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Abstract

Reasoning about program behaviour in programming languages based on the λ calculus requires reasoning in a unified way
about control, data and environment structure. Previous analysis work has done an inadequate job on the environment component
of this task. We develop a new analytic framework, ∆CFA, which is based on a new abstraction: frame strings, an enriched
variant of procedure strings that can be used to model both control flow and environment allocation. This abstraction enables new
environment-sensitive analyses and transformations that have not been previously attainable. We state the critical theorems needed
to establish correctness of the entire technology suite, with their proofs.
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0. Preface: On Reynolds and the spectre of buggy optimisers

In February 1989, one of us—Shivers—assembled a thesis committee for his nascent dissertation on the control-
flow analysis of higher-order languages. At the thesis proposal, John Reynolds was the committee member who
registered a strong desire to see proofs of the techniques to be developed. His precise words to this effect were: “After
all, you wouldn’t want a Ph.D. for a buggy optimiser, would you?” The candidate so being questioned expressed what
he hoped was a suitable level of horror at the very thought, going on to confess that the possibility that his thesis
committee might slip up and permit such a travesty to occur was something that had been interfering with his sleep in
recent weeks.

Reynolds was, in fact, supernumerary to the thesis committee: Shivers had one more person than he needed. In the
aftermath of the thesis proposal, many of Shivers’ graduate-student friends teased him mercilessly about the trouble
he had self-induced by adding Reynolds to his committee. For weeks afterward, his friends would walk up to him in
the halls, say “Hey, Olin, you wouldn’t want a Ph.D. for a buggy optimiser, would you?” then laugh and walk off.
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But that, in fact, was exactly why Shivers had pushed to get John on his committee: he reasoned that if he managed
to get a dissertation past Reynolds, it would be a solid result. Even better, not only did Reynolds raise the bar in
terms of mathematical rigour, he then signed up to help Shivers get over the bar. Much of the mathematics in Shivers’
dissertation was developed in Reynold’s office, working a blackboard in tandem with John. The only difficulty in the
process was that John can fill up a blackboard at such a fantastic pace, it can be hard to transcribe the contents into a
notebook before he needs to erase it in order to move on to new equations. Above and beyond the specific mathematics
Shivers learned, the more valuable lesson lay in watching how Reynolds developed mathematics. Shivers counts it as
one of the two most valuable experiences of his graduate career. It is why you go to graduate school.

Shivers eventually completed his dissertation on control-flow analysis, and it does indeed contain multiple proofs
formally establishing correctness conditions for many of the techniques it develops. But, in Shivers’ view, the most
interesting component of the dissertation—a treatment of analyses that require precise environment information—
is the one that does not meet Reynolds’ standards. Called “reflow analysis”, it enabled conclusions that were
fundamentally outside the scope of other techniques. Unfortunately, the mathematical underpinnings of the technique
were sketchy, at best. The kindest thing one could say about reflow analysis was that it pointed in what seemed to be
an important direction.

Thus, Shivers finished graduate school with two convictions: the first being the importance of formally establishing
the correctness of algorithms whose specifications come from programming-language semantics; and the second being
that his just-completed dissertation was less a complete solution than simply the entry point to a path that might lead
to a unified analytic view of the computational mechanisms encoded by the λ operator.

This article, describing work that Might has done with Shivers for Might’s own doctoral dissertation, represents
the exploration of that path—the follow-through on that second conviction. The first conviction—on the value of
mathematical rigour to deliver us from the spectre of buggy optimisers—is what has guided the technical development
of the work.

1. The three faces of λ

Control-flow analysis is not enough. The difficulty of analysing and optimising functional languages based on the
λ-calculus is the tri-facetted nature of λ: it represents, in one construct, the fundamental data, control, and environment
structure of these languages. A λ expression provides data structure, since evaluating one produces a value; it provides
control structure, since it is a control point to which one may transfer via function call; and it provides environment
structure, since it is the mechanism that introduces name binding and scope. As the three fundamental structures of a
programming language meet and intertwine in λ, then, analysis of λmust grapple with all three facets of the construct.

Where previous work in analysing the behaviour of λ-based programming languages has been lacking is in
reasoning about the relationships between the environment structures associated with the closures that flow through a
program. This is due to the nature and degree of the approximations introduced by these static analyses: higher-order
control-flow analyses tend to introduce more approximation when abstracting the environment half of a closure than
when abstracting its λ half. This is to be expected: a finite program contains only a finite number of λ expressions,
but can still give rise to an unbounded amount of distinct environment structure. Thus the simple need to produce
a computable analysis forces the environment abstraction to throw away information as it folds an infinite structure
down to a finite one; this onus doesn’t exist for the already-finite λ portion of the closure abstraction.

If we could do better—if we could reason more precisely about the environment half of closures—we would enable
a group of optimisations that are fundamentally beyond the reach of k-CFA analyses [12]. One such optimisation
is Super-β inlining; in this article, we will use it as a client application to drive the development of more precise
environment analyses.

2. Super-β inlining versus simple β-reduction

The Super-β inlining condition states that a λ term may be inlined at a call site if (1) all functions applied at the
call site are closures over that λ term, and (2) the dynamic environment at the point of application is always equivalent
(up to the λ term’s free variables) to the environment captured at the point of closure. While any control-flow analysis
addresses the first condition, the second one requires reasoning about binding environments.

Ordinary β-reduction inlining is more limited. For instance, if we wanted to inline the body of a function for some
call to the variable f, β-reduction only applies if the binding to f occurs within a redex, and the argument to the
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(letrec ((lp1 (λ (i x)
(if (= i 0) x

(letrec ((lp2 (λ (j f y)
(if (= j 0)

(lp1 (- i 1) y)
(lp2 (- j 1) f

[f y])))))
(lp2 10 (λ* (n) (+ n i)) x))))))

(lp1 10 0))

Fig. 1. Super-β enables the term labelled * to be inlined at the bracketed call site.

redex is a λ term, such as in the expression ((λ (f) ...) (λ (...) ...)). In any other situation, such as when
the variable f is loop-bound, β-reduction won’t apply. Super-β, on the other hand, inlines a λ term based on which
closures flow to an f reference—it is a semantic criterion, for which the syntactic pattern of a β-redex is simply a safe
approximation.

The trouble with flow-driven inlining comes from environments. When a closure is created, it captures one
environment. When the closure is invoked, the call happens in another environment. This matters because compilers
do not inline closures; they inline λ terms. Consequently, an inlining is safe only when the environment at the point of
the call would have been equivalent to the environment at the point of closure creation. Determining when these two
environments are consonant is the crux of the Super-β optimisation.

One reason Super-β matters is that it directly addresses an important use of λ expressions in functional languages:
as “carriers” of data. We make a closure over some values at point a and ship the closure to an application at point
b. If the free variables captured at point a are visible at point b and have the same bindings, we can eliminate the
overhead of packaging up a closure—perhaps even permitting the values to be communicated from a to b in registers.
Opportunities for Super-β tend to arise when other inlining steps move the application point b into some common
scope with a, or when the data-flow path the closure takes from a to b is non-trivial. We have been stumbling over
possible applications of Super-β for years, ranging from optimising loops to fusing coroutines [14]. In this paper, we
bring these optimisations into reach.

2.1. An example

Consider the example code in Fig. 1, a generic doubly nested loop where the inner loop calls a closure over the
outer loop’s iteration variable. It is safe to inline the λ term labelled * at the bracketed call site within the loop body.
However, β-reduction fails to do so due to the loops, and k-CFA fails due to the free variable i. Thus, two standard
inlining techniques fail right where compiler optimization is at its most crucial—the body of a nested loop. ∆CFA,
the analysis we will be developing, can prove the safety of this inlining. It does so through an environment analysis
which shows that i always has the same value in the closure and at the bracketed call site.

3. Outline

We’ll trace out the following path in the course of this paper.

• Tools: CPS and frame strings
We’ll begin by developing two tools that are the key to our attack on the problem. The first is a CPS-based
intermediate language, which provides a universal representation for control and environment in the form of λ
terms and function call. By using CPS, our principal concern—function call—becomes our only concern.

We’ll then turn to classic inter-procedural analysis work for a tool that allows us to represent and reason about
function-call behaviour in a program: procedure strings. It turns out that classic procedure strings aren’t quite the
right thing for our needs, so we’ll define a variant for our purposes, frame strings, which allow us to focus on the
environment-allocation steps of a functional computation.
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• Models: Stack management and environment allocation
Our tools give us the means to build models of the semantic elements we are studying: CPS gives us a fine-grained
structure in which control and environment-allocation steps occur; frame strings give us a precise way to describe
these steps. We’ll first informally describe how control transfer, stack management and environment allocation
occur in a CPS language. Then we will make our descriptions precise by means of a non-standard small-step
operational semantics that employs frame strings to describe them.

After defining our model, we’ll be in a position to abstract it, producing a statically computable semantics which
we can use as a conservative analysis.

• Environment theory: From frame strings to environment equivalence
Next, we will begin to extract value from our models, by developing a theory that relates the frame strings
connecting two points in a computation to conclusions about the equivalence of the environments at these two
points.

Our environment theory will allow us to capture the notion of environment equivalence with a perfectly precise
condition stated in terms of frame strings; we can then develop several computable abstractions of this condition
which could be used by a compiler.

Thus our road has finally brought us to a formally justified and computable means of statically reasoning about
environment relationships in a higher-order programming language.

• Related work
We’ll conclude with a discussion of related work, pointing out the sources of many of the ideas we’ve integrated
together to produce our analysis.

4. Conventions

When we wish to draw attention to the “definitional” character of an equation, we use 1
=, to indicate that the

left-hand side is defined to be the right-hand side. For example, we might write n ≡ m 1
= n = m mod 5.

For displaying logical conjunction, we use two additional curly-brace forms:

p1
...

pn

 1
= p1 and · · · and pn

1
=


p1
...

pn

A vector is represented by a variable in boldface, e.g., b; its valid indices are 1 through length(b), inclusive. We
explicitly write the members of a vector with angle brackets: b =

〈
b1, . . . , blength(b)

〉
.

We write f |A to restrict the domain of function f to set A, and lift functions to operations over their ranges in
pointwise fashion, e.g., f + g 1

= λx . f (x)+ g(x). We write f g to “shadow” function f with g, so that

f g 1
= λx .if x ∈ dom(g) then g(x) else f (x).

The notation [x 7→ y] specifies the partial function mapping x to y; it can be extended in the natural way:
[x1 7→ y1, . . . , xn 7→ yn]

1
= [x1 7→ y1][x2 7→ y2, . . . , xn 7→ yn]. Taken together, we have the familiar function-

update notation of f [x1 7→ y1, x2 7→ y2, . . .].
The set L(r) contains all strings matching regular expression r .
If A is an unordered set, then we render it as a lattice by adding > and ⊥ elements, using equality to order the other

elements. We treat power, function, sequence and Cartesian-product sets as lattices with the natural and appropriate
meaning for the order v, the elements ⊥ and > and the operations t and u.

5. Partitioned CPS

Our analysis operates over a partitioned CPS language. This language is intended for use as an intermediate form
generated from programs written in an unrestricted, “direct-style” functional language, with user-level access to
full, first-class continuations, such as Scheme or SML/NJ. By partitioned, we mean that all the forms (variables,
call arguments, calls and λ expressions) are syntactically marked as belonging to either the “user” world or the
“continuation” world. The purpose of this partitioning is to allow recovery of the direct-style stack behaviour of
the program. Later on, we’ll develop tools that will recover environment structure from this stack behaviour.
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pr ∈ PR ::= (λ (halt) call) (program)

v ∈ VAR = UVAR + CVAR (variable)
u ∈ UVAR = a set of identifiers (user variable)
k ∈ CVAR = a set of identifiers (cont. variable)

lam ∈ LAM = ULAM + CLAM (λ expression)
ulam ∈ ULAM ::= (λ` (u∗ k+) call) (user λ expression)
clam ∈ CLAM ::= (λγ (u∗) call) (cont. λ expression)

call ∈ CALL = UCALL + CCALL (call form)
ucall ∈ UCALL ::= (h e∗ q+)̀ (user call form)
ccall ∈ CCALL ::= (q e∗)γ (cont. call form)

f , x ∈ EXP = UEXP + CEXP (function/argument call element)
h, e ∈ UEXP = UVAR + ULAM (user-call fun/arg call element)

q ∈ CEXP = CVAR + CLAM (cont.-call fun/arg call element)

ψ, κ ∈ LAB = ULAB + CLAB (label)
` ∈ ULAB = a set of labels (user label)
γ ∈ CLAB = a set of labels (cont. label)

Fig. 2. Partitioned CPS.

The effect of this partition is to make the continuation part of continuation-passing style explicit in the syntax.
We adopt the term user world, as continuation forms cannot be expressed directly by the programmer (the user) in
the pre-CPS-converted, direct-style source code. (What Scheme programmers think of as continuations, that is, the
values created by the call-with-current-continuation procedure, are, with respect to this partition, still user-
world values. They just happen to be user-world procedures that internally capture a continuation-world value.) When
translating from direct-style code to CPS, each λ expression from the source maps to a user λ expression, while return
points or evaluation contexts in the direct-style form are mapped to continuation λ expressions. The CPS conversion
also provides two static invariants: only user procedures take continuation arguments, and every user procedure takes
at least one. So continuations are never passed to continuations.

