
DTask & LiteBody: Open Source, Standards-based
Tools for Building Web-deployed Embodied

Conversational Agents

Timothy Bickmore, Daniel Schulman, and George Shaw

Northeastern University College of Computer & Information Science,

 360 Huntington Ave, WVH202, Boston, MA 02115, USA
{bickmore,schulman,shaw}@ccs.neu.edu

Abstract. Two tools for developing embodied conversational agents and
deploying them over the world-wide web to standard web browsers are
presented. DTask is a hierarchical task decomposition-based dialogue planner,
based on the CEA-2018 task description language standard. LiteBody is an
extensible, web-based BML renderer that runs in most contemporary web
browsers with no additional software and provides a conversational virtual
agent with a range of conversational nonverbal behavior adequate for many
user-agent interaction applications. Together, these tools provide a complete
platform for deploying web-based conversational agents, and are actively being
used on two health counseling applications.

Keywords: Dialogue planning, embodied conversational agent, relational
agent, open source, behavior markup language.

1 Introduction

There is a growing interest in building common, standards-based software

frameworks to support Embodied Conversational Agent (ECA) development, such as
the SAIBA/BML/FML standardization efforts [8]. The motivation for this work is to
reduce duplication of effort in developing new systems, and to enable modules from
different developers to be assembled into working systems. The approach taken in
much of this work is to identify a core set of common functionality, but then to define
a framework in which all possible ECA functions and future extensions can be
accommodated.

In contrast, for many applications, developers only need a tiny subset of this
functionality. An example is an application in which there is only one ECA and it
only talks directly to the user while displaying a well-defined range of nonverbal
conversational behavior. Examples of such systems include pedagogical agents [6],
health counseling agents [2, 3], and direction-giving agents [4]. For such applications,
many existing tools represent significantly more overhead and developer learning
time than should be necessary. Further, such applications are constrained enough in

their functionality that they have the potential to be deployed over the web using
standard browsers without additional software, greatly increasing the possibility of
wide dissemination of ECAs built this way.

Our approach has been to develop a minimal ECA framework for this class of
applications, while still adhering to available standards as much as possible. The
current result of our effort is two tools—a dialogue engine and an ECA renderer—
which, together, provide a complete framework in which user interface ECAs with
rich dialogue content can be built and immediately deployed over the web. In
addition, because they are based on several standards, these tools should facilitate
sharing of dialogue, character animation, and user interface content among
researchers and application developers.

2 The DTask Dialogue Engine

DTask is a dialogue planner designed to model and execute system-directed dialogue,
with multiple-choice user input. Dialogue is specified declaratively, as a hierarchical
task decomposition. The DTask application functions as a network server and relies
on a user interface client to provide an interface, such as an ECA, to the user. In our
current work, LiteBody (described in Section 3) provides this client functionality, and
includes a BML-driven ECA.

2.1 CEA-2018

Following Shared Plans theory [7, 9], we treat dialogue as a collaboration in which
participants coordinate their action towards achieving a shared goal. The intentional
structure of dialogue is modeled as a hierarchical task decomposition: sets of recipes
(goal decompositions) and subtasks which may be used to achieve the overall goal of
the collaboration. Dialogue context is modeled as a runtime focus stack, representing
the subgoals currently adopted. DTask’s hierarchical task model is an implementation
of the ANSI/CEA-2018 standard [10], which is itself inspired by the COLLAGEN
dialogue engine [11]. CEA-2018 specifies an XML-based representation for a set of
tasks, and a set of recipes which can be used to achieve those tasks. A recipe
describes one way of decomposing a goal into a partially-ordered set of subgoals
and/or primitive actions. ECMAScript [1] is used to specify task preconditions and
postconditions, recipe applicability conditions, constraints on task parameters, and
grounding of atomic tasks.

DTask extends CEA-2018 with a mechanism for declarative specification of
dialogue. A turn of dialogue is specified as an adjacency pair template (APT): an
agent utterance and a list of possible user responses, which comprise a primitive
action in the task description. An APT achieves a particular task in the task model;
there may be an arbitrary number of APTs, as well as recipes, which can achieve a
task.

The surface form of agent and user utterances may include both natural language,
and variables to be filled in at the time the utterance is produced. Generally,
nonverbal behavior of the ECA is not specified in the dialogue model, with the intent

that it be added automatically at runtime by a system such as BEAT [5]. However,
explicit annotations can be added in BML, or in any other format understood by the
user interface client.

2.2 DTask Example

Fig. 1 shows an example of a fragment of a DTask dialogue model. This example
implements a task (“RitualIntro”) which is a short ritualized greeting to the user.
There is one recipe provided which can achieve this task (“DoRitualIntro”),
consisting of two subtasks (“HowAreYou” and “RespondToIntro”).

Tasks can have locally-scoped input and output parameters. The “HowAreYou”
task has one output slot, which defines the semantics of the user’s utterance which
will be represented. In this case, the semantics is simply a boolean value representing
whether the user asked a reciprocal question of the agent.

