
Blending Levels from Different Games using LSTMs

Anurag Sarkar and Seth Cooper
Northeastern University, Boston, Massachusetts, USA

sarkar.an@husky.neu.edu, scooper@ccs.neu.edu

Abstract
Recent work has shown machine learning approaches to be
effective in training models on existing game data for in-
forming procedural generation of novel content. Specifically,
ML techniques have successfully used existing game levels
to train models for generating new levels and blending exist-
ing ones. Such blending of not just levels, but entire games,
has also been proposed as a possible means of generating
new games. In this paper, we build on these works by train-
ing Long Short Term Memory recurrent neural networks on
level data for two separate platformer games—Super Mario
Bros. and Kid Icarus—and use these models to create new
levels that are blends of levels from both games, thus creating
a level generator for a novel, third game.

Introduction
Procedural content generation (PCG) is the automatic cre-
ation of game content via procedural or algorithmic methods
(Shaker, Togelius, and Nelson 2016). Since its use in games
like Elite (Braben and Bell 1984) and Rogue (A.I. Design
1980), PCG has been widely adopted for generating levels,
maps, weapons, rules, terrain, etc., and has been an active
field of games research. Traditional PCG methods include
search-based optimization (Togelius et al. 2011), constraint
satisfaction (Smith and Mateas 2011) and grammar-based
methods (Smith, Whitehead, and Mateas 2011), to name a
few. However, these often rely on designer-authored rules,
parameters and constraints to guide the generation process
and ensure that the generated content has desired proper-
ties and characteristics. Aside from being time consuming,
such methods may unintentionally capture designer biases.
PCG via Machine Learning (PCGML) has thus emerged as
an alternative to the traditional methods to help overcome
their limitations. Summerville et al. (2017) define PCGML
as “the generation of game content using models that have
been trained on existing game content.” By training on game
data that one wishes to emulate or create novel variations
of, one can capture the desired properties within the trained
model and sample from it to generate new content.

Recent work has shown that models trained on exist-
ing Super Mario Bros. levels can generate new levels via
both sequence prediction (Summerville and Mateas 2016) as

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

well as blending existing levels (Guzdial and Riedl 2016b).
Moreover, Gow and Corneli (2015) proposed a theoretical
framework for generating new games by blending not just
levels but entire games, showing that it is possible to blend
two games to create a third whose aesthetics and mechanics
are combinations of those of the original two games.

In this work, we take a step towards implementing this
framework by leveraging PCGML and concept blending.
Specifically, we train Long Short Term Memory recurrent
neural networks (LSTMs) on existing levels of the plat-
formers Super Mario Bros. and Kid Icarus. We then sample
from the trained models to generate new levels that encode
structural characteristics and properties of levels from both
games. We thus create a level generator that can produce lev-
els for a third game whose levels contain properties of levels
from the two games used for training. We also implement a
parametrized version of the generator that allows a designer
to control the approximate amount of each original game de-
sired in the final blended levels.

Related Work
PCG via Machine Learning (PCGML). PCGML has
emerged as a promising research area as evidenced by many
successful applications of ML for content generation. Neural
networks in particular have seen wide use for level and map
generation. Hoover, Togelius, and Yannakakis (2015) gener-
ated Super Mario Bros. levels by combining a music com-
position technique (functional scaffolding) with a method
for evolving ANNs (NeuroEvolution of Augmenting Topolo-
gies (Stanley and Miikkulainen 2002)). Autoencoders have
also found related applications, with Jain et al. (2016) train-
ing one on existing levels to generate new levels and repair
generated levels that were unplayable. N-gram models have
also been used by Dahlskog, Togelius, and Nelson (2014)
for generating Super Mario Bros. levels. Guzdial and Riedl
(2016a) used probabilistic graphical models and clustering
to create levels for Super Mario Bros. by training on game-
play videos. Besides platformers, Summerville et al. (2015)
used Bayes Nets for creating The Legend of Zelda levels.
They also used Principal Component Analysis to interpolate
between existing Zelda dungeons to create new ones (Sum-
merville and Mateas 2015).

Markov models have also found use in generating con-
tent. Snodgrass and Ontañón have done extensive work in

generating levels for Super Mario Bros., Kid Icarus and
Lode Runner (Broderbund 1983) using multi-dimensional
Markov chains (Snodgrass and Ontañón 2014), with hi-
erarchical (Snodgrass and Ontañón 2015) and constrained
(Snodgrass and Ontañón 2016) extensions as well as using
Markov random fields. In particular, our work in blending
levels is most similar to their work on domain transfer using
Markov chains for mapping levels from one game to another
(Snodgrass and Ontañón 2017).

