
Inferring User Routes and Locations using
Zero-Permission Mobile Sensors

Sashank Narain∗, Triet D. Vo-Huu†, Kenneth Block‡ and Guevara Noubir§
College of Computer and Information Science

Northeastern University, Boston, MA, USA

Email: ∗sashank@ccs.neu.edu, †vohuudtr@ccs.neu.edu, ‡block.k@husky.neu.edu, §noubir@ccs.neu.edu

Abstract—Leakage of user location and traffic patterns is a
serious security threat with significant implications on privacy
as reported by recent surveys and identified by the US Congress
Location Privacy Protection Act of 2014. While mobile phones
can restrict the explicit access to location information to appli-
cations authorized by the user, they are ill-equipped to protect
against side-channel attacks. In this paper, we show that a zero-
permissions Android app can infer vehicular users’ location
and traveled routes, with high accuracy and without the users’
knowledge, using gyroscope, accelerometer, and magnetometer
information. We modeled this problem as a maximum likelihood
route identification on a graph. The graph is generated from
the OpenStreetMap publicly available database of roads. Our
route identification algorithms output both a ranked list of
potential routes as well a ranked list of route-clusters. Through
extensive simulations over 11 cities, we show that for most cities
with probability higher than 50% it is possible to output a
short list of 10 routes containing the traveled route. In real
driving experiments (over 980 Km) in the cities of Boston (resp.
Waltham), Massachusetts, we report a probability of 30% (resp.
60%) of inferring a list of 10 routes containing the true route.

I. INTRODUCTION

The mobile revolution has profoundly changed how we

share information and access services. Despite its immense

benefits, it opened the door to a variety of privacy-invasion

attacks. Leakage of location information is a major concern

as it enables more sophisticated threats such as tracking users,

identity discovery, and identification of home and work loca-

tions. Furthermore, discovery of behaviors, habits, preferences

and one’s social network are at risk, and can potentially lead

to effective physical and targeted social engineering.

The topic of location privacy has been extensively studied

since the early days of mobile phones. Cellular communication

systems, as early as GSM, attempted to protect users’ identity.

Sensitivity to location privacy influenced the use of temporary

identifiers (e.g., TMSI) which increased the difficulty of track-

ing users. In recent years, the attack surface of location privacy

significantly expanded with the pervasiveness of mobile and

sensing devices, open mobile platforms (running untrusted

code) and ubiquitous connectivity. Users are also increasingly

aware and concerned about the implications of disclosure of

location information as reported in recent surveys [1], and the

US Congress Location Privacy Protection Act of 2014 [2].

This material is based upon work partially supported by the National
Science Foundation under Grants No. CNS-1409453, and CNS-1218197.

One user tracking threat example involves extracting the

MAC address of probe packets that are periodically transmitted

by Wi-Fi cards. This is known to be exploited by marketing

companies and location analytics firms. In shopping malls

for instance, companies such as Euclid Analytics state on

their website that they collect “the presence of the device,

its signal strength, its manufacturer, and a unique identifier

known as its Media Access Control (MAC) address” [3]. This

is used to analyze large spatio-temporal user traffic patterns.

Another example is by the startup Renew, which installed a

large number of recycling bins in London with the capability

to track users. This allows Renew to identify not only if the

person walking by is the same one from yesterday, but also her

specific route and walking speed [4, 5]. The threats to privacy,

as a result of exploiting MAC address tracking, triggered

Apple to include a MAC address randomization feature in its

iOS 8 release, receiving praises from privacy advocates [6].

While attacks based on the physical and link layer infor-

mation are a serious concern [7], their practicality remains

limited to adversaries with a physical presence in the vicinity

of the user or requires access to the ISP infrastructure. Attacks

that exploit the open nature of mobile platforms, including

application stores, raise more concerns as they can be remotely

triggered (e.g., from distant countries beyond the jurisdiction

of a victim’s country’s courts of law), and require virtually

no deployment of physical infrastructure. The simplest way

to obtain a user’s location is by accessing the mobile device

location services which typically rely on GPS, Wi-Fi, or

Cellular signals. To mitigate breaches of location privacy,

mobile phones operating systems such as Android provide

mechanisms for users to manage permissions and control

access to sensitive resources and information. For instance,

an Android mobile app needs to request a permission to

access location information, allowing the user to decline.

