
32 March/April 2017 Copublished by the IEEE Computer and Reliability Societies 1540-7993/17/$33.00 © 2017 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and Guevara Noubir | Northeastern University

Users’ traveled routes and locations can be exploited by permissionless access to smartphone motion
sensors. Extensive simulations for 11 cities and real experiments for two cities show that a signifi cant
number of users are vulnerable to tracking by seemingly innocuous apps.

T he mobile revolution has profoundly changed
how we share information and access services.

Modern smartphones are equipped with sophisticated
sensors that have rede� ned how users interact with the
environment. Despite their bene� ts, they’ve opened the
door to numerous privacy invasion a� acks. One such
a� ack is the leakage of location information to track
users, discover their identity, and identify home and
work locations.

A simple method of leaking users’ location is access-
ing their smartphone’s location services that rely on
GPS, Wi-Fi, or cellular signals. To mitigate such leakage,
mobile OSs (for example, Android and iOS) allow users
to manage permissions and access sensitive resources
and information. For example, Android mobile apps
must request permission to access location information,
giving users the opportunity to decline. � is is a good
start, but many users are still careless about checking
such permissions. � is is illustrated by the recent charges
by the US Federal Trade Commission against the
“Brightest Flashlight” app for deceiving consumers by
sharing location information without their knowledge.1
With a 4.7-star rating and more than one million users,
this app is just one example of many seemingly innocu-
ous applications with questionable privacy practices.

Careful users can easily determine that a � ashlight
app shouldn’t access their location information. Also,
users unwilling to disclose their location can simply
disable location services on their device. However, it’s
much harder to detect indirect location leakage from
side channels, such as the gyroscope, accelerometer,
and magnetometer embedded in most modern smart-
phones. Currently, any Android app can access these
sensors without permissions or any visual cue to the
user. � ere is no mechanism to disable these sensors
because many system services, for example, orienta-
tion, use them to perform their functions. As such,
exploiting these sensors has become an a� ractive tar-
get for privacy a� acks.2–6

We investigated the threat of tracking users’ routes
and locations using zero-permission smartphone sen-
sors, without location services. Our goal is to raise aware-
ness about the dangers of these a� acks in mobile devices
and implement mitigation techniques to prevent them.

We focused on a scenario in which users are travel-
ing in a vehicle on public roads. With simulations, we
show that for most cities, it’s possible to generate a short
list of 10 routes containing the user’s traveled route
with probability higher than 50 percent. � e inference
of traveled route can easily lead to inferring the user’s

� e Perils of User Tracking Using Zero-
Permission Mobile Apps

www.computer.org/security 33

home and workplace locations, and further information
about the user’s identity can be derived from the town’s
public database.

Attack Scenario
We focus on a very simple and common attack sce-
nario. An adversary, with the intention of tracking users,
uploads an attractive and seemingly harmless-looking
app on a global repository, such as the Google Play Store.
Once uploaded, this app becomes available for down-
load to millions of users worldwide. When users down-
load and use this app, it performs its intended function
but also starts a malicious service in the background to
detect when a user sits in a car. This malicious service
starts recording the sensor data from the accelerometer,
gyroscope, and magnetometer while the user is driving.
From this sensor data, the app derives driving informa-
tion such as turn angles, route curvature, acceleration,
and heading and then uploads this information to a col-
luding server. As the upload size is small (roughly 80
Kbytes per hour, or slightly above 20 bytes per second),
degradation of network performance due to malicious
traffic is negligible. Using publicly available geographic
area attributes, the adversary can learn the actual routes
taken without the need of location services.

Approach
We developed a location-tracking framework to address
many challenges that undermine the feasibility of this
attack and to optimize tracking by creating architecture
blocks that address every challenge, modeling location
tracking from sensors as a graph theoretic problem, and
developing efficient search algorithms that maximize
the probability of finding the traveled route in a small
set of results. Here, we discuss the challenges, architec-
ture, and the design of our graphs and algorithms.

Challenges
The challenges that undermine the feasibility of the
attack include the following:

 ■ Area size: The geographic area’s size impacts the
estimation of the route. There are billions of possi-
bilities for a route even in small cities like Waltham,
Massachusetts.

 ■ Road similarity: Similarity in roads also impacts the
estimation of the route, especially in grid-like road
structures like Manhattan’s.

 ■ Noisy sensor data: Sensor data quality is key for high
accuracy. However, today’s smartphones are equipped
with low-cost sensors that don’t guarantee high accu-
racy. These sensors are also strongly impacted by the
environment—for example, accelerometers spike due
to speed bumps or potholes, and magnetometers are

influenced by magnets in fans, speakers, and other
electromagnetic devices.

 ■ Driving patterns: Drivers frequently vary their speed
or switch lanes to overtake others. These actions
induce noise in the sensors as spatial distortions.

Architecture
The architecture comprises two main actors: a smart-
phone that collects sensor data and a server that pro-
cesses this data, searches it, and generates a ranked list
of potential routes. The server framework is modeled
using graph theory: the road network of each different
area is converted to a searchable graph structure, and the
user’s route is searched on the graph by our algorithms
that are designed to maximize the likelihood between
the actual route and the route inferred from sensor data.
The architecture blocks are described below.

 ■ Preparation: Road information from public map
resources are extracted and converted to graph struc-
tures. This is a one-time initialization step; the graph
can be reused for all subsequent attacks.

 ■ Sensor data collection: Sensor data is recorded by the
app and uploaded to a colluding server. This step
detects user movement from accelerometer data
and triggers sensor recording exclusively during
vehicle movement.

 ■ Data processing: The uploaded sensor data is pro-
cessed and analyzed to derive the user trace consisting
of turn angles, curvatures, heading, and time stamps.

 ■ Search: The search algorithm is run on the user trace,
and a ranked list of matching routes is produced.

Graph Construction
Our graph is constructed from real map information
obtained from OpenStreetMap (OSM; www.open
streetmap.org), which provides free access to accurate
and detailed global road network information. Speed
limit information was extracted from the Nokia HERE
platform (maps.here.com), which we found to be more
accurate. We explain our graph construction using the
small hypothetical road network shown in Figure 1a.

The hypothetical road network is decomposed into
a set of atomic sections. An atomic section is a one-way
road section between two intersections that doesn’t
contain sharp curves or turns (that is, angle change of
more than 30°).

� ��
BA ,
� ��
BC ,
� ��
BD ,

� ��
CB ,
� ��
DB ,

���
JB ,
���
EJ ,
���
FJ , � ��

FG ,
� ��
TF , and

� ���
HT are examples of atomic sections. The

curvature of the section, the fastest time from start to
end, and the heading direction become the attributes
of each section.

� ��
FG is an example of a curved atomic

section,
� ��
BA has a heading of 270° (west), and

� ��
BC has

a heading of 0° (north). This curvature and heading
information is extracted from the map coordinates, and

34 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

travel time is calculated from the section’s maximum
speed limit.

Atomic sections are chained to form maximal-length
segments if they form a straight or slightly curved
road. Each section’s attributes (curvature, travel time,
and heading) are merged and added as an attribute of
the segment. These segments can contain many inter-
sections connecting to other segments. For example,
s1(
� ������
TFJBA), s2,NS(

� ����
CBD), and s2,SN(

� ����
DBC) are three

segments intersecting at B, where NS (north–south)
and SN (south–north) indicate heading directions.

Connections are formed between segments that
share an intersection, and turning from one segment to
another is permitted. The turn angle becomes an attri-
bute of the connection. Intersection B is an example
of connection between segments s1 and s2,NS (90° left
turn) and between s1 and s2,SN (90° right turn).

The segments form the graph vertices V, and the
connections form the edges E of the directed graph G.
Figure 1b shows the graph we constructed for our hypo-
thetical road network. Graph and sensor data are pro-
vided to the search algorithms for calculating the user’s
actual route.

Sensor Data Processing
Sensor data provides useful information about a user’s
route. Gyroscopes are most reliable because they reveal
turn and curvature information, which are traceable on
a public map. Accelerometers and magnetometers can
be unreliable because of environmental factors like traf-
fic, road conditions, or proximate magnetic fields. These
environmental perturbations are difficult to predict and
compensate for. Intuitively, we use the gyroscope as our
primary scoring sensor and the accelerometer and mag-
netometer for supporting data, such as idle time and
heading estimate, to refine the results.

The gyroscope provides a sequence of 3D vectors
where each axis reports the rate of angular change the
smartphone experienced. The turns and curvatures are
calculated by integrating these rates over time. Figures
2a and 2b illustrate an experimental route and its cor-
responding angle sequence. The large changes in angle
trace indicate turns (negative for right and positive for
left), and minor variations indicate road curvature.

Error compensation. Gyroscopes suffer from drift
where their readings drift away instead of reporting 0
on each axis (when idle). Figure 2b shows a large drift
in the y-axis. This drift causes additional errors in the
calculated turn angles and curvature. Their complete
removal requires computation-expensive sensor fusion
algorithms. Estimating a unit amount of drift on each
axis when a vehicle is idle and subtracting this from
the entire trace reduces the drift. Figure 2c shows the
reduced drift in the y-axis.

Rotation. Users can place their smartphone in any ori-
entation in the car. We virtually rotate the gyroscope
data such that its z-axis points upward perpendicular
to the Earth’s surface. This is done by using gravity
measurement from each accelerometer axis and com-
puting the appropriate rotation matrices. Thus, the
turn and curvature information is entirely represented
by the z-axis (Figure 2d), making it easier to extract
the information.

Trace extraction. The gyroscope trace between two
turns forms the curvature of vertices V, and the turns
form the edges E of the graph. The vertices carry addi-
tional information such as idle time from the accelerom-
eter and heading from the magnetometer. We collected
this info by doing the following:

Figure 1. Example of a road network and its mapping to graph. (a) Connections are created when a road bisects (B), furcates (F), joins another
road (J), or turns in a different direction (T). The created atomic parts are

� ��
BA ,
� ��
BC ,
� ��
BD ,
���
CB ,
� ��
DB ,
��
JB ,
��
EJ ,
��
FJ ,
���
FG ,
���
TF , and

� ��
HT . (b) Graph

construction. Every one-way road segment s1, s3, s4, and s5 is represented by one vertex, while two vertices s2,NS and s2,SN are created for the
north–south (NS) and south–north (SN) directions of road segment s2, respectively.

S1 AA J

C

B

D

F

E

H

S4

S3

G

S5

J T

S2

(a) (b)

S2, NS

S2, SN

S5

S1

S3 S4

www.computer.org/security 35

 ■ Extracting turn angles and curvature: The turn angles
and curvature are extracted from the gyroscope’s
z-axis using predefined thresholds. We label a slope as
a turn when it’s more than 30° within a short time;
otherwise, it’s considered as curvature.

 ■ Detecting idle time: Idle time is calculated as the sum
of time frames where the accelerometer reports
near-zero magnitudes in all three dimensions. These
values are considerably larger during motion. The
detection of idle states helps us better estimate the
travel time and improve the attack performance.

 ■ Estimating heading: The heading is extracted only
when the magnetometer doesn’t experience strong
magnetic fields—that is, reported field strength is
comparable to the region’s field strength (30−50µT
for the Northeast US).

The Search Algorithm
The search algorithm traverses the entire graph for every
route and maintains a list of scored potential routes that
have a high probability of matching the recorded driv-
ing trace. The algorithm outputs two ranked lists—
individual ranks and cluster ranks. The individual rank
gives the rank of the exact route in the search results,
whereas cluster rank gives the rank of a group of similar
routes that match the exact route. Clustering might group
routes with the same end points, ignoring different roads
in between, or routes that converge to the same start/end
area, for example, roads going from/to a residential com-
plex or office. This could give an adversary more confi-
dence in certain areas than the individual rank.

Objective. The algorithm’s objective, given a route with
N turns, is to find a sequence of turns θ = (θ1, …, θN)
in graph G that maximizes the probability of matching θ
given the observation of gyroscope turns α = (α1, … , αN).
This probability, denoted as P(θ⏐α), can be written as

P
P

P
P P

P
|

, (|)
θ α

θ α
α

α θ θ
α

() () ()
() ()

= = .

The a priori probability P(θ) is equiprobable—that
is, all routes have the same probability of being taken
by a user. This presents a worst-case scenario and gives
a lower bound on the performance. In addition, P(α)
is independent of θ because it’s the probability of mea-
surement α without conditioning on θ. Therefore, maxi-
mizing P(θ⏐α) becomes equivalent to maximizing the
probability of P(α⏐θ) alone.