Finally, Long Short Term Memory recurrent neural net-
works (LSTMs) have been particularly effective in gener-
ating game levels. Summerville and Mateas (2016) used
LSTMs to generate Mario levels by treating each level as a
character string and using these strings to train the network.
The trained network could then use an initial string as a start-
ing seed to generate new characters, thereby producing new
levels. Though most level generation using LSTMs focuses
primarily on Super Mario Bros., the method can be used to
create generators for any game whose levels are represented
as sequences of text. The success of such techniques for level
generation informed our use of LSTMs in this work.
Mixed-Initiative PCG. This refers to content generation by
harnessing the capabilities of a procedural generator and a
human designer working in concert. Such generators, like
Tanagra (Smith, Whitehead, and Mateas 2011), combine the
generator’s ability to rapidly produce multiple levels with
the human ability to evaluate them using superior creativity
and judgment. Authorial control in procedural generators al-
lows designers to guide generation towards desired content.
Thus, we implemented a parametrized variant of the blended
level generator which lets the designer control the percent-
age of either game in the final blend. Yannakakis, Liapis, and
Alexopoulos (2014) offer an extensive analysis of mixed-
initiative design tools and their effects on creativity.
Concept Blending. Concept blending states that novel con-
cepts can be produced by combining elements of existing
concepts. The “four space” concept blending theory was
proposed by Fauconnier and Turner (1998; 2008) and de-
scribes a conceptual blend as consisting of four spaces:

• Two input spaces constituting the concepts prior to being
combined

• A generic space into which the input concepts are pro-
jected and equivalence points are identified

• A blend space into which the equivalent points from the
generic space are projected and new concepts are evolved

Goguen (1999) offers a related formalization of concep-
tual blending which forms the basis of the COINVENT
computational model (Schorlemmer et al. 2014). This aims
to develop a “computationally feasible, formal model of
conceptual blending” and has applied conceptual blending
in music (Cambouropoulos, Kaliakatsos-Papakostas, and
Tsougras 2014) and mathematics (Bou et al. 2015).
Blending Game Levels and Game Generation. In games,
Guzdial and Riedl (2016b) used conceptual blending to
blend level generation models of Super Mario Bros. and also
looked at different blending approaches to generate levels
(Guzdial and Riedl 2017). Additionally, Gow and Corneli
(2015) proposed applying conceptual blending not just to

(((((((((((((((((

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - Q - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- Q - - - S ? S Q S - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - < > - -

- - - - - - E - - - - - - [] - -

X X X X X X X X X X X X X X X X X

Figure 1: Super Mario Bros. Level 1-1 and its text represen-
tation.

- - - - - T T T T - T T T T T (

- - - - - - - - - - - - - - - (

- - - - - - - - - - - - - - - (

- - - - - - - - - - D # - - - (

- - - - - - - - - - D # - - # (

- - - - - # # # # # # # # - # (

- - - - - # # - - - - - - - # (

- - # # # # # - - - - - - - # (

- - # - - - - - - # # # # # # (

- - # - - - - - - - - - - # # (

T - # - - - - - - - - - - # # (

- - # - # # # # - - - - - # # (

- - # - - - - - - - - - - # # (

- T # - - - - - - - - - - # # (

- - # - - - - - # # # # - # # (

- - # - - - - - - - - - - # # (

T - # - - - - - - - - - - # # (

Figure 2: Kid Icarus Level 1 and its text representation.

levels of a game, but to games in their entirety. They pre-
sented a framework for generating a novel game by using the
four space blending process of selecting two input games to
blend, creating a generic game concept and then producing
a new blended game by combining the generalized elements
of the input games. They used the Video Game Description
Language (VGDL) (Schaul 2014) to generate a novel game
by combining VGDL specifications of The Legend of Zelda
(Nintendo 1986b) and Frogger (Konami 1981).