Fig. 2 shows the resulting grammar. Code points are marked by means of unique labels attached to λ expressions
and call sites. We assume two distinct sets of labels: one for user-world items and one for continuation-world items;
this is how we mark our user/continuation partition. (It also means that we can treat the two worlds uniformly simply
by ignoring labels, which is convenient at times.) A user λ expression, ulam, takes a user-world label `; its formal
parameters are partitioned into zero or more user-world parameters, the u, and one or more continuation parameters,
the k. Having multiple continuation parameters allows us to encode conditional-control operators as functions and
also permits us easily to encode multi-return function calls [13] if the source language provides them. A continuation
λ expression, clam, is marked with a continuation-world label, γ , and has only user-world formals. Call sites, ucall
and ccall, are marked and partitioned in a similar way. We assume the variables in a program are alphatised, that is,
that they have been renamed as needed to ensure that no variable is bound by two λ terms.

The function free : EXP + CALL → P(VAR) returns the free variables for a given term. We also define a
function Lpr : LAB → EXP + CALL, which for a program pr maps a label to its associated term. Likewise,
L−1

pr : EXP + CALL → LAB maps a term to its associated label: for term t or label ψ in pr, Lpr(L−1
pr (t)) = t

and L−1
pr (Lpr(ψ)) = ψ . The function Bpr ∈ LAB → P(VAR) maps the label of a λ expression to the variables

it binds. For instance, Bpr(`) = {x, y, k} if (λ` (x y k) call) is a term in pr. For compactness, let Bpr(S) mean⋃
ψ∈S Bpr(ψ). When the program pr is clear from context, we omit it from the notation.

5.1. Translating to CPS

To clarify the user versus continuation distinction, Fig. 3 shows the syntax of a simple direct-style source
language, and its call-by-value translation to our user/continuation-partitioned CPS form. The source language and
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u ∈ UVAR = a set of identifiers (variable)
abs ∈ ABS ::= (λ (u) term) (fun. abstraction—λ expression)
app ∈ APP ::= (term1 term2) (function application)

term ∈ TERM = ABS + APP + UVAR (term)

T [[(λ (u) term)]] q 1
= [[(q (λ`′ (u k′) call))γ ′ ]], where call = T term k′

T u q 1
= [[(q u)γ ′ ]]

T [[(term1 term2)]] q 1
= T term1 [[(λγ ′ (u′) call)]]

where call = T term2 [[(λγ ′′ (u′′) (u′ u′′ q)̀ ′)]]

Fig. 3. The syntax of a simple direct-style language and its translation to partitioned CPS. Primed variables and labels are assumed to be fresh.

the translation are kept simple; features such as multiple parameters or multiple continuations can be added without
difficulty.

The function T : TERM → CEXP → CCALL takes a direct-style source term along with a continuation expression
representing the term’s waiting context; it produces a CPS call form that represents the evaluation of the term and
delivery of the resulting value to the waiting context. The translation shows where and how continuation-world
objects emerge. Note how every λ term in the target form that has a user-world label l corresponds to one in the
original source term. Similarly, each appearance of a user-world call form (marked with an l label) in the target form
has a corresponding call form in the source. Note, also, how trivial the partitioning bookkeeping is: erasing the label
annotations reduces T to the “classic” CPS transform.

To demonstrate the expressiveness of CPS, note that some terms that cannot be written in direct style, such as
call/cc, are simple combinators in CPS:

call/cc
1
= (λ` (f cc) (f (λ`′ (x k) (cc x)γ ) cc)̀ ′′).

CPS conversion has a vast literature. Danvy and Nielsen [4] provide a good overview of the relationships between
known conversion techniques.

6. Procedure strings and stack models

As our near-term goal is the analysis of stack behaviour (on the road to analysis of environment structure),
procedure strings mark a good place to start the journey. A procedure string, as used by Sharir and Pnueli [11],
or Harrison [6], is the sequence of call and return actions performed during some segment of computation.

For example, were we to trace the sequence of actions involved in the recursive computation of the factorial of one,
given the definition

(define (factorial n)
(if (= n 0) 1 (* (factorial (- n 1)))))

it might produce the sequence “call factorial, call =, return =, call -, return -, call factorial, call =, return =,
return factorial, call *, return *, return factorial”. Notice how the call/return entries properly nest like brackets.

If we have a simple model of procedures that says a call allocates a stack frame, and a return pops it, then
a procedure string also models the operations performed on the stack. Thinking in terms of the stack operations
(push/pop) gives us a “space-like” view of the computation, as opposed to the “time-like” viewpoint of the control
operations (call/return). A space-like view can be useful when focussing on environment structure: variable bindings
live in frames (or, at least, that is where they are born).

However, in functional languages, this call/return ≡ push/pop correspondence breaks down somewhat. For
example, we implement iteration in a functional language with tail calls. Such an iteration performs many calls without
growing the stack. It is a better model, then, to think of such a computation as performing many calls, but only a single
return. When we add more complex control operators, such as access to full continuations, the simple call/return model
breaks even further. In short, call/return steps no longer nest with simple “bracket-like” structure.
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(λt (n ktop) ; Iterative factorial
(letrec ((f (λf (m a k)

(%if0 m
(λ1 () [k a])
(λ2 () (- m 1 (λ3 (m2)

(* m a (λ4 (a2) (f m2 a2 k)
)))))))))

(f n 1 ktop)))

(λt (n ktop) ; Recursive factorial
(letrec ((f (λf (m k)

(%if0 m
(λ1 () [k 1])
(λ2 () (- m 1 (λ3 (m2)

(f m2 (λ4 (a) (* m a k)
)))))))))

(f n ktop)))

Fig. 4. Labelled CPS factorial functions: iterative and recursive. Continuation λ expressions are labelled with integers; user λ expressions, with
letters. Continuation items have also been distinguished by using square brackets to delimit continuation calls (that is, returns), and underlining
continuation λ’s. Continuation variables are those beginning with the letter “k”.

However, no matter what the call/return behaviour is, it is still true that the associated stack operations nest properly.
That is, if we push frame a, then push frame b, the two frames will necessarily be popped in the order “b, then a”.
This suggests that perhaps we could get a more precise model of program behaviour for functional programs if we
took models based on procedure strings and changed to abstractions whose nesting and cancellation properties were
driven by analogues to stack behaviour.

This takes us from the classic, “FORTRAN-like” view of function call to the view promoted by Steele [16],
who summarised the shift in perspective with the mantra “argument evaluation pushes stack”. This is even more
explicitly captured by CPS representations, where the model becomes “continuations are closed on the stack”. Thus,
our attention is directed towards the stack-management operations associated with program execution—in particular,
with ones that work with our CPS framework.

6.1. A CPS stack model

It’s a common misunderstanding that language implementations based on CPS intermediate representations do not
employ a run-time stack. This is not the case; in fact, two of the earliest Scheme compilers ever written, Rabbit [16]
and T’s ORBIT [7] were CPS-based compilers that managed a run-time stack, just as a standard C or Pascal compiler
might. The key to doing so is noting that the compiler can distinguish between continuation and non-continuation
values, as we have made explicit with our CPS grammar; stack operations are then precisely the management of
continuation terms.

As an illustrative example, consider the pair of factorial functions defined in Fig. 4. The top definition is iterative;
the bottom one, recursive. We have extended our core syntax by adding a letrec form for constructing loops, as
opposed to, say, writing out the Y combinator. The %if0 primitive function is a conditional, taking one user value and
two continuations as arguments; it branches to the first continuation if the value is zero, and to the second continuation,
if not.

The mechanics of stack management in a CPS setting are as follows. When a CPS call expression is executed,
it is done in the context of free variables, some of which may be continuations. In our stack model, a continuation
is a closure whose environment is allocated as a frame on the stack (while a user procedure is a closure whose
environment is allocated as a record on the heap). Thus, a continuation is a code/environment pair (c, s): the c value
points to the code to be executed when we invoke the continuation; the s value points into the stack. When we invoke
the continuation, we reset the stack-pointer register to s and then jump to c. While the continuation runs, its code
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may access the variables over which it is closed by offsets from the stack register. Thus, we speak of “calling” user
procedures, but “returning” to continuations. We can simplify this representation one step further by storing the c
value in the stack frame itself, reducing the continuation from a (c, s) pair to just the single value s.

Assume that we pass the user-world arguments to procedures (both user procedures and continuations) on the stack.
Thus, as we transfer control to a procedure or back to a return point, we push a frame to hold the values being passed
to the procedure, or returned to the return point, respectively. The issue we must first settle, then, is when to pop stack
frames. A tail call will pop the current frame just before the new-frame push and control transfer, as will a normal
return (encoded as a continuation call). A non-tail call, on the other hand, will not first pop the current frame.

During execution of a call expression, the key invariant the stack maintains is that the frame just below the
current one is either the currently executing continuation’s closure frame, if the call expression is executing within
a continuation λ; or a continuation bound to a variable occurring free in the call expression, if the call expression
is executing within a user λ. This is just another way of saying this frame is live. As an example of the former
case, consider the inner call expression on line 6 of the recursive factorial: (* m a k). This call occurs inside the
continuation λ4, so the frame on top of the stack as the call executes is the one that pushed its argument a, which
happened when the recursive call to f returned its value to λ4; the frame immediately under the a frame is the frame
that comprises the λ4 closure—that is, the stack at the time we made the recursive call to f. This frame is needed
now—that is, it is live—because it holds the free variables of λ4, which are needed to execute its body, the call we are
currently performing.

As an example of the latter case, consider the stack as we execute the %if0 call in the iterative code. This call
occurs inside λ f , so the top frame on the stack contains the values for its user variables m and a. The live-frame
invariant tells us that the frame immediately under this frame is the one for continuation k; it may be needed in the
future (by means of one of the references to k occurring free in the %if0 call). Maintaining this liveness invariant is
what drives our stack-popping policy when we perform calls.

When a procedure call (h e∗ q+)̀ happens, we must first evaluate the procedure (h) and its arguments (the e and
q). The continuation arguments, q , are either variable references or λ expressions. Consider a simple tail call. It is
encoded in CPS by a call with a single continuation that is a variable. This variable’s value is a stack closure; that is,
it points to a stack frame. The live-frame invariant implies that this frame is the one immediately under the current
frame. So we can (and must, to preserve the invariant) pop the current frame off the stack, before doing the frame
push and control transfer.

For example, consider the call (f m2 a2 k) on line 6 of the iterative factorial code. The continuation argument in
this call is a variable, k; hence the call is a tail call, and we must pop the stack back to k before pushing the arguments
m2 and a2.

On the other hand, a simple non-tail call is encoded in CPS as a call with a single continuation that is a λ expression.
Evaluating this continuation λ expression captures the current frame in the created closure. Since we are passing this
continuation to the target procedure, it is live and so cannot be popped—just as we expect from a non-tail call.

For an example of a non-tail call, consider the call (f m2 (λ4 (a) (* m a k))) on line 6 of the recursive
factorial code. Here, the continuation argument is a λ expression; when we later return to this continuation, it will
need to access the current values of *, m and k (that is, its free variables). So we must retain the current stack frame
for this new continuation we are creating from (λ4 (a) (* m a k)).

In either case—a tail call or non-tail call—we then allocate a fresh frame to hold the arguments being passed, and
jump to the procedure. These two scenarios generalise to the multiple-continuation case. If one or more continuations
are λ expressions, we close them over the current frame, and do not pop it: a non-tail call. If all are variable references
to older frames, we instead restore the stack so that the outermost such frame is on top: a tail call.

To execute a continuation return (q e∗)γ , we first evaluate the continuation form and its arguments. If the
continuation q is a variable we reset the stack back to the continuation value, then allocate a new frame for the
arguments being passed, then jump to the continuation’s code.

For example, consider the return call [k 1] in the recursive factorial code. To execute this call, we pop the stack
back to the value k, then push a 1, creating a new frame, then jump to k’s return pc (which is likely λ4).

If the return’s continuation is not a variable, but an explicit λ expression, evaluating the λ expression closes over
the current frame; we then immediately invoke it as above. This is the degenerate case of a “let continuation”.

In short, we can “read” our stack management policy from the syntactic structure of each call we perform as we
execute a program: if a user call’s continuation argument is a variable, then the call is a tail call and should pop the
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p, q ∈ F = Φ∗ (Frame string)

φ ∈ Φ ::= 〈
ψ
t | (push)

| |
ψ
t 〉 (pop)

ψ ∈ Ψ = λ term labels

t, i ∈ Time = an infinite set of times

Fig. 5. Frame strings.

current frame before pushing a fresh one for the call; if the continuation argument is a λ term, then the call is a non-
tail call that must preserve the current frame. Examining the two example factorial functions with this stack protocol
in mind will show that the stack is managed precisely as we’d expect for an iterative factorial and a recursive one,
respectively.

Our model is slightly different from the standard model described by Steele and used in Rabbit and ORBIT in
one way: our protocol passes arguments to both user procedures and continuations on the stack, rather than in some
separate set of registers. We do this so that all variable bindings show up as stack allocation. Bear in mind the point
of this model. We aren’t actually implementing a compiler; we are just building an analysis. We are using the nested
sequences of stack operations produced by program execution as the concrete source of our analysis abstractions.