The gyroscope turns contain a random amount of
noise n, yielding the angle α = θ + n. Through experi-
mentation, which we discuss later, we see that this noise
can be approximated by an N-dimensional zero-mean

normal distribution N(0, σ) with standard deviation σ.
P(α⏐θ) can be rewritten as

P P n| 2 exp(
2

)
N

2 2

2

2α θ α θ πσ
α θ
σ

()() ()= = − = −
−− ,

where ||.|| indicates a vector’s L2 norm. The (2πσ2)–N/2
is constant for a fixed N and σ; therefore, maximizing

Figure 2. Error compensation steps for gyroscope data: (a) experimental route,
(b) recorded gyroscope data, (c) calibrated gyroscope data, and (d) rotated
gyroscope data.

(a)

(c)

400

200

0

A
ng

le
 (˚

)
A

ng
le

 (˚
)

0 200 400

(b) Time (s)

300

200

100

0

–1000 200 400

Time (s)

(d)

A
ng

le
 (˚

)

300

200

100

0

–1000 200 400

Time (s)

x-axis
y-axis
z-axis

x-axis
y-axis
z-axis

x-axis
y-axis
z-axis

36 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

P(α⏐θ) is equivalent to minimizing ||α – θ||. The opti-
mal route-tracking solution becomes

arg min
G

*

θ α θ()= −

θ
.

Algorithm. A high-level pseudocode for the algorithm
follows. First, consider each vertex (that is, road seg-
ment) as a potential starting point. Iterate through
every edge (that is, intersection), and then iterate
through each potential route. In doing so, extract all
forward connections, eliminate all unlikely connec-
tions (filter), score other connections, and add to the
route’s score. Finally, pick the top-scoring paths.

The algorithm iterates through every potential route
for each intersection and extracts all the forward con-
nections. Unlikely connections are filtered out, and the
remaining are scored and added to the previous path
score. The algorithm picks only a certain number of
top-scoring paths after each iteration. The filtering and
selection of top paths are essentially a tradeoff between
searching speed and accuracy.

Filtering. Connections that don’t satisfy certain flexible
thresholds are eliminated. These represent turns or seg-
ments that are highly unlikely to be traversed by a user
because the turn difference between connection and
reported is too large (≥60°) or the direction of a road
extracted from the map deviates too much from the
reported data (for example, the map indicates east–west
direction, whereas the reported data suggests south),
or it’s impractical to reach a connection in the reported
time (for example, a connection takes minimum five
minutes to reach while reported time is 20 seconds).

Scoring. The score for every connection is calculated
based on turn angle, curvature, and travel time. For
each new intersection i, scores of individual features are
added to the route score. The final route score SFinal is
the sum of scores for all N intersections:

S s s sFinal
i

n

c t i
1
∑()= + +a
=

.

The score for turn angle sα and travel time st is cal-
culated as the absolute value of difference between the
reported (α and t) and connection (θi and ti) values,
multiplied by the turn angle weight ωα and time weight
ωt, respectively:

sα = ωα * |α – θi|;
st = ωt * |t – ti|.

The curvature scoring is a bit more complex. Here,

we divide the connected segment curvature into T sub-
segments and denote the ith intersection curvature as a
sequence of subturn angles (ϑ1, …, ϑT). Similarly, the
curvature trace is derived from the gyroscope data as
(α1, …, αT). The curvature score sc is calculated as the
normalized distance between two curvature sequences,
multiplied by the curve weight ωc:

s
Tc c

k

T

k k= −
=
∑ω α ϑ*

1

1

.

The weights are assigned based on the data source’s
accuracy. We assigned higher weights to turn angle and
curvature because the gyroscope is more reliable than
other sensors. They can further be adjusted based on
whether a city has more curved roads or unique turns.
The travel time is assigned a lower weight, as traffic in
any city can be unpredictable.

The L2 norm is theoretically optimal for Gaussian
distributions, but the L1 norm worked better for us
in real experiments because computing the L1 norm
reduces system overhead and improves search time.
In addition, the gyroscope errors weren’t truly Gauss-
ian, and squaring large sparse errors in L2 amplified
those errors.

Evaluation
We evaluated the attack potential using simulations
from several cities and real experiments from Boston
and Waltham. Here, we report the results for these
experiments, but first we justify the attack’s feasibility
based on gyroscope accuracy and algorithm perfor-
mance. We also provide some intuition about the selec-
tion criteria for the simulation cities.

