Abstract

Pushdown models are better than control-flow graphs for higher-order flow analysis. They faithfully model the call/return structure of a program, which results in fewer spurious flows and increased precision. However, pushdown models require that calls and returns in the analyzed program nest properly. As a result, they cannot be used to analyze language constructs that break call/return nesting such as generators, coroutines, call/cc, etc.

In this paper, we extend the CFA2 flow analysis to create the first pushdown flow analysis for languages with first-class control. We modify the abstract semantics of CFA2 to allow continuations to escape to, and be restored from, the heap. We then present a summarization algorithm that handles escaping continuations via a new kind of summary edge. We prove that the algorithm is sound with respect to the abstract semantics.

Categories and Subject Descriptors F.3.2 [Semantics of Programming Languages]: Program Analysis

General Terms Languages

Keywords pushdown flow analysis, first-class continuations, restricted continuation-passing style, summarization, higher-order functional language

1. Introduction

Function call and return is the fundamental control-flow mechanism in higher-order languages. Therefore, if a flow analysis is to model program behavior faithfully, it must handle call and return well. Pushdown models of programs [15, 17, 22] enable flow analyses with unbounded call/return matching. These analyses are more precise than analyses based on control-flow graphs.

Pushdown models require that calls and returns in the analyzed program nest properly. However, many control constructs, some of them in mainstream programming languages, break call/return nesting. Generators (e.g., in Python [14] or JavaScript [8]) are functions that are usually called inside loops to produce a sequence of values one at a time. A generator executes until it reaches a yield statement, at which point it returns the value passed to yield to its calling context. When the generator is called again, execution resumes at the first instruction after the yield. Coroutines (e.g., in Simula67 [3] or Lua [11]) can also suspend and resume their execution, but are more expressive than generators because they can specify where to pass control when they yield. First-class continuations reify the rest of the computation as a value. Continuations allow complex control flow, such as jumping back to functions that have already returned. Undelimited continuations (call/cc in Scheme [20] and SML/NJ [1]) capture the entire stack. Delimited continuations [4, 7], found in Scala [16] and some Schemes, capture part of the stack. Continuations can express generators and coroutines, as well as multi-threading [18, 25] and Prolog-style backtracking. All these operators provide a rich variety of control behaviors. Unfortunately, we cannot currently use pushdown models to analyze programs that use them.

We rectify this situation by extending the CFA2 flow analysis [22] to languages with first-class control. In this article, we make the following contributions.

- CFA2 is based on abstract interpretation of programs in continuation-passing style (abbrev. CPS). We present a CFA2-style abstract semantics for Restricted CPS, a variant of CPS that allows continuations to escape, but also permits effective reasoning about the stack [23]. When we detect a continuation that may escape, we copy the stack into the heap (sec. 4.3). We prove that the abstract semantics is a safe approximation of the actual run-time behavior of the program (sec. 4.4).

- In pushdown flow analysis, each state has a stack of unbounded size. Hence, the state space is infinite. Algorithms that explore the state space use a technique called summarization. First-class control causes the stack to be copied into the heap, so our analysis must also deal with infinitely many heaps. We show that it is not necessary to keep continuations in the heap during summarization; we handle escaping continuations using a new kind of summary edge (sec. 5.3).

- When calls and returns nest properly, execution paths satisfy a property called unique decomposition: for each state s in a path, we can uniquely identify another state s’ as the entry of the procedure that contains s [17]. In the presence of first-class control, a state can belong to more than one procedure. We allow paths that are decomposable in multiple ways and prove that our analysis is sound (sec. 5.4).

- If continuations escape upward, a flow analysis cannot generally avoid including extra, spurious control flows that degrade precision. What about continuations that are only used downward, such as exception handlers or continuations captured by call/cc that never escape? We show that CFA2 can avoid spurious control flows for downward continuations (sec. 5.5).

2. Why pushdown models?

Finite-state flow analyses, such as k-CFA, approximate programs as graphs of abstract machine states. Each node in such a graph represents a program point plus some amount of abstracted environment and control context. Every path in the graph is considered a possible execution of the program. Thus, executions are strings in a regular language.
Finite-state analyses do not handle call and return well. Remembering only a bounded number of pending calls, they must inevitably include spurious paths in which a function is called from one program point and returns to a different one.

Execution traces that match calls with returns are strings in a context-free language. Therefore, by abstracting a program to a pushdown automaton (or equivalent), we can use the stack to eliminate call/return mismatch. The following examples illustrate the advantages of pushdown models.

2.1 Data-flow information

The following Scheme program defines the apply and identity functions, then binds n1 to 1 and n2 to 2 and adds them. At program point (+ n1 n2), both variables are bound to constants; we would like a static analysis to be able to discover this.

$$
\begin{align*}
\text{(define app} & \quad (\lambda \ f \ e \ ((f \ e))) \\
\text{(define id} & \quad (\lambda \ x \ x)) \\
\text{(let*} & \quad ((n1 \ (app \ id \ 1)) \\
& \quad (n2 \ (app \ id \ 2))) \\
& \quad (+ \ n1 \ n2))
\end{align*}
$$

Fig. 1 shows the control-flow graph for this program. In the graph, the top level of the program is presented as a function called main. Function entry and exit nodes are rectangles with sharp corners. Inner nodes are rectangles with rounded corners. Each call site is represented by a call node and a corresponding return node, which contains the variable to which the result of the call is assigned. Each function uses a local variable ret for its return value. Solid arrows are intraprocedural steps. Dashed arrows go from call sites to function entries and from function exits to return points. There is no edge between call and return nodes; a call reaches its corresponding return only if the callee terminates.

A monovariant analysis, such as O DFA, considers all paths to be valid executions. Thus, we can bind n1 to 2 by calling app from 4 and returning to 3. Also, we can bind n2 to 1 by calling app from 2 and returning to 5. At point 6, O DFA thinks that each variable can be bound to either 1 or 2. (For polyvariant analyses, we can create similar examples.) On the other hand, if we only consider paths that respect call/return matching, there is no spurious flow of data. At 6, n1 and n2 are bound to constants.

2.2 Stack-change calculation

Besides data-flow information, pushdown models also improve control-flow information. Hence, we can use them to calculate stack changes between program points. With call/return matching, there is only one execution path in our example:

```
1  2  8  9  12  13  14  10  11  3  4  8  9  12  13  14  10  11  5  6  7
```

In contrast, O DFA thinks that the program has a loop (there is a path from 4 to 3).

Many optimizations require accurate information about stack change. For instance:

- **Most compound data are heap allocated in the general case.** Examples include: closure environments, cons pairs, records, objects, etc. If we can show statically that such a piece of data is only passed downward, we can allocate it on the stack and reduce garbage-collection overhead.
- **Continuations captured by call/cc may not escape upward.** In this case, we do not need to copy the stack into the heap.
- **In object-oriented languages, objects may have methods that are thread-safe by using locks.** An escape analysis can eliminate unnecessary locking/unlocking in the methods of thread-private objects.

Such optimizations are better performed with pushdown models.

2.3 Fake rebindining

It is possible that two control-related references to the same variable are always bound in the same run-time environment. If a flow analysis cannot detect this, it will additionally consider execution traces in which the two references are bound to different abstract values. We call this phenomenon fake rebindining [22].

```scheme
(define (compose-same f x) (f (f x)))
```

In `compose-same`, both references to f are always bound in the same environment (the top stack frame). However, if multiple closures flow to f, a finite-state analysis will consider traces that call one closure at the inner call site and a different closure at the outer call site. CFA2 forbids these paths because it knows that both references are bound in the top frame—it correctly relates environment and control structure.

2.4 Broadening the applicability of pushdown models

Pushdown-reachability algorithms use a dynamic-programming technique called summarization. Summarization relies on proper nesting of calls and returns. If we call function app from location 2 in our example, summarization knows that, if the call returns, it will return to location 3, not location 5.

What if the call to app is a tail call, in which case the return point is effectively in a different procedure from the call site? We can handle this by creating cross-procedure summaries [22].

In languages with exceptions, the return point may be deeper in the stack. We can transform this case into ordinary call/return nesting and handle it precisely with CFA2. Instead of thinking of an exception as a single jump deeper in the stack, we can return to the caller, which checks if it can handle the exception and if not, it passes it to its own caller and so on. Functions return a pair of values, one for normal return and one for exceptional return. The JavaScript implementation of CFA2 [5] uses this technique for exceptions.

But what if the return point has already been popped off the stack, as is the case when using first-class control constructs? Pushdown models cannot currently analyze such programs, so we have to fall back to a finite-state analysis and live with its limitations. In
the rest of this paper, we show how to generalize pushdown models to first-class control.

3. Restricted CPS

Preliminary definitions In this section we describe our CPS language. Compilers that use CPS [1, 10, 21] frequently partition the terms in a program into two disjoint sets, the user and the continuation set, and treat user terms differently from continuation terms. We adopt this partitioning here (Fig. 2). Variables, lambdas and calls get labels from ULab or CLab. Labels are pairwise distinct. User lambdas take a user argument and the current continuation; continuation lambdas take only a user argument.

We assume that all variables in a program have distinct names. Then, the defining lambda of a variable \(v \), written \(def_\lambda(v) \), is the lambda term that contains \(v \) in its list of formals. For any term \(t \), \(def_\lambda(t) \) is the innermost user lambda that contains \(t \). Concrete syntax enclosed in \([____] \) denotes an item of abstract syntax. Functions with a ‘?’ subscript are predicates, e.g., \(Var^\gamma(e) \) returns true if \(e \) is a variable and false otherwise.

We use two notations for tuples, \((e_1,\ldots,e_n)\) and \(\{e_1,\ldots,e_n\}\), to avoid confusion when tuples are deeply nested. We use the latter for lists as well; ambiguities will be resolved by the context. Lists are also described by a head-tail notation, e.g., \([1,3,-47] \).

Handling first-class control In CPS, we can naturally express first-class control without using special primitives: when continuations are captured by user closures, they may escape. Escaping continuations complicate reasoning about the stack. To enable reasoning about the stack in the presence of first-class control, we have previously proposed a syntactically-restricted variant of CPS, called Restricted CPS (abbrev RCPS) [23].

Definition 1 (Restricted CPS). A program is in Restricted CPS if a continuation variable can appear free in a user lambda in operator position only.

In RCPS, continuations escape in a well-behaved way: after a continuation escapes, it can only be called; it cannot be passed as an argument again. For example, the CPS-translation of \(call/c\), which is \(\lambda f.\,\text{cc}(f\,(\lambda(v)\,\text{cc}(v)\,\text{cc}))\), is a valid RCPS term. Terms like \(\lambda(x\,k)\,(k\,(\lambda(y\,k2)\,(y\,123\,k)))\) are not valid.

We can transform this term (and any CPS term) to a valid RCPS term by \(q\)-expanding to return the free reference to operator position: \(\lambda(x\,k)\,(k\,(\lambda(y\,k2)\,(y\,123\,(\lambda(u\,(k\,u))))))\). Why do we distinguish these very similar terms? Because, according to the Orbit policy (cf. sec. 4.1), their stack behaviors differ. In the case of the first term, when execution reaches \((y\,123\,k)\), we must restore the environment of the continuation that flows to \(k \), which may cause arbitrary change to the stack. In the second case, when execution reaches \((y\,123\,(\lambda(u)\,(k\,u)))\), a new continuation is born and no stack change is required. Thus, RCPS forces all exotic stack change to happen when calling an escaping continuation, not in other kinds of call sites.

Concrete semantics Execution in RCPS is guided by the semantics of Fig. 3. In the terminology of abstract interpretation [2], this semantics is called the concrete semantics. In order to find properties of a program at compile time, one needs to derive a computable approximation of the concrete semantics, called the abstract semantics (cf. sec. 4).

Execution traces alternate between \(Eval\) and \(Apply\) states. At an \(Eval\) state, we evaluate the subexpressions of a call site before performing a call. At an \(Apply\), we perform the call.

The last component of each state is a \(time\), which is a sequence of call sites. \(Eval\)-to-\(Apply\) transitions increment the time by recording the label of the corresponding call site. \(Apply\)-to-\(Eval\) transitions leave the time unchanged. Thus, the time \(t \) of a state reveals the call sites along the execution path to that state.
4. The CFA2 abstraction

In this section, we’ll extend the abstract semantics of CFA2 to handle first-class control. The semantics uses two binding environments, a stack and a heap; we also use the stack for return-point information.

We show the actual transition rules in section 4.3; the main difference from the previous semantics is that continuations can now be copied to, and restored from, the heap. Before that, we discuss how to manage the stack in RCPS (sec. 4.1) and how to decide whether a variable reference will be looked up in the stack or the heap (sec. 4.2). In section 4.4, we prove that the abstract semantics is an approximation of the concrete semantics.

The CFA2 abstraction only takes us halfway to a computable analysis; the abstract state space is infinite, so we cannot explore it by enumerating all states. We tackle this problem in section 5.

4.1 Stack-management policy

The Orbit compiler [9, 10] compiles a CPS intermediate representation to final code that uses a stack. Orbit views continuations as closures whose environment record is a stack frame. To decide when to push and pop the stack, we follow Orbit’s policy. The main idea behind Orbit’s policy is that we can manage the stack for a CPS program in the same way that we would manage it for the original direct-style program:

- For every call to a user function, we push a frame for the arguments.
- We pop a frame at function returns. In CPS, user functions “return” by calling the current continuation with a return value.
- We also pop a frame at tail calls. A UCall call site is a tail call in CPS iff it was a tail call in the original direct-style program. In tail calls, the continuation argument is a variable.
- When a continuation is captured by a user closure, we copy the stack into the heap.
- When we call a continuation that has escaped, we restore its stack from the heap.

4.2 Stack/heap split

The stack in CFA2 is more than a control structure for return-point information; it is also an environment structure—it contains bindings. CFA2 has a novel approach to variable binding: two references to the same variable need not be looked up in the same binding environment. We split references into two categories: stack and heap references. In direct-style, if a reference appears at the same nesting level as its binder, then it is a stack reference, otherwise it is a heap reference. For example, \((\lambda (x) (\lambda (y) (x (x y)))) \) has a stack reference to \(y \) and two heap references to \(x \).

Intuitively, only heap references may escape. When we call a user function, we push a frame for its arguments, so we know that stack references are always bound in the top frame. When control reaches a heap reference, its frame is either deeper in the stack, or it has been popped. We look up stack references in the top frame, and heap references in the heap. Stack lookups below the top frame never happen (Fig. 4b).

When a program \(p \) is CPS-converted to a program \(p' \), stack (resp. heap) references in \(p \) remain stack (resp. heap) references in \(p' \). All references added by the transform are stack references.

We can give an equivalent definition of stack and heap references directly in CPS, without referring to the original direct-style program. Labels can be split into disjoint sets according to the innermost user lambda that contains them. For the CPS translation of the previous program,

\[
(\lambda (x) k1) \\
(k1 (\lambda (y) k2) ((x y) (x (x y))))
\]

these sets are \{1, 6\} and \{2, 3, 4, 5\}. The “label to variable” map \(LV(\psi) \) returns all the variables bound by any lambdas that belong in the same set as \(\psi \), e.g., \(LV(4) = \{y, k2, u\} \) and \(LV(6) = \{x, k1\} \). We use this map to model stack behavior, because all continuation lambdas that “belong” to a given user lambda \(\lambda_t \) get closed by extending \(\lambda_t \)’s stack frame (cf. section 4.3). Notice that, for any \(\psi \), \(LV(\psi) \) contains exactly one continuation variable. Using \(LV \), we give the following definition.

Definition 2 (Stack and heap references).

- Let \(\psi \) be a call site that refers to a variable \(v \). The predicate \(S_t(\psi, v) \) holds iff \(v \in LV(\psi) \). We call \(v \) a stack reference.
- Let \(\psi \) be a call site that refers to a variable \(v \). The predicate \(H_t(\psi, v) \) holds iff \(v \notin LV(\psi) \). We call \(v \) a heap reference.
- \(v \) is a stack variable, written \(\forall v S_t(\psi, v) \), iff all its references satisfy \(S_t \).
- \(v \) is a heap variable, written \(\forall v H_t(\psi, v) \), iff some of its references satisfy \(H_t \).

For instance, \(S_t(5, y) \) holds because \(y \in \{y, k2, u\} \) and \(H_t(5, x) \) holds because \(x \notin \{y, k2, u\} \).

4.3 Abstract semantics

The CFA2 semantics is an abstract machine that executes a program in RCPS (Fig. 4). The abstract domains appear in Fig. 4a. An abstract user closure (member of the set \(UClos \)) is a set of user lambdas. An abstract continuation closure (member of \(CClos \)) is either a continuation lambda or \(halt \). A frame is a map from variables to abstract values, and a stack is a sequence of frames. All stack operations except \(push \) are defined for non-empty stacks only. A heap is a map from variables to abstract values. In contrast to the previous semantics of CFA2, the heap can contain continuation bindings.

Fig. 4e shows the transition rules. First-class control shows up in two of the rules, \([UA]E\) and \([CEA] \).

On transition from a \(UEval \) state to a \(UApply \) state (rule \([UEA]\)), we first evaluate \(f, e \) and \(q \). We evaluate atomic user
\[\hat{t} \in \text{UEval} = \text{UCall} \times \text{Stack} \times \text{Heap} \]
\[\hat{c} \in \text{UApply} = \text{ULam} \times \text{UClos} \times \text{CCon} \times \text{Stack} \times \text{Heap} \]
\[\hat{t} \in \text{CEval} = \text{CCall} \times \text{Stack} \times \text{Heap} \]
\[\hat{c} \in \text{CAApply} = \text{CClos} \times \text{UClos} \times \text{Stack} \times \text{Heap} \]
\[\hat{d} \in \text{UClos} = \text{Pow}(\text{ULam}) \]
\[\hat{c} \in \text{CClos} = \text{CLam} + \text{halt} \]

Frame

\[fr, tf \in \text{Frame} = (\text{UVar} \rightarrow \text{UClos}) + (\text{CVar} \rightarrow \text{CClos}) \]
\[st \in \text{Stack} = \text{Frame}^* \]
\[h \in \text{Heap} = (\text{UVar} \rightarrow \text{UClos}) + (\text{CVar} \rightarrow \text{Pow}(\text{CClos} \times \text{Stack})) \]

\[\hat{A}_u(e, \psi, st, h) \triangleq \begin{cases}
\{ e \} & \text{Lam}^u(e) \\
\text{st}(e) & \text{S}_i(\psi, e) \\
h(e) & \text{H}_i(h)
\end{cases} \]

\[\text{push}(fr, st) \triangleq fr :: st \]
\[(tf :: st)(v) \triangleq tf(v) \]

\[(\text{tf :: st})[u \mapsto \hat{d}] \triangleq \text{tf}[u \mapsto \hat{d}] :: st \]

\[\text{(b) Stack operations} \]

\[\text{Example} \]

Let’s see how the abstract semantics works on a program with call/cc. Consider the program

\[\text{(call/cc } \lambda (c) (\text{somefun (c 42))}) \]

where somefun is an arbitrary function. We use call/cc to capture the top-level continuation and bind it to c. Then, somefun will never be called, because \((\text{c 42})\) will return to the top level with 42 as the result.

The CPS translation of call/cc is

\[\lambda (\lambda (x) k) \text{ (f } \lambda (x) k2 \text{ (cc x)) cc}) \]

The CPS translation of its argument is

\[\lambda (\lambda (x) k) \text{ (c 42 } \lambda (x) \text{ (somefun/cc (c u)))}) \]

The initial state \(\hat{I}(pr) = \lambda_1, \lambda_3, \text{halt, } \emptyset, \emptyset\) is a UApply.

We abbreviate lambdas by their labels.) We push a frame and jump to the body of \(\lambda_1\). Since cc is a heap variable, we save the continuation and the stack in the heap, producing a heap \(h\) with a single element \([cc \mapsto \{(\text{halt, })\}]\) and \(\text{UApply}\) state

\[\left(\{(f \lambda_2 \text{ cc})\}, \{(f \rightarrow \{\lambda_3\})[cc \rightarrow \text{halt}]\}, h\right). \]

\(\lambda_2\) is essentially a continuation reified as a user value. We tail call to \(\lambda_3\), so we pop the stack, producing \(\text{UApply}\) state

\[\lambda_3, \lambda_2, \text{halt, } \emptyset, h. \]

1. An abstract execution explores one path, but the algorithm that searches the state space considers all possible executions.
We next push a frame and jump to the body of λ:

$$[\{\{g_1 \ldots g_n\}^\circ], \beta, ve, t]_\text{ca} = ([\{g_1 \ldots g_n\}^\circ], \text{toStack}(LV(\psi), \beta, ve), |ve|_{\text{ca}})$$

$$[\{\{\lambda(u k) \text{call}\}^\circ], \beta, d, c, ve, t]_\text{ca} = ([\{\lambda(u k) \text{call}\}^\circ], |d|_{\text{ca}}, |e|_{\text{ca}}, st, |ve|_{\text{ca}})$$

where $st = \begin{cases} \emptyset & c = \text{halt} \\ \text{toStack}(LV(\gamma), \beta', ve) & c = ([\{\lambda(u' \text{call})\}^\circ], \beta') \end{cases}$

$$[\{\{\lambda(u) \text{call}\}^\circ], \beta, d, ve, t]_\text{ca} = ([\{\lambda(u) \text{call}\}^\circ], |d|_{\text{ca}}, \text{toStack}(LV(\gamma), \beta, ve), |ve|_{\text{ca}})$$

$$[\{\lambda(u k) \text{call}\}^\circ], \beta|_{\text{ca}} = \{\{\lambda(u k) \text{call}\}^\circ\}$$

$$[\{\lambda(u) \text{call}\}^\circ], \beta|_{\text{ca}} = \{\{\lambda(u) \text{call}\}^\circ\}$$

$[\text{halt}]|_{\text{ca}} = \text{halt}$

$$|ve|_{\text{ca}} = \{u, \bigcup_i |ve(u_i)|_{\text{ca}} : (u \in UVar) \land H_2(u) \cup \{k, \bigcup_i \text{makecks}(ve(k, t), ve) : (k \in CVar) \land H_2(k)\}$$

$\text{where makes}(c, ve) \triangleq \begin{cases} (\text{halt}, \emptyset) & c = \text{halt} \\ ([\{\lambda(u') \text{call}\}^\circ], \text{toStack}(LV(\gamma), \beta, ve)) & c = ([\{\lambda(u') \text{call}\}^\circ], \beta) \end{cases}$

$$\text{toStack}([u_1, \ldots, u_n, k], \beta, ve) \triangleq \begin{cases} \{[u_1 \mapsto d_1][k \mapsto \text{halt}]\} & ve(k, \beta(k)) = \text{halt} \\ \{[u_1 \mapsto d_1][k \mapsto [\{\lambda(u) \text{call}\}^\circ]] : st \rightarrow ve(k, \beta(k)) = ([\{\lambda(u) \text{call}\}^\circ], \beta') \end{cases}$$

where $d_1 = |ve(u_i, \beta(u_i))|_{\text{ca}}$ and $st = \text{toStack}(LV(\gamma), \beta', ve)$

Figure 5. From concrete states to abstract states

$$g \subseteq g \quad \text{where} \quad g \in (\text{halt} + \text{Lam} + \text{Call})$$

$$\langle a_1, \ldots, a_n \rangle \subseteq \langle b_1, \ldots, b_n \rangle \quad \text{iff} \quad 1 \leq i \leq n, \ a_i \subseteq b_i$$

$$d_1 \subseteq d_2 \quad \text{iff} \quad d_1 \subseteq d_2$$

$$h_1 \subseteq h_2 \quad \text{iff} \quad h_1(v) \subseteq h_2(v) \quad \text{for each} \quad v \in \text{dom}(h_1)$$

$$tf_1 : st_1 \subseteq tf_2 : st_2 \quad \text{iff} \quad tf_1 \subseteq tf_2 \land st_1 \subseteq st_2$$

$$\emptyset \subseteq \emptyset$$

$$tf_1 \subseteq tf_2 \quad \text{iff} \quad tf_1(v) \subseteq tf_2(v) \quad \text{for each} \quad v \in \text{dom}(tf_1)$$

Figure 6. The \subseteq relation on abstract states

We next push a frame and jump to the body of λ_2:

$$[\{\{c \ 42 \ \lambda_2\}^\circ], \{c \mapsto \lambda_2\}[k \mapsto \text{halt}], h).$$

This is a non-tail call, so we do not pop:

$$(\lambda_2, [42], \lambda_4, [c \mapsto \lambda_2][k \mapsto \text{halt}], h).$$

We push a frame and jump to the body of λ_2:

$$([cc \ x]\), \{k \mapsto [42][k2 \mapsto \lambda_4], [c \mapsto \lambda_2][k \mapsto \text{halt}], h).$$

As cc is a heap reference, we ignore the current continuation and stack and restore (halt, \emptyset) from the heap:

$$(\text{halt}, [42], \emptyset, h).$$

The program terminates with value $\{42\}$.

4.4 Correctness of the abstract semantics

In this section, we show that the abstract semantics simulates the concrete semantics, which means that the execution of a program under the abstract semantics is a safe approximation of its actual run-time behavior. First, we define a map $|.|_{ca}$ from concrete to abstract states. Next, we show that if c transitions to c' in the concrete semantics, the abstract counterpart $|c|_{ca}$ of c transitions to a state \hat{c} which approximates $|c|_{ca}$. Therefore, each concrete execution, i.e., sequence of states related by \rightarrow, has a corresponding abstract execution that computes an approximate answer.

The map $|.|_{ca}$ appears in Fig. 5. The abstraction of an Eval state c of the form $([\{g_1 \ldots g_n\}^\circ], \beta, ve, t)$ is an Eval state \hat{c} with the same call site. Since c does not have a stack, we must expose stack-related information hidden in β and ve. Assume that λ_1 is the innermost user lambda that contains ψ. To reach ψ, control passed from a $UApply$ state \hat{c}' over λ_1. According to our stack policy, the top frame contains bindings for the formals of λ_1 and any temporaries added along the path from \hat{c}' to c. Therefore, the domain of the top frame is a subset of $LV(l)$, i.e., a subset of $LV(\psi)$. For each user variable $u_i \in (LV(\psi) \cap \text{dom}(\beta))$, the top frame contains $[u_i \mapsto \{ve(u_i, \beta(u_i))\}_{ca}]$. Let k be the sole continuation variable in $LV(\psi)$. If $ve(k, \beta(k))$ is halt (the return continuation is the top-level continuation), the rest of the stack is empty. If $ve(k, \beta(k)) = ([\{\lambda(u) \text{call}\}^\circ], \beta')$, the second frame is for the user lambda in which λ_1 was born, so forth: proceeding through the stack, we add a frame for each live activation of a user lambda until we reach halt.

The abstraction of a $UApply$ state over $([\{\lambda(u) \text{call}\}^\circ], \beta)$ is a $UApply$ state \hat{c} whose operator is $[\{\lambda(u) \text{call}\}^\circ]$. The stack of \hat{c} represents the environment in which the continuation argument was created, and we compute it using toStack as above.

Abstracting a $CApply$ is similar to the $UApply$ case, only now the top frame is the environment of the continuation operator. Note that the abstraction maps drop the time of the concrete states, since the abstract states do not use times.

The abstraction of a user closure is the singleton set with the corresponding lambda. The abstraction of a continuation closure is the corresponding lambda.
The abstraction $|v|_{ca}$ of a variable environment is a heap, which contains bindings for the user and the continuation heap variables. Each heap variable is bound to the set of lambdas of the closures that can flow to it. Each heap continuation variable k is bound to a set of continuation-stack pairs. For each closure that can flow to k, we create a pair with the lambda of that closure and the corresponding stack.

The relation $\equiv_1 \subseteq \equiv_2$ is a partial order on abstract states and can be read as "\equiv_1 is more precise than $\equiv_2" (Fig. 6). Tuples are ordered pointwise. Abstract user closures are ordered by inclusion. Two stacks are in \subseteq iff they have the same length and the corresponding frames are in \subseteq.

We can now state the simulation theorem. The proof proceeds by case analysis on the concrete transition relation; full details can be found in the first author’s forthcoming dissertation.

Theorem 3 (Simulation). If $\xi \rightarrow \xi'$ and $|\xi|_{ca} \subseteq \xi$, then there exists ξ'' such that $\xi \rightarrow^* \xi''$ and $|\xi''|_{ca} \subseteq \xi'$.

5. Exploring the infinite state space

Pushdown-reachability algorithms, including CFA2, deal with the unbounded stack size by using a dynamic-programming technique called summarization. These algorithms work on transition systems whose stack is unbounded, but the rest of the components are bounded. Due to escaping continuations, we also have to deal with infinitely many heaps.

5.1 Overview of summarization

We start with an informal overview of summarization. Assume that a program is executing and control reaches the entry of a procedure. We start computing inside the procedure. While doing so, we are visiting several program points inside the procedure and possibly calling (and returning from) other procedures. Sometime later, we reach the exit and are about to return to the caller with a result. The intuition behind summarization is that, during this computation, the return point was irrelevant; it influences reachability only after we return to the caller. Consequently, if from a program point n with an empty stack we can reach a point n' with stack s', then from n with stack s we can reach n' with stack $append(s', s)$.

Let’s use summarization to find which nodes of the graph of Fig. 1 are reachable from node 1. We find reachable nodes by recording path edges, i.e., edges whose source is the entry of a procedure and target is some program point in the same procedure. Path edges should not be confused with the edges already present in the graph. They are artificial edges used by the analysis to represent intraprocedural paths, hence the name.

Node 1 goes to 2, so we record the edges (1, 1) and (1, 2). From 2 we call app, so we record the call (2, 8) and jump to 8. In app, we find path edges (8, 8) and (8, 9). We find a new call (9, 12) and jump to 12. Inside id, we discover the edges (12, 12), (12, 13) and (12, 14). Edges that go from an entry to an exit, such as (12, 14), are called summary edges. We have not been keeping track of the stack, so we use the recorded calls to find the return point. The only call to id is (9, 12), so 14 returns to 10 and we find a new edge (8, 10), which leads to (8, 11). We record (8, 11) as a summary also. From the call (2, 8), we see that 11 returns to 3, so we record edges (1, 3) and (1, 4). Now, we have a new call to app. Reachability inside app does not depend on its calling context. From the summary (8, 11), we know that 4 can reach 5, so we find (1, 5). Subsequently, we find the last two path edges, which are (1, 6) and (1, 7).

During the search, we did two kinds of transitions. The first kind includes intraprocedural steps and calls; these transitions do not shrink the stack. The second is function returns, which shrink the stack. Since we are not keeping track of the stack, we find the target nodes of the second kind of transitions in an indirect way, by recording calls and summaries. We show a summarization-based algorithm for CFA2 in section 5.3. The next section describes the local semantics, which we use in the algorithm for transitions that do not shrink the stack.

5.2 Local semantics

Summarization operates on a finite set of program points. Since the abstract state space is infinite, we cannot use abstract states as program points. For this reason, we introduce local states (Fig. 7a) and define a map $|v|_{al}$ from abstract to local states (Fig. 7b).
The local semantics (Fig. 7) describes executions that do not touch the rest of the stack (i.e., executions where functions do not return). A $C\text{Eval}$ state with call site $\{(k\ e)\}$ has no successor in this semantics. Since functions do not call their continuations, the local frames and heaps contain only user bindings. Local steps are otherwise similar to abstract steps. Note that there is no provision for first-class control in the local transitions; they are identical to the previous ones [22]. The metavariable ζ ranges over local states. We define the map $|l|_u$ from concrete to local states to be $|l|_u[l]_a$. Summarization distinguishes between different kinds of states: entries, exits, calls, returns and inner states. CPS lends itself naturally to such a categorization. The following definition works for all three state spaces: concrete, abstract and local.

Definition 4 (Classification of states).

- A $U\text{Apply}$ state is an Entry—control is about to enter the body of a function.
- A $C\text{Eval}$ state is an Exit-Ret when the operator is a stack reference—a function is about to return to a result to its context.
- A $C\text{Eval}$ state is an Exit-Esc when the operator is a heap reference—we are calling a continuation that may have escaped.
- A $C\text{Eval}$ state where the operator is a lambda is an Inner state.
- A $U\text{Eval}$ state is an Exit-TC when the continuation argument is a variable—at tail calls control does not return to the caller.
- A $U\text{Eval}$ state is a Call when the continuation argument is a lambda.
- A $C\text{Apply}$ state is a Return if its predecessor is an exit, or an Inner state if its predecessor is also an inner state. Our algorithm does not distinguish between the two kinds of $C\text{Apply}$; the difference is just conceptual.

5.3 The CFA2 algorithm

The algorithm for CFA2 appears in Fig. 8. Its goal is to compute which local states are reachable from the initial state of a program.

For readers familiar with the previous algorithm: the main addition is the handling of Exit-Esc states (lines 25-33). Escaping continuations also require changes to the handling of entries and tail calls. Entries are now a separate case, instead of together with $C\text{Apply}$s and inner $C\text{Evals}$. Last, the Propagate function takes an extra argument.

Structure of the algorithm

The algorithm works a workset W, which contains path edges and summaries to be examined. An edge (ζ_1, ζ_2) is an ordered pair of local states. We call ζ_1 the source and ζ_2 the target of the edge. At every iteration, we remove an edge from W and process it, potentially adding new edges in W. We stop when W is empty.

An edge (ζ_1, ζ_2) is a summary when ζ_1 is an entry and ζ_2 is either an Exit-Ret or an Exit-Esc, not necessarily in the same procedure. Summaries carry an important message: each continuation that can be passed to ζ_1 can flow to the operator position of ζ_2. The algorithm maintains several sets. The results of the analysis are stored in the set Seen. It contains path edges (from a procedure entry to a state in the same procedure) and summary edges. The target of an edge in Seen is reachable from the source and from the initial state. Summaries are also stored in Summary, Escapes contains Exit-Esc states. If the continuation parameter of a user lambda is a heap variable, entries over that lambda are stored in EntriesEsc. Final records final states, i.e., $C\text{Apply}$s that call $halt$ with a return value for the whole program. Callers contains triples $(\zeta_1, \zeta_2, \zeta_3)$, where ζ_1 is an entry, ζ_2 is a call in the same procedure and ζ_3 is the entry of the callee. TCallers contains triples $(\zeta_1, \zeta_2, \zeta_3)$, where ζ_1 is an entry, ζ_2 is a tail call in the same procedure and ζ_3 is the entry of the callee. The initial state $\mathcal{I}(pr)$ is defined as $|\mathcal{I}(pr)|_{cl}$. The helper function $\text{succ}(\zeta)$ returns the successor(s) of ζ according to the local semantics.

Summaries for first-class continuations

Perhaps surprisingly, even though continuations can escape to the heap in the abstract semantics, we do not need continuations in the local heap. We can handle escaping continuations with summaries. Consider the example from section 4.3. When control reaches $[(cc\ x)]$, we want to find which continuation flows to cc. We know that $\text{def}_x(cc)$ is λ_1. By looking at the single $U\text{Apply}$ over λ_1, we find that $halt$ flows to cc. This suggests that, for escaping continuations, we need summaries of the form (ζ_1, ζ_2) where ζ_2 is an Exit-Esc over a call site $[(k\ e)\gamma]$ and ζ_1 is an entry over $\text{def}_x(k)$.

Edge processing

Each edge (ζ_1, ζ_2) is processed in one of six ways, depending on ζ_2. If ζ_2 is a return or an inner state (line 12), then its successor ζ_3 is a state in the same procedure. Since ζ_2 is reachable from ζ_1, ζ_3 is also reachable from ζ_1. If we have not already recorded the edge (ζ_1, ζ_3), we do it now (line 44).

If ζ_2 is a call (line 14) then ζ_3 is the entry of the callee, so we propagate (ζ_1, ζ_3) instead of (ζ_1, ζ_2) (line 16). Also, we record the call in Callers. If an exit ζ_3 is reachable from ζ_1, it should return to the continuation born at ζ_2 (line 18). The function Update is responsible for computing the return state. We find the return value of by evaluating the expression e_1 passed to the continuation (lines 48-49). Since we are returning to λ_2, we must restore the environment of its creation, which is I_2 (possibly with stack filtering, line 50). The new state ζ is the corresponding return of ζ_2, so we propagate (ζ_1, ζ) (lines 51-52).

If ζ_2 is an Exit-Ret and ζ_1 is the initial state (lines 19-20), then ζ_2’s successor is a final state (lines 53-54). If ζ_3 is some other entry, we record the edge in Summary and pass the result of to the callers of ζ_2 (lines 22-23). Last, consider the case of a tail call ζ_2 to ζ_1 (line 24). No continuation is born at ζ_4. Thus, we must find where ζ_2 (the entry that led to the tail call) was called from. Then again, all calls to ζ_2 may be tail calls, in which case we keep searching further back in the call chain to find a return point. We do the backward search by transitively adding a cross-procedure summary from ζ_3 to ζ_2.

Let ζ_3 be an Exit-Esc over a call site $[(k\ e)\gamma]$ (line 25). Its predecessor ζ' is an entry or a $U\text{Apply}$. To reach ζ_3, the algorithm must go through ζ'. Hence, the first time the algorithm sees ζ' is at line 7 or 13, which means that ζ_2 is an entry over $u_2([(k\ e)\gamma])$ and (ζ_1, ζ_2) is not in Summary. Thus, the test at line 26 is true. We record ζ_2 in Escapes. We also create summaries from entries over to ζ_2, in order to find which continuations can flow to k. We make sure to put these summaries in Summary (line 29), so that when they are examined, the test at line 26 is false.

When ζ_2 is examined again, this time (ζ_1, ζ_2) is in Summary. If ζ_1 is the initial state, ζ_2 can call $halt$ and transition to a final state (line 30). Otherwise, we look for calls to ζ_1 to find continuations that can be called at ζ_2 (line 32). If there are tail calls to ζ_1, we propagate summaries transitively (line 33).

If ζ_2 is an entry over $[(\lambda u (u k))\gamma]$], its successor ζ_3 is a state in the same procedure, so we propagate (ζ_1, ζ_3) (lines 6-7). If λ is a heap variable (lines 8-9), we put ζ_2 in EntriesEsc (so that it can be found from line 29). Also, if we have seen Exit-Esc states that call λ, we create summaries from ζ_2 to those states (line 11).

If ζ_2 is a tail call (line 34), we find its successors and record the call in TCallers (lines 35-37). If a successor of ζ_2 goes to an exit, we propagate a cross-procedure summary transitively (line 41). Moreover, if ζ_4 is an Exit-Esc, we want to make sure that (ζ_1, ζ_4) is in Summary when it is examined. We cannot call Propagate with true at line 41 because we would be mutating Summary while iterating over it. Instead, we use a temporary set which we unite with Summary after the loop (line 42).
Summary, Callers, TCallers, EntriesEsc, Escapes, Final ← ∅

seen, W ← {{I(pr), I(pr)}}

while W ≠ ∅

remove (ξ₁, ξ₂) from W

switch ξ₂

 case ξ₂ of Entry

 for the ξ₃ in succ(ξ₂), Propagate(ξ₁, ξ₃, false)

 ξ₂ of the form \(\langle \lambda u \, \text{call} \rangle\), \(d, h\)

 if \(H_u(k)\) then

 insert \(ξ₂\) in EntriesEsc

 for each \(ξ₃\) in Escapes that calls \(k\), Propagate(\(ξ₂, ξ₃\), true)

 case ξ₂ of CApply, Inner-CEval

 for the \(ξ₃\) in succ(ξ₂), Propagate(\(ξ₁, ξ₃\), false)

 case ξ₂ of Call

 for each \(ξ₁\) in succ(ξ₂)

 Propagate(\(ξ₂\), false)

 insert \(ξ₁, ξ₂\) in Callers

 for each \(ξ₃, ξ₄\) in Summary, Update(ξ₁, ξ₂, ξ₃, ξ₄)

 case ξ₂ of Exit-Ret

 if \(ξ₁ = I(pr)\) then Final(ξ₂)

 else

 insert \(ξ₁, ξ₂\) in Summary

 for each \(ξ₃, ξ₄, ξ₅\) in Callers, Update(ξ₃, ξ₄, ξ₁, ξ₂)

 for each \(ξ₃, ξ₄, ξ₅\) in TCallers, Propagate(ξ₃, ξ₂, false)

 case ξ₂ of Exit-TC

 if \(ξ₁, ξ₂\) not in Summary then

 insert \(ξ₂\) in Escapes

 \(ξ₂\) of the form \(\langle \{k \rightarrow \text{call}\}\rangle\), \(d, h\)

 for each \(ξ₃\) in EntriesEsc over \(\text{def}_\lambda(k)\), Propagate(ξ₃, ξ₂, true)

 else if \(ξ₁ = I(pr)\) then Final(ξ₂)

 else

 for each \(ξ₃, ξ₄, ξ₅\) in Callers, Update(ξ₃, ξ₄, ξ₁, ξ₂)

 for each \(ξ₃, ξ₄, ξ₅\) in TCallers, Propagate(ξ₃, ξ₂, true)

 case ξ₂ of Exit-TC

 for each \(ξ₁\) in succ(ξ₂)

 Propagate(\(ξ₂\), \(ξ₃\), false)

 insert \(ξ₁, ξ₂\) in TCallers

 \(S ← ∅\)

 for each \(ξ₃, ξ₄\) in Summary

 insert \(ξ₁, ξ₄\) in \(S\)

 Propagate(\(ξ₁, ξ₄\), false)

 \(Summary ← Summary ∪ S\)

Propagate(ξ₁, ξ₂, esc) ≜

if esc then insert \(ξ₁, ξ₂\) in Summary

if \(ξ₁, ξ₂\) not in seen then insert \(ξ₁, ξ₂\) in seen and \(W\)

Update(ξ₁, ξ₂, ξ₃, ξ₄) ≜

\(ξ₁\) of the form \(\{\langle \lambda l_1 (u₁ k₁) \text{call} \rangle\}, \(d₁, h₁\)

\(ξ₂\) of the form \(\{\langle f e₂ (\lambda l₂ (u₂ \text{call}₂) \rangle\}, \(d₂, h₂\)

\(ξ₃\) of the form \(\{\langle \lambda l₃ (u₃ k₃) \text{call}₃ \rangle\}, \(d₃, h₃\)

\(ξ₄\) of the form \(\{\langle k₄ e₄ \rangle\}, \(d₄, h₄\)

\(d ← \hat{A}_u(e₄, γ₄, tf₄, h₄)\)

\(tf ← \{\langle f \rightarrow \{\langle \lambda l₅ (u₅ k₅) \text{call}₅ \rangle\} \rangle \} S_l(l₅, f)\)

\(H₄(l₅, f) \lor \text{Lam}_u(f)\)

\(ξ ← \{\langle \lambda l₆ (u₆ \text{call}₆) \rangle, \(d, tf, h₄\)\}

Propagate(ξ₁, ξ, false)

Final(ξ) ≜

\(ξ\) of the form \(\{\langle k \rightarrow \text{call} \rangle\}, \(tf, h\)

insert (halt, \(\hat{A}_u(e), γ, tf, h), θ, h\) in Final

Figure 8. CFA2 workset algorithm
5.4 Soundness

The local state space is finite, so there are finitely many path and summary edges. We record edges as seen when we insert them in W, which ensures that no edge is inserted in W twice. Therefore, the algorithm always terminates.

We obviously cannot visit an infinite number of abstract states. To establish soundness, we relate the results of the algorithm to the abstract semantics: we show that if a state $ζ$ is reachable from $\hat{I}(pr)$, then the algorithm visits $[ζ]_{af}$ (cf. theorem 8).

First-class continuations create an intricate call/return structure, which complicates reasoning about soundness. When calls and returns nest properly, an execution path can be decomposed so that for each state $ζ$, we can uniquely identify another state $ζ'$ as the entry of the procedure that contains $ζ$ [17]. When we add tail calls into the mix, unique decomposition is still possible [24].

However, in the presence of first-class control, a state can belong to more than one procedure. For instance, suppose we want to find the entry of the procedure containing $ζ$ in the following path

$$\hat{I}(pr) \sim^∗ ζ_c \sim^∗ ζ_e \sim^∗ ζ_ς \sim^∗ ζ' \sim^∗ ζ \sim ζ$$

where $ζ'$ is an Exit-Esc over $[(k e)\gamma]$, $ζ_e$ and $ζ_ς$ are entries over $\text{def}_{k}(k)$, $ζ_c$ and $ζ_ς$ are calls. The two entries have the form

$$ζ_c = (\text{def}_{k}(k), d, c, st, h)$$
$$ζ_ς = (\text{def}_{k}(k), d', c', st', h')$$

Both $ζ_c$ and $ζ_ς$ can flow to k and we can call either at $ζ'$. If we choose to receive c and st, then $ζ_ς$ is in the same procedure as $ζ_c$. If we restore c' and st', $ζ_ς$ is in the same procedure as $ζ_ς$. However, it is possible that $ζ = ζ_c$ and $ζ = st'$, in which case $ζ$ belongs to two procedures. Unique decomposition no longer holds.

For this reason, we now define a set of corresponding entries for each state, instead of a single entry [22].

Definition 5 (Corresponding Entries).

Let $p \equiv ζ \sim^∗ ζ$ where $ζ_ς$ is an entry. We define $CE_p(ζ)$ to be the smallest set such that:

- if $ζ$ is an entry, $CE_p(ζ) = \{ζ\}$
- if $p \equiv ζ_c \sim^+ ζ_ς \sim^+ ζ_ς \sim ζ$, $ζ$ is an Exit-Esc over $[(k e)\gamma]$, $ζ_ς$ is an entry over $\text{def}_{k}(k)$, then $ζ_ς \in CE_p(ζ)$.
- if $p \equiv ζ_c \sim^+ ζ_ς \sim ζ$, $ζ$ is neither an entry nor an Exit-Esc, $ζ_ς$ is neither an Exit-Ret nor an Exit-Esc, then $CE_p(ζ) = \{CE_p(ζ_ς)\}$.
- if $p \equiv ζ_c \sim^+ ζ_ς \sim ζ_ς \sim^+ ζ_ς \sim ζ_ς \sim ζ$, $ζ$ is a CApply of the form (c, d, st, h), $ζ_ς$ is an Exit-Esc, $ζ_ς \in CE_p(ζ_ς)$ and has the form $(\text{call}_{k}(k', d', c', st, h'))$, $ζ_ς \in CE_p(ζ_ς)$, $ζ_ς$ is a Call, then $CE_p(ζ) \subseteq CE_p(ζ_ς)$.
- if $p \equiv ζ_ς \sim^+ ζ_ς \sim ζ_ς \sim ζ_ς \sim ζ_ς \sim ζ$, $ζ$ is an Exit-Ret, $ζ_ς \in CE_p(ζ_ς)$, $ζ_ς$ is a Call, then $CE_p(ζ) \subseteq CE_p(ζ_ς)$.

For each state $ζ$, we also define $CE_p^∗(ζ)$ to be the set of entries that can reach an entry in $CE_p(ζ)$ through tail calls.

Definition 6. Let $p \equiv ζ_ς \sim^+ ζ$ where $ζ_ς$ is an entry. We define $CE_p^∗(ζ)$ to be the smallest set such that:

- $CE_p^∗(ζ) \subseteq CE_p^∗(ζ)$
- if $p \equiv ζ_c \sim^∗ ζ_ς \sim ζ_ς \sim ζ_ς \in CE_p(ζ)$, $ζ_ς$ is a Tail Call, then $CE_p^∗(ζ) \subseteq CE_p^∗(ζ)$.

Note that if $ζ$ is an Exit-Esc over $[(k e)\gamma]$, a procedure that contains $ζ$ has an entry $ζ'$ over $\text{iu}_{k}([(k e)\gamma])$. Thus, $ζ'$ is not in $CE_p^∗(ζ)$ because $\text{iu}_{k}([(k e)\gamma]) \neq \text{def}_{k}(k)$. For all other states, $CE_p^∗(ζ)$ is the set of entries of procedures that contain $ζ$. The following lemma relates the stack of a state with the stacks of its corresponding entries.

Lemma 7. Let $p \equiv \hat{I}(pr) \sim^∗ ζ$ where $ζ \equiv (\ldots, st, h)$.

1. If $ζ$ is a final state then $CE_p(ζ) = \{\emptyset\}$.
2. If $ζ$ is an entry then $CE_p(ζ) \neq \{\emptyset\}$. (Thus, $CE_p^∗(ζ) \neq \{\emptyset\}$)

Let $ζ_ς \in CE_p^∗(ζ)$, of the form $(\text{call} _α, d, \hat{c}, st_e, h_e)$. Then, $st = st_e$ and the continuation argument of $ζ$ is $ζ$.

3. If $ζ$ is an Exit-Esc then its stack is not empty and $CE_p(ζ) \neq \{\emptyset\}$.

(We do not assert anything about the stack change between a state in $CE_p(ζ)$ and $ζ$, it can be arbitrary.)

4. If $ζ$ is none of the above, then $CE_p(ζ) \neq \{\emptyset\}$.

Let $ζ_ς (\{[\lambda(λ(u k))\text{call}]\}, \hat{d}, \hat{c}, st_e, h_e)$.

If $ζ_ς \in (CE_p(ζ) \setminus CE_p^∗(ζ))$ then
- there is a frame I such that $st \equiv tf :: st_e$, and
- there is a variable k' such that $tf(k') = \hat{c}$.

If $ζ_ς \in CE_p(ζ)$ then there is a frame I such that $st \equiv tf :: st_e$, $\text{dom}(tf) \subseteq LV(I)$, $\text{dom}(u) \subseteq d$, and $tf(k) = \hat{c}$.

The proof of lemma 7 proceeds by induction on the length of the path p. We now state the soundness theorem. Its proof and the proof of lemma 7 can be found in the first author’s forthcoming dissertation.

Theorem 8 (Soundness).

If $p \equiv \hat{I}(pr) \sim^∗ ζ$ then, after summarization:

- if $ζ$ is a final state, then $[ζ]_{af}$ is Final.
- if $ζ$ is not final and $ζ_ς \in CE_p(ζ)$, then $([ζ]_{af}, [ζ]_{af}) \in$ Seen.
- if $ζ$ is an Exit-Ret or Exit-Esc and $ζ_ς \in CE_p(ζ)$, then $([ζ]_{af}, [ζ]_{af}) \in$ Seen.

CFA2 without first-class control is complete, which means that there is no loss in precision when going from abstract to local states [24]. The algorithm of Fig. 8 is not complete; it may compute flows that never happen in the abstract semantics. Consider the code:

\[
\text{(define esc } \lambda(a) (\lambda(x) (\lambda(y) \text{cc}))}
\]

\[
\left(\lambda(a) \left(\lambda(b) \left(\lambda(c) \text{bar}\right)\right)\right)
\]

In this program, esc is the CPS translation of call/cc. The two user functions $λ_1$ and $λ_2$ expect a reified continuation as their first argument; $λ_1$ uses that continuation and $λ_2$ does not. The abstract semantics finds that the “foo” flows to a and the “bar” flows to b.

However, the workset algorithm thinks that the “foo”, “bar” flows to b. At the second call to esc, it connects the entry to the Exit-Esc state over $[(cc x)]$ at line 11, which is a spurious flow.

5.5 Various approaches to downward continuations

In RCS, the general form of a user lambda that binds a heap continuation variable is

\[
(λ_1(u k) (\ldots (λ_2(u k 2) (\ldots (k e)\gamma) \ldots) \ldots))
\]

where $λ_1$ contains a user lambda $λ_2$, which in turn contains a heap reference to k in operator position.