This is a good start despite the fact that many users are

still careless about checking such permissions as illustrated

by recent charges by the Federal Trade Commission against

‘Brightest Flashlight’ app for deceiving consumers and sharing

the location information without their knowledge [8]. This app

with 4.7 stars rating and over one million users is an example

of seemingly innocuous applications that deceive users.

While a careful user can easily detect that a Flashlight

app should not access his/her location information, a harder

problem is how to protect users’ location privacy against

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.31

397

2016 IEEE Symposium on Security and Privacy

© 2016, Sashank Narain. Under license to IEEE.

DOI 10.1109/SP.2016.31

397

side channel attacks, when the app does not request any

permissions. Mobile phones are embedded with a variety of

sensors including a gyroscope, accelerometer, and magnetome-

ter. This expanding attack surface is an attractive target for

those seeking to exploit privacy information [9, 10], especially

when users are becoming more aware of location tracking

systems and attempt to minimize their exposure by disabling,

limiting usage of, or removing tracking apps.

We investigate the threat and potential of tracking users’

mobility without explicitly requesting permissions to access

the phone sensors or location services. Currently, any Android

application can access the gyroscope, accelerometer, and mag-

netometer without requiring the user permission or oversight.

Even security aware users tend to underestimate the risks

associated with installing an application that does not request

access to sensitive permissions such as location. We focus on

the scenario of a user traveling in a vehicle moving along

roads with publicly available characteristics. We model a user

trajectory as a route on a graph G = (V,E), where the vertices

represent road segments and the edges represent intersections.

We formulate the identification of a user trajectory as the

problem of finding the maximum likelihood route on G given

the sensors’ samples. Using techniques similar to trellis codes

decoding, we developed an algorithm that identifies the most

likely routes by minimizing a route scoring metric. Each of

the vertices/edges is tagged with information such as turn

angle, segment curvature and speed limit and can be extended

to incorporate additional information such as vibration or

magnetic signatures. In order to assess the potential of this

approach in realistic environments, we developed a location

tracking framework. The framework consists of six building

blocks: (1) road graph construction from the OpenStreetMap

project publicly available data, (2) processing sensor data and

generating a compact sequence of tags that match the semantic

of a graph route, (3) maximum likelihood route identification

algorithm, (4) simulation tool, (5) mobile app to record sensor

data, and (6) a trajectory inference for real mobility traces. We

carried out extensive simulation on 11 cities around the world

with varying population and road densities and topologies

(including Atlanta, Boston, London, Manhattan, Paris, Rome),

and preliminary real measurements in Boston and Waltham,

MA (spanning over 980Km), on four Android phones, with

four drivers. In the simulations, we show that for most cities

with probability higher than 50% it is possible to output

a short list of 10 routes containing the traveled route. In

real experiments in the cities of Boston (resp. Waltham),

Massachusetts, we report a probability of 30% (resp. 60%)

of inferring a list of 10 routes containing the true route. Our

contributions can be summarized as follows:
• A graph theoretic model for reasoning about location and

trajectory inference in zero-permissions apps.

• A framework for processing sensors data, simulat-

ing/experimenting and evaluating location/trajectory in-

ference algorithms on real city road networks.

• An efficient location/trajectory inference algorithm, that

incorporates road segments curvature, travel time, turn

angles, magnetometer information, and speed limits.

• A comprehensive simulated evaluation of the proposed

algorithm’s effectiveness on 11 cities and a preliminary

real-world evaluation on 2 cities, demonstrating the fea-

sibility of the attacks and efficiency of the algorithm.