7. Frame strings

Now that we have an informal understanding of stack management, we can develop the formal machinery for
describing our stack operations. Later, in Section 11, we’ll tie this formal machinery to theorems about environment
structure. A frame string is a record of the stack-frame allocation and deallocation operations over the course of some
segment of a computation; it can equally be viewed as a trace of the program’s control flow. More precisely, a frame
string is a sequence of characters, with each character representing a frame operation (Fig. 5).

A single frame character captures three items of information about a stack operation: (1) the label ψ of the λ term
attached to that frame; (2) the time t of the frame’s creation; and (3) the action taken, either a push represented as a
“bra” 〈

·
·| or a pop represented1 as a “ket” |

·
·〉. Thus, the character 〈

l3
87| represents a call to λ expression l3 at time 87,

while |
l3
87〉 represents returning from it at some later time.

We said just previously that a |
·
·〉 action is a procedure return. However, here in our modern world that allows tail

calls and continuation invocations, what we really meant in our example is that |
l3
87〉 represents popping l3’s frame.

Perhaps this occurred because l3 was returning, but perhaps it was instead because l3 was performing a tail call, and
so we would never be returning to l3. Note, also, that if our source language provides full continuations, then it is
possible for a frame to be popped and later re-pushed, when some saved, upward-passed continuation is invoked.

Let us return to our two factorial functions to generate some example frame strings. If we use each procedure to
compute the factorial of 1, we get the frame strings

〈
t
1|

t
1〉〈

f
2|〈

%if0
3 |

%if0
3 〉〈

2
4|〈

-
5|
-
5〉〈

3
6|〈

*
7|
*
7〉〈

4
8|

4
8〉|

3
6〉|

2
4〉|

f
2〉〈

f
9|〈

%if0
10 |

%if0
10 〉〈

1
11|

1
11〉|

f
9〉

and

〈
t
1|

t
1〉〈

f
2|〈

%if0
3 |

%if0
3 〉〈

2
4|〈

-
5|
-
5〉〈

3
6|〈

f
7|〈

%if0
8 |

%if0
8 〉〈

1
9|

1
9〉|

f
7〉〈

4
10|〈

*
11|

*
11〉|

4
10〉|

3
6〉|

2
4〉|

f
2〉

respectively. Perusing the two strings will give a feeling for the connection between stack-management operations
and control flow in the execution of CPS programs. Frame strings allow us to precisely describe the stack operations
performed at various points in a program execution. For example, if we take the frame string shown above for the
iterative computation, and isolate the segment corresponding to the first trip through the loop, we get the following
trace, where the frame string is broken up to make the entries of the “stack change” column:

1 We have adopted these “bra” and “ket” brackets from the notation of Quantum Mechanics.
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Call site Description Stack change Stack

〈
t
1|

(f n 1 ktop) tail call to λf |
t
1〉〈

f
2| 〈

f
2|

(%if0 m ...) call to %if0 〈
%if0
3 | 〈

f
2|〈

%if0
3 |

%if0 internal return to λ2 |
%if0
3 〉〈

2
4| 〈

f
2|〈

2
4|

(- m 1 ...) call to - 〈
-
5 | 〈

f
2|〈

2
4|〈
-
5 |

- internal return to λ3 |
-
5 〉〈

3
6| 〈

f
2|〈

2
4|〈

3
6|

(* m a ...) call to * 〈
∗

7| 〈
f
2|〈

2
4|〈

3
6|〈

∗

7|

* internal return to λ4 |
∗

7〉〈
4
8| 〈

f
2|〈

2
4|〈

3
6|〈

4
8|

(f m2 a2 k) tail call to λf |
4
8〉|

3
6〉|

2
4〉|

f
2〉〈

f
9| 〈

f
9|

Note how nested continuations accumulate frames until removed by the final tail call.

7.1. The net operation

There are a couple of basic operations we can perform on frame strings. The operator + is the string-concatenation
operator. The operator b·c cancels out opposing, adjacent frame-character pairings until no more cancellations can be
made. That is, if 〈

ψ
t | occurs to the immediate left or right of |

ψ
t 〉 in a frame string, we may delete the pair; when no

further annihilations in p are possible, the remainder is bpc, e.g.b〈a
1|

a
1〉〈

b
2|c = 〈

b
2|. This is known as taking the net of

a frame string.2 To define the net operator formally, we first define it over length-zero strings, bεc = ε, length-one
strings, bφc = φ, and length-two strings:

b〈
ψ1
t1 |

ψ2
t2 〉c =

{
ε ψ1 = ψ2 and t1 = t2
〈
ψ1
t1 |

ψ2
t2 〉 otherwise

b〈
ψ1
t1 |〈

ψ2
t2 |c = 〈

ψ1
t1 |〈

ψ2
t2 |

b|
ψ1
t1 〉〈

ψ2
t2 |c =

{
ε ψ1 = ψ2 and t1 = t2
|
ψ1
t1 〉〈

ψ2
t2 | otherwise.

b|
ψ1
t1 〉|

ψ2
t2 〉c = 〈

ψ1
t1 |〈

ψ2
t2 |

We also give it distributivity:

bp + q + rc = bp + bqc + rc.

Lastly, we say that bpc = p if there is no string q shorter than p where bqc = bpc.
The net of a frame string is unique, i.e., the order in which cancellations are performed does not alter the net:

Theorem 7.1. The net of a frame string p is unique.

Proof. By induction on string length p. The base cases of length(p) ≤ 2 are trivial.

Base case, p = φ1φ2φ3. If at most one length-two substring is cancellable in the frame-string p, the net is clearly
unique. Thus, we must consider the case where bφ1φ2c = ε and bφ2φ3c = ε. Suppose φ1 = 〈

ψ
t |. Then φ2 = |

ψ
t 〉,

which implies φ3 = 〈
ψ
t |. Regardless of cancellation order, b〈

ψ
t |
ψ
t 〉〈

ψ
t |c = 〈

ψ
t |. An analogous argument works when we

suppose φ1 = |
ψ
t 〉.

Inductive step: Fix k. Assume ∀p : length(p) < k =⇒ bpc is unique. Let p be a frame string of length k. Pick
any two distinct length-two substrings which are cancellable. When only one or no such substring exists, this step is
trivial.
Case Substrings do not overlap. Clearly, we may cancel one substring without blocking the ability to cancel the other.
Thus, we may cancel them in either order and result in the same string, which by our inductive hypothesis, has a
unique net.

2 You may be wondering how a push action could possibly wind up on the right of its matching pop action. The answer involves the use of full
continuations.
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Case Substrings overlap. That is, we have the string p + φ1φ2φ3 + q where bφ1φ2c = ε and bφ2φ3c = ε. Using the
base case of length three, the net of this string is bp + φ1 + qc regardless of cancellation order, and this string has a
unique net by our inductive hypothesis. �

7.2. The group structure of frame strings

We can use the net operation to define an equivalence relation on frame strings: p ≡ q 1
= bpc = bqc. This

congruence ≡ partitions frame strings into equivalence classes, which form a group under concatenation. When
proving theorems about environments and designing an abstract, analysis-friendly model of frame strings, we will
use this structure to our advantage.

Theorem 7.2. Frame strings modulo the operator b·c form a group with respect to concatenation.

Proof. Let a≡

1
= {x : x ≡ a}. Over equivalence classes, the operator + becomes: A + B 1

=

{x : x ≡ α + β, α ∈ A, β ∈ B}. We must show that the four group properties hold.

(1) Closure under the operator +: First, let a ≡ α and b ≡ β. We show that a + b ≡ α+ β. We have: a + b ≡ α+ β

iff ba + bc = bα + βc iff ba + bc = bbαc + bβcc iff ba + bc = bbac + bbcc iff ba + bc = ba + bc.
With this, it is now simple to show that: a≡ + b≡ = (a + b)≡.

(2) Associativity of the operator +: From the associativity of concatenation, we get: (a≡+b≡)+c≡ = (a+b)≡+c≡ =

((a + b)+ c)≡ = (a + (b + c))≡ = a≡ + (b + c)≡ = a≡ + (b≡ + c≡).
(3) Existence of an identity, ε≡: a≡ + ε≡ = (a + ε)≡ = a≡ = (ε + a)≡ = ε≡ + a≡.
(4) Existence of an inverse: Pick any equivalence class p≡. First, we show that every string in p has an inverse p−1

by induction on the length of the string, that is, p + p−1
≡ p−1

+ p ≡ ε.
The base cases of length zero and length one are trivial.
Inductive step: Fix k. Assume ∀p : length(p) < k =⇒ ∃p−1

: p + p−1
≡ p−1

+ p ≡ ε. Split p = r + s
such that r and s have non-zero length. p has inverse s−1

+ r−1, as r + s + s−1
+ r−1

≡ s−1
+ r−1

+ r + s ≡ ε.
Now, note: p≡ + p−1

≡ = (p + p−1)≡ = ε≡ = (p−1
+ p)≡ = p−1

≡ + p≡. �

From the group structure, we have picked up an inverse operator. Operationally, p−1 reverses frame string p,
and flips each push/pop action to its opposite frame action. From this, we gain the ability to invoke group-like
transformations for frame strings under net.

Several useful properties of frame strings and their operators follow as a natural consequence of their group-ness:

bp−1
+ pc = bp + p−1

c = ε

bp + qc = ε =⇒ bqc = p−1

(p−1)−1
= bpc.

7.3. Frame strings and stacks: Two interpretations

To connect these operators back to our stack-management model, if we have a frame string p that describes the
trace of a program execution up to some point in time, then bpc gives us a picture of the stack at that time. (For
example, the stack snapshots we saw in the previous execution trace can be produced by taking the net of successive
prefixes of the frame string describing the entire trace.) Alternately, if the frame string p represents some contiguous
segment of a program’s trace, then the frame string bpc yields a summary of the stack change that occurred during the
execution of that segment.

We will, in fact, make more frequent use of this second interpretation, which connects two points in a program’s
execution, than we will of the first one. If frame string p describes some sequence of actions on the stack, then its
inverse p−1 produces the frame string that will “undo” these actions, restoring the stack to its state at the point in the
computation corresponding to what existed before the actions p were performed. This is just what we will need to
handle general continuations (as well as the more prosaic task of handling simple returns).
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trS(ε) = ε

trS(〈
ψ
t | + p) = 〈

ψ
t | + trS(p) if ψ ∈ S

trS(|
ψ
t 〉 + p) = |

ψ
t 〉 + trS(p) if ψ ∈ S

trS(〈
ψ
t | + p) = trS(p) if ψ 6∈ S

trS(|
ψ
t 〉 + p) = trS(p) if ψ 6∈ S
dir∆(p) = {re ∈ ∆ : p ∈ L(re)}
p �

S q 1
= trS(bp + q−1

c) = ε

Fig. 6. Analytic tools for frame strings.

7.4. Tools for extracting information from frame strings

In Fig. 6, we define three tools for selecting, extracting and testing structure from frame strings. The function trS
produces the trace of a frame string with respect to procedure labels in the set S by throwing away any frame action
whose procedure label is not in the set S. The function dir∆ returns the direction of its argument with respect to a
set of regular expressions ∆.3 That is, it returns the subset of ∆ whose members match the argument supplied to the
function dir∆.

Depending on the analysis or optimization we’re conducting, there are a number of sets which make sense for the
pattern set ∆. For instance, the pattern set ∆Ton =

{
〈
·
·|
∗, |

·
·〉

∗, |
·
·〉

∗
〈
·
·|
∗
}

extracts the tonicity of a string, that is:

p is push-monotonic if 〈
·
·|
∗

∈ dir∆Ton(p)
p is pop-monotonic if |

·
·〉

∗
∈ dir∆Ton(p)

p is pop/push-bitonic if |
·
·〉

∗
〈
·
·|
∗

∈ dir∆Ton(p)

We also add the notion of a string’s trace purity, which becomes useful in reasoning about environments. The
following definitions identify different kinds of string purity:

p is continuation-pure if trCLAB(p) = p
p is user-pure if trULAB(p) = p
p is S-pure if trS(p) = p

The relation �
S appears somewhat arbitrary at first, but it can be interpreted as follows: undo the net effect of q on

p; p �
S q then holds if and only if the remaining string consists solely of frame actions for procedures in S. Later

on, we show that certain frame actions—the ones that will go into S—do not change the environment in a meaningful
way, and the purpose of this relation is to ignore these frame actions. The choice of the symbol � is meant to suggest
that the right-hand side will be a net of some suffix of the left-hand side whenever we use it. (In fact, the relation has
no utility when this is not the case.)

8. A frame-string CPS semantics

In the preceding sections, we’ve (1) defined a partitioned CPS language, (2) described how its call behaviour
connects to a model of stack manipulation, and (3) defined a formal tool, frame strings, we can use to express stack
manipulation. Now we have all the pieces we need to formally describe the CPS/stack connection. That is, we can
make the model of Section 6.1 precise by defining a non-standard semantics for our CPS language that expresses stack
manipulation, using frame strings. Our semantics will be a small-step operational semantics, to expose intermediate
machine states for analysis; it will use a closure- or environment-based representation of procedures (rather than a
substitution model), as environments are our central concern.