Dataset
The Video Game Level Corpus. The data for this work is
taken from the Video Game Level Corpus (VGLC)1. The
VGLC (Summerville et al. 2016) is a corpus of levels from
a number of games, represented in parseable formats such
as Tile, Graph and Vector. It is small compared to tradi-
tional ML datasets and the general dearth of sufficient game
data for training is a known issue in PCGML. However, the
VGLC is an important step towards addressing this issue and
has already been used in a sizable amount of games research.
Games. We trained on levels from Super Mario Bros. (Nin-
tendo 1985) and Kid Icarus (Nintendo 1986a). Both are 2D
platformers released for the Nintendo Entertaiment System
in the 1980s but differ in that Super Mario Bros. levels
progress exclusively from left to right where as Kid Icarus
levels progress from bottom to top. Thus, both are platform-
ers with similar features which may make them compati-
ble for blending, but also have different orientations which

1https://github.com/TheVGLC/TheVGLC

Original VGLC
SMB+KI
Levels

Generalized
SMB+KI
Levels

Combined
Generator

Sequence
Classifier

Original VGLC
SMB Levels

Original VGLC
KI Levels

Generalized
SMB Levels

Generalized
KI Levels

SMB-only
Generator

KI-only
Generator

Generalized
SMB+KI
Levels

Original VGLC
SMB+KI
Levels

Figure 3: Overview of the training process.

might result in interesting blends. For the rest of the paper,
we refer to Super Mario Bros. as SMB and Kid Icarus as KI.
Level Representation. The VGLC contains 15 SMB levels
and 6 KI levels, all of which were used for training. Levels
are represented in the Tile format using w×h grids where w
is the width and h is the height of the levels. This is stored as
a text file with each character mapping to a specific tile. This
mapping is stored in a separate JSON file for each game.
Parts of example levels and their text representations are de-
picted for SMB and KI in Figures 1 and 2 respectively.

Method
This section discusses the different approaches used in this
work. High-level overviews of the training and generation
phases are given in Figures 3 and 4 respectively.
Blending. Using the conceptual blending framework, our
two input spaces are the SMB and KI level corpora from the
VGLC. For the generic space, we mapped the semantically
common elements in both games to a uniform tile represen-
tation while preserving the tiles that were unique. The only
such common elements we identified were solid ground and
enemy, and replaced their KI representations of # and H in
the corpus with the SMB equivalents of X and E. The back-
ground character (‘-’) was already the same for both games.
Thus, in this generalizing process we use an amalgamation
approach as in (Ontañón and Plaza 2010). Prior to training,
we converted each level into this new generic representa-
tion. These design decisions are matters of personal prefer-
ence and it is up to the designer to determine the mapping as
desired.
LSTM RNNs. Like vanilla neural nets, recurrent neural
nets (RNNs) learn weights by backpropagating errors dur-
ing training. However, unlike standard neural nets where
edges are only connected from input layers to hidden lay-
ers to output layers, edges in RNNs are also connected
from a node to itself over time. Errors are thus backpropa-
gated not just across separate nodes but also over time steps
making RNNs suitable for processing sequential input and
thus applicable in tasks like handwriting and speech recog-
nition (Graves, Mohammed, and Hinton 2013). However,
RNNs suffer from the vanishing gradient problem (Hochre-
iter 1998) where the error gradient dissipates over time.
Hence, standard RNNs are efficient at learning short-term

Combined
Generator

Classifier
SMB/KI

Seed

Enough
sequences
generated

?

[SMB weight,
KI weight]

SMB or
KI

segment
?

Combined
Generator

Classifier

Correct
sequence
generated

?

[SMB weight,
KI weight]

SMB or
KI

segment
?

SMB
Generator

KI Generator

Segment
complete

?

Enough
segments
generated

?

Enough
segments

?

Segment
complete

?

[sequence] [sequence,
SMB/KI]

NO

Repeat for Next Level
YES

YES

Repeat for Next Level

NO NO

NO

YES

[sequence]

[sequence,
SMB/KI]

Regenerate

Generate next sequence Generate next segment

YES

[SMB sequence]

[KI sequence]

YES

NO

YES

Repeat for Next Level

Repeat for
Next Level

NO

Generate next segmentGenerate next sequence

UW

WC

WS

SMB

KI

Figure 4: Overview of the generation process. Sequence
here refers to either an SMB row or a KI column. Segments
are sets of sequences. Details are given in the Level Genera-
tion subsection.