Gyroscope Accuracy
Gyroscope accuracy has the largest impact on the
attack’s feasibility. We measured the accuracy for four
smartphones by calculating the error between the turn
angles obtained from real experiments and the corre-
sponding turn angles from the maps. The error distribu-
tion for each phone showed that they closely followed
a normal distribution. All phones—that is, HTC One
M7, LG Nexus 5, LG Nexus 5X, and Samsung Galaxy
S6—reported a near-zero mean and almost equal stan-
dard deviations σ of 7.07°, 7.89°, 6.40°, and 7.51°, respec-
tively. More than 95 percent of errors were below 10°,
which is fairly accurate.

Algorithm Performance
Algorithm performance is another factor that deter-
mines attack feasibility. A longer search time would sub-
stantially degrade attack performance due to resource
limitations and restrict the attack to specific areas.

www.computer.org/security 37

We didn’t perform a formal benchmark of our algo-
rithm, but the simulations provided enough informa-
tion to determine performance. For example, searches
on a virtual machine (VM) with 16 threads at 2.93 GHz
and 32 Gbytes RAM took 2.2 s on average for a large
city like Atlanta, and only 0.4 s on average for a small
city like Concord, Massachusetts. Our simulations took
≈21 hours (≈0.85 s per route) for 88,000 routes, which
means that adversaries would need only 10 similar VMs
running in parallel to search 1 million routes (users) in
a single day. This gives them the capability to track mil-
lions of users without detection.

City Selection
We chose 11 cities, based on their diverse sizes and road
structure, to study attack potential. Table 1 shows these
cities along with characteristics such as size (segments/
vertex |V| and turns/edge |E|) and turn variance (mean
µ turn and standard deviation σ turn).

A large city like Atlanta with high |V| and |E| values
and low σ turn suggests a very low inference potential
as its size significantly increases the search space due
to large number of connections. Cities like Concord,
Madrid, Paris, and Rome with a high σ turn suggest high
inference potential as they have many unique turns that
reduce the search space due to elimination of unlikely
connections. Conversely, grid-like cities like Berlin,
Manhattan, and Sunnyvale, with a low σ turn, suggest
low inference potential. The other cities like Boston,
London, and Waltham have a mix of gridlike and unique
turns that suggests good inference potential.

Simulation Evaluation
We performed simulations for all 11 cities using scenar-
ios that emulated real environments. We first generated
a set of 2,000 simulation routes for each city, and added

four error scenarios to each route. Then we ran a search
for all 8,000 simulation routes.

Generation of simulation routes. We created simulation
routes by first randomly choosing a number of turns N
← {3, ..., 10} and then selecting a random set of N + 1
connected segments from the graph, such that all turn
angles were between 30° and 150° and the time between
turns was more than 10 s. No constraints were placed on
the route length; they were between ≈0.5 km and ≈8.15
km, with an average length of ≈7.15 km.

Adding errors to simulation routes. The simulation
routes represent an ideal, error-free scenario, so we
defined additional error levels to simulate more realis-
tic scenarios. In all error scenarios, the magnetic head-
ing error was added by a uniform distribution between
−90° and 90°, and the time error was added by a uniform
distribution between a variable lower bound (β) and a
fixed upper bound of 1.5. These bounds are a function of
speed—for example, for a road with a maximum speed
of 100 km/h, a lower bound of 0.1 implies driving at 10
km/h, and the upper bound of 1.5 implies driving at 150
km/h. We added the turn and curvature errors using a
normal distribution with specific scenario-dependent
standard deviation σ. We categorized performance sce-
narios as follows:

 ■ Ideal: Noise-free scenario (upper-bound performance).
 ■ Worst: β = 0.1, σ = 10. This scenario simulates heavy

traffic and phones with less accurate gyroscopes.
 ■ Typical: β = 0.5, σ = 8. This scenario simulates mod-

erate traffic and current phones. The σ = 8 is slightly
higher than the experimental value (σ = 7.54), imply-
ing a slightly harder attack.

 ■ Future: β = 0.5, σ = 6. This scenario simulates

Table 1. Cities used for evaluation with their characteristics.

City No. of segments/vertex No. of turns/edge Mean µ turn (°) Standard deviation σ turn (°)

Atlanta 10,529 25,557 88.73 17.58

Berlin 4,708 19,752 88.21 19.87

Boston 8,080 22,149 89.69 20.52

Concord, Massachusetts 3,049 6,467 88.13 29.58

London 9,468 21,968 87.83 20.38

Madrid 10,012 30,144 86.41 25.13

Manhattan 1,033 3,699 89.23 17.81

Paris 6,744 11,204 86.35 26.26

Rome 9,408 20,577 85.98 26.15

Sunnyvale, California 5,592 12,302 88.59 16.00

Waltham, Massachusetts 3,366 9,437 88.93 20.53

38 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

moderate traffic and future phones with more accu-
rate gyroscopes.