For the frame-string semantics, the domains given in Fig. 7 are nearly identical to standard environment-based CPS
semantics domains. A telling shift in perspective (though not in the mathematics) is that we call contours times. The
key non-standard additions are: (1) closures, Clo, now carry a timestamp marking their creation time, and (2) machine

3 These regular expressions will be matching net frame strings that describe the change in the stack between two points in execution; thus the
use of the symbol ∆.
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ς ∈ State = Eval + Apply

Eval = CALL × BEnv × VEnv × Log × Time

Apply = Proc × D∗
× D∗

× VEnv × Log × Time

β ∈ BEnv = VAR⇀Time

ve ∈ VEnv = VAR × Time⇀D

proc ∈ Proc = Clo + {halt}

clo ∈ Clo = LAM × BEnv × Time

d, c ∈ D = Proc

δ ∈ Log = Time⇀F

Fig. 7. Frame-string semantics domains.

configurations include a frame-string log. The frame-string log δ for a given configuration is a function that maps
some time in the past to a frame string describing all stack actions performed since then. We should call attention to
the particular way we’ve defined the log: it’s relative, not absolute. Just as easily, we could have defined the log to
map a time t to the actions performed by the computation from start to t ; the net of this string would tell us what the
stack looked like at time t . Instead, the log tells us what has happened between time t and now; the net of this string
tells us the net effect of the intervening computation on the stack. As we’ll see later, this focus on change will be key
to exploiting the non-standard semantics for optimisation-driven analyses that focus on the relationship between two
points in a computation.

The basic semantic domains for the language are given in Fig. 7. A machine configuration is either an “eval” or
an “apply” state. In an Eval state, control is at a call site; it is given by a call expression, an environment context for
that expression, and the current log and time. We represent environments with the factoring taken from Shivers’ CFA
work [12]: an environment is split into a “variable environment”, ve ∈ VEnv, and a “binding environment”, β ∈ BEnv.
A binding environment maps a variable to a time stamp, the time its binding was made. A variable environment
records all bindings that have occurred during the execution of the program. Thus it maps a variable and a binding
time to its value for that time. In an Apply state, control is moving into a user function or a continuation; it is given by
the procedure to apply, a vector of user-world arguments, one of continuation arguments, the single-threaded variable
environment, and the current log and time.

Remembering that our goal is to prove environment equivalence, we can now formally preview what we want to
prove. Given two factored environments, (β1,ve1) and (β2,ve2), we want to show that ve1(v, β1(v)) = ve2(v, β2(v)).
Because the variable environment increases monotonically during execution, either ve1 v ve2 or ve2 v ve1, and
hence, we can show that v is equal between these two environments just by showing β1(v) = β2(v). As a result, our
forthcoming environment theorems need not mention the variable environment at all. More importantly, this factoring
lets us determine the equivalence of two environments for some variable without ever knowing what the value(s) of
that variable may be within them.

The set of denotable values, D, is the same as the set of procedures. A member of the set Proc is a procedure:
either a closure or the halt continuation. We represent a closure clo with a λ term, plus the binding environment β
giving the bindings of its free variables, plus a third component: the birth date of the closure. This birth date is the
time the λ expression was evaluated, producing the closure. A closure (lam, β, t) can represent either a user closure,
if lam ∈ ULAM, or a continuation closure, if lam ∈ CLAM. For the contour set Time, we assume some ordered,
denumerable set, and write t0 for the start time at which program execution begins. We advance time with the tick
function; this function may take additional arguments beyond the current time as an aid to the analysis we are trying
to capture with our semantics, e.g., tick : Time × State → Time.

Fig. 8 contains the auxiliary functions used in our semantics. The functionA : BEnv → VEnv → Time → EXP ⇀
D takes an argument and returns its value in some context given by ve, β and t . If the expression is a variable, the
functionA looks it up in the current environment; if the argument is a λ expression, the functionA uses it to construct
a closure. The function ageδ : Proc → F produces the “life history” of a continuation: it takes the birth-date of the
closure, t , and uses it to index the log. The halt continuation is handled by defining its birth as the beginning of time.
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A β ve t lam = (lam, β, t)
A β ve t v = ve(v, β(v))

ageδ(halt) = δ(t0)
ageδ(clam, β, t) = δ(t)

youngestδ
〈
proc1, . . .

〉
= Shortest

{
ageδ(proc1), . . .

}
I(pr) = ((pr, [], t0), 〈〉, 〈halt〉, [], [t0 7→ ε], t0)
V(pr) = {ς : I(pr)⇒∗ ς}

Fig. 8. Auxiliary definitions for the concrete analysis.

(
[[( f e∗ q∗)κ ]], β, ve, δ, t

)
⇒ (proc,d, c, ve, δ′, t)

where



proc = Aβ ve t f
di = Aβ ve t ei
c j = Aβ ve t q j

∇ς =

{
(ageδ proc)−1 f ∈ CEXP
(youngestδ c)−1 otherwise

δ′ = δ + (λt.∇ς)

length(d) = length(u) length(c) = length(k)(
([[(λψ (u∗ k∗) call)]], β, tb),d, c, ve, δ, t

)
⇒ (call, β ′, ve′, δ′, t ′)

where


t ′ = tick(t)
β ′

= β[ui 7→ t ′, k j 7→ t ′]
ve′

= ve[(ui , t ′) 7→ di , (k j , t ′) 7→ c j ]

∇ς = 〈
ψ

t ′ |

δ′ = (δ + (λt.∇ς))[t ′ 7→ ε]

Fig. 9. The transition relation ς ⇒ ς ′.

The function youngest : Proc∗
→ F takes a vector of continuations, and returns the shortest such “life history”—that

is, the frame string representing the life-span of the youngest continuation in the vector.
The function I : PR → State maps a program into the machine’s initial state. Final states are apply states where the

procedure to be applied is the halt continuation. However, as our interest is program analysis, we are less interested
in a computation’s final state than the entire set of states comprising its execution trace. Thus we define a collecting
semantics with the function V : PR → P(State), which maps a program to the entire set of states through which
its execution evolves. We write ς ⇒ ς ′ to say that state ς steps to state ς ′ under the machine’s small-step transition
relation ⇒.

The heart of the semantics is given by the two rules of Fig. 9 defining the transition relation: one axiom each for
Eval and Apply machine configurations. The call rule evaluates the elements of the call, and transitions to an apply
state, where the procedure will be applied to the argument values. The apply rule binds the variables of the procedure’s
λ expression, then transitions to a call state, where the λ expression’s body will be evaluated in the new environment.
What’s of interest in this simple, otherwise standard system is the extra machinery to manage the stack, in the form of
updates to the log. Most of the work happens in the call rule, in the calculation of the stack change ∇ς . It is managed
just as described in Section 6.1. The expression f in the procedure position of the call is evaluated to the value proc.
If the expression f is a continuation ( f ∈ EXPC), then this call will reset the stack to the stack at the time of the
procedure proc’s creation. The function age tells us everything that has happened to the stack since the procedure proc
was born (that is, since its frame was allocated on the stack). Inverting this frame string provides the series of actions
that must be performed on the stack to revert it back to that state. Recall that continuation invocation restores stack;
this is where the restoration happens. In the standard case of a simple return, all of this machinery amounts to a single
pop action. But if we were invoking a continuation to “throw” outwards in an exception-like manner, we might return



M. Might, O. Shivers / Theoretical Computer Science 375 (2007) 137–168 151

over multiple frames, and thus our ∇ς action might consist of multiple pop actions. More exotic still, if we were
invoking a continuation that had been passed upwards past its dynamic context, the action could include push actions
to restore previously-popped frames. Finally, if the continuation is a “let continuation”, that is, if the expression f is
a λ expression that we are invoking at its point of appearance, the frame action is the empty string: the continuation
will run in the current stack context.

On the other hand, the form f might be a user expression, rather than a continuation. If so, it won’t evaluate to a
stack pointer as a continuation would, and so doesn’t require any action on the part of our stack-management policy.
However, user procedures are passed continuations as arguments: these are the q j arguments in the call form. These
expressions evaluate to the continuations c j . If we think of these continuations c j as stack pointers, we want to reset
the stack back to the outermost such pointer, the high-water mark that will preserve all of these continuations. Again,
the function youngest computes this for us. It’s worth considering, for a moment, how this is done, as it exploits our
relative (as opposed to absolute) view of the stack, as well as the relation between our time-like and space-like view
of the computation.

The mechanism we are using to track the stack is the log δ, which tells us, for time t , everything that has happened
to the stack since that time t . Now, given a set of continuations or live stack frames, the outermost one (a space
criterion) must be the youngest one (a time criterion): the stack is a LIFO mechanism. The function youngest could
choose this frame based on its birth-date. However, we plan to abstract this semantics, and our abstraction will destroy
the orderedness of time, so this tactic is too fragile for our purposes. Instead, we switch back to space-like criteria.
The function youngest equivalently makes its choice by returning the shortest frame string: the frame with the shortest
“life story” is clearly the youngest frame.

Consider what happens when a non-tail call is performed. A non-tail call is one in which a continuation argument
q is a λ term (as opposed to a variable reference). In this case, evaluating the argument q with the function A will
capture the current time t in the continuation closure’s tuple (q, β, t). Since this newborn value is as young as it is
possible to be, the ∇ς frame-string change will be the empty string. So the call will not first pop the current frame off
the stack, as a tail-call would.

In contrast, a tail call is one where all the arguments q j are variable references. Evaluating these variables with
the function A will produce older continuations that were born at previous times. This will cause the (youngestδ c)−1

expression to produce a frame string whose operations will specify some stack adjustment, in the form of |
ψ

t ′ 〉 pop
characters. Thus we will pop frames off the stack as we perform the call: this is a tail call.

Once we’ve computed the stack change needed, we update the log so that any future fetch from it will produce an
answer with this new segment of actions appended. (By δ + (λt.∇ς), we mean λt.(δ(t)+ ∇ς).)

The log maintenance for the apply rule is much simpler. When a procedure is applied, we push a frame for its
arguments: 〈

ψ

t ′ |. (Pleasantly enough, it doesn’t matter whether the procedure being applied is a user procedure or a
continuation.)

The net effect of this stack-maintenance machinery is to obey our protocol for functional languages with proper
tail calls and even full continuations. A simple call pushes a frame; a simple return pops a frame. A tail call first pops
a frame, then pushes one. Exotic uses of continuations do what is needed to be consistent with the contract. Once
again, it’s worth emphasizing that these two rules give us a mechanism that enormously generalises “function call”,
allowing us to handle every form of control that occurs in a program, from basic-block sequencing to coroutines.

8.1. Frame-string structure

At this point, it’s worth proving (within this semantics) that the net of any intermediate frame string has pop/push-
bitonic structure. This knowledge allows for a leaner abstraction of frame strings later.

Theorem 8.1. Let the predicate P on machine states be

P(. . . , δ, t) 1
=

∀t1 ≤ t2 ≤ t : ∃p :

{
δ(t1) = p + δ(t2)
bpc is pop/push-bitonic

∀t1 ≤ t : bδ(t1)c is pop/push-bitonic.

Then, ∀ς ∈ V(pr) : P(ς).
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Proof. The proof proceeds by induction over transitions between states. The base case for the initial state is trivial.
Inductive step: Assume P(ς) and ς ⇒ ς ′. We must show P(ς ′). Let δ be the log from ς , and δ′ be the log from ς ′.
We split into cases on the structure of ς .
Case ς ∈ Apply. In this case, δ′ = (δ + λt.〈ψt ′ |)[t

′
7→ ε]. Consider the first property of the three contained within

P . Let t1 ≤ t2 hold for any two times where t2 < t ′. Then: δ′(t1) = (δ + λt.〈ψt ′ |)[t
′

7→ ε](t1) = δ(t1) + 〈
ψ

t ′ | =

p + δ(t2)+ 〈
ψ

t ′ | = p + (δ + λt.〈ψt ′ |)[t
′
7→ ε](t2) = p + δ′(t2). The special case of t2 = t ′ is trivial.

Next, we turn to the second property. Clearly, bδ′(t ′)c = ε is bitonic. Now, pick any time t1 < t ′. We have:
bδ′(t1)c = bδ(t1)+ 〈

ψ

t ′ |c = bδ(t1)c + 〈
ψ

t ′ |, which is also pop/push-bitonic.
Case ς ∈ Eval. In this case, δ′ = δ+λt.δ(tb)−1 for some tb < t ′. The first property holds analogously to the previous
case. (Note that the previous case did not depend on the structure of 〈

ψ

t ′ |, which is replaced in this case with δ(tb)−1.)
Now, we focus on the second property, in cases. Pick any t1 ≤ t ′. First, suppose t1 ≤ tb. By the inductive hypothesis,

δ(t1) = p + δ(tb). In this case: bδ′(t1)c = b(δ+λt.δ(tb)−1)(t1)c = bδ(t1)+ δ(tb)−1
c = bp + δ(tb)+ δ(tb)−1

c = bpc,
which, by our inductive hypothesis, is bitonic.