While this paper focuses on how an adversary can infer a

driving trajectory with a seemingly innocuous Android app

that does not request any permissions from the user, this can

easily lead to inferring the home and workplace of the victim.

Further information about a user’s identity can be derived by

inspecting the town’s public database. This work motivates

the question of understanding the implications of mobile phone

sensors on users’ privacy in general. Enabling access to sensor

information is critical for feature-rich applications and for

their usability. However, preventing malicious exploitation and

abuse of this information is critical.

II. PROBLEM STATEMENT

A. Motivating Scenario

The victim is engaged in the act of driving a vehicle

where she and an active smartphone are co-located within

the aforementioned vehicle. The adversary’s goal is to track

the victim without the use of traditional position determining

services such as GPS, cell tower pings, or Wi-Fi/Bluetooth

address harvesting. To prepare for an attack, the adversary

uploads a seemingly innocuous mobile app to a publicly

accessible Application Store. The app is subsequently down-

loaded and installed by the victim on her smartphone. While

providing the victim with its advertised features, this malicious

app additionally collects sensor data from the accelerometer,

gyroscope and magnetometer. This data is readily available as

today’s mobile operating systems such as Android and iOS do

not yet limit access to these resources1.

The attack is triggered when the app detects that a victim

is starting to drive. Sensor data is recorded, without visible

indication of the recording activity, and uploaded to a col-

luding server whenever Internet access is available. Based on

the sensor data, the adversary can derive driving information

such as turn angles, route curvatures, accelerations, headings

and timestamps. Combined with publicly available geographic

area attributes, the adversary can learn the actual route taken

without the need of any location services/information.

B. Location Privacy Leakage from Sensor Data

We introduce our terminology and notations used to de-

scribe the problem space. Consider a geographic area repre-

sented by a set of roads. Each road is either straight or has

curvature that is detectable by the smartphone’s sensors. When

a road bisects, furcates, joins with other roads, or turns into

a different direction, a connection is created (cf. Figure 1a).

These connections divide roads into multiple so-called atomic
parts, which only connect with other atomic parts at their

1As of Feb. 2016 (Android 6), access to accelerometer, gyroscope, and
magnetometer is automatically granted during app installation without any
user warnings or explicit permission requests.

398398

��
��

��

��

��

� 	
 ��

�

�

� �

(a) Connections are created when a road bisects (B), furcates (F), joins (J) with

another road, or turns (T) into a different direction. Created atomic parts:
→
BA,

→
BC,

→
BD,

→
CB,

→
DB,

→
JG,

→
EJ,

→
FJ,

→
FG,

→
TF,

→
HT.

��

�����

�� ��

��

�����

(b) Graph construction: every one-way road segment s1, s3, s4, s5 is represented
by one vertex, while two vertices s2,NS and s2,SN are created for the north-south
(NS) and south-north (SN) directions of the road segment s2, respectively.

Fig. 1: Example of a geographic area and its mapping to a graph.

end points. Therefore, a geographic area G can be uniquely

described as G = (B, C, θ, ϑ), where B is a set of atomic

parts, and C = {χ = (r, r′)|r, r′ ∈ B} consists of connections

χ = (r, r′) which is an ordered pair indicating the connection

between two atomic parts r and r′. The turn angle associated

with a connection χ, which captures the real-world travel di-

rection from r to r′, is given by the function θ. A positive angle

θ(χ) > 0 indicates a left turn, and a negative value θ(χ) < 0
indicates a right turn. Finally, the atomic parts preserve the

road curvature determined by ϑ(r). The computation of θ and

ϑ functions is based on the public map information.

We define a route taken by the driver as a sequence R of

connected atomic parts, R = (r1, . . . , rN), where (ri, ri+1) ∈
C. Two routesR and R̂ are identical if the sequences of atomic

parts have the same size and are component-wise equal, i.e.,

R = R̂ if ri = r̂i for all i. Along the driving trajectory, the

app obtains a set of sensor data D = {(at, gt,mt)} consisting

of the vectors at, gt and mt taken from the accelerometer,

gyroscope and magnetometer respectively. These vectors are

sampled according to discrete time periods t = 0, δ, 2δ, . . .,
where δ is the sampling period. Based on D, an adversary

launches the tracking attack as follows.

