
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2016)
Ladislav Kavan and Chris Wojtan (Editors)

Large-Scale Finite State Game Engines

Matt Stanton1 Sascha Geddert1 Adrian Blumer1 Paul Hormis1 Andy Nealen2 Seth Cooper3 Adrien Treuille1

1Carnegie Mellon University 2New York University 3Northeastern University

Figure 1: Our precomputation method enables the automatic reuse of film assets and rendering pipelines in interactive games. This frame
from our prototype game consists of roughly 900 million geometric primitives and includes complex lighting and dynamics, yet runs in
realtime.

Abstract

This paper presents a new model reduction technique that exploits large-scale, parallel precomputation to create interactive,
real-time games with the visual fidelity of offline rendered films. We present an algorithm to automatically discretize a continuous
game into a large finite-state machine that can be pre-rendered in the film world. Despite radical differences from existing game
engines, our finite-state approach is capable of preserving important characteristics of continuous games including smooth
animation, responsiveness to input, triggered effects and passive animation. We demonstrate our technique with a 30-second
interactive game set in an award-winning short film.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation I.6.8 [Simulation and Modeling]: Types of Simulation—Gaming

1. Introduction

The past two decades have seen graphics hardware driving spec-
tacular advances in game graphics and dynamics. Today however,
we are witnessing the emergence of a new cloud computing regime
characterized by powerful, on-demand parallel computation, large-
scale content distribution networks, and thin clients. This new
architecture will reshape the way computer graphics approaches
space-time trade-offs, dynamics, and rendering. It also presents
a grand challenge—using the cloud to infuse mobile games with
film-quality graphics.

This paper addresses this challenge through state graphs, large-
scale data structures that approximate continuous dynamical sys-
tems as large finite-state machines. While this model reduction
technique has been successfully applied to isolated phenomena
such as clothing [KKN∗13] and fluids [SHK∗14], we seek now
to generalize this approach to the more rigorous requirements of
game engines. In particular, this paper focuses on creating respon-
sive games that integrate many dynamical and rendering systems,
as one finds in commercial games.

Our method begins with an offline rendered film and a computer
game, both created using standard production tools. We precom-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

pute a large number of possible paths through the game, effectively
creating a large-scale finite-state description of every outcome in
the game. Finally, we pre-render frames for all these states, re-using
geometric assets and the offline rendering pipeline from the under-
lying film.

Our finite-state approach is radically different from existing
game engines, which typically compute each frame on the fly. How-
ever, we still wish to preserve the feeling of traditional games,
which we summarize into five essential properties that the game
should exhibit: (1) smooth, jitter-free animation, (2) fast reaction
to user input, (3) event triggers in which the world reacts discon-
tinuously (and sometimes dramatically) to player action, (4) rich
visual and audio effects that react physically to the main character,
and (5) background animations that proceed independently of the
character’s action, which make the world feel as though it has a life
of its own.

We present techniques to satisfy all five properties while simul-
taneously controlling the total number of states precomputed—the
key limiting constraint of this state graph approach. To demonstrate
our technique, we created a 30-second interactive game that exer-
cises all five properties, set in the “runner” genre. We then rendered
the game in the world of an award-winning short film, The Rise and
Fall of Globosome, by Sascha Geddert. We directly re-used geom-
etry and animation from the film to render a world with 900 million
geometric primitives, consuming about 1 million hours of precom-
putation time. A frame from the game is shown in Fig. 1.

Contributions. This paper presents the first finite-state game
engine that can tabulate games written in an existing game en-
gine, while satisfying rigorous responsiveness and smoothness con-
straints, correctly modeling discrete triggered events, and incorpo-
rating film-quality offline graphics with complex secondary effects
and background animations. Our demonstration serves as an exis-
tence proof that finite-state games can be used to bring interactivity
to the worlds of animated films by faithfully approximating com-
plex continuous games within reasonable state budgets.

2. Related Work

Game engines—codebases and frameworks for developing video
games—are widely used, thanks to affordable creation tools for 2D
and 3D games such as the popular GameMaker: Studio [YG16]
and Unity [Uni16]. Our work uses such engines and takes them in
a radical new direction. We design our game in Unity, but rather
than running the game on the fly, we transform the game into a
large-scale finite state representation suitable for offline rendering
and cloud streaming.

Many game engines focus on specific categories of games, such
as the Cocos2D-x engine for two-dimensional games [Coc15], or
CryEngine for first person 3D games [Cry09]. Engines can also be
used to craft discrete offline-rendered games in which the player
has limited control, akin to a “choose-your-own-adventure” novel,
such as Dragon’s Lair [Cin83] and Myst [Cya93]. We apply this
pre-rendering approach, for the first time, to much more fluid and
interactive games. In particular, we optimized our engine for the
runner genre, which is quite large and encompasses many suc-
cessful games such as Temple Run [IS11], Canabalt [SSS09], and

Flappy Bird [Ngu13]. Unlike previous approaches, our method
requires no explicit computation of discrete states. Instead, our
algorithm automatically discretizes a continuous state space, and
allows for vastly more states with much denser connectivity. In
other words, everything is precomputed, but still allows for real-
time, interactive response to player actions.