Analysis of simulation results. We evaluated the simula-
tion results using both individual rank and cluster rank
metrics. The distance threshold we chose for cluster-
ing was ∆ = 500 m as it typically covers a few blocks or
apartment buildings. We chose time weight 0.1 to mini-
mize the impact of unpredictable traffic but still assign a
better score to the most likely connection among similar
connections. The turn and curvature weights were each
2.5 to assign them a much higher priority than travel
time. This weight was chosen among several potential
weights as it yielded the optimal results for simulations
in several cities. The same weights were used for every
city to evaluate the attack using the same configuration
for different city profiles.

Figure 3 shows the cumulative distribution function
(CDF) of the individual and cluster ranks for six cities.
The CDFs of the other cities and a more detailed analy-
sis of the results can be found in an extended version
of the article.7 The results show that, in most cities, the
exact route was in the top 10 for more than 50 percent
and 35 percent of routes in the typical and worst sce-
nario, respectively. The only exceptions were Atlanta,
Berlin, and Manhattan. We also see that cluster ranks are
only slightly higher than individual ranks because each
cluster comprises a relatively small set of routes (≈1 to
20 routes per cluster).

The cities with spread-out turns (σ ≥ 20) showed
higher attack potential because the high turn variance
(σ) had a large positive impact on scoring. The results
in Concord were the most successful because its many
curvy roads and small size diversified the score and
reduced the search space. There were some disparities

between cities with similar σ, which can be attributed
to road curvature. For example, Boston, London, and
Waltham have a similar σ, but London shows very high
potential as compared to the others. The reason is that
Boston and Waltham have several grid-like residential
areas, such as South Boston and Back Bay, that create
confusion for routes passing through them. Waltham
had better rankings than Boston primarily because it’s
much smaller in size. Similarly, results in Rome were
much better than Madrid and Paris owing to the pres-
ence of many more curved roads.

The cities with grid-like roads (σ < 20) showed the
lowest attack potential primarily because their fewer
unique turns reduced the turn angle impact on the scor-
ing. The results in Manhattan were lowest because most
roads are straight and head north–south or east–west,
reducing the curvature’s and heading filter’s impact. The
results in Atlanta were low because the city’s large size
increased the search space to billions of possible routes.
The results in Berlin were largely affected by absence of
curved roads, reducing the curvature impact. Sunnyvale
showed higher potential owing to the presence of more
curved roads, despite the lowest turn variance.

Real Driving Experimental Results
To evaluate the real driving experiments, we collected
sensor data from driving routes, processed the data for
every route, and ran a search on all the processed data.

Collecting sensor data from driving routes. The real
experiments comprised more than 70 unique routes
each for Boston and Waltham carried out by four driv-
ers. These routes emulated realistic scenarios, for exam-
ple, travel between residential areas, shopping malls,
office, or city centers. The shortest route taken was

Figure 3. Attack performance showing cumulative distribution function (CDF) on simulated routes for six cities. (a) Sunnyvale: σ = 16.00,
(b) Atlanta: σ = 17.58, (c) Manhattan: σ = 17.81, (d) London: σ = 20.38, (e) Boston: σ = 20.52, and (f) Waltham: σ = 20.53. (Graphs are arranged in
ascending order of turn distribution σ.)

(a) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040
(b) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040
(c) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040

(d) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040
(e) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040
(f) Individual ranks

Ideal
Future
Typical
Worst

100

80

60

40

20

0

C
D

F

0 200 1,000800600400
Cluster ranks

20 100806040

www.computer.org/security 39

≈0.75 km and the longest ≈7.25 km, covering ≈980
km of driving in both moderate and heavy traffic. Four
more routes were taken to consider scenarios of driv-
ing in a circle, taking many turns (≥20), and traveling
longer distances (≥20 km). We also used these routes
to test the system’s stability. Figures 4a and 4b show the
GPS traces for both cities (used only for ground truth
comparison).

The drivers were requested to

 ■ place the phone anywhere in the car in a fixed position,
 ■ idle for about 10 s before driving, and
 ■ take a minimum of three turns on their route.