During execution, if a closure over $λ_2$ escapes upward, merging of continuations at $[(k e)\gamma]$ is unavoidable. However, when $λ_2$ is not passed upward, the abstract semantics still merges at $[(k e)\gamma]$. A natural question to ask is how precise can CFA2 be for downward continuations, such as exception handlers or continuations captured by call/cc that never escape. In both cases, we can avoid merging.
In section 2.4, we described how the JavaScript implementation of CFA2 handles exception throw precisely. Another way to achieve this is by uniformly passing two continuations to each user function, the current continuation and an exception handler [1]. Consider a user lambda \(\lambda (x \ k1 \ k2) \) \(\ldots \langle k2 \ e \rangle \) where \(S_1(\gamma k2) \) holds. Every Exit-Ret over \(\langle k2 \ e \rangle \) is an exception throw. The handler continuation lives wherever on the stack. To find it, we propagate transitive summaries for calls, as we do for tail calls. When the algorithm finds an edge \((\tilde{c}_1 \ \tilde{c}_2) \) where \(\tilde{c}_2 \) is an Exit-Ret over \(\langle k2 \ e \rangle \), it searches in \(\text{Callers} \) for a triple \((\tilde{c}_1 \ \tilde{c}_2 \ \tilde{c}_1) \). If the second continuation argument of \(\tilde{c}_2 \) is a lambda, we have found a handler. If not, we propagate a summary \((\tilde{c}_1 \ \tilde{c}_2) \), which has the effect of looking for a handler deeper in the stack.

Note that the algorithm must keep these new summaries separate from the other summaries, so as not to confuse exceptional with ordinary control flow.

For continuations captured by ca11/cc that are only used downward, we can avoid merging by combining flow analysis and escape analysis. Consider the lambda at the beginning of this subsection. During flow analysis, we track if any closure over \(\lambda_2 \) escapes upward. We do this by checking for summaries \((\tilde{c}_1 \ \tilde{c}_2) \) where \(\tilde{c}_1 \) is an entry over \(\lambda_1 \). If \(\lambda_2 \) is contained in a binding reachable from \(\tilde{c}_2 \) [12, sec. 4.4.2], then \(\lambda_2 \) is passed upward and we use the heap to look up \(k \) \(\langle k \ e \rangle \). Otherwise, we can assume that \(\lambda_2 \) does not escape. Hence, when we see an edge \((\tilde{c}_1 \ \tilde{c}_2) \) where \(\tilde{c}_1 \) is an entry over \(\lambda_2 \) and \(\tilde{c}_2 \) is an Exit-Esc over \(\langle k \ e \rangle \), we treat it as an exception throw. We use the new transitive summaries to search deeper in the stack for a live activation of \(\lambda_1 \), which tells us what flows to \(k \).

6. Related work

The CFA2 workset algorithm is influenced by the functional approach of Sharrir and Pnueli [17] and the tabulation algorithm of Reps et al. [15]. CFA2 extends these algorithms to first-class functions, introduces the stack/heap split and applies to control constructs that break call/return nesting. Traditional summary edges describe intraprocedural entry-to-exit flows. We have created several kinds of cross-procedure summaries for the various control patterns. Summaries for tail calls describe flows that do not grow the stack. Summaries for exceptions describe flows that grow the stack; the source of the summary may be deeper in the stack than the target. Finally, summaries for first-class control describe flows with arbitrary stack change. The four different kinds of summaries can be conceptually unified because they serve a common purpose: they connect a continuation passed to a user function with the state that calls it.

Earl et al. have proposed a pushdown higher-order flow analysis that does not use frames [6]. Instead, their analysis allocates all bindings in the heap with context, in the style of k-CFA. For \(k = \lambda \), their analysis runs in time \(O(n^6) \), where \(n \) is the size of the program. Like all pushdown-reachability algorithms, Earl et al.’s analysis records pairs of states \((\tilde{c}_1 \ \tilde{c}_2) \) where \(\tilde{c}_2 \) is same-context reachable from \(\tilde{c}_1 \). However, their algorithm does not classify states as entries, exits, calls, etc. This has two drawbacks compared to the tabulation algorithm. First, they do not distinguish between path and summary edges. Thus, they have to search the whole set of edges when they look for return points, even though only summaries can contribute to the search. More importantly, path edges are only a small subset of the set \(S \) of all edges between same-context reachable states. By not classifying states, their algorithm maintains the whole set \(S \), not just the path edges. In other words, it records edges whose source is not an entry. In the graph of Fig. 1, some of these edges are \((2 \ 3) \), \((2 \ 6) \), \((5 \ 7) \). Such edges slow down the analysis and do not contribute to call/return matching, because they cannot evolve into summary edges. In CFA2, it is possible to disable the use of frames by classifying each reference as a heap reference. The resulting analysis has similar precision to Earl et al.’s analysis for \(k = 0 \). We conjecture that this variant is not a viable alternative in practice, because of the significant loss in precision.

While there is extensive literature on finite-state higher-order flow analysis, little progress has been made in taming the power of ca11/cc and general continuations. Might and Shivers’s \(\Delta \)CFA [12, 13] introduced a notion of “frame strings” to track stack motion; these strings provide a notational vocabulary for describing and distinguishing various sorts of control transfer: recursive call, tail call, return, primitive application, as well as the more exotic control acts that are constructed with first-class control operators. However, the expressiveness of this device is brought low by its eventual regular-expression-based abstraction. Once abstracted, it loses much of its ability to reason about unusual patterns of control flow. We suspect that the infinite-state analytic framework provided by CFA2 could be the missing piece that would enable a \(\Delta \)CFA-based analysis to be computed without requiring precision-destroying abstractions.

Shivers and Might have also shown how functional coroutines can be constructed with continuations, and then exploited to fuse pipelines of online transducers together into efficient, optimized code [19]. Being able to apply the power of pushdown models such as CFA2 to the transducer-fusion task raises interesting new possibilities. For example, suppose we had a coroutine generator with a recursive control structure—one that walks a binary tree producing the elements at the leaves. We wish to connect this tree-walking generator to a simple iterative coroutine that adds up all the items it receives. Is a pushdown flow analysis powerful enough to fuse the composition of these two coroutines into a single, recursive tree traversal, instead of an awkward, heavyweight implementation that ping-pongs back and forth between two independent stacks?

7. Conclusions

In this paper, we generalize the CFA2 flow analysis to first-class control. We propose an abstract semantics that allows stacks to be copied to the heap, and a summarization algorithm that handles the infinitely many heaps with a new kind of summary edges. With these additions, CFA2 becomes the first pushdown model that analyzes first-class control constructs. Moreover, CFA2 can now analyze the same language features as \(k \)-CFA, and do it more accurately. Thus, implementors of higher-order languages can use CFA2 as a drop-in replacement of \(k \)-CFA.

We also revisit the idea of path decomposition to accommodate states that belong to multiple procedures and prove our analysis sound. We show a program for which the abstract semantics gives a different result from the local semantics and conclude that our new summarization algorithm is not complete. We are not certain that first-class control unavoidably leads to incompleteness; we plan to investigate if changes to the algorithm can make it complete. However, it is possible that the abstract semantics describes a machine strictly more expressive than pushdown systems, and that reachability for this machine is not decidable.

Acknowledgements

This article reports on work supported by the Mozilla Foundation, and by the Defense Advanced Research Projects Agency under Air Force Research Laboratory (AFRL/Rome) Contract No. FA8650-10-C-7090 and Cooperative Agreement No. FA8750-10-2-0233. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
References