The “RespondToIntro” task has one input parameter, and constraints on the recipe
are used to bind the output of the earlier task to this input. The example shows one
dialogue turn which can be used to achieve this task in the case where the user
requested a reciprocal response. There may be any number of other dialogue turns
specified with different applicability conditions.

<task id=”RitualIntro”/>
<subtasks id=”DoRitualIntro” goal=”RitualIntro”>

<step name=”ask” task=”HowAreYou”/>
<step name=”respond” task=”RespondToIntro”/>
<binding slot=”$respond.reciprocal” value=”$ask.reciprocal”/>

</subtasks>
<task id=”HowAreYou”>

<output name=”reciprocal” type=”boolean”/>
<d:turn>

<d:agent>Hi {USER.name}. How are you?</d:agent>
<d:user>

<d:say>I’m good. How are you?</d:say>
<d:result slot=”reciprocal” value=”true”/>

</d:user>
<d:user>

<d:say>Good.</d:say>
<d:result slot=”reciprocal” value=”false”/>

</d:user>
</d:turn>

</task>
<task id=”RespondToIntro”>

<input name=”reciprocal” type=”boolean”/>
<d:turn>

<applicable>$this.reciprocal</applicable>
<d:agent>Great. Thanks for asking!</d:agent>

…

Fig. 1. Example DTask Task Descriptions and Recipes

3 The LiteBody User Interface ECA

Many ECA applications could ideally be fielded on users’ home computers where
users could interact with the agents at their convenience. However, hardware
requirements for 3D graphics and unwillingness to install custom software, especially
for occasional use, represent barriers to wide dissemination of many of these ECA
applications. LiteBody is a web-enabled, ECA-based user interface which renders an
ECA given BML commands from a dialogue engine. This is accomplished, in part, by
synthesizing speech on a server and dynamically streaming it to the user’s browser as
needed. The application also presents the user with a range of input widgets (under
control of the dialogue engine) to elicit user contributions to the conversation, and
returns input information to the dialogue engine for interpretation.

The ECA provides a range of common conversational nonverbal behavior,
including: visemes and eyebrow raises synchronized to speech, head nods, facial
displays of emotion, posture shifts, gazing at and away from the user, and idle
behavior (blinking, etc.). While the character can appear only in (continuously
variable) mid-range to close-up shots facing the user, it can hold up and point at 2D
objects (e.g., images, documents, web pages) in front of it. The background behind
the character can be any dynamically loadable image (actually any Flash file,
including animations). The interface also supports an extensible set of user input
widgets, but currently provides multiple choice input buttons (Fig. 2) and a free text
input box.

3.1 LiteBody Architecture

The LiteBody architecture consists of a Dialogue Server, a Text-To-Speech (TTS)
Server, and a web-based Flash Client (Fig. 3).

Fig 2. Example LiteBody Character with Multiple Choice User Input Buttons

 The Dialogue Server represents the LiteBody interface point for a dialogue engine or
other application controlling the ECA. In response to a single BML command, the
Dialogue Server causes the TTS Server to produce a web-accessible mp3-format
audio file of the ECA’s speech, along with an XML document that contains speech-
synchronized timing information for animation and other actions to be performed by
the ECA in the Flash Client. The XML document also contains the URL for the audio
file that the Flash Client will use to stream the speech mp3 from. Once the audio file
has finished production, the XML document is transferred to the Flash Client for
execution.
 The TTS Server uses any speech synthesizer that is compatible with the Microsoft
Speech API (v5.1) to generate mp3 audio files for download to the FlashClient (via
any standard web server) along with phoneme and word boundary timing information.
 The Flash Client is built entirely in Adobe Flash using the ActionScript
programming language and the standard Flash rendering engine for onscreen display.
Flash provides a lightweight, near ubiquitous platform on which to deliver dynamic
multimedia content via the web.

After being downloaded into the user’s browser and initializing, the Flash Client
makes a persistent socket connection with the Dialogue Server. Once a socket
connection is made, the Dialogue Server may begin sending XML actions to the client
for execution. Upon receipt of an action, the client inserts a new ActionObject into its
animation queue. An ActionObject, contains any number of “untimed” commands
such as loading documents or audio files, as well as any number of “timed”
commands that must be synchronized with the speech audio. These timed actions each
carry a timestamp in milliseconds relative to the beginning of performance of the
action.

When the Flash Client begins a new action by taking the next ActionObject in the
queue and sending it to the AnimationEngine, it first performs any untimed
commands, such as the loading of a speech audio file. Flash has sophisticated
streaming capabilities, which we leverage in order to begin realizing an utterance
before the audio file has finished loading to minimize latencies between speaking

Fig. 3. LiteBody Architecture

turns. Once the audio file begins playing, a timer starts and the performance of timed
actions begins, synchronized with the playback.

When the AnimationEngine determines that a particular action is due to be
performed, it sends a message to the Rendering Engine telling it to make the
appropriate changes to the onscreen ECA representation (for animation actions) or to
perform other necessary commands (such as loading an external file or document).
Animation actions are realized by either moving Flash’s playhead to a new frame in
the active movie clip, or by swapping the active movie clip for a new one.

Upon completion of all of an ActionObject’s actions, a message is sent to the
Controller. The Controller relays a message to the Dialogue Server that an action has
been completed, and then checks the queue to see if another action is waiting. If not,
the Controller either waits for another action to arrive from the server, or generates an
idle action such as an eye-blink or a posture shift for the ECA.

User input actions are handled in a similar fashion to other actions, except that
there is no timing information associated with a user input, and realization of the input
interface is handled via a UserInputEngine class.

Fig. 4 shows an example BML command that LiteBody can execute. In this
command, the ECA is being instructed to speak with the audio file URL specified in
the “speech” command, and the visemes and their timing relative to the start of speech
specified in the “lips” commands. BML extensions (“rag” namespace) are used to
load a new background behind the character, modify the camera shot by zooming in
to the ECA over the first 300ms of speech, and changing the ECA’s facial expression
to “happy” between 500ms and 800ms relative to the start of speech.

<BML>
<speech id="s1" start="0" type="xxx/mp3"
ref="http://localhost:8080/speech/file0000000001.wav.mp3" text="" />
<rag:backgroundurl="data/checkers.swf" />
<rag:zoomtime="0" duration="300" timestamp="0" value="0.2" />
<rag:expressiontime="500" duration="300" timestamp="500" value="happy"/>
<lips viseme="1" time="870" />
<lips viseme="1" time="940" />
<lips viseme="9" time="1140" />
…
</BML>

Fig. 4. Example LiteBody BML Command
The Flash Client is designed to be extensible in several ways. Arbitrary user input

widgets may be added to elicit information or conversational input from the user in a
wide variety of ways. An input widget can be any Flash movie, with the only
requirement being that it presents a button to submit its input, and returns the user
input as a string to the server.

New animation sequences can also be added to the Flash Client with minimal
effort. After adding the animation artwork, a new named keyframe is added that
carries the name of the new animation, and the name and duration of the animation is
added to a configuration file.

5 Conclusions and Future Plans

Our goals in developing DTask and LiteBody were to make the development of a
certain class of conversational virtual humans significantly easier, allow for
extensibility and modularity through adherence to public standards, and provide the
ability for wide dissemination of developed systems over the web. These tools are
currently being used in two health education and health behavior change projects
funded by the US National Institutes of Health. We have a commitment to our
funding agency to release these tools as open source for the benefit of the virtual
human and health informatics research communities, and welcome collaborations on
the further development and application of these tools.

Acknowledgments. Thanks to Candace Sidner, Dolphy Fernandes, Rukmal
Fernando, Langxuan Yin and the other members of the Relational Agents Group for
their help with this work. This project was supported by NIH National Library of
Medicine Grant R21LM008995.

References

1. Ecma International, www.ecma-international.org.
2. Bickmore, T., Pfeifer, L., and Paasche-Orlow, M. Health Document Explanation by Virtual

Agents Intelligent Virtual Agents, Paris, 2007, 183-196.
3. Bickmore, T. and Picard, R. Establishing and Maintaining Long-Term Human-Computer

Relationships. ACM Transactions on Computer Human Interaction, 12 (2). 293-327.
4. Cassell, J., Stocky, T., Bickmore, T., Gao, Y., Nakano, Y., Ryokai, K., Tversky, D.,

Vaucelle, C. and Vilhjálmsson, H., MACK: Media lab Autonomous Conversational Kiosk.
in Imagina '02, (Monte Carlo, 2002).

5. Cassell, J., Vilhjálmsson, H. and Bickmore, T., BEAT: The Behavior Expression Animation
Toolkit. in SIGGRAPH '01, (Los Angeles, CA, 2001), 477-486.

6. Graesser, A. et al, AutoTutor: A simulation of a human tutor. Cognitive Systems Research,
1.

7. Grosz, B. and Sidner, C. Attention, Intentions, and the Structure of Discourse.
Computational Linguistics, 12 (3). 175-204.

8. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H., Thórisson, K.
and Vilhjálmsson, H. Towards a Common Framework for Multimodal Generation: The
Behavior Markup Language Intelligent Virtual Agents, Marina Del Rey, CA, 2006.

9. Lochbaum, K. A Collaborative Planning Model of Intentional Structure. Computational
Linguistics, 24 (4). 525-572.

10. Rich, C. Building Task-Based User Interfaces With ANSI/CEA-2018. IEEE Computer (to
appear).

11. Rich, C. and Sidner, C.L. COLLAGEN: A collaboration manager for software interface
agents. User Modeling and User-Adapted Interaction, 8 (3-4). 315-350.