but not long-term dependencies. To address this, Hochre-
iter and Schmidhuber (1997) proposed the Long Short-Term
Memory RNN. LSTMs overcome this problem by adding
a memory mechanism to regular RNNs. Being suitable for
sequence-based applications, LSTMs are often used for pre-
dicting the next item in a sequence given the sequence thus
far. This is done by estimating a probability distribution over
possible next items and choosing the most likely one as the
prediction.
Training on Level Data. For training, we followed the
method of Summerville and Mateas (2016). Each level is
treated as a collection of sequences, with each individual tile
being a point in a sequence. Concretely, a level is a 2D ar-
ray of characters, as in Figures 1 and 2, with each tile being
a character in the array. For SMB, we feed in sequences of
columns from left to right, since the levels in SMB progress
horizontally in this direction and for the LSTM to learn the
patterns in the level, we need to induce the appropriate or-
dering for the sequences. Similarly, we feed in KI levels in
sequences of rows from bottom to top. For uniformity, SMB
levels were padded with empty space on the top to have
columns of height of height 16, while KI levels had rows
of width 16. This allowed the model to be trained on se-
quences of 16 character rows or columns, irrespective of the
game. To tell the LSTM when one row/column ends and the
next begins, we added a delimiter character ‘(’ after every
row/column. The LSTM learns via training to generate this
character after every 16 characters so that generated levels
can be laid out properly.

Due to the disparity in the number of levels for either
game, as well as the low total number of levels, we dupli-
cated the Mario and Icarus levels 9 and 21 times respec-
tively, giving us a total of 135 Mario levels and 126 Icarus
levels for training. We used a lower number of KI levels
since its levels were larger than levels in SMB. The levels
were then split into semi-overlapping sequences of charac-
ters. Ultimately, we ended up with a training data set consist-
ing of 149,103 such sequences of SMB levels and 149,372
sequences of KI levels. To train the LSTM, we used two
matrices—the first storing these sequences of characters,

and the second storing the next character in the level for
each corresponding sequence. Additionally, the sequences
were encoded using One-Hot encoding. In our training mod-
els, the LSTM consisted of 2 hidden layers of 128 blocks
each. The output layer was sent to a SoftMax activation
layer which acted as a categorical probability distribution for
the One-Hot encoded tiles. To prevent overfitting, we used
a dropout rate of 50%. For all models, we used a learning
rate of 0.005, the rmsprop optimizer and categorical cross-
entropy loss as the loss function.
Models. We trained 3 different models. One of these used
a combined dataset of SMB+KI levels. We also trained a
model each on just the SMB levels and on just the KI lev-
els. For training, we used Keras and based code off of the
work of Summerville and Mateas (2016), which in turn was
based off work by Karpathy (2015). Each model was trained
for 50 iterations. While this is a small number, we note that
our dataset is much smaller than datasets for traditional ML
applications and even with this small number of iterations,
we were able to achieve high values for validation accuracy.
Training deeper neural nets for a longer period (preferably
till convergence of some loss-based criterion) is something
to consider for future work. During each iteration of train-
ing, 10% of the dataset was held out for validation.

Since SMB and KI levels differ in orientation, an issue in
generating levels was determining how to layout generated
sequences; i.e. should a generated sequence of 16 charac-
ters be laid out like an SMB column or a KI row? To this
end, we trained a classifier on the training corpus and then
used it to determine the layout orientation of each generated
sequence. For the classifier, we used a sequential model in
Keras (Chollet and others 2015) consisting of 1 hidden layer
with 256 neurons each in the input and hidden layers and 1
neuron in the output layer, along with a dropout rate of 50%.
We used the rectifier activation function on the first 2 layers
and a sigmoid activation function on the output layer, along
with the rmsprop optimizer and a learning rate of 0.0005.
With this network, we achieved a classification accuracy of
91.33% on the SMB dataset and 91.29% on the KI dataset.
Level Generation. This involves forwarding an initial seed
through the trained models multiple times until the desired
amount of output is generated. The starting seed is the ini-
tial substring of a level string. The trained LSTM repeatedly
predicts the next most likely character given the previous
characters in the string until enough characters have been
predicted to form a level of desired size.

As mentioned before, we created both a regular blended
level generator as well as a parametrized variant that affords
authorial control. The parameter here refers to weights (be-
tween 0 and 1) assigned to each game that determines what
percentage of the generated level should be derived from
SMB and KI. Using our 3 training models, we implemented 3
generators—an unweighted generator UW, a weighted gen-
erator WC that used the model trained on the combined cor-
pus of levels and another weighted generator WS that used
the models trained separately i.e. it consisted of an SMB-
only sub generator and KI-only sub generator that could gen-
erate only SMB columns and only KI rows respectively. UW
involved sampling from the combined model and using one

Figure 5: Aspect Ratio

of 2 starting seeds—the initial substring of either an SMB-
like or a KI-like level. For the parametrized generator we had
two approaches—either use the combined generator (WC) or
use the SMB-only and KI-only generators together (WS).

The generation process for UW is straightforward. We
feed in the starting seed and then iterate until the genera-
tor has predicted enough characters to form the entire level,
with the classifier used to decide which game a generated se-
quence belongs to. For the weighted generators, generation
took place in segments. Prior to generating each segment,
we used the weights to determine if the segment should be
SMB-like or KI-like. When using WS, depending on if the
next segment should be SMB or KI, the SMB sub-generator
or the KI sub-generator was used to generate a fixed-size
segment until enough segments had been generated to create
the full level. Using this approach, x% of the level segments
would be SMB-like where as y% would be KI-like, where
x and y are the pre-specified weights. When using WC, the
combined generator was used to create sequences of the pre-
viously determined game for that segment until it had been
fully created, using the classifier to discard any generated se-
quences that were not for the current segment. For UW, we
generated levels consisting of 200 sequences. For both WC
and WS, we generated levels consisting of 10 segments, with
each segment containing 20 sequences.

Layout. Once generated, the sequences forming the levels
are laid out using a basic algorithm. Placing columns after
columns and rows after rows is trivial since we just stack
them one after another. To place a row after a column, we
align its y-coordinate with that of the topmost position in the
column on which the player can stand. To place a column
after a row, we similarly align the y-coordinate of the top
most point on which the player can stand in the column with
the y-coordinate of the previous row. The layout function
in this work is separate from the generator and thus many
different layouts are possible, each necessarily affecting how
playable the levels ultimately are. Further investigating the
goodness of layouts is important future work.

Figure 6: Leniency

Figure 7: Density

Results
Canossa and Smith (2015) and Smith and Whitehead (2010)
have proposed several metrics to evaluate the features of
generated levels. We used the following in this work.
Leniency. This captures a sense of level difficulty by sum-
ming the number of enemy sprites in the level and half the
number of empty sequences (i.e. gaps), negating the sum and
dividing it by the total number of sequences in the level.
Density. This measures how much of the level can be oc-
cupied by the player. For this, we counted the number of
ground and platform sprites in the level and divided it by the
total number of sequences in the level.

L D SD SV AR
KI (n=6) -0.073 2.808 1 0.423 13.073
SMB (n=15) -0.124 1.61 1 0.201 0.086
UW-SMB -0.083 1.716 0.929 0.232 0.577
UW-KI -0.075 1.978 0.925 0.274 0.718
WC (0.5,0.5) -0.053 3.587 0.938 0.253 0.599
WS (0.5,0.5) -0.083 2.110 0.964 0.227 0.857

Table 1: Mean values for the metrics for the VGLC levels
(top 2 rows) and the generated levels. L, D, SD, SV, AR
stand for Leniency, Density, Sequence Density, Sequence
Variation and Aspect Ratio respectively.

Figure 8: Sequence Density

Figure 9: Sequence Variation

Sequence Density and Variation. These relate to how dif-
ferent the generated levels are from the training set (Spitaels
2017). Sequence density counts the number of sequences in
a level that also exist in the training set and then divides
it by the total number of sequences in the level. Sequence
variation is similar but counts each occurrence of a training
sequence once in a generated level.

Aspect Ratio. This is calculated by dividing the number of
rows (height) in a level by the number of columns (width).

We used the unweighted generator UW (with both SMB
and KI seeds) and weighted generators WC and WS with
weights of 0.5 to create 100 blended levels each. Results for
the above metrics are given in Table 1.

Expressive Range. Additionally, we wanted to look at the
expressive range of the weighted generators as their weights
are varied. The expressive range of a generator (Smith and
Whitehead 2010) is the style and variety of the levels it can
generate. To visualize the range of the weighted generators
and compare them with each other, we generated 10 levels
for each of 10 pairs of weights. Figures 5, 6, 7, 8 and 9 show
the range of the weighted generators as the weights are var-
ied between the two games. Example generated levels for
unweighted and weighted generators are shown in Figures
10 and 11 respectively.

UW-SMB WC(0.5,0.5)

UW-KI WS(0.5,0.5)

Figure 10: Example levels made by generators in Table 1

Discussion

Figures 5, 6, 7, 8 and 9 suggest that altering the weights
does impact the type of levels generated and allows the de-
signer to roughly interpolate between SMB and KI. For both
Aspect Ratio and Sequence Variation, as we move from a
weight pair of (high-SMB, low-KI) to (low-SMB, high-KI),
the values move from being closer to the SMB corpus to be-
ing closer to the KI corpus, as expected. This is also mostly
true for Leniency and Density though interestingly for these,
while the values follow the same trend, the blends with
higher amount of KI seem to have higher values than the KI
corpus itself. That is, KI-heavy generated levels were more
lenient and dense than the actual KI levels used in training
where as the SMB-heavy generated levels were closer to the
originals in terms of Leniency and Density. For Sequence
Density, the SMB and KI corpora have values of 1 by defini-
tion. It is interesting however that there is a slight decrease
in this value as the amount of KI is increased in the blend.
As for comparing WC and WS, WS seems to adhere more
closely to the range of values between those of the SMB and
KI corpora while WC generates more novel sequences as
evidenced by the lower values for Sequence Density. Over-
all, these results suggest that by using the methodology out-
lined in the paper, it is possible to generate levels that are
a mix of levels from two other games but that can also be
made to be more like one than the other, as desired by the
designer. Moreover, the unexpected deviations highlighted
above suggest that in addition to emulating training data and
capturing its inherent properties, these generative methods
can also produce novelty as evidenced by some blended lev-
els having properties outside of the expected range within
the two input games. In the future, more thorough and rigor-
ous approaches combined with richer datasets might lead to
generative models and processes that are both more control-
lable as well as capable of producing more interesting and
novel results.

WC (0.2,0.8) WC (0.4,0.6)

WC (0.6,0.4) WC (0.8,0.2)

Figure 11: Example levels made by generator WC

Conclusion and Future Work
In this work, we trained LSTMs on levels from Super Mario
Bros. and Kid Icarus to generate levels that were blends of
the levels from these two games. This suggests that leverag-
ing PCGML may help realize the VGDL-based game gener-
ation framework proposed by Gow and Corneli (2015).

There are several directions for future work. An obvious
limitation of this work is that no playability tests were run
on the generated levels nor any playability or path-based
information used in training. Thus, levels are currently not
traversable from start to finish using either SMB or KI me-
chanics. Future work could involve using an agent to carve
out a path post-generation or encoding path information into
the training corpus as in Summerville and Mateas (2016).

Having said that, the lack of playability is not surprising
since we would expect blended levels to require blended
mechanics to be playable. While levels are integral to a
game, so too are the mechanics and player-world interac-
tions. Blending two games thus necessitates blending their
mechanics as well. Gow and Corneli (2015) demonstrate
this in their VGDL example by combining the mechanics
of The Legend of Zelda with Frogger. The feasibility of ap-
plying the technique discussed in our work towards game
mechanics is worth looking into for future work. It might ad-
ditionally be possible to leverage evolutionary algorithms to
evolve game mechanics that are compatible with the newly
blended game and are based off of the mechanics of the orig-
inal games being blended.

References
A.I. Design. 1980. Rogue.
Bou, F.; Corneli, J.; Gomez-Ramirez, D.; Maclean, E.;
Pease, A.; Schorlemmer, M.; and Smaill, A. 2015. The role