Instead, suppose tb ≤ t1. By the inductive hypothesis, δ(tb) = p + δ(t1). bδ′(t1)c = b(δ + λt.δ(tb)−1)(t1)c =

bδ(t1)+ δ(tb)−1
c = bδ(t1)+ (p + δ(t1))−1

c = bδ(t1)+ δ(t1)−1
+ pc = bpc, which by our inductive hypothesis, is

bitonic. �

From this, we have the bitonic corollary:

Corollary 8.2 (Bitonicity of the Net). For the log δ of any state, for any past time t, bδ(t)c is pop/push-bitonic.

As we’ll see shortly, this regular structure is important for developing a finite, computable abstraction of frame
strings.

9. Abstract frame strings

The first step in creating a computable abstract analysis out of our concrete semantics is the development of abstract
frame strings. Any such abstraction must provide:

(1) F̂, a set of abstract frame strings;
(2) |·| : F → F̂, an abstraction operation for frame strings;
(3) ⊕ : F̂ × F̂ → F̂, an operator for “concatenating” abstract frame strings;
(4) ·

−1, an abstract “inverse” operation; and
(5) %S

⊆ F̂ × F̂, an abstract comparison relation, parameterised over a set of procedure labels S.

Coupled with the constraints we present shortly, we have a rich space of designs for abstract frame strings; for this
article, we limit ourselves to one such (rather simple) design.

To pack an infinite set of frame strings into a finite set F̂, we have to choose where to lose precision. Our
abstract frame strings do so in four places: (1) we discard actions which are not in the net of the frame string, e.g.,
|〈

a
1|〈

b
2|

b
2〉| = |〈

a
1||; (2) we discard all time information, e.g., |〈

a
1|〈

b
2|| = |〈

a
3|〈

b
4||; (3) we discard the ordering of actions

between different procedures, e.g., |〈
a
1|〈

b
2|| = |〈

b
2|〈

a
1||; and (4) we remember at most one action precisely for a given

procedure, e.g., |〈
a
1|〈

a
2|| = |〈

a
1|〈

a
2|〈

a
3|〈

a
4|| but |〈

a
1|| 6= |〈

a
1|〈

a
2||.

We abstract a frame string p to a function mapping the label for any given λ expression to a description of the net
stack motion in the frame string p for just that λ expression. Thus our set of abstract frame strings is

F̂ = Ψ → P(∆),

where the set ∆ is a set of regular expressions describing the net motion for a given procedure; here, we use

∆ 1
= {ε, 〈

·
·|, |

·
·〉, 〈

·
·|〈

·
·|
+
, |

·
·〉|

·
·〉

+
, |

·
·〉

+
〈
·
·|
+
}.

For example, |〈
a
1|〈

a
2|〈

b
3|| = (λψ.{ε})[a 7→ {〈

·
·|〈

·
·|
+
}, b 7→ {〈

·
·|}]. Note that there is no regular expression in the set ∆

for the many-pushes-many-pops pattern 〈
·
·|
+
|
·
·〉

+, or any other exotic combination for that matter. By Corollary 8.2,
any frame string generated by the concrete analysis is covered by the patterns in ∆, even if we allow for full user
continuations.
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Table 1
Abstract frame strings are concatenated with the cat function

cat ε 〈
·
·| 〈

·
·|〈

·
·|
+

ε {ε} {〈
·
·|} {〈

·
·|〈

·
·|
+
}

〈
·
·| {〈

·
·|} {〈

·
·|〈

·
·|
+
} {〈

·
·|〈

·
·|
+
}

〈
·
·|〈

·
·|
+

{〈
·
·|〈

·
·|
+
} {〈

·
·|〈

·
·|
+
} {〈

·
·|〈

·
·|
+
}

|
·
·〉 {|

·
·〉} {ε, |··〉

+
〈
·
·|
+
} {〈

·
·|, 〈

·
·|〈

·
·|
+, |··〉

+
〈
·
·|
+
}

|
·
·〉|

·
·〉

+
{|

·
·〉|

·
·〉

+
} {|

·
·〉, |

·
·〉|

·
·〉

+, |··〉
+
〈
·
·|
+
} ∆

|
·
·〉

+
〈
·
·|
+

{|
·
·〉

+
〈
·
·|
+
} {|

·
·〉

+
〈
·
·|
+
} {|

·
·〉

+
〈
·
·|
+
}

cat |
·
·〉 |

·
·〉|

·
·〉

+
|
·
·〉

+
〈
·
·|
+

ε {|
·
·〉} {|

·
·〉|

·
·〉

+
} {|

·
·〉

+
〈
·
·|
+
}

〈
·
·| {ε} {|

·
·〉, |

·
·〉|

·
·〉

+
} {〈

·
·|〈

·
·|
+, |··〉

+
〈
·
·|
+
}

〈
·
·|〈

·
·|
+

{〈
·
·|, 〈

·
·|〈

·
·|
+
} ∆ − {|

·
·〉

+
〈
·
·|
+
} {〈

·
·|〈

·
·|
+, |··〉

+
〈
·
·|
+
}

|
·
·〉 {|

·
·〉|

·
·〉

+
} {|

·
·〉|

·
·〉

+
} {|

·
·〉

+
〈
·
·|
+
}

|
·
·〉|

·
·〉

+
{|

·
·〉|

·
·〉

+
} {|

·
·〉|

·
·〉

+
} {|

·
·〉

+
〈
·
·|
+
}

|
·
·〉

+
〈
·
·|
+

{|
·
·〉, |

·
·〉|

·
·〉

+, |··〉
+
〈
·
·|
+
} {|

·
·〉, |

·
·〉|

·
·〉

+, |··〉
+
〈
·
·|
+
} ∆

It might seem that allowing an abstract string to return sets of regular expressions is unnecessary, as the abstract
string |p| for any concrete frame string p will always match only one member of the pattern set ∆ for each procedure.
However, we require sets when concatenating two abstract frame strings, which degrades precision.

We define our abstraction operator with

|p|
1
= λψ.dir∆(tr{ψ}bpc).

For brevity, we use the notation |〈
ψ
· || in place of

⊔
t |〈
ψ
t ||.

We induce a definition for abstract concatenation ⊕ with the following constraint:

|p| v p̂ and |q| v q̂ =⇒ |p + q| v p̂ ⊕ q̂.

We define the operator ⊕ to be the most precise operator which satisfies the constraint, that is

p̂ ⊕ q̂ 1
= λψ.{̂a ∈ cat(̂a1, â2) : â1 ∈ p̂(ψ) and â2 ∈ q̂(ψ)},

where the function cat is defined in Table 1. (Readers familiar with Harrison’s work [6] are cautioned that this
operation behaves differently than Harrison’s ⊕, as abstract frame strings are an abstraction of a group, while
Harrison’s abstract procedure strings are an abstraction of a monoid.)

The following theorem establishes the correctness of our abstract concatenation operator:

Theorem 9.1. If |p| v p̂ and |q| v q̂, then |p + q| v p̂ ⊕ q̂.

Proof. Let p, q ∈ F and let p̂, q̂ ∈ F̂ . Assume |p| v p̂ and |q| v q̂. We will show that for any ψ , |p + q|(ψ) ⊆

(̂p ⊕ q̂)(ψ). Choose a ψ ∈ Ψ . From this:

|p + q|(ψ) = dir∆(tr{ψ}bp + qc)

= dir∆btr{ψ}(bpc + bqc)c

⊆ cat(dir∆(tr{ψ}bpc), dir∆(tr{ψ}bqc))

=
{̂
a ∈ cat(̂a1, â2) : â1 ∈ tr{ψ}bpc and â2 ∈ tr{ψ}bqc

}
⊆ {̂a ∈ cat(̂a1, â2) : â1 ∈ p̂(ψ) and â2 ∈ q̂(ψ)}

= (̂p ⊕ q̂)(ψ). �
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Similarly, we define the inverse operation ·
−1 to be the most precise operator satisfying

|p| v p̂ =⇒ |p−1
| v (̂p),−1

which is:

p̂−1 1
= λψ.map

 ε 7→ ε, 〈
·
·| ↔ |

·
·〉,

〈
·
·|〈

·
·|
+

↔ |
·
·〉|

·
·〉

+,

|
·
·〉

+
〈
·
·|
+

↔ |
·
·〉

+
〈
·
·|
+

 (̂p(ψ)).
Several abstract comparison relations are induced by the constraint

|p| v p̂ and |q| v q̂ and p̂ %S q̂ =⇒ bpc �
S

bqc.

We choose the following:

p̂ %S q̂ 1
= ∀ψ ∈ S : (̂p ⊕ q̂−1)(ψ) = {ε}.

Correctness comes from the following theorem:

Theorem 9.2. If |p| v p̂ and |q| v q̂ and p̂ %S q̂, then bpc �
S

bqc.

Proof. Suppose |p| v p̂ and |q| v q̂ and p̂ %S q̂. By definition, bp + q−1
c v p̂ ⊕ q̂−1. Now, let ψ be a member of S.

From the above, dir∆(tr{ψ}bp + q−1
c) ⊆ {ε}, which in turn implies that tr{ψ}bp + q−1

c = ε. �

Before proceeding, pause and note what a strong guarantee an abstract frame-motion set of {ε} makes. Our ability
to make conclusions about the concrete dynamic semantics will, in general, spring from finding this particular, tightly
constraining value.

We will require the following lemmas when dealing with the correctness of our forthcoming analysis:

Lemma 9.3. If p̂1 v p̂3 and p̂2 v p̂4, then p̂1 ⊕ p̂2 v p̂3 ⊕ p̂4.

Lemma 9.4. ( p̂1 ⊕ p̂2) t ( p̂3 ⊕ p̂4) v ( p̂1 t p̂3)⊕ ( p̂2 t p̂4) .

10. ∆CFA

With our frame-string abstraction in place, the rest of our abstract semantics, which we call ∆CFA, follows
straightforwardly. At the top level, there are three components to the semantics:

(1) Ŝtate, a finite set of abstract states;
(2) Î : PR → Ŝtate, a function mapping programs to initial states; and
(3) ≈>⊂ Ŝtate × Ŝtate, a transition relation.

Using these, we define the set of all visited abstract states for a program pr:

V̂(pr) 1=
{
ς̂ : Î(pr) ≈>∗ ς̂

}
.

We define the state space Ŝtate and its associated component domains in Fig. 10. For the most part, these domains
correspond closely to their concrete counterparts. The notable exceptions are the set T̂ime, which is now a finite set,4

and the set of abstract denotables D̂, which is now the power set of abstract procedures. By convention, we use the
symbol d̂ for user-world values of the set D̂, and the symbol ĉ for continuation-world values. Observe that the state
space of ∆CFA is finite, which makes it trivial to show that the function V̂ is computable.

The function I abstracts to

Î(pr) 1= ((pr, [],̂ t0), 〈〉, 〈{halt}〉, [], [̂t0 7→ |ε|],̂ t0).

4 Correctness is independent of the choice of T̂ime, but precision is not.
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ς̂ ∈ Ŝtate = Êval + Âpply

Êval = ĈALL × B̂Env × V̂Env × L̂og × T̂ime

Âpply = P̂roc × D̂∗
× D̂∗

× V̂Env × L̂og × T̂ime

β̂ ∈ B̂Env = VAR → T̂ime

v̂e ∈ V̂Env = VAR × T̂ime → D̂

ĉ, d̂ ∈ D̂ = P(P̂roc)

p̂roc ∈ P̂roc = Ĉlo +
{
ĥalt

}
ĉlo ∈ Ĉlo = L̂AM × B̂Env × T̂ime

δ̂ ∈ L̂og = T̂ime → F̂

t̂ ∈ T̂ime = a finite set of abstract times

Fig. 10. ∆CFA domains.

In Fig. 11, we define the transition relation for ∆CFA. The auxiliary function t̂ick : T̂ime → T̂ime need only obey
the following constraint:

|t | v t̂ =⇒ |tick(t)| v t̂ick(̂t).

The function A abstracts directly into Â : B̂Env → V̂Env → T̂ime → ÊXP:

Â β̂ v̂e t̂ f 1
=

{
{( f, β̂,̂ t)} f ∈ LAM
v̂e( f, β̂( f )) f ∈ VAR.

The easiest way to abstract the function youngest would be to have it always return the least precise abstract frame
string, >F̂ . To improve precision with only slightly more work, we can simply join over all continuation arguments:

̂youngest̂δ 〈̂c1, . . . , ĉn〉
1
= âgeδ̂ (̂c1) t · · · t âgeδ̂ (̂cn),

where the function âge : (D̂ ∪ P̂roc) → F̂ returns the abstract age (measured as an abstract frame string) of a
continuation:

âgeδ̂
{
p̂roc1, . . . , p̂rocn

} 1
= âgeδ̂∗(p̂roc1) t · · · t âgeδ̂∗(p̂rocn)

âgeδ̂∗(halt) 1= δ̂
(̂
t0

)
âgeδ̂∗

(
clam, β̂,̂ t

) 1
= δ̂

(̂
t
)
.

10.1. Correctness of ∆CFA

Before we use our analysis, we must first show that ∆CFA is a proper simulation of our concrete frame-string
semantics. Specifically, we must show that for every state visited by the concrete semantics, it has a suitable
counterpart in the set of states visited by the abstract semantics. Thus, the first task is to define what we mean by
a “suitable counterpart”. To do this, we lift the operation v over the ∆CFA domains (in the natural way), and we
lift the abstraction operator |·| to the rest of the concrete semantic domains (Fig. 12). Next, we define the simulation
relation in the set State × Ŝtate; we say that ς̂ represents ς if |ς | v ς̂ .