Definition 1 (Sensor-based Tracking Attack). Let A be the
attack deployed by the adversary on the received sensor data
D given geographical area G. The outcome of the attack is
a ranked list P of K possible victim routes P = A(G,D) =
{R̂1, . . . , R̂K}, where R̂i has higher probability than R̂j of
matching with the victim’s actual trajectory, if i < j.

Most interesting is whether a small set of results yield a

route list containing the truth route. We aim to design an attack

that satisfies this objective with success probability signifi-

cantly higher than a random guess. In particular, we evaluate

the attack efficiency according to the following metrics.

Definition 2 (Individual Rank). Given the user’s actual tra-
jectory R and the outcome of the attack P = A(G,D), the

individual rank of the attack is k, if R = R̂k. The rank is
uninteresting if R is not found in P .

The individual rank k reflects the attack’s success in esti-

mating that the victim’s route is in top k of the outcome list.

We are interested in the probability of such event happening,

i.e., P idv
k := P (R ∈ {R̂1, . . . , R̂k}), and evaluate the attack

performance based on it (cf. Section V). While P idv
k shows

the possibilities of the victim’s route being in a top k rather

than telling which among the top is the actual route, we note

that if k is reduced to 1, the probability P idv
1 is precisely

the probability of finding the victim’s route. This probability,

though small (e.g., P idv
1 ≈ 13% for Boston and ≈ 38% for

Waltham in our preliminary real-driving experiments), is still

considerably high given the fact that the search space contains

billions of routes. In practice, a top k with small k (e.g.,

k ≤ 5) is a very serious breach. An adversary may collect

such lists through the span of multiple days and refine the lists

to find exactly the victim’s daily commute route. Moreover,

with more resources, the adversary can quickly check every

potential route in the list to learn about the victim.

While the individual rank reflects the performance of the

attack in terms of finding the exact route, in practice a rough

estimation of the victim’s route is usually enough to create

a significant privacy threat. For example, targeted criminal

activity (i.e., robbery and kidnapping) could result from the

physical proximity knowledge derived from the attack. To

justify this threat, we define a cluster of routes as a set {R̂1,
. . . , R̂l}, in which any two routes are similar. The similarity of

routes R̂ and R̂′ is justified by d(Ri,Rj) < Δ, based on the

distance d(R̂, R̂′) and a threshold Δ, where we define d(R̂,
R̂′) = ∑N−1

i=1 ‖Loc(χ̂i) − Loc(χ̂′i)‖ as the sum of distances

between connection points χ̂i = (r̂i, r̂i+1), χ̂
′
i = (r̂′i, r̂

′
i+1) on

R̂ and R̂′, and Loc(·) denotes the geographic coordinates.

By clustering, the attack now returns the outcome as a

ranked list similar to one in Definition 1. Nevertheless, routes

belonging to the same cluster are removed and only the

best one of the corresponding cluster is included in the list.

Specifically, if Acluster(G,D) = {R̂1, . . . , R̂K}, then d(R̂i,
R̂j) ≥ Δ for any i, j, and R̂i is a representative route of

cluster i. We now introduce the cluster rank metric as follows.

Definition 3 (Cluster Rank). Given the user’s actual trajectory
R and the outcome of the attack P = Acluster(G,D), the
cluster rank of the attack is k, if d(R, R̂k) < Δ. The rank
is uninteresting if no such k is found.

Similarly to individual rank, we are interested in the

probability of a route being in the top k of clusters, i.e.,

P clt
k := P (R ∈ cluster1 ∪ . . .∪ clusterk). Based on the cluster

rank metric, the adversary may eliminate similar routes and

focus computation power on additional routes to improve the

search results. Clustering is useful when similar roads / turns

are present to effect a nearly identical result. For instance, the

adversary may group routes with the same end points while

ignