end of the sequence
that is predicated on the register’s complement; if taken, the
branch jumps back to the beginning of the sequence for a
retry.

The common case is that the predicate register is set,
the allocation occurs, the branch instruction is squashed,
and the register is cleared. However, if an interrupt occurs
during this sequence, when the thread resumes all following
parts of the allocation sequence will be squashed, while the
branch instruction will be active, causing a retry.

Using predicate registers in this way has one big advan-
tage: instead of requiring the block of instructions that com-
prise the allocation sequence to be an indivisible block of
instructions, they can now be split up, reordered, hoisted
or otherwise manipulated by the scheduler, allowing them
to be packed into available slots in the instruction schedule,
exploiting static, instruction-level parallelism.

Once again, we are getting performance improvements by
tightly integrating the compiler and the operating-system’s
interfaces.

Note, also, that VLIW architectures have alluring prop-
erties for the generation of tight atomic sequences: they
allow the code generator to explicitly perform multiple oper-
ations in synchrony, by packing them all into the same wide
instruction in the code schedule. A VLIW might allow us
to simply compose an atomic “fetch&add” operation on the
fp register in one wide instruction. This may be something
to consider for systems that run on media processors, other
DSP engines, and the forthcoming Intel IA64 architecture.

8.5 Hybrid interlocking

A safe-points interlocking scheme pays once per basic
block—which is good if a basic block performs multiple allo-
cations, and bad if it performs none.3 In contrast, an abort
scheme pays once per allocation—which is good if a basic
block performs no allocations, and bad if it performs sev-
eral. So safe-points is going to work out rather nicely for

3Note that the check can’t be removed even if the block does no
consing at all, since that might lock out interrupts indefinitely.

an allocation-intensive program, such as a theorem prover,
while an abort scheme might do well for numeric codes.

On the other hand, why must it be either/or? It’s con-
ceivable to have a hybrid scheme, and allow the compiler
to switch a thread between abort and commit strategies de-
pending upon the allocations/block ratio of different sections
of code. This could lead to an overall solution more efficient
than either technique. It’s easy for a thread to indicate
which recovery regime to use when the heap is locked: the
fp register has the low three bits available, and the locking
protocol is only using one of these bits. The compiler can
choose to use the three bits to encode abort-locked, commit-
locked, and unlocked, and switch back and forth with a sin-
gle instruction.

9 Future plans: atomic fission

We are now in the process of implementing a brand-new
system for use in ML/OS, an experimental SML-based OS
kernel that runs on an x86 [ML/OS]. While we cannot re-
port on experience with a working system, the details of our
design are sufficiently interesting as to merit brief descrip-
tion.

Our x86 implementation has two major, related changes:
we are pushing code annotation as far as we can, and we are
splitting apart the allocation and initialisation of memory
blocks.

Full code annotation

We are experimenting with shifting as much of the book-
keeping as possible onto detailed PC annotations. For exam-
ple, the x86 has very few registers, so rather than statically
partition the register set into fixed traced and untraced sets,
we store this partition information for each instruction. This
eases register pressure and also allows pointers in registers
to go dead in a timely way.

Splitting the transaction

We have split the allocation and initialisation of memory
blocks. Only the heap allocation is performed atomically.
The sequence of instructions that stores the initial values
into the freshly allocated block is not atomic; it can be split
up and the instructions shifted around in the code sched-
ule by the compiler. Again, this is accomplished simply by
pushing code annotation further: the code annotations must
contain enough information to tell the garbage collector how
many words in the current partially-initialised block have
been assigned properly and should therefore be traced. To
keep matters simple, we only allow one partially-initialised
block at a time.

Removing initialisation operations from the atomic
transaction reduces the transaction to an extremely short
sequence of code:

fp := fp+1 ; Lock
r1 := fp-1 ; Allocate
fp := fp+7 ; Commit

This is so short, in fact, that there’s no longer any need to
roll the PC back on interrupt. If we know that an alloca-
tion operation always targets register r1, we can adopt a
simpler, faster alternative. If the interrupt handler resumes

7



a thread that was suspended with the heap locked, it first
sets r1 to the current value of fp minus one. If the atomic
sequence resumes between the first two instructions, this is a
redundant operation, but does no harm. On the other hand,
if the atomic sequence resumes between the second two in-
structions, this resets r1’s stale contents to its correct value.
The third instruction terminates the atomic sequence.

Shortening the atomic sequence so drastically also re-
duces the odds that the thread will be interrupted while
holding the lock.

Note, as a possible variation, that we could shift a small
amount of complexity from the interrupt handler to the al-
locating thread by transforming the atomic allocation se-
quence into a Herlihy-style “lock-free” or “optimistic concur-
rency” operation [Herlihy], using a compare&swap instruc-
tion, and emitting an explicit branch-to-retry instruction at
the end of the sequence:

L1:
r2 := fp ; Original fp value
r1 := fp ; Allocate
r3 := fp+8 ; New fp value
cswp(r2,fp,r3) ; Attempt fp update
jnz L1 ; Retry if conflict

The cswp instruction atomically compares r2 to fp; if they
match (that is, if fp hasn’t been altered while we were al-
locating), fp is updated to be the value of r3, and the ma-
chine’s zero condition code is set to indicate success.4 This
sequence is two instructions longer than the low-bit-locking
technique. However, it has a nice feature: the interrupt han-
dler doesn’t need to do anything at all to abort the trans-
action. Instead, the thread itself recognises when it must
retry a transaction and does so with a synchronous branch,
a much less exotic method of aborting a transaction. As
we’ll see below, we also have an opportunity to amortise the
cost of the extra two instructions over several allocations.

The static allocation arena

The final optimisation we intend to implement is to coalesce
all the allocation transactions in a basic block. Let us as-
sume that a given basic block of code allocates three chunks
of memory: a five-word record, a three-word record, and a
four-word record, for a total of 48 bytes of memory. There
will be a single code sequence at the beginning of the basic
block to atomically allocate all 48 bytes of heap storage to-
gether; this storage is the “static allocation arena,” and will
be pointed to by a dedicated sap register. After allocating
the basic block’s private arena, the rest of the basic block will
not touch the fp register again. Further allocation and ini-
tialisation operations are simply done by computing offsets
from sap and storing initial values into these offsets. These
operations are not visible to other threads; they are only vis-
ible to the current thread and the garbage collector. Hence
there is no synchronisation overhead for the thread, although
we must add extra code annotations to map a suspended PC
value to information about the static arena, which enables
the collector to trace any partially-allocated block in the
static arena.

4This is typically considered a memory operation; however, the
x86 architecture also permits the compare&swap instruction to be
applied to registers.

With this optimisation, we only pay for a single synchro-
nisation operation in each basic block that allocates, regard-
less of how many allocations it performs. Basic blocks that
don’t allocate at all pay nothing. This gives us the best of
the safe-points and abort worlds: per-basic-block synchro-
nisation overhead, and fine-grained interrupt handling.

10 Storage allocation as a kernel operation

We close with some final thoughts on the relationship be-
tween storage allocation, compilers, and operating systems.
Fundamentally, storage allocation is a kernel service, as is
servicing interrupts. The problem we have been facing is
that the actual kernel services for locking and storage al-
location are too heavyweight for the requirements of ad-
vanced programming languages. Consider that in Unix, we
could simply bracket our allocation sequences with a pair
of sigblock system calls to block and then re-enable the
servicing of signals—but this would drive up our overhead
by several orders of magnitude.

What we do instead is seek a way to achieve a tighter
integration of the compiler and the primitive run-time ser-
vices. For example, one way to view our heap-locking trick
is to note that the frontier pointer is a thread-global bit of
state that permanently resides in a register. We have ex-
ported OS state out into user-visible register state, where it
can be cheaply referenced by user threads and examined by
the interrupt system (not the user’s interrupt handlers, but
the actual interrupt system).

With this point of view, inlining cons sequences is es-
sentially just inlining kernel code—again, tightly integrat-
ing the OS service and the compiler for enormous efficiency
gains. So it comes as no surprise that the issues we’ve been
handling have their roots in general OS service guarantees,
such as ITS’ PCLSR mechanism. Vice versa, it’s straightfor-
ward to apply the locking tricks we’ve discussed to abortable
sequences, providing general lock-free synchronisation. Mas-
salin has reported on the utility of these operations in OS
interfaces [Qua, Herlihy].

Finally, as long as we are tightly integrating these two
components, why not just take one more step and provide
atomic operations by simply turning off interrupts? We are,
after all, just inlining kernel code, and OS kernels commonly
turn off interrupts when they need to lock themselves into
the processor. Doing so means that we never have to retry,
busy-wait or take locks. Interrupt handlers never have to
check for anything. The heap is always consistent. And we
always proceed forwards.

This may seem extreme, but the modern armamento-
rium of compiler technology provides several ways to export
these privileges to user code in a manageable fashion, such as
proof-carrying code and safe languages with inlining [PCC].
The case is even stronger when we are dealing with embed-
ded processors in lightweight consumer devices that run a
bounded set of trusted code.

As advanced programming languages with automatic
storage management and threads become more and more
widespread in the world—e.g., in embedded processors that
occur in consumer devices, or high-performance media pro-
cessors and network servers—this tighter integration will be-
come increasingly critical.

8



11 Acknowledgements

The core ideas in this paper were developed during Shiv-
ers’ extremely pleasant stay at the University of Hong Kong
in 1992. They have benefitted from discussion with Doug
Kwan, Francis Lau, John Ellis, Scott Nettles, Greg Mor-
risett, Alan Bawden, Andrew Appel and John Reppy. John
Reppy and Lal George provided support for our implemen-
tation in SML/NJ. Clement T. Y. Shin provided detailed
Spur references. Anonymous reviewers made several helpful
suggestions.

9



name blocks i/blk imax smax h/blk hmax
boyer 1235 21.819 445 0 32.981 864
life 578 7.962 589 26 6.651 1056
knuth-b 1473 7.761 848 0 5.553 1676
lexgen 2881 7.807 204 13 5.240 340
mlyacc 11351 8.874 3321 88 7.341 4968
vliw 8352 7.704 855 33 5.479 1468
fft 553 8.937 112 0 5.722 204
logic 1044 13.028 735 8 16.897 1440
simple 3652 9.545 218 3 8.639 344
mandelb 315 6.517 112 0 3.746 204
ray 1072 7.631 266 4 5.679 496
barnes- 2272 9.041 214 5 7.678 392
ratio-r 1353 8.395 167 0 5.280 312
count-g 1023 7.699 125 0 5.720 204

Table 1: Static statistics about the benchmarks

Commit Abort
name noint int ints t/int noint int ints t/int
boyer 31.393 31.470 1891 0.122 34.060 34.160 2051 0.146
life 22.943 23.057 1382 0.246 25.220 25.500 1529 0.549
knuth-b 20.547 20.193 1220 -0.869 22.603 22.990 1384 0.838
lexgen 22.220 22.517 1374 0.648 23.543 23.330 1421 -0.450
mlyacc 19.683 19.863 1226 0.440 21.667 23.443 1443 3.694
vliw 22.590 23.367 1408 1.655 24.143 25.043 1514 1.783
fft 20.427 20.283 1219 -0.353 23.667 21.673 1299 -4.604
logic 21.983 20.993 1266 -2.346 25.200 24.297 1457 -1.860
simple 24.263 23.993 1446 -0.560 26.290 26.313 1583 0.044
mandelb 20.087 20.157 1208 0.174 21.800 21.937 1314 0.312
ray 23.700 23.483 1425 -0.456 24.820 25.350 1537 1.034
barnes- 24.127 24.290 1464 0.335 26.337 26.547 1593 0.395
ratio-r 219.433 215.997 12145 -0.849 225.930 221.163 12708 -1.125
count-g 48.970 48.637 2917 -0.343 55.633 56.073 3371 0.392

(sec) (sec) (msec) (sec) (sec) (msec)

Table 2: Overhead for servicing null interrupts

name commit abort abort/commit
boyer 31.650 33.793 1.068
life 23.080 25.387 1.100
knuth-b 20.517 22.743 1.109
lexgen 22.327 23.427 1.049
mlyacc 19.900 21.607 1.086
vliw 22.610 24.570 1.087
fft 20.387 23.593 1.157
logic 21.683 25.143 1.160
simple 24.213 26.233 1.083
mandelb 20.043 21.953 1.095
ray 27.927 24.673 0.884
barnes- 24.227 26.240 1.083
ratio-r 216.717 225.003 1.038
count-g 49.710 55.303 1.113

Table 3: Interrupt-free run time

10



References

[Diwan+ ] Amer Diwan, Eliot Moss, and Richard Hud-
son. Compiler support for garbage collection
in a statically typed language. Proceedings of
the ACM SIGPLAN ’92 Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI), pages 273–282.

[Feeley] Marc Feeley Polling efficiently on stock hard-
ware. In Proceedings of the 1993 ACM SIG-
PLAN Conference on Functional Program-
ming and Computer Architecture, Copen-
hagen, Denmark, June 1993, pp. 179–187.

[Herlihy] P. M. Herlihy. Wait-free synchronization.
ACM transactions on programming languages
and systems, 13(1), January 1991.

[JavaGC] James M. Stichnoth, Guei-Yuan Lueh, and
Micha l Cierniak. Support for garbage col-
lection at every instruction in a Java com-
piler. Proceedings of the ACM SIGPLAN ’99
Conference on Programming Language De-
sign and Implementation (PLDI), pages 118–
127, May, 1999.

[LockFree] Andrew W. Appel. To the best of our knowl-
edge, this very clever technique is due to An-
drew Appel and remains unpublished. One of
us (Shivers) saw Andrew sketch this approach
out on a blackboard in the late eighties, point
out the critical trivial-abort property, and
state that it had been implemented and subse-
quently abandoned. But no description of the
technique can be found in any of Appel’s pub-
lished works, and when pressed, he becomes
evasive, claims poor memory, and denies any
involvement with the covert manipulation of
autonomous processor-states. We note with-
out further comment his long-standing sup-
port by powerful Department of Defense agen-
cies.

[ML/OS] The Flux OSKit: A substrate for kernel
and language research. Bryan Ford, God-
mar Back, Greg Benson, Jay Lepreau, Al-
bert Lin and Olin Shivers. In Proceedings of
the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP-16), October 1997,
Saint-Malo, France.

[ML-threads] J. Gregory Morrisett and Andrew Tolmach.
Procs and Locks: A portable multiprocess-
ing platform for Standard ML of New Jer-
sey. In Proceedings of the Fourth ACM SIG-
PLAN Symposium on Principles and Prac-
tice of Parallel Programming, San Diego, May
1993.

[Modula-3] Greg Nelson, editor. Systems Programming
with Modula-3. Prentice Hall, 1991, Engle-
wood Cliffs, New Jersey.

[MLRisc] Little has been published on Lal George’s
MLRisc code-generator compiler back-end.
However, on-line documentation can be
found at http://cm.bell-labs.com/cm/cs/
what/smlnj/doc/MLRISC/index.html.

[Orbit] David Kranz. Orbit: An Optimizing Compiler
for Scheme. Ph.D. dissertation, Yale Univer-
sity, February 1988. Research Report 632, De-
partment of Computer Science. A conference-
length version of this dissertation appears in
SIGPLAN 86.

[ParaCaml] Damien Doligez and Xavier Leroy. A con-
current, generational garbage collector for a
multithreaded implementation of ML. Pro-
ceedings of POPL ’93.

[PCC] George C. Necula, Peter Lee. Safe kernel ex-
tensions without run-time checking. In Pro-
ceedings of the Second Symposium on Op-
erating Systems Design and Implementation
(OSDI ’96), Seattle, Washington, October
1996.

[PCLSR] Alan Bawden. “PCLSRing: Keeping process
state modular.” Unpublished memo, available
via anonymous FTP as ftp://ftp.ai.mit.
edu/pub/alan/pclsr.memo.

[Qua] Henry Massalin. Synthesis: An Efficient Im-
plementation of Fundamental Operating Sys-
tem Services. Ph.D. dissertation, Columbia
University, 1992.

[RTC-GC] Andrew W. Appel, John R. Ellis, and Kai
Li. Real-time concurrent collection on stock
multiprocessors. In Proceedings of the SIG-
PLAN ’88 Conference on Programming Lan-
guage Design and Implementation, June 1988.

[SML/NJ] Andrew W. Appel and David B. MacQueen.
Standard ML of New Jersey. In Third In-
ternational symposium on Programming Lan-
guage Implementation and Logic Program-
ming, LNCS 528, pages 1–13, Martin Wirsing,
editor, August 1991. Springer-Verlag, New
York.

[Spur] Mark Hill, et al. Design decisions in Spur.
COMPUTER, 19(11):8–22, November 1986.

[T] Jonathan A. Rees and Norman I. Adams iv.
T: A dialect of Lisp or, Lambda: The ultimate
software tool. In Conference Record of the
1982 ACM Symposium on LISP and Func-
tional Programming, pages 114–122, August
1982.

11



[Unimutex] Brian N. Bershad, David D. Redell and John
R. Ellis. Fast mutual-exclusion for uniproces-
sors. In Proceedings of the Fifth Symposium
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
V), October, 1992. ACM Press, SIGARCH
Computer Architecture News 20 (Special Is-
sue October 1992), SIGOPS Operating Sys-
tem Review 26 (Special Issue October 1992),
and SIGPLAN Notices 27(9).

[Wilson] Paul R. Wilson. Uniprocessor garbage col-
lection techniques. In International Work-
shop on Memory Management, St. Malo,
France, September 1992. (Proceedings pub-
lished as Springer-Verlag Lecture Notes in
Computer Science, no. 637). Also avail-
able at url ftp://ftp.cs.utexas.edu/pub/
garbage/gcsurvey.ps

12