Realtime graphics typically use specialized GPU algorithms to
model soft shadows [HLHS03], subsurface scattering [HV04], and
water [IDYN06, MM13]. A complementary approach is to exploit
example-based precomputed methods. Linear subspace models
have leveraged precomputation for lighting [SKS02], deformable
solids [BJ05, AKJ08], and fluid dynamics [TLP06]; however, they
place severe constraints on the form of the underlying dynamics
and it is difficult to characterize their error. An alternative form
of precomputation that avoids these pitfalls is large-scale tabula-
tion of state graphs to model isolated phenomena such as cloth
and lighting [JF03], clothing [KKN∗13] and fluids [SHK∗14]. Our
work scales this approach up from modeling isolated phenomena
to capturing an entire game engine, a much more complex task
that requires carefully modeling important characteristics of real
games (Sec. 3). We demonstrate how to create a finite state game by
combining some of the rich authoring tools available to game and
film creators today, including the Unity game engine [Uni16], 3DS
Max [Aut14], V-Ray [CG15], and Nuke [TF14]. As a result, our
technique has allowed us, for the first time, to set a highly respon-
sive interactive game in an offline rendered film, reusing geometric
assets and rendering pipelines from that world.

3. Overview

Our goal is to create an interactive game set in an existing animated
film world. In essence, our approach is to precompute a large num-
ber of possible state trajectories through the game, pre-render these
frames exactly reusing assets and rendering pipelines from the un-
derlying movie, and blending them at runtime in response to user
input.

The following sections describe how we used our state graph
method to simultaneously satisfy all five properties we described
in Section 1. These properties are: (1) jitter-free animation, (2) re-
sponsiveness to user input, (3) discontinuous event triggers, (4) rich
secondary effects that respond to the character’s action, and (5)
independent background animation. In Sec. 4, we demonstrate how
to achieve the first two of these properties in the tabulation phase.
In Sec. 5, we then show how to achieve the final three properties
by designing the state appropriately. Finally, in Sec. 6, we describe
our experience applying this approach to a real-world demonstra-
tion game that exhibits these five properties.

Our 30 second demonstration game, set in The Rise and Fall of
Globosome, an animated film by Sascha Geddert, follows a small
spherical character, called a globosome, rolling down a canyon
while controlled by the player. The globosome’s motion is smooth
and responsive (properties 1 and 2), but if the globosome rolls
through certain areas, discontinuous events are triggered, such as
the growth of a magical bridge (property 3). The world exhibits
rich secondary animation, such as grass bending and water rippling
in response to the globosome’s motion (property 4), while back-
ground plants bend and wave in the wind (property 5).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

 state
 terminal state
 hub state

exact edge
approximate edge

1
3

8

1
2

3
4

5
6

7

9
10

11
12

13
14

15

16
17

12

(a) (b) (c) (d) (e)

17
12

11
18

11

(a)

PQ Algorithm:

BFS+ Algorithm:

1
2

1
3

1

4 5 4 5

(b) (c) (d)

Key:

Figure 2: We compare two algorithms for transforming a continuous computer game into a finite state machine. For simplicity, this figure
depicts graphs with 2 controls (|Σ| = 2) and BFS+ state chain length 3 (n = 3). In our experiments, |Σ| = 3 and n = 8. Above, PQ: (a) The
worst approximate edge is 1→ 2. If we cannot improve this transition by linking to a different state, instead (b) we simulate a new state 3
and add the exact edge 1→ 3. (c) We close the loop by finding optimal outgoing approximate edges from 3 back into Q̂: 3→ 4 and 3→ 5. (d)
Once the graph is completed, a smoothing step (Sec. 4.4) removes discontinuities. Below, BFS+: (a) We build a n-length state chain 1 · · ·4.
and repeat again (b) for another control 1→ 5 · · ·7. (c) We continue in a breadth-first manner, growing n-length chains from hub states. If
a chain does not reach a terminal state (such as 9), we enqueue its final state as a new hub state (such as 12). (d) Alternatively, when a
chain 7→ 16 · · ·18 gets within ε of an existing hub state (such as 12), we redirect the chain to this state by introducing 17→ 12. (e) Finally,
smoothing (Sec. 4.4) removes the discontinuities that redirection can create.

4. Game Tabulation

Our goal is to tabulate all possible paths through a game a priori so
that we can pre-render cinema-quality graphics. We now describe a
process to automatically convert a computer game written in an ex-
isting game engine into a finite state representation. The goal of this
process is to satisfy the first two constraints of Sec. 1 (smoothness
and responsiveness) while at the same time controlling the total
number of states.

We formalize this problem in the language of automata the-
ory [Sip12]. A continuous state game G is similar to a finite state
automaton, but can take on continuous states: G = (Q,Σ,δ,q0,T).
The continuous (infinite) state space Q describes all possible game
configurations. The (finite) control alphabet Σ describes which but-
ton was pushed. For example, Σ = {le f t,right,neither}. The tran-
sition function

δ : Q×Σ→ Q

encodes interactive game logic at discrete timestep granularity. For
example, pressing the right button in state q yields state δ(q,right)
at the next time instant. We assume that the game’s dynamics are
provided by a transition function δ(q,σ), which can be queried for
any state q and control σ, and that δ is continuous in q. The game
starts in state q0 ∈ Q and terminates if we reach a terminal state
T ⊆ Q, for example, by dying or completing the level.

A finite state game Ĝ approximates a continuous state game G
as a large finite state machine—the entire game logic and rendering

is reduced to a lookup table. Formally, a finite state game is a tuple
Ĝ = (Q̂,Σ, δ̂,q0,T) where Q̂ = {q0,q1, . . . ,qN} ⊆ Q is a finite set
of states which approximate every possible outcome in the game.
Importantly, the game logic

δ̂ : Q̂×Σ→ Q̂

is now restricted to only take transitions within this finite set of
states. Our goal is to tabulate the best possible finite state approxi-
mation Ĝ for G.