of blending in mathematical invention. In Proceedings of the
6th International Conference on Computational Creativity.
Braben, D., and Bell, I. 1984. Elite.
Broderbund. 1983. Lode Runner.
Cambouropoulos, E.; Kaliakatsos-Papakostas, M.; and
Tsougras, C. 2014. An idiom-independent representation of
chords for computational music analysis and generation. In
Proceedings of the joint 11th Sound and Music Computing
Conference (SMC) and 40th International Computer Music
Conference (ICMC).
Canossa, A., and Smith, G. 2015. Towards a procedural
evaluation technique: Metrics for level design. In Proceed-
ings of the 10th International Conference on the Founda-
tions of Digital Games.
Chollet, F., et al. 2015. Keras. https://keras.io.
Dahlskog, S.; Togelius, J.; and Nelson, M. 2014. Linear
levels through N-grams. In Proceedings of the 18th Inter-
national Academic MindTrek Conference: Media Business,
Management, Content & Services, 200–206.
Fauconnier, G., and Turner, M. 1998. Conceptual integration
networks. Cognitive Science 22(2):133–187.
Fauconnier, G., and Turner, M. 2008. The Way We Think:
Conceptual Blending and the Mind’s Hidden Complexities.
Basic Books.
Goguen, J. 1999. An introduction to algebraic semiotics
with application to user interface design. Computation for
Metaphors, Analogy and Agents 242–291.
Gow, J., and Corneli, J. 2015. Towards generating novel
games using conceptual blending. In Proceedings of the
Eleventh Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Graves, A.; Mohammed, A.-R.; and Hinton, G. 2013.
Speech recognition with deep recurrent neural networks. In
Acoustics, Speech and Signal Processing (icassp), 6645–
6649.
Guzdial, M., and Riedl, M. 2016a. Game level generation
from gameplay videos. In Proceedings of the Twelfth Artifi-
cial Intelligence and Interactive Digital Entertainment Con-
ference.
Guzdial, M., and Riedl, M. 2016b. Learning to blend com-
puter game levels. In Proceedings of the Seventh Interna-
tional Conference on Computational Creativity.
Guzdial, M., and Riedl, M. 2017. Combinatorial creativity
for procedural content generation via machine learning. In
Proceedings of the First Knowledge Extraction from Games
Workshop.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Hochreiter, S. 1998. The vanishing gradient problem during
learning recurrent neural nets and problem solutions. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6(2):107–116.
Hoover, A.; Togelius, J.; and Yannakakis, G. 2015. Compos-
ing video game levels with music metaphors through func-

tional scaffolding. In First Computational Creativity and
Games Workshop.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair and recognition. In
Proceedings of the ICCC Workshop on Computational Cre-
ativity and Games.
Karpathy, A. 2015. The unreasonable effectiveness of re-
current neural networks. http://karpathy.github.io/2015/05/
21/rnn-effectiveness/.
Konami. 1981. Frogger.
Nintendo. 1985. Super Mario Bros.
Nintendo. 1986a. Kid Icarus.
Nintendo. 1986b. The Legend of Zelda.
Ontañón, S., and Plaza, E. 2010. Amalgams: A formal ap-
proach for combining multiple case solutions. In Interna-
tional Conference on Case-Based Reasoning.
Schaul, T. 2014. An extensible description language for
video games. IEEE Transactions on Computational Intelli-
gence and AI in Games 6(4):325–331.
Schorlemmer, M.; Smaill, A.; Kuhnberger, K.-U.; Kutz, O.;
Colton, S.; Cambouropoulos, E.; and Pease, A. 2014. Coin-
vent: Towards a computational concept invention theory. In
Proceedings of the Fifth International Conference on Com-
putational Creativity.
Shaker, N.; Togelius, J.; and Nelson, M. 2016. Procedural
Content Generation in Games. Springer International Pub-
lishing.
Smith, A., and Mateas, M. 2011. Answer set programming
for procedural content generation. IEEE Transactions on
Computational Intelligence and AI in Games 3(3):187–200.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):201–215.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using Markov chains. In Proceedings of the
9th International Conference on the Foundations of Digital
Games.
Snodgrass, S., and Ontañón, S. 2015. A hierarchical MdMC
approach to 2D video game map generation. In Proceedings
of the Eleventh Artificial Intelligence and Interactive Digital
Conference.
Snodgrass, S., and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
Markov chain sampling. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence (IJCAI-16).
Snodgrass, S., and Ontañón, S. 2017. An approach to
domain transfer in procedural content generation of two-
dimensional videogame levels. In Proceedings of the Twelfth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-17).

Spitaels, J. 2017. MarioNet: Generating realistic game lev-
els through deep learning. Master’s Dissertation.
Stanley, K., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation 10(2):99–127.
Summerville, A., and Mateas, M. 2015. Sampling Hyrule:
Sampling probabilistic machine learning for level genera-
tion. In Proceedings of the Eleventh Artificial Intelligence
and Interactive Digital Conference.
Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMs. In Proceed-
ings of the 1st International Joint Conference on DiGRA and
FDG.
Summerville, A.; Behrooz, M.; Mateas, M.; and Jhala, A.
2015. The learning of Zelda: Data-driven learning of level
topology. In Proceedings of the 10th International Confer-
ence on the Foundations of Digital Games.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The Video Game Level
Corpus. Proceedings of the 7th Workshop on Procedural
Content Generation.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård,
C.; Hoover, A.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). In Foundations of Digital Games Conference.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Yannakakis, G.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Foundations of Digital
Games Conference.