These requirements allowed us to model typical sce-
narios in which a person places the phone in a stable
position (for example, in a cup holder or mount) and
then takes some time putting on seatbelts and adjust-
ing the seat and mirrors. For this initial study, we
didn’t consider situations in which the vehicle starts
by driving in reverse.

Analysis of experimental results. The evaluation metrics
and thresholds were the same as the simulation. This
time, we fine-tuned the scoring weights (turn, time, and
curve) to 2.5, 0.1, and 3 for Boston and 2.25, 0.1, and 2.5
for Waltham. The turn weight for Waltham was reduced
to 2.25 mainly to increase the impact of travel time, as
Waltham is typically less congested and traffic is more
predictable. The curve weight was higher than turn weight
for both cities because they, especially Boston, have more
curved roads than unique turns, implying that curvature
might have a larger impact on the scoring than turns.

The CDF of the individual and cluster ranks are shown
in Figures 4c and 4d. We see that roughly 50 percent of
routes in Waltham and roughly 30 percent of routes in
Boston are in the top five individual ranks. When the top
one is considered (that is, exact route), the success prob-
ability reduces to 38 percent for Waltham and 13 percent
for Boston, respectively. The gap between individual
and cluster ranks is approximately 10 percent, which is
almost like simulations. The number of routes per cluster
is around two to three for most top-ranked clusters.

Figure 4. Attack performance for all traveled routes and their real experiment statistics: (a) GPS traces of all traveled routes
in Boston and (b) Waltham, and attack performance in (c) Boston and (d) Waltham.

(a) (b)

(c)

C
D

F

100

80

60

40

20

0
0 20 40 60 80 100

Ranks

Individual
Cluster

(d)

C
D

F

100

80

60

40

20

0
0 20 40 60 80 100

Ranks

Individual
Cluster

40 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

The results for both cities lie between the simula-
tion’s typical and worst scenarios. The results for Boston
are closer to the worst scenario, whereas Waltham’s are
much like the typical. The main reason for this differ-
ence is the traffic in Boston that caused more variations
in estimating non-idle time than Waltham. The small
gap between real and simulation results shows that our
simulation framework could serve as an effective model
for studying the attack on a larger scale, where experi-
ments are limited. We intend to expand our dataset to
include other cities. We also hope that, with our dataset
and code made available to researchers, other groups
will contribute with measurements from their cities.

Countermeasures
In Android, the location and sensor services are accessed
using similar APIs. The main difference between them is
the absence of permissions when sensors are accessed.
A simple mitigation technique would be to define new
permissions for sensor access and force apps to request
these permissions from the users. Another difference
between the services is the absence of visual notifica-
tion to users when sensors are accessed. This can be
addressed by displaying the sensor name and the access-
ing app in the notification bar. These solutions should
be more carefully investigated in the context of usability
and human–computer interaction. If an app genuinely
requires sensors to function, complex mitigation tech-
niques are required, such as monitoring Internet traffic
for location leakage or monitoring energy consump-
tion. Alternatively, generating adequate artificial noise
in the data before providing it to the app can reduce the
potential of such attacks.

The techniques discussed here can be integrated
in the OS for global protection or implemented using
dynamic instrumentation tools (for example, ddi;
github.com/crmulliner/ddi) or app sandboxing tools
(for example, Boxify8).

O ur algorithms’ performance in both simulations
and real experiments indicates that a significant

number of users are vulnerable to tracking by seem-
ingly innocuous apps in most cities. This motivates
questions regarding the implications of smartphone
sensors on users’ privacy. Access to sensor information
is important for enhanced interaction with the environ-
ment, but preventing malicious exploitation and abuse
of this information calls for rigorous mitigation meth-
ods and tools.

References
1. “Android Flashlight App Developer Settles FTC

Charges It Deceived Consumers,” US Federal Trade

Commission, 5 Dec. 2013; www.ftc.gov/news-events
/ p r e s s - r e l e a s e s / 2 0 1 3 / 1 2 / a n d r o i d - f l a s h l i g h t
-app-developer-settles-ftc-charges-it-deceived.

2. D. Patterson et al., “Inferring High-Level Behavior from
Low-Level Sensors,” Ubiquitous Computing, LNCS 2864,
A. Dey, A. Schmidt, and J. McCarthy, eds., Springer, 2003,
pp. 73–89.