Theorem 10.1 (∆CFA Simulates the Concrete Analysis). If ς ∈ V(pr), then there exists ς̂ ∈ V̂(pr) such that
|ς | v ς̂ .

Sketch of Proof. The proof is by induction over the transitions. The obligations are:

(1) |I(pr)| v Î(pr); that is, both machines begin in sync.
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([[( f e∗ q∗)κ ]], β̂, v̂e, δ̂,̂ t) ≈> (p̂roc, d̂, ĉ, v̂e, δ̂′ ,̂ t)

where



p̂roc ∈ Â β̂ v̂e t̂ f
d̂i = Â β̂ v̂e t̂ ei

ĉ j = Â β̂ v̂e t̂ q j

p̂∆ =

{(
âgêδ

{
p̂roc

})−1 f ∈ CEXP(
̂youngest̂δ ĉ

)−1 otherwise
δ̂′ = δ̂ ⊕ (λ̂t.̂p∆)

length
(̂
d
)

= length(u) length(̂c) = length(k)((
[[(λψ (u∗ k∗) call)]], β̂,̂ tb

)
, d̂, ĉ, v̂e, δ̂,̂ t

)
≈>

(
call, β̂ ′, v̂e′, δ̂′ ,̂ t′

)

where



t̂′ = t̂ick(̂t)

β̂ ′
= β̂[ui 7→ t̂′, k j 7→ t̂′]

v̂e′
= v̂e t

[
(ui ,̂ t′) 7→ d̂i , (k j ,̂ t′) 7→ ĉ j

]
p̂∆ =

⊔
|t ′|=̂t′

|〈
ψ

t ′ ||

δ̂′ =
(̂
δ ⊕ (λ̂t.̂p∆)

)
t

[̂
t′ 7→ |ε|

]
Fig. 11. The abstract transition relation ς̂ ≈> ς̂ ′.

|(call, β, ve, δ, t)|Eval = (call, |β|, |ve|, |δ|, |t |)

|(proc,d, c, ve, δ, t)|Apply = (|proc|, |d|, |c|, |ve|, |δ|, |t |)

|〈d1, . . . , dn〉|D∗ = 〈|d1|, . . . , |dn|〉

|d|D = {|d|Proc}

|halt|Proc = halt

|clo|Proc = |clo|Clo

|(lam, β, t)|Clo = (lam, |β|, |t |)

|β|BEnv = λv.|β(v)|

|ve|VEnv = λ(v,̂ t).
⊔
|t |=̂t

|ve(v, t)|D

|δ|Log = λ̂t.
⊔
|t |=̂t

|δ(t)|

Fig. 12. Extending abstraction across the concrete domains.

(2) If |ς | v ς̂ and ς ⇒ ς ′, then ∃ς̂ ′
: ς̂ ≈> ς̂ ′ and |ς ′

| v ς̂ ′. That is, if a concrete state is represented, the state to
which it transitions (if any) is also represented; diagrammatically:

ς

⇒

��

|·| // |ς |
v // ς̂

≈>
���
�
�

ς ′
|·| // |ς ′

|
v // ς̂ ′

The first obligation follows easily from definitions. The second obligation follows by case-wise analysis: ς ∈ Eval or
ς ∈ Apply. �
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A natural corollary to this theorem is:

Corollary 10.2. If there exists no ς̂ ∈ V̂(pr) such that |ς | v ς̂ , then ς 6∈ V(pr).

What follows are the key lemmas for the full proof. Proofs of these lemmas are trivial, and therefore omitted.

Lemma 10.3. If β̂1 v β̂ ′

1 and β̂2 v β̂ ′

2, then β̂1β̂2 v β̂ ′

1β̂
′

2.

Lemma 10.4. If |ve| v v̂e and |ve′
| v v̂e′, then |ve ve′

| v v̂e t v̂e′.

Lemma 10.5. If |δ| v δ̂ and |δ′| v δ̂′, then |δ δ′| v δ̂ t δ̂′.

Lemma 10.6. If |δ1| v δ̂1 and |δ2| v δ̂2, then |δ1 + δ2| v δ̂1 ⊕ δ̂2.

Lemma 10.7. If |ve| v v̂e and |β| v β̂ and |t | v t̂ , then |A β ve t x | v Â β̂ v̂e t̂ x.

Lemma 10.8. If |δ| v δ̂ and |c| v ĉ then |youngestδ(c)| v ̂youngest̂δ (̂c).

11. Environment theory

We have invested a lot in reasoning about stack behaviour. Now, we translate this into the ability to reason about
environments. We’ll need to refer to the various components of states that arise during execution, so for a given
program pr, we define several families indexed by Time:

β
pr
t

1
= β such that (call, β, ve, δ, t) ∈ V(pr)

δ
pr
t

1
= δ such that (call, β, ve, δ, t) ∈ V(pr)

procpr
t

1
= proc such that (proc,d, c, ve, δ, t) ∈ V(pr)

Typically, pr is clear from context, and we omit it.
Much of our logic now plays off the fact that binding environments return times, and that we can use time for more

than simply looking up a value. For instance, given the time t ′ = βt (v):

• t ′ is the time at which v was bound.
• vet (v, t ′) is the value of v in this binding.
• βt ′ is the binding environment where the binding appeared.
• bδt (t ′)c summarises stack change since the binding was made.

Our first lemma relates a binding in some environment to the environment where that binding first appeared, which
turns out to be an ancestor.5 A key strategy for determining equivalence between two environments involves inferring
their common ancestry.

Lemma 11.1 (Ancestor). βt (v) = ββt (v)(v).

Proof. Let βt (v) = t ′. By the definition of ⇒, βt ′ = β∗
[v 7→ t ′, . . .] for some β∗. From this, ββt (v) = βt ′(v) =

(β∗
[v 7→ t ′, . . .])(v) = t ′ = βt (v). �

The following relates the environment found within a closure to the environment present at the closure’s birth; not
surprisingly, these environments are the same.

Lemma 11.2. ∀((lam, β, t), . . .) ∈ V(pr) : β = βt .

Proof. By the definitions of the argument evaluator A and the eval state schema. �

5 An environment β is an ancestor of the environment β ′ if the condition β ′
= β[vi 7→ ti ] holds for some variables vi not in the domain of the

environment β.
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(As stated here, the property is only claimed for a procedure that is about to be applied in some Apply state. In fact, it
holds for every procedure found anywhere in a machine state, but the more limited claim is all we need.)

Next, we define an interval notation from the set Time to intermediate frame strings:

[t1, t2]pr 1
= δ

pr
t2 (t1).

In other words, the frame string [t1, t2]pr is the stack change between time t1 and time t2. By induction, we get intuitive
properties such as:

Lemma 11.3. If t1 ≤ t2 ≤ t3, then [t1, t2] + [t2, t3] = [t1, t3].

The next lemma holds for the following reasoning: the apply-state schema for the concrete transition relation ⇒

always adds a fresh (and therefore uncancellable) push action, 〈
ψ

t ′ |, to the end of every interval. Thus, when we prove
that a net interval must be pop-monotonic,6 no apply state (and hence nothing at all) has occurred within this interval,
thereby forcing the times to be identical.

Lemma 11.4 (Pinch). If b[t1, t2]c is pop-monotonic, then t1 = t2.

By taking t1 = β(v) and t2 = β ′(v), we immediately get the following, the fundamental frame-string environment
theorem.

Theorem 11.5. b[β(v), β ′(v)]c = ε iff β(v) = β ′(v).

This sets up a strategy for proving equivalence: if we can infer that no net stack change happened between two
bindings of the same variable, then the bindings are identical.

Looking ahead, in ∆CFA, if we find that some abstract interval has change |ε|, then all of the concrete intervals
it represents have change ε. This implies that the abstract times defining the interval in question actually represent
the same concrete time. Discerning when abstract equality implies concrete equality is in fact the key goal of any
environment analysis.

A surprisingly useful theorem, the following lets us infer call behaviour about an interval from the frame string
describing the interval. Briefly, it states that if the net of a frame string ends with a push action for procedure ψ , then
the procedure invoked in the prior apply state was a closure over the λ expression labelled ψ :

Lemma 11.6. If b[t1, t2]c = p + 〈
ψ
t |, then proct2−1 = (L(ψ), β, tb).

Proof. This follows from the apply-state schema for ⇒. �

The next two theorems serve to let us to decompose a frame-string interval into smaller intervals. If some state
invokes a continuation, then the net frame-string change from the subsequent state to the birth of the continuation is
just a push action for the continuation:

Lemma 11.7. If the procedure invoked at time t − 1 is a continuation,

proct−1 = (L(γ ), βb, tb),

then [t − 1, t] = [tb, t − 1]
−1

+ 〈
γ
t |, and so b[tb, t]c = 〈

γ
t |.7

Proof. Immediate, by inspection of the apply-state schema. �

If the net frame-string change between two points is push-monotonic and continuation-pure, then we can find a
time that divides the interval into two such intervals where the latter one contains a single push action:

Lemma 11.8. If b[t1, t2]c = 〈
γ1
i1

| · · · 〈
γn
in

|, then ∃t :

{
b[t1, t]c = 〈

γ1
i1

| · · · 〈
γn−1
in−1

|

b[t, t2]c = 〈
γn
in

|.

6 As a common special case, note that proving an interval is empty proves that it is pop-monotonic.
7 Note that t + 1 1

= tick(t) and t − 1 1
= t ′ such that tick(t ′) = t .
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Proof. Suppose b[t1, t2]c = 〈
γ1
i1

| · · · 〈
γn
in

|. By Lemma 11.6, proct2−1 =
(
L(γn), βtb , tb

)
. By Lemma 11.7, we can say

[t2 − 1, t2] = [tb, t2 − 1]
−1

+ 〈
γn
in

|. Thus, b[tb, t2]c = b[tb, t2 − 1] + [t2 − 1, t2]c = 〈
γn
in

|. We show that t = tb satisfies
the existential quantifier. We divide into two cases:
Case tb ≤ t1.

〈
γ1
i1

| · · · 〈
γn−1
in−1

| + 〈
γn
in

| = b[t1, t2]c

= b[t1, t2 − 1] + [t2 − 1, t2]c

= b[t1, t2 − 1] + [tb, t2 − 1]
−1

+ 〈
γn
in

|c

= b[t1, t2 − 1] + ([tb, t1] + [t1, t2 − 1])−1
+ 〈

γn
in

|c

= b[t1, t2 − 1] + [t1, t2 − 1]
−1

+ [tb, t1]−1
+ 〈

γn
in

|c

= b[tb, t1]−1
+ 〈

γn
in

|c

= b[tb, t1]−1
c + 〈

γn
in

|

Thus, [tb, t1]−1
= 〈

γ1
i1

| · · · 〈
γn−1
in−1

|, and so b[tb, t1]c = |
γn−1
in−1

〉 · · · |
γ1
i1

〉. By the pinching lemma (11.4), tb = t1, which gives
us b[t1, tb]c = ε. With b[tb, t2]c = 〈

γn
tn | holding, the time tb satisfies the quantifier.

Case t1 ≤ tb.

〈
γ1
i1

| · · · 〈
γn−1
in−1

| + 〈
γn
in

| = b[t1, t2]c = b[t1, tb] + [tb, t2]c = b[t1, tb]c + 〈
γn
in

|

Hence, b[t1, tb]c = 〈
γ1
i1

| · · · 〈
γn−1
in−1

|. With b[tb, t2]c = 〈
γn
tn | holding, the time tb satisfies the quantifier. �

The next few theorems present sufficient (but not necessary) conditions to demonstrate environment equality in
specific (yet surprisingly common) cases. It’s natural to question why we even need such conditions when we already
stated a sufficient and necessary condition. The answer has to do with the imprecise nature of decidable program
analyses: the abstract analogues (developed later) to these new conditions are satisfied more easily than the abstract
analog of the fundamental theorem. In fact, we believe that there are more conditions than we give here, that is,
conditions covering special cases whose abstract analogues are more tolerant of imprecision.

Before we develop these theorems, it is instructive to review the lifetime of a binding. When a variable is bound,
one of two things will happen: (1) there will be continuation-pure net motion to the use of the variable, or (2) there
will be continuation-pure net motion to the creation of a closure capturing the variable. When a closure from (2) is
eventually applied, again, one of two things will happen: (1) there will be continuation-pure net motion to the use of
the variable, or (2) there will be continuation-pure net motion to the creation of yet another closure which captures
the variable, and thus we recur. Note how continuation-pure sequences chain together equivalent environments. The
following finite state automaton is a description of the net stack motion between the binding of a variable x and
its eventual use. The solid lines represent continuation-pure net motion, and the dotted line represents arbitrary net
motion.

bind x

|
γ
· 〉

∗
〈
γ
· |

∗

44

|
γ
· 〉

∗
〈
γ
· |

∗

**
close λ over x

Φ∗

--
invoke λ

|
γ
· 〉

∗
〈
γ
· |

∗

77

|
γ
· 〉

∗
〈
γ
· |

∗

jj use x

From this diagram, we see that continuations, which in our semantics restore an environment and then push a frame to
hold a return value, are the connective glue between equivalent environments. (Note also that user-level environment-
deepening constructs such as let and letrec would be treated like let-continuations.)