4.1. Two Tabulation Algorithms

We now compare two tabulation algorithms, PQ and BFS+, which
attempt to preserve smoothness and responsiveness. PQ is derived
from the priority queue based approach of Kim et al. [KKN∗13].
While this algorithm created small state graphs with low error in
the complex state spaces of cloth and liquid dynamics [SHK∗14],
when applied to our runner game it frequently produced unaccept-
able latency in response to user control changes. In response, we
created BFS+, which uses a more predictable branching structure
to achieve more predictable latency guarantees on our game dy-
namics.

Both algorithms represent Ĝ as a graph whose vertices are the
finite set Q̂ of states and whose labeled, directed edges, denoted
q σ−→ q′, define the transition function: q′ = δ̂(q,σ). The algorithms
measure the quality of each edge in Ĝ using an error measure

E : Q̂×Σ→ R≥0.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

The error vanishes whenever the continuous game and finite state
approximation agree exactly on the transition:

E(q,σ) = 0 iff δ(q,σ) = δ̂(q,σ),

in which case we call this an exact edge. Otherwise, the transition
has some error and is called an approximate edge. The exact form
of the error is defined in Sec. 4.2.

Both algorithms start with a trivial graph which they iteratively
“grow” into closer and closer approximations to the continuous
game G. The first algorithm, PQ, operates by repeatedly improv-
ing the highest error transition (Fig. 2, top).

Algorithm 1 PQ: Begin with a trivial game Ĝ with only one
state: Q̂ = {q0} and only self-loops δ̂(q0, ·) = q0. At each iteration,
find the maximum error edge q σ−→ q′ in Ĝ and improve it to q σ−→ q′′

as follows. First, search for a better destination state q′′ ∈ Q̂. If this
search is successful, we can improve the edge by redirecting it,
and we are done. Otherwise create a new exact edge by assigning
q′′ := δ(q,σ) and adding this new state q′′ to Q̂. If q′′ /∈ T is non-
terminal, also find optimal outgoing transitions from q′′ back into
Q̂. In both cases, update δ̂ to reflect these new transitions. Repeat
this process until the state budget is exhausted. Note that we can
efficiently query the worst edge argmaxq,σ E(q,σ) by maintaining
a priority queue, giving this algorithm its name.

This greedy, maximum-error approach is attractive because it
was successfully employed by Kim et al. [KKN∗13] to tabulate
cloth and by Stanton et al. [SHK∗14] to model fluids. However, we
found that this approach yielded insufficiently responsive games,
which at times registered noticeable delays in responding to player
key presses. We therefore developed a second algorithm, BFS+,
with a rigorous responsiveness guarantee: an upper bound n on the
number of edges the player can cross before seeing an exact tran-
sition. We enforce this constraint by defining a set of hub states
H ⊆ Q̂ that are guaranteed to have only exact outgoing transitions
(E(q,σ) = 0 for all q ∈ H) and that are separated from each other
by no more than than n transitions (Fig. 2, bottom).

Algorithm 2 BFS+: Begin with a trivial game Ĝ with only one
state (Q̂ = {q0}) and place this state into a FIFO queue of hub
states. At each iteration, pop a hub state q off the queue. Pick a
control σ ∈ Σ at random and follow it for n steps:

q σ−→ q1
σ−→ ·· · σ−→ qn−1

σ−→ qn,

adding these new states to the graph and halting only if we reach
a terminal state. If any state qi in this chain falls within ε of an
existing hub state q′ ∈ H, then terminate the chain at qi and redi-
rect it to q′ by changing the destination of its final edge. (That
is, assign qi := q′ and use the transition qi−1

σ−→ q′ if this yields
E(qi−1,σ) < ε.) Otherwise, add qn as a new hub state by pushing
it onto the queue. Link all the new states into a chain qi

·−→ qi+1
regardless of control, but allow early transitions into existing hub
states if they improve the error. (More formally, for each control
σi, let qi

σi−→ argminq∈{qi+1}∪H E(qi,σi). qi+1 will usually have the
lowest error—however, when σi is not the control σ picked to create
the chain, a state in H may be better.) Now pick another control at
random (to prevent bias) and grow another n-length chain, repeat-
ing this process until all controls are exhausted. Work on the state

q is now complete. Pop another hub state from the queue and con-
tinue this breadth-first-search iteration until either the queue emp-
ties (in which case the game is fully tabulated), or the state budget
is exhausted (in which case we throw an exception).

Note that BFS+ allows merging only into hub states in H, not
into ordinary states in Q̂ \H. Also note that hub states are never
more than n transitions apart, by construction, thus enforcing our
bound n on the number of edges the player can cross before see-
ing an exact transition. Qualitatively, we observe that BFS+ (with
n = 8) produces finite state approximations which are much more
responsive than PQ. We quantify this observation in Sec. 4.3.
BFS+ tabulations are not always smooth, but the jitter produced
can be smoothed to acceptable levels in a post process (Sec. 4.4).

4.2. Error

We complete the algorithm descriptions by defining error. Both
PQ and BFS+ use the same error metric

EĜ(q,σ) = ||w⊗ (q−q′)||2 +α is_backward(q,q′), (1)

where q′ = δ̂(q,σ), w is a weight vector. The indicator function
is_backward returns 1 if and only if q′ lies behind q in the level’s
principle direction of motion (the negative z axis), and 0 other-
wise. α is a large positive constant designed to penalize “back-
wards progress,” and thus prevent cycles in the graph, which are
highly undesirable for games, like ours, where the player should
constantly be moving forward.

4.3. Algorithm Evaluation

We tabulated two different graphs with PQ using two different
weight vectors: wp (PQ(P)), with high weight on position, and wv
(PQ(V)), with high weight on velocity. We tabulated a single graph
using BFS+ using weight vector wb, with intermediate position
and velocity weights. Each algorithm variant was able to produce
a game of the desired length in the desired number of states. How-
ever, PQ(P) resulted in a game that did not meet the responsiveness
criteria (Fig. 3b), and PQ(V) only improved responsiveness slightly
while resulting in far worse smoothness (Fig. 3c). Further weight
adjustment for greater responsiveness resulted in games with un-
acceptable smoothness, demonstrating that a new algorithm would
be required to fulfill both criteria simultaneously. BFS+ produced
a much more responsive gameplay experience with only a small
additional smoothness cost, which we could mitigate using an of-
fline smoothing step (Sec. 4.4) to create a satisfying gameplay ex-
perience.

We computed smoothness and responsiveness across a set of
gameplay traces, or recorded paths through the game consisting of
a sequence of state-control pairs (Fig. 4). We recorded these paths
only once, in the continuous Unity game, and reconstructed them
in each tabulated graph. Given a trace t = {(q0,σ0), . . . ,(q f ,σ f)},
we create its reconstruction r = {(q̂0, σ̂0), . . . ,(q̂ f , σ̂ f)} under a fi-
nite game game function Ĝ by initializing q̂0 = q0 and σ̂0 = σ0,
and iteratively extending r by following controls in the graph:
q̂i+1 = δ̂(q̂i, σ̂i). The control σ̂i at frame i is found by taking the
control σ j at frame j in t, where q j is the closest state in t (mea-
sured in position only) to q̂i.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

0

0.2

0.4

0.6

0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4

0.5

0

0.01

0.02

0.03

0.04

Sm
oo
th
ne
ss

(b) (c)(a)

Smoothness

PQ(P)
PQ(V)
BFS+

Ground

Truth
R
es
po
ns
iv
en
es
s

R
es
po
ns
iv
en
es
s

PQ(P)
PQ(V)
BFS+

Ground

Truth

0

0.2

0.4

0.6

0 0.02 0.04 0.06

PQ(P)
PQ(V)
BFS+
Ground Truth

PQ(P)
PQ(V)
BFS+
Ground
Truth

0

0.2

0.4

0.6

0 0.02 0.04 0.06

PQ(P)
PQ(V)
BFS+
Ground Truth

Figure 3: An empirical analysis of tabulation algorithms demonstrates that PQ cannot achieve acceptable levels of responsiveness without
reaching unacceptable levels of smoothness, while BFS+ provides both smoothness equivalent to PQ(V) and much improved responsiveness.
All measurements were performed on a set of 30 playthroughs as described in Sec. 4.3. Smoothness is evaluated using RMS jerk (lower
values are smoother), and responsiveness is evaluated using the fraction of approximate edges—prior to smoothing—traversed (lower values
are more responsive). (a) Smoothness and responsiveness for each algorithm for all playthroughs. (b) Average responsiveness across all
playthroughs. (c) Average smoothness across all playthroughs.

Figure 4: A visualization of the 30 player traces we used to evalu-
ate our game, overlaid on a top-down view of our game level.

We measure responsiveness using the fraction of edges traversed
by the player that are approximate edges—more approximate edges
mean less responsive play—and smoothness using the RMS value
of jerk, evaluated using first-order backward finite differences on
player positions, during the playthrough. The results for all three
algorithms as well as the ground-truth player traces are summarized
in Fig. 3.

4.4. State Smoothing

Although the distance threshold used in state merging ensures that
the error introduced by constructing δ̂ is bounded, in practice the
ability to set a higher threshold can be beneficial to controlling the
state space explosion, and even small errors in continuous dynam-
ics can lead to noticeable discontinuities and jitter in the finite state
game. We propose a method to “smooth out” the states in Q̂ to
distribute these small errors and reduce larger errors as much as
possible. We refer to this as the smoothing step.

For time and memory efficiency, we smooth each state variable
independently. We estimate the ith state variable’s contribution to
the total error in the graph as the sum of its squared residuals:

∑
q∈Q̂,σ∈Σ

||δ̂(q,σ)−δ(q,σ)|| (2)

We then define the delta table ∆, which caches the distance from
each source to destination state using the game simulation function
δ:

∆(q,σ) = δ(q,σ)−q (3)

Using this table, we can construct a linear system composed of the
following equation for each graph edge:

δ̂(q,σ)−q = ∆(q,σ) (4)

We constrain q0 and the terminal states T to their original values,
and compute smoothed state values as the least-squares solution
in q to the resulting overconstrained system. In our demonstration
game, we smooth only variables that immediately affect the ren-
dered frame: position, velocity, and the global timer (Table 1). In
practice, smoothing may not remove every instance of jitter, but
does considerably reduce it. Please refer to the accompanying video
for a side-by-side comparison of BFS+ before and after smoothing.

5. State Design

We have shown how BFS+ preserves two important game proper-
ties in the discrete setting: smoothness and responsiveness. Sec. 1,
however, also lists three more properties: (3) event triggers, (4)
secondary effects, and (5) background animations. Our demonstra-
tion game exhibits all these effects, including triggered growth of
a bridge, grass that bends as a secondary effect, and background
animation (e.g. rivulets of water running down ravine walls and
leaves blowing in the breeze).

Preserving these important properties in the finite state setting
requires careful coordination between the continuous game and the
renderer. The challenges in coordinating these modules primarily
manifest themselves in the design of the state vector, which forms
the interface between them. In general, our strategy will be to first
augment the continuous game with explicit state variables to sup-
port these three properties, then to tabulate the game including

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

these state variables, and finally to use these variables to drive a
high-fidelity rendering. As in Sec. 4, the key constraint will be con-
trolling the total number of states.

We present a trio of techniques for incorporating these proper-
ties. We handle triggered events (constraint 3) by inserting event
timers (Sec. 5.1) into the state. We handle secondary effects by de-
signing history-free animations (Sec. 5.2). Finally, we describe how
to compute a consistent notion of global time to create immersive
background animations (Sec. 5.3).

5.1. Triggered Events

Triggered events are discontinuous changes in the game state
caused by player actions, for example, the appearance of a mag-
ical bridge when the player approaches the edge of a cliff. Our goal
is to support such events without creating too many states. A more
subtle challenge is to handle such discontinuous effects in the pres-
ence of a tabulation and smoothing steps which assume continuity
of the simulation function. (In Sec. 4, the transition function δ(q,σ)
is assumed to be continuous for all q.)

To add dynamic complexity to our game, we included three
different discontinuous events that the player can trigger: a gust
of wind that causes hanging plants in a cave to sway, the growth of
a vine bridge from a ramp to the cave, and a splash when the player
lands in a pool of water. These events are either not visible at all in
the Unity demo, or are approximated only crudely.

These events must still be represented in the state vector, how-
ever, so that we can include them during rendering and prevent
merging between states that are similar except for event visibil-
ity. We represent each event e in the state vector using an event
timer variable te. (These timers are distinct from the global timer
described in Sec. 5.3.) An event timer te is initialized to te = 0
and remains paused at that value until the player passes through
an event-specific trigger volume, which starts the timer. Once the
timer reaches an artist-provided maximum value Tmax,e, indicating
the latest point in time at which the absence or presence of the event
e can be visible in the rendered game, the timer resets to te = 0, “for-
getting” whether or not the animation was triggered and preventing
unnecessary state duplication.

5.2. Secondary Effects

The globosome is placed at the position recorded in the state vector.
However, globosome rotation is not present in the state vector, since
it introduces a large number of unnecessary degrees of freedom.
The rotation must therefore be inferred from the globosome’s posi-
tion in the level. We infer rotation along the globosome’s horizontal
axis parallel to the image plane only, and in fact rotate the globo-
some slightly slower than physically accurate, since we determined
that this effect was more visually pleasing.

To increase the dynamism and responsiveness of the game world,
we also introduce a variety of visual effects that are keyed off of the
globosome position, but have no direct representation in the state
vector. These include grass bending as the globosome rolls through
it and water rippling as the globosome passes through a puddle.
These effects are produced by constructing geometry deformation

Figure 5: A visualization of the 861,903 states computed for our
demonstration game, overlaid on a top-down view of the game
level.

fields that are placed centered at the player position, and oriented
using the player’s velocity vector. Using the velocity vector allows
us to introduce asymmetric deformation fields that, for example,
depress the grass much farther behind the globosome than ahead of
it. Without these deformation fields, blades of grass, for example,
would remain rigid as the globosome approached and rolled over
them.

5.3. Background Animations

Background animations are effects that do not depend on the game
state, such as flowing fountains and fluttering leaves. Since our ap-
proach requires that all animation depends on state, we include a
time variable t in the state to drive these background animations.
(This variable is called global_timer in Table 1.) Ideally, each
successive state would see t incremented by the time-step, but tab-
ulation may break this constraint leading to unnerving speedups or
slowdowns in the background animation. Therefore, we treat the
time variable specially.

We propose a simple heuristic solution which works for our
demonstration game, but note that a more general solution is still
an open problem. The key is to tie “time” to a another state vari-
able which behaves well. For our demonstrate game, we pick the
z variable which measures the globosome’s progress in the prin-
cipal direction of the level. To determine the canonical time for
each position, we play the game several times, measuring time as
a function of progress down the level, forming as set {(t,z)}. We
use a smoothing nearest neighbor function average these measure-
ments into a “time template,” t(z). After tabulation, we remap time
according to this template, smooth the time variable (Sec. 4.4), re-
learn a new time template tsmoothed(z) by averaging over all tab-
ulated states, and again remap time. This process gives the entire
game smooth background animation throughout, as can be seen in
our accompanying video.

6. Results

We created a 30-second interactive game to demonstrate and ana-
lyze our technique. The game is in the “runner” genre, and follows
a small, player-controlled sphere down a hill (Sec. 2). The result-
ing game simultaneously exhibits all five essential game character-
istics we describe in Sec. 1: smoothness, responsiveness, triggered
events, secondary effects, and background animation. To create this

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

pos_x
pos_y
pos_z

vel_x
vel_y
vel_z

ang_vel_x
ang_vel_y
ang_vel_z

no_ctrl

event_timer_0
event_timer_1
event_timer_2

speed_zone

cam_0
cam_1

float

float

float

bool

float

int

float

name type smoothed

global_timer float

yes

yes

no

no

yes

no

no

no

visible

yes

yes

no

yes

yes

yes

no

no

description

authored camera
path weights; for
blending

indicates that player
control is disabled;
e.g. when airborne

triggered event
timers (Sec. 5.1)

used for catchup
mechanic (Sec. 5.3)

player position

player velocity

player angular
velocity

global timer
(Sec. 5.3)

Table 1: The 17 state variables for our demo game. The
“smoothed” column indicates whether the variable is affected by
our global smoothing process (Sec. 4.4), and the “visible” column
indicates whether the variable is used directly during rendering.
Two states that differ only in non-visible variables will produce
identical rendered images. It is still necessary to store these vari-
ables during tabulation, in order to deserialize game states that we
can use as starting points for further simulation.

demonstration, three teams worked simultaneously on tabulation,
rendering, and real-time playback. This section describes how we
created and evaluated these three components.

6.1. Tabulation

The game was designed in Unity [Uni16], and instrumented to en-
able serialization, deserialization, and one-step simulation from any
state and control. The 17-dimensional state encodes position, ve-
locity, angular velocity, a global timer (Sec. 5.3), three event timers
(Sec. 5.1), and camera coefficients and camera flags (Table 1). The
tabulation software, written in Python, treats the game as a black
box with three operations: saving the game state to a state vector,
loading the game state from a state vector, and updating the internal
game state over one timestep. We explored two different tabulation
algorithms, PQ and BFS+, settling upon the latter, and created an
861,903 state tabulation (visualized in Fig. 5), well within our 1M
state budget. This process took 8 hours on a single 2.6 GHz 4-core
machine (an AWS EC2 c4.xlarge instance), including graph
construction (Sec. 4.1, single-threaded, ∼ 7.5 hours) and smooth-
ing (Sec. 4.4, multithreaded, ∼ 30 minutes).

Evaluation. The smoothed BFS+ tabulation closely resembles
the continuous-state Unity game. We invite the reader to verify this
claim by running the playable demos associated with this submis-
sion (Sec. 6.3). We also evaluated these algorithms numerically,

Figure 6: A user playing the prototype on a tablet.

finding that while PQ can be tuned to trade off smoothness and
responsiveness, BFS+ is much more responsive while maintaining
an acceptable level of smoothness, especially after the smoothing
pass (Sec. 4.4).

6.2. Rendering

We created a film-quality representation of the prototype level in
Autodesk 3DS Max, parameterized by the 17 dimensional state
vector. The game significantly reuses geometry, animation and the
rendering pipeline from The Rise and Fall of Globosome by Sascha
Geddert—a form of direct information transfer not possible using
standard game development techniques. The scene makes heavy
use of subdivision surfaces, consists of roughly 900 million prim-
itives, and requires up to 24 GB of RAM. We rendered the entire
game in preview quality, and about 30% of the frames in full qual-
ity, over multiple weeks, using up to 400 machines at a time from
the Amazon EC2, Microsoft Azure and the Google Compute En-
gine clouds, all coordinated by the Deadline compute management
system [TS16]. Average render time per image was 30 minutes on
a 8-core machine; we used approximately 1 million core hours for
this task.

Evaluation. With complex geometry, animation, indirect illumi-
nation, and volumetric effects, our demonstration meets or exceeds
the visual quality of current AAA game titles (Fig. 1). Unlike a
AAA title, however, our demonstration does not require expensive
graphics processing hardware or, indeed, virtually any computation
at runtime. We invite the reader to inspect our visual results in the
accompanying video.

6.3. Playback

Ultimately, we expect this kind of pre-rendered large-scale finite
state game will be stored in a data-center and streamed to clients,
an important future direction for this work. For this work, we wrote
a small playback client that runs on a Microsoft Surface Pro 3 tablet
(Fig. 6). This device was chosen because it provides touch controls
while also offering enough fast storage for over 400 GB of im-
age data. The playback client loads the tabulated state machine into
memory and traverses it based on user input. Pre-recorded sound
effects are triggered and mixed at runtime based on annotations

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

added to the state graphs. To assist in evaluating our method, we
have made three playable Unity-rendered versions of our game
available at http://graphics.cs.cmu.edu/projects/
finite-state-game-engines/: one with ground truth dy-
namics, one with PQ tabulated dynamics, and one with BFS+ tab-
ulated dynamics.

7. Limitations, Discussion, and Future Work

We created our demonstration game as a proof-of-concept that a
modern animated film could be converted into an interactive video
game through state tabulation. While we have emphasized “real-
world” considerations such as responsiveness, triggered events, and
background animations, our approach still has a number of limita-
tions which future research can address.

Limited complexity. Our demonstration shows that a real-
world game in the runner genre can be fully tabulated and
pre-rendered. However, introducing even a modest amount of
additional complexity—for example, a second player character, or
a jump control—could cause a combinatorial explosion that would
make tabulating the game infeasible. One solution would be de-
composing and pre-rendering different game elements indepen-
dently and composing them at runtime. Going a step further, a hy-
brid system could add dynamically rendered elements into the pre-
computation. Such developments would mirror previous work in
model reduction in which monolithic models [TLP06, AKJ08] are
decomposed into smaller pieces and recombined [WST09, KJ11].

Cost. This project presents perhaps the largest finite-state dis-
cretization ever demonstrated in the graphics literature. At this
scale, the cost of rendering becomes significant. Our 860k state
demo, for example, has a rendering cost equivalent to that of an
8 hour animated movie. At 30 minutes per frame, this cost could
be significant for a small game studio. On the other hand, by al-
lowing existing film assets and pipelines to be re-used in game
development, our technique avoids one of the principal costs of
game development: porting assets and worlds between significantly
different workflows and software pipelines, or worse, regenerating
assets from real life. Nevertheless, decreasing the cost of rendering
remains an important and exciting area of future work for finite-
state games. Decomposition (see above) could decrease the cost by
decreasing the number of states required. The discrete nature of
our games might even enable new rendering strategies, for exam-
ple, rendering just a fraction of the frames at full resolution and
interpolating the rest by combining geometric and raster informa-
tion. More speculatively, game rendering could be distributed, with
players “paying” for the game by rendering frames on their home
devices.

Genre specificity. Elements of our technique are general, such as
the tabulation algorithm (Sec. 4), and its compatibility with black-
box game engines. Other aspects, however, are more genre-specific,
such as our global time remapping technique (Sec. 5.3)—a result of
optimizing for the runner genre. We believe that an exciting area for
future research is to generalize our approach to animation to new
genres and to new display devices, including Virtual Reality head-
sets. One possible idea is to replace linear time with a superposition
of several cyclic time variables. This would require generalizing

our tabulation, smoothing, and time remapping techniques to the
toroidal topology of these cyclic time variables.

Lack of hysteresis. To control the number of states in the game,
we rely on triggered animation (Sec. 5.1) and positional ef-
fects (Sec. 5.2) to approximate complex history-dependent phe-
nomena. While state tabulation techniques have been shown handle
complex, time-dependent phenomena [KKN∗13,SHK∗14], naively
combining these approaches with our own could lead to a state ex-
plosion. An interesting avenue for future research would be to use
traditional techniques to simulate complex phenomena, such as flu-
ids, on top of a fixed finite-state game topology. The topology of
the graph would generalize a typical two-point boundary control
problem [FL04] into a multiway boundary problem defined by the
topology of the graph.

Distribution. Storing our 30-second demo requires requires 400
GB of JPEG image data. At that rate, a real runner with 15 min-
utes of original gameplay would require about 12 TB to store,
which would be impossible to distribute to or store on modern
game consoles or mobile phones. Even a tenfold size decrease
from video compression (optimistic due to short branching inter-
vals) would still produce a difficult-to-distribute game. One pos-
sible solution would be to distribute this content as a physical ar-
cade game containing the data. Our method also maps particularly
well to cloud gaming. The server could store and distribute the data
from the cloud performing essentially no computation per user,
which would likely mean that many users could be multiplexed
onto a single server—cutting hardware and compute costs dramat-
ically and overcoming a significant shortcoming of previous cloud
game approaches such as OnLive. The cloud context also presents
significant and exciting new compression challenges, such as pre-
compressing the image data directly on the discrete graph topology,
or trying to decrease total bandwidth by storing some information
(a small number of template frames, for example) locally on the
client.

8. Conclusion

This paper presents a technique to combine rich animated films
with highly interactive computer games. The key to our approach
is a new method for approximating a continuous video game as a
large finite state machine. This technique preserves smoothness and
responsiveness, and can be carried out without specific knowledge
of the game dynamics or implementation. The continuous game can
be treated as a black box supporting only state serialization, dese-
rialization, and single-step simulation. Our approach can bring of-
fline rendered films to life, reusing geometry, animations, and ren-
dering pipelines directly, rather than converting (or re-generating)
these assets and then mapping the game dynamics to complex mod-
ern graphics processors.

We demonstrate this technique by designing and discretizing a
30-second runner game, set in the world of The Rise and Fall
of Globosome, an award-winning short film by Sascha Geddert.
Our technique allowed us to reuse geometric assets, animations,
and rendering pipeline information from the original film with-
out conversion. Our game can be played on a Windows tablet,
demonstrating the feasibility of our approach. We also explore

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://graphics.cs.cmu.edu/projects/finite-state-game-engines/
http://graphics.cs.cmu.edu/projects/finite-state-game-engines/

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth Cooper & Adrien Treuille / Large-Scale Finite State Game Engines

several methods of creating the discretization through tabulation,
including a priority-queue based algorithm (PQ) based on pre-
vious work [KKN∗13, SHK∗14] and a new breadth-first-search
based algorithm (BFS+) designed specifically to provide interactiv-
ity guarantees required for our game. We demonstrate both quanti-
tatively and qualitatively that our new algorithm outperforms pre-
vious work, and show how careful state management allows us
to implement important aspects of real games in the discrete set-
ting, including event triggers, secondary effects, and background
animation. We view this work as particularly important for cloud-
based graphics. Some of the largest recent developments in com-
puting have been the rapid spread of large-scale compute as a
service, thin mobile clients, and cloud application logic. Our ap-
proach is ideally suited to the new model of cloud-based compu-
tation that these developments enable. Pre-rendering is a compute
intensive but embarrassingly parallel task which can inexpensively
be carried out in cloud data centers. The data, once computed, can
be streamed to thin clients, overcoming their limited graphics ca-
pabilities. Moreover, because all game logic and rendering are pre-
computed, game data can be stored at the edge of the cloud in con-
tent distribution networks, and large numbers of clients could, in
principle, be multiplexed on a single server. Multiplexing would
overcome an economic hurdle to previous cloud gaming efforts,
which required a single high-performance server instance dedi-
cated to each player. We are excited to explore how tabulation can
be applied to even larger-scale problems and more complex dy-
namic effects, and how tabulation could be extended through state
decomposition—techniques we hope will inspire a new generation
of interactive content and bring beautiful virtual worlds to life.

Acknowledgements

This material is based upon work supported by Amazon, Microsoft,
Google, Thinkbox, and Chaos Group. We would like to thank the
anonymous reviewers for their valuable comments.

References
[AKJ08] AN S. S., KIM T., JAMES D. L.: Optimizing cubature

for efficient integration of subspace deformations. ACM Transac-
tions on Graphics 27, 5 (Dec. 2008), 165:1–165:10. doi:10.1145/
1409060.1409118. 2, 8

[Aut14] AUTODESK: 3D Studio Max 2015, 2014. http://area.
autodesk.com/3dsmax2015/. 2

[BJ05] BARBIČ J., JAMES D. L.: Real-time subspace integration for St.
Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (July
2005), 982–990. doi:10.1145/1073204.1073300. 2

[CG15] CHAOS GROUP: V-Ray for 3ds Max 3.2, 2015. http://www.
chaosgroup.com/en/2/vray.html. 2

[Cin83] CINEMATRONICS: Dragon’s Lair, 1983. 2

[Coc15] COCOS2D-X: The Cocos2d-x game engine, 2015. http://www.
cocos2d-x.org/. 2

[Cry09] CRYTEK: Crytek releases CryENGINE R©3, 2009.
http://www.crytek.com/news/crytek-releases-
cryengine%C2%AE-3 2