3. S. Narain, A. Sanatinia, and G. Noubir,
“Single-Stroke Language-Agnostic Keylogging Using
Stereo-Microphones and Domain Specific Machine
Learning,” Proc. ACM Conf. Security and Privacy in Wire-
less & Mobile Networks, 2014, pp. 201–212.

4. L. Zhang et al., “Senstrack: Energy-Efficient Location
Tracking with Smartphone Sensors,” IEEE Sensors J., vol.
13, no. 10, 2013, pp. 3775–3784.

5. J. Han et al., “ACComplice: Location Inference Using
Accelerometers on Smartphones,” Proc. 4th Int’l Conf.
Communication Systems and Networks (COMSNETS 12),
2012; doi:10.1109/COMSNETS.2012.6151305.

6. S. Nawaz and C. Mascolo, “Mining Users’ Significant
Driving Routes with Low-Power Sensors,” Proc. 12th
ACM Conf. Embedded Network Sensor Systems (SenSys
14), 2014, pp. 236–250.

7. S. Narain et al., “Inferring User Routes and Locations
Using Zero-Permission Mobile Sensors,” Proc. IEEE
Symp. Security and Privacy (SP 16), 2016; doi:10.1109
/SP.2016.31.

8. M. Backes et al., “Boxify: Full-Fledged App Sandboxing
for Stock Android,” Proc. 24th USENIX Security Symp.
(USENIX Security 15), 2015, pp. 691–706.

Sashank Narain is a PhD candidate in information
assurance at Northeastern University. His research is
focused on how smartphone sensors can impact users’
privacy worldwide and the design and implementa-
tion of proof of attacks on smartphones. Narain has
an MS in information assurance from Northeastern
University. He’s a member of IEEE and Information
Systems Security Association (ISSA), and cofounded
the Northeastern University chapter of ISSA. Contact
him at sashank@ccs.neu.edu.

Triet Vo-Huu is a postdoctoral researcher in the College
of Computer and Information Science at Northeast-
ern University. His research focuses on user privacy in
mobile and cloud applications as well as the security
of wireless communications and networks. Vo-Huu
received a PhD in computer science from Northeast-
ern University. Contact him at vohuudtr@ccs.neu.edu.

Kenneth Block is a systems/software architect and is
pursuing a PhD in information assurance from North-
eastern University. His research interests include
covert channels and privacy. Block received an MS in

www.computer.org/security 41

electronic engineering from Northeastern University.
He’s a member of IEEE and ACM and has a Certified
Architect designation from the Open Group. Contact
him at block.k@husky.neu.edu.

Guevara Noubir is a professor of computer and informa-
tion science at Northeastern University. His research
focuses on privacy and security. Noubir received a
PhD in computer science from Ecole Polytechnique
Fédérale de Lausanne. He serves on the editorial
board of ACM Transactions on Privacy Security, IEEE

Transactions on Mobile Computing, and IEEE Trans-
actions on Information Forensics and Security. Contact
him at noubir@ccs.neu.edu.

IEEE Software offers
pioneering ideas,
expert analyses, and
thoughtful insights for
software professionals
who need to keep up
with rapid technology
change. It’s the authority
on translating software
theory into practice.

www.computer.org/
software/subscribe

ARCHITECTURAL DESIGN PRINCIPLES // 15

WHY LARGE IT PROJECTS FAIL // 117

SOFTWARE
QUALITY

WWW.COMPUTER.ORG/SOFTWARE

JULY/AUGUST 2016

IE
E

E
 S

O
F

T
W

A
R

E

July/A
ugust 2016

S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

 V

o
lu

m
e 33 N

u
m

b
er 4

TINY PROGRAMMING TOOLS // 24

REQUIREMENTS
& SOCIAL RESPONSIBILITY // 109

WWW.COMPUTER.ORG/SOFTWARE

JANUARY/FEBRUARY 2016

IE
E

E
 S

O
F

T
W

A
R

E

January/February 2016
T

H
E

 F
U

T
U

R
E

 O
F

 S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G

 V
o

lu
m

e 33 N
u

m
b

er 1

CODE CLARITY // 22

SOFTWARE
ON A COMET // 81

WWW.COMPUTER.ORG/SOFTWARE

MARCH/APRIL 2016
IE

E
E

 S
O

F
T

W
A

R
E

M

arch/A
pril 2016

B
IG

 D
A

TA

 V
o

lu
m

e 33 N
u

m
b

er 2