We’ll now develop the theorems that formalise the picture above. The first of these states that if the net frame-string
change between two times is solely a continuation push action, then the environment at the later time is an extension
of—by exactly the variables bound by that continuation’s λ expression—the environment from the earlier time.

Theorem 11.9 (Atomic Deepening). If b[t1, t2]c = 〈
γ

i |, then βt1 = βt2 |B(γ ).
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Proof. Assume b[t1, t2]c = 〈
γ

i |. Then, the continuation (L(γ ), βb, tb) was invoked in ςt2−1. By the definition of the
apply schema, we can deconstruct βt2 as:

βt2 = βtb [vi 7→ · · · ]

for vi ∈ B(γ ). This implies

βtb = βt2 |B(γ ).

By the decomposition Lemma 11.7, we know [t2 − 1, t2] = [tb, t2 − 1]
−1

+ 〈
γ

i | and b[tb, t2]c = 〈
γ

i |. We show that
tb = t1 by considering the cases tb ≤ t1 and t1 ≤ tb. The theorem holds when tb ≤ t1 or t1 ≤ tb. This directly implies
that βtb = βt1 .
Case tb ≤ t1. [tb, t2] = [tb, t1] + [t1, t2]. We know that b[tb, t2]c = b[t1, t2]c = 〈

γ

i |. Hence, b[tb, t1] + [t1, t2]c =

b[t1, t2]c. By the group-like properties of net frame strings, we have that b[tb, t1]c must be the identity element, ε. By
the pinching Lemma 11.4, tb = t1.
Case t1 ≤ tb. [t1, t2] = [t1, tb] + [tb, t2]. We know that b[t1, t2]c = b[tb, t2]c = 〈

γ

i |. Hence, b[t1, tb] + [tb, t2]c =

b[tb, t2]c. By the group-like properties of net frame strings, we have that b[tb, t1]c must be the identity element, ε. By
the pinching Lemma 11.4, tb = t1. �

The next theorem extends the previous theorem across an arbitrary number of continuations.

Theorem 11.10 (Push Deepening). If b[t0, tn]c = 〈
γ1
i1

| · · · 〈
γn
in

|, then βt0 = βtn |B(γ ).

Proof. Assume b[t0, tn]c = 〈
γ1
i1

| · · · 〈
γn
in

|. By the downward decomposition Lemma 11.8 and Theorem 11.9, there exist
t1, . . . , tn−1 such that:

b[t0, t1]c = 〈
γ

i1
|

b[t1, t2]c = 〈
γ

i2
|

...

b[tn−1, tn]c = 〈
γ

in
|

 =⇒


βt1 |B(γ1) = βt0

βt2 |B(γ2) = βt1
...

βtn |B(γn) = βtn−1

Substituting and solving for βtn , we get:

βt0 = βtn |B(γn)| · · · |B(γ1) = βtn |
⋂

i

B(γi ) = βtn |
⋃

i

B(γi ) = βtn |B(γ ). �

So far, we’ve been restricted to reasoning about strings that are either empty or push-monotonic and continuation-
pure, which seems constricting. Fortunately, we can use group theory to infer continuation-purity for some past
intervals using frame strings which have no restrictions on their content. The following corollary relates the
equivalence of two environments from the past, which are inferred to be separated by a continuation-pure and push-
monotonic net stack change.

Corollary 11.11. If b[t0, t2] + [t1, t2]−1
c = 〈

γ1
i1

| · · · 〈
γn
in

|, then βt0 = βt1 |B(γ ).

Proof.

[t0, t2] = [t0, t1] + [t1, t2]

[t0, t2] + [t1, t2]−1
= [t0, t1] + [t1, t2] + [t1, t2]−1

b[t0, t2] + [t1, t2]−1
c = b[t0, t1] + [t1, t2] + [t1, t2]−1

c

= b[t0, t1] + b[t1, t2] + [t1, t2]−1
cc

= b[t0, t1]c

which permits us to invoke the previous theorem. �

The payoff of this corollary is that, using only the frame-string log δt2 from time t2, we can infer the equivalence of
environments from past times t0 and t1.

Not surprisingly, there are pop-monotonic analogs and pop/push-bitonic generalizations for each of these theorems.
For instance, we have:
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Theorem 11.12 (Atomic Shrinking). If b[t1, t2]c = |
γ1
i1

〉〈
γ2
i2

|, then βt1 |B(γ1) = βt2 |B(γ2).

and, its extended version, which regularly applies to looping in CPS:

Theorem 11.13. If b[t0, tn]c = |
γ1
i1

〉 · · · |
γn
in

〉〈
γ ′

t |, then βtn |B(γ ′) = βt0 |B(γ ).

and, again, a history corollary:

Corollary 11.14. If b[t0, t2] + [t1, t2]−1
c = |

γ1
i1

〉 · · · |
γn
in

〉〈
γ
t |, then βt1 |B(γ ′) = βt0 |B(γ ).

Combining the above for bitonic strings, we have:

Theorem 11.15. If b[t0, t1]c = |
γ1
i1

〉 · · · |
γn
in

〉〈
γ ′

1
i ′1

| · · · 〈
γ ′

n
i ′m

|, then βt1 |B(γ
′) = βt0 |B(γ ).

and the inferred variant:

Theorem 11.16. If b[t0, t2] + [t1, t2]−1
c = |

γ1
i1

〉 · · · |
γn
in

〉〈
γ ′

1
i ′1

| · · · 〈
γ ′

m
i ′m

|, then βt1 |B(γ
′) = βt0 |B(γ ).

12. Super-β inlining

To prove that ∆CFA can safely support inlining, we begin by formulating a Super-β inlining condition in terms of
the partitioned CPS and the frame-string semantics:

Inlinable((κ ′, ψ ′), pr) 1
= ∀([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ ′ and (Lpr(ψ
′), βb, tb) = Aβ ve t f

then
{
ψ = ψ ′

βb|free(Lpr(ψ
′)) = β|free(Lpr(ψ

′)).

If the condition Inlinable((κ ′, ψ ′), pr) holds, then it is legal to inline the λ term labelled ψ ′ at the call site labelled
κ ′. The condition Inlinable checks that (1) all closures invoked at the call site are from the same λ term, and (2) the
environment at the call site is equivalent, up to the free variables of the λ term, to the environment within the closure.

To show the correctness of this condition, we must formally define an inlining operation and the meaning of a
program. We must then show that the meaning of the program is unchanged under the inlining operation. We define
the meaningM of a program pr to be:

M(pr) 1=
{
` : (halt, 〈(Lpr(`), βb, tb)〉, 〈〉, ve, δ, t) ∈ V(pr)

}
.

That is, the meaning of a program is a set containing the label of the closure passed to halt.

We define the inlining transformation, Replacer((κ ′, ψ ′), pr) 1= S, such that:

S v 1
= v

S[[(λψ (v1 · · · vn) call)]] 1= [[(λψ (v1 · · · vn) Scall)]]

S[[( f x1 · · · xn)κ ]]
1
=

{
[[(S f Sx1 · · · Sxn)κ ]] κ 6= κ ′

[[(Lpr(ψ
′) x1 · · · xn)κ ′ ]] κ = κ ′

The correctness theorem thus becomes:

Theorem 12.1 (Super-β is Safe). If Inlinable((κ ′, ψ ′), pr), thenM(pr) = M(S pr).

Proof. Pick an inline-candidate z = ((κ ′, ψ ′), pr), such that Inlinable((κ ′, ψ ′), pr). The proof proceeds by
bisimulation between the execution states of the original program and those of the transformed program. In order
to define our bisimulation relation, we first need some auxiliary definitions.
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First, we extend the transformation over the semantic domains:

S (call, β, ve, δ, t) 1= (S call, β, S ve, δ, t)

S (proc,d, c, ve, δ, t) 1= (S proc, S d, S c, S ve, δ, t)

S 〈d1, . . . , dn〉
1
= 〈S d1, . . . , S dn〉

S halt 1= halt

S (lam, β, t) 1= (S lam, β, t)

S ve 1
= λ(v, t).(S (ve(v, t)))

Define inverse transformation Replacer−1((κ ′, ψ ′), pr) 1= S−1, where

S−1v
1
= v

S−1
[[(λψ (v1 · · · vn) call)]] 1= [[(λψ (v1 · · · vn) S−1call)]]

S−1
[[( f x1 · · · xn)κ ]]

1
=


[[(S−1 f S−1x1 . . . S−1xn)κ ]] κ 6= κ ′

[[( f ′ x1 · · · xn)κ ′ ]]

where Lpr(κ
′) = [[( f ′ . . . )κ ′ ]]

κ = κ ′

S−1(call, β, ve, δ, t) 1= (S−1call, β, S−1ve, δ, t)

S−1(proc,d, c, ve, δ, t) 1= (S−1proc, S−1d, S−1c, S−1ve, δ, t)

S−1
〈d1, . . . , dn〉

1
= 〈S−1 d1, . . . , S−1 dn〉

S−1halt 1= halt

S−1(lam, β, t) 1= (S−1 lam, β, t)

S−1ve 1
= λ(v, t).(S−1 (ve(v, t)))

We define the norm of a state ς , written ‖ς‖, with

‖(call, β, ve, δ, t)‖Eval
1
= (call, β|free(call), ‖ve‖, t)

‖(proc,d, c, ve, δ, t)‖Apply
1
= (‖proc‖, ‖d‖D∗ , ‖c‖D∗ , ‖ve‖, t)

‖〈d1, . . . , dn〉‖D∗
1
= 〈‖d1‖D, . . . , ‖dn‖D〉

‖d‖D
1
= ‖d‖Proc

‖clo‖Proc
1
= ‖clo‖Clo

‖halt‖Proc
1
= halt

‖(lam, β, t)‖Clo
1
= (lam, β|free(lam))

‖ve‖VEnv
1
= λ(v, t).‖ve(v, t)‖D

Let S = Replacer z and S−1
= Replacer−1 z. We define a bisimulation relation R ⊆ State × State:

R(ς, ςS)
1
= ‖ς‖ = ‖S−1ςS‖ and ‖Sς‖ = ‖ςS‖.

Diagrammatically, R looks like this:

ς
‖·‖ //

S
��

‖ς‖ S−1ςS
‖·‖oo

Sς
‖·‖

// ‖ςS‖ ςS
‖·‖

oo

S−1

OO
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We must show that:

(1) R(I(pr), I(S pr)); that is, the original program and its transform start in sync with respect to R.
(2) If R(ς, ςS) then ς ⇒ ς ′ iff ςS ⇒ ς ′

S ; that is, either both states transition, or neither transitions.
(3) If R(ς, ςS) and ς ⇒ ς ′ and ςS ⇒ ς ′

S , then R(ς ′, ς ′

S); that is, the relationship R is maintained under transition.

The first two obligations follow straightforwardly from the definitions. Establishing the third condition (R
preservation), however, is what requires the use of the inverse transform and the norm. Again, diagrammatically,
the third condition looks like this:

ς R //

⇒

��

ςS

⇒

��
ς ′

R
// ς ′

S

Now, we discuss why some “intuitive” relations lacking these features fail, building up the rationale for our
bisimulation relation R.

At first glance, the R relation as defined probably looks stronger than necessary. It is tempting at first to use
R(ς, ςS)

1
= Sς = ςS instead. To understand why this approach breaks down, consider the case where execution is

about to transition from call site κ ′, the inlined call site. Assume some variable v is invoked in the original program
and lam is invoked in the transformed version. When applying A to each of these, we get (lam, βb, tb) for v and
(lam, β, t) for lam, where β is the environment from the current state, and βb is the environment from the closure’s
creation. In the subsequent apply state, these two (superficially) different closures now occupy the procedure position,
and hence, we cannot preserve the bisimulation. (The additional fact that t 6= tb would be a less significant, easier to
handle issue were it the only problem.)

But even though β and βb may not be equal, they will be equal over the free variables of lam, and this is all that
really matters. This notion of equivalence leads us to define the norm of a state. The norm of a state removes useless
bindings from its closures’ environments. With this, we might strengthen R(ς, ςS) to ‖Sς‖ = ‖ςS‖. At first glance,
this seems to solve the previous problem, for ‖(lam, β, t)‖ = ‖(lam, βb, tb)‖.

Unfortunately, when we added the state normalization requirement, we lost so much information about ς and ςS
that we cannot adequately describe its next state. By augmenting the relation R to ‖ς‖ = ‖S−1ςS‖ and ‖Sς‖ = ‖ςS‖,
we have locked the internal structures of ς and ςS into a tight correspondence. Critically, ς and ςS are forced to step
either together (to ς ′ and ς ′

S respectively) or not at all, and more importantly, we have sufficient information to reason
adequately about ς ′ from ς ′

S and vice versa. �

12.1. Concrete conditions

In this section, we begin to apply the environment theory we have carefully constructed. We use that theory to
build three Super-β conditions for the safety of inlining based on the results of the concrete analysis. Naturally, this is
entirely in preparation for defining similar conditions for ∆CFA. We define the first condition, Local-Inlinable as:

Local-Inlinable((κ ′, ψ ′), pr) 1
= ∀([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ ′ and (Lpr(ψ), βb, tb) = Aβ ve t f

then


ψ = ψ ′

∃γ :

{
b[tb, t]c �

γ ε

free(Lpr(ψ
′)) ⊆ B(γ ).