[Cya93] CYAN: Myst, 1993. 2

[FL04] FATTAL R., LISCHINSKI D.: Target-driven smoke animation.
ACM Transactions on Graphics 23, 3 (Aug. 2004), 441–448. doi:
10.1145/1015706.1015743. 8

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N.,
SILLION F.: A survey of real-time soft shadows algorithms.
Computer Graphics Forum 22, 4 (2003), 753–774. doi:10.1111/
j.1467-8659.2003.00722.x. 2

[HV04] HAO X., VARSHNEY A.: Real-time rendering of translucent
meshes. ACM Transactions on Graphics 23, 2 (Apr. 2004), 120–142.
doi:10.1145/990002.990004. 2

[IDYN06] IWASAKI K., DOBASHI Y., YOSHIMOTO F., NISHITA T.:
Real-time rendering of point based water surfaces. In Proceedings of
the 24th International Conference on Advances in Computer Graph-
ics (Berlin, Heidelberg, 2006), CGI’06, Springer-Verlag, pp. 102–114.
doi:10.1007/11784203_9. 2

[IS11] IMANGI STUDIOS: Temple Run, 2011. 2

[JF03] JAMES D. L., FATAHALIAN K.: Precomputing interactive dy-
namic deformable scenes. ACM Transactions on Graphics 22, 3 (July
2003), 879–887. doi:10.1145/882262.882359. 2

[KJ11] KIM T., JAMES D. L.: Physics-based character skinning using
multi-domain subspace deformations. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (New
York, NY, USA, 2011), SCA ’11, ACM, pp. 63–72. doi:10.1145/
2019406.2019415. 8

[KKN∗13] KIM D., KOH W., NARAIN R., FATAHALIAN K., TREUILLE
A., O’BRIEN J. F.: Near-exhaustive precomputation of secondary cloth
effects. ACM Transactions on Graphics 32, 4 (July 2013), 87:1–87:8.
doi:10.1145/2461912.2462020. 1, 2, 3, 4, 8, 9

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans.
Graph. 32, 4 (July 2013), 104:1–104:12. doi:10.1145/2461912.
2461984. 2

[Ngu13] NGUYEN D.: Flappy Bird, 2013. 2

[SHK∗14] STANTON M., HUMBERSTON B., KASE B., O’BRIEN J. F.,
FATAHALIAN K., TREUILLE A.: Self-refining games using player an-
alytics. ACM Transactions on Graphics 33, 4 (July 2014), 73:1–73:9.
doi:10.1145/2601097.2601196. 1, 2, 3, 4, 8, 9

[Sip12] SIPSER M.: Introduction to the Theory of Computation. Cengage
Learning, 2012. 3

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. ACM Transactions on Graphics 21, 3 (July 2002), 527–536.
doi:10.1145/566654.566612. 2

[SSS09] SEMI-SECRET SOFTWARE: Canabalt, 2009. 2

[TF14] THE FOUNDRY: Nuke 9, 2014. https://www.thefoundry.co.
uk/products/nuke/. 2

[TLP06] TREUILLE A., LEWIS A., POPOVIĆ Z.: Model reduction for
real-time fluids. ACM Transactions on Graphics 25, 3 (July 2006), 826–
834. doi:10.1145/1141911.1141962. 2, 8

[TS16] THINKBOX SOFTWARE: Deadline 8.0, 2016. http://
deadline.thinkboxsoftware.com/. 7

[Uni16] UNITY: Unity 5, 2016. https://unity3d.com/. 2, 7

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular bases for
fluid dynamics. ACM Transactions on Graphics 28, 3 (July 2009), 39:1–
39:8. doi:10.1145/1531326.1531345. 8

[YG16] YOYO GAMES: GameMaker: Studio, 2016. http://www.
yoyogames.com/studio. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://dx.doi.org/10.1145/1409060.1409118
http://dx.doi.org/10.1145/1409060.1409118
http://area.autodesk.com/3dsmax2015/
http://area.autodesk.com/3dsmax2015/
http://dx.doi.org/10.1145/1073204.1073300
http://www.chaosgroup.com/en/2/vray.html
http://www.chaosgroup.com/en/2/vray.html
http://www.cocos2d-x.org/
http://www.cocos2d-x.org/
http://www.crytek.com/news/crytek-releases-cryengine%C2%AE-3
http://www.crytek.com/news/crytek-releases-cryengine%C2%AE-3
http://dx.doi.org/10.1145/1015706.1015743
http://dx.doi.org/10.1145/1015706.1015743
http://dx.doi.org/10.1111/j.1467-8659.2003.00722.x
http://dx.doi.org/10.1111/j.1467-8659.2003.00722.x
http://dx.doi.org/10.1145/990002.990004
http://dx.doi.org/10.1007/11784203_9
http://dx.doi.org/10.1145/882262.882359
http://dx.doi.org/10.1145/2019406.2019415
http://dx.doi.org/10.1145/2019406.2019415
http://dx.doi.org/10.1145/2461912.2462020
http://dx.doi.org/10.1145/2461912.2461984
http://dx.doi.org/10.1145/2461912.2461984
http://dx.doi.org/10.1145/2601097.2601196
http://dx.doi.org/10.1145/566654.566612
https://www.thefoundry.co.uk/products/nuke/
https://www.thefoundry.co.uk/products/nuke/
http://dx.doi.org/10.1145/1141911.1141962
http://deadline.thinkboxsoftware.com/
http://deadline.thinkboxsoftware.com/
https://unity3d.com/
http://dx.doi.org/10.1145/1531326.1531345
http://www.yoyogames.com/studio
http://www.yoyogames.com/studio