This condition is meant primarily to inline closures which are created and used within the same user-level stack frame.
The following simple example illustrates such a case:

(let ((return-x (id (λ* () x))))
[return-x])
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In this example, the starred λ term ends up being invoked at the bracketed call site, and it is invoked within the context
of the user-level function which originally created the closure; that is, it is invoked locally. The following theorem
guarantees the correctness of this condition:

Theorem 12.2. If Local-Inlinable((κ ′, ψ ′), pr), then Inlinable((κ ′, ψ ′), pr).

Proof. Assume Local-Inlinable((κ ′, ψ ′), pr). Let ([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr). Assume κ = κ ′. We know that(
Lpr(ψ

′), βb, tb
)

= A ve β t f . Let γ be such that it satisfies the interior existential quantifier. By Theorem 11.16,
we have βb|B(γ ) = β|B(γ ), and so

βb|free(Lpr(ψ
′)) = βb|B(γ )|free(Lpr(ψ

′)) = β|B(γ )|free(Lpr(ψ
′))

= β|free(Lpr(ψ
′)).

This satisfies the environment portion of Inlinable. The control-flow portion is trivially satisfied. �

We define a second condition, Escaping-Inlinable as:

Escaping-Inlinable((κ ′, ψ ′), pr) 1=

∀([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ ′ and (Lpr(ψ), βb, tb) = Aβ ve t f

then


ψ = ψ ′

∀v ∈ free(Lpr(ψ)) : ∃γ :

{
b[β(v), t]c �

γ
b[tb, t]c

v 6∈ B(γ ).

This second condition covers the special case where at most one user-level closure is created over the free variables
between binding and use, e.g.:

(let ((call (λ (g y) (g y))))
...
(λ (x) (call (λ (f) [f])

(λ* () x))))

This condition is also meant for cases where the functions involved escape their frame of creation, such as:

(let ((gy ((λ (x) (cons (λ (f) [f])
(λ* () x))) z)))

((car gy) (cdr gy)))

Correctness of the escaping condition is provided by the following theorem.

Theorem 12.3. If Escaping-Inlinable((κ ′, ψ ′), pr), then Inlinable((κ ′, ψ ′), pr).

Proof. Assume Escaping-Inlinable((κ ′, ψ ′), pr). Pick ([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr), where κ = κ ′. We know
that

(
Lpr(ψ

′), βb, tb
)

= A ve β t f . Let v ∈ free(Lpr(ψ
′)), and γ be a vector of continuation labels satisfying the

interior existential quantifier. Thus:

β(v) = ββ(v)(v)

= (ββ(v)|B(γ ))(v)

= (βtb |B(γ ))(v) (by Theorem 11.16)

= (βb|B(γ ))(v)

= βb(v)

Thus, for all v ∈ free(Lpr(ψ
′)), β(v) = βb(v), which implies β|free(Lpr(ψ

′)) = βb|free(Lpr(ψ
′)). Again, the

control-flow requirement is trivially satisfied. �
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The third and most general condition tests each free variable for equality individually.

General-Inlinable((κ ′, ψ ′), pr) 1=

∀([[( f e∗ q∗)κ ]], β, ve, δ, t) ∈ V(pr) :

if κ = κ ′ and (Lpr(ψ), βb, tb) = Aβ ve t f

then
{
ψ = ψ ′

∀v ∈ free(Lpr(ψ)) : b[β(v), t]c �
∅

b[βb(v), t]c.

Theorem 12.4. General-Inlinable((κ ′, ψ ′), pr) iff Inlinable((κ ′, ψ ′), pr).

This theorem follows from Theorem 11.5.

12.2. Abstract conditions

As expected, each concrete Super-β condition has a counterpart abstract condition which implies it. We define the
abstract Super-β condition ̂Local-Inlinable to be:

̂Local-Inlinable((κ ′, ψ ′), pr) 1=

∀([[( f e∗ q∗)κ ]], β̂, v̂e, δ̂,̂ t) ∈ V̂(pr) :

if κ = κ ′ and
{
(Lpr(ψ), β̂b ,̂ tb)

}
= Â β̂ v̂e t̂ f

then


ψ = ψ ′

∃γ :

{
δ̂(̂tb) %γ

|ε|

free(Lpr(ψ
′)) ⊆ B(γ ).

We relate this condition back to its concrete counterpart with the following:

Theorem 12.5. If ̂Local-Inlinable((κ ′, ψ ′), pr), then Local-Inlinable((κ ′, ψ ′), pr).

Proof. By contradiction. Assume ̂Local-Inlinable((κ ′, ψ ′), pr). Assume it is not the case that Local-Inlinable((κ ′,

ψ ′), pr). Let ς be the a concrete state (with associated values δ and tb) which causes Local-Inlinable((κ ′, ψ ′), pr)
to fail. There must exist some state ς̂ (with associated values δ̂ and t̂b) in ∆CFA’s visited set such that |ς | v ς̂ .
If the control-flow requirement (ψ = ψ ′) is violated by ς , then it is trivially violated in ς̂ . Thus, it must be the
environment requirement which ς violates, that is, ¬∃γ : bδ(tb)c �

γ ε. This implies ¬∃γ : |δ|(|tb|) %γ
|ε|, and so

¬∃γ : δ̂(̂tb) %γ
|ε|. This contradicts ̂Local-Inlinable. �

We can similarly abstract Escaping-Inlinable:

̂Escaping-Inlinable((κ ′, ψ ′), pr) 1=

∀([[( f e∗ q∗)κ ]], β̂, v̂e, δ̂,̂ t) ∈ V̂(pr) :

if κ = κ ′ and
{
(Lpr(ψ), β̂b ,̂ tb)

}
= Â β̂ v̂e t̂ f

then


ψ = ψ ′

∀v ∈ free(Lpr(ψ)) : ∃γ :

{
δ̂(β̂(v)) %γ δ̂(̂tb)
v 6∈ B(γ ).

Theorem 12.6. If ̂Escaping-Inlinable((κ ′, ψ ′), pr), then Escaping-Inlinable((κ ′, ψ ′), pr).

Proof. By contradiction. Assume ̂Escaping-Inlinable((κ ′, ψ ′), pr). Assume it is not the case that
Escaping-Inlinable((κ ′, ψ ′), pr). Let ς be a concrete state, with components δ, β and tb, which causes
Escaping-Inlinable((κ ′, ψ ′), pr) to fail. There must exist some state ς̂ , with associated values δ̂, β̂ and t̂b, in ∆CFA’s
visited set such that |ς | v ς̂ . If the control-flow requirement, ψ = ψ ′, is violated by ς , then it is trivially violated
in ς̂ . Thus, it must be the environment requirement which ς violates. So we have some v for which the environ-
ment portion does not hold: ¬∃γ : bδ(β(v))c �

γ
bδ(tb)c. This implies ¬∃γ : |δ|(|β|(v)) %γ

|δ|(|tb|), and so
¬∃γ : δ̂(β̂(v)) %γ δ̂(̂tb). This contradicts ̂Escaping-Inlinable. �
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Finally, we can abstract the General-Inlinable condition in the same fashion:

̂General-Inlinable((κ ′, ψ ′), pr) 1=

∀([[( f e∗ q∗)κ ]], β̂, v̂e, δ̂,̂ t) ∈ V̂(pr) :

if κ = κ ′ and
{
(Lpr(ψ), β̂b ,̂ tb)

}
= Â β̂ v̂e t̂ f

then
{
ψ = ψ ′

∀v ∈ free(Lpr(ψ)) : δ̂(β̂(v)) %∅ δ̂(β̂b(v)).

Correctness of this condition follows in the same fashion as the prior two.
It may appear redundant to define three different inlining conditions, when, for example, the General-Inlinable

test is more general than the other two conditions, Local-Inlinable and Escaping-Inlinable. However, what matters
pragmatically are the abstract conditions. They are what we actually compute, and they are not related so neatly.
In practice, ̂Local-Inlinable and ̂Escaping-Inlinable spot cases that ̂General-Inlinable misses, so our “redundant”
conditions actually pay for themselves.

The following diagram summarises the logical relationships between the various conditions:

Ĝeneral

��

Escaping

u} rrrrrrrrrr

rrrrrrrrrr
̂Escapingks

Inlinable

General
u}

5=rrrrrrrrr

rrrrrrrrr
Local

bj LLLLLLLLLL

LLLLLLLLLL

L̂ocalks

13. Related work

Our work on ∆CFA draws from three main sources: previous work with analyses based on procedure strings,
previous work on CPS-based program representations, and the general body of work on program analysis based on
the λ-calculus.

Using procedure strings to capture or constrain flow information has been treated extensively. Sharir and Pnueli [11]
provide a lapidary treatment of the call-string paradigm, using call strings to provide the polyvariance needed to
specialise function context in interprocedural data-flow analysis. Sestoft [10] has used definition-use path strings to
globalise function parameters. Much of our work draws on Harrison’s dissertation [6], which used call-down/return-up
procedure strings for detecting read-write dependencies in a parallelising compiler. In particular, we have taken three
key items from Harrison’s work. First, we extended Harrison’s procedure strings to the “frame strings” we employ.
Second, our basic string abstraction (functions mapping code points to regular expressions over stack actions) is
Harrison’s. Third, the extremely clever “relative” view of program operations is also Harrison’s insight. We have
generalised Harrison’s procedure strings by adding contours, which enriches its structure from a monoid to a group;
we exploit this extra group-theoretic structure to more precisely model environmental change, particularly with respect
to continuations. (Readers familiar with the details of Harrison’s work may note this shows up in our definition of the
function cat.)

Another distinction in our work is our exploitation of CPS. Previous work based on procedure strings has treated
procedures as “large grain” blocks of program structure, with alternate mechanisms employed to handle “intra-
procedural” control flow, such as sequencing, loops and conditional branches. These other treatments even need
distinct mechanisms for handling calls and returns. As a result, the semantic treatments are much more complex.
(True, we do distinguish call and return to the degree that we separate values with our user/continuation partition, but
this single discrimination is all we need, and much of our analysis is insensitive even to this distinction.) By moving
to CPS, we pick up three advantages. First, economy of mechanism: we simplify our semantics. Second, universality:
we gain a universal representation with two constructs, both of which are λ. Third, power: we gain a more precise
semantics. With regard to universality and power, while Harrison’s more complex semantics attempted to handle full
continuations, it did not do so properly. Harrison was aware of CPS, and discusses it briefly in his work as a means
of handling call/cc. Unfortunately, he missed the fact that CPS terms can be partitioned, deciding that, in CPS, all



M. Might, O. Shivers / Theoretical Computer Science 375 (2007) 137–168 167

stack motion is “downward”. That is, a program execution in CPS is all calls, no returns, which destroys the analysis.
Our contribution is the shift to Steele’s stack-management paradigm with its consequent focus on stack-allocation
operations as opposed to control operations. This is what liberates the analysis to general control applicability. To
drum on the point, this universality is critical in functional languages, as opposed to languages such as Pascal or C:
function call is a wide-spectrum tool in the hands of a functional programmer.

The second body of work we have used is the line of research developing the CPS-as-intermediate-representation
thesis. It was Reynolds who first pointed out the rôle that CPS can play in providing an unambiguous, low-level
specification of language mechanisms, in his seminal paper, “Definitional interpreters for higher-order programming
languages” [8,9]. Steele adapted this idea from Reynolds’ original context of writing interpreters to the domain of
compilers. The CPS partitioning we exploit was used early on in Steele’s Rabbit [16] and in Kranz et al.’s ORBIT [7]
compilers; Steele’s papers from this time also first articulated the function-call protocol we have exploited. Danvy [3,
5] also exploited this partitioning to develop a left inverse of the CPS transformation. We have already outlined what
CPS offers as a medium for analysis by way of contrast with non-CPS work.

One of us (Shivers) has previously used CPS as a basis for program analysis. Shivers’ dissertation [12] described
the “k-CFA” framework of abstractions. However, the entire k-CFA framework has limits: there are some analyses
that cannot be solved for any k. The Super-β analysis is one such example. Shivers identified the barrier as the
“environment problem”, and presented “reflow analysis” as a solution. Reflow analysis, however, has two serious
drawbacks. First, it lacks a solid formal underpinning establishing its correctness. Second, it is quite expensive, enough
so that its generality has never been subsequently explored. Wright and Jagannathan [19] developed a polyvariant CFA
for inlining in functional languages, but even though polyvariance does improve analytic precision, it is incapable of
solving the environment problem, and hence it cannot inline closures with free variables as ∆CFA can.

∆CFA represents our second attack on this problem: it is not only a more general solution to the “environment
flow” problem, it is also on firmer mathematical foundations, e.g., our proof of correctness for the analysis and inlining
transform.

In the area of formal proof of semantics-based analyses and transforms, we have based our work primarily on the
line of research carried out by Wand and his students [18,15,17]. Adding to this battery of correctness-proving tech-
niques, we have developed the concept of “state norms” and inverse transforms for use here. Globally, our entire body
of work is an instantiation of the Cousots’ “non-standard abstract semantics” framework of program analysis [1,2].
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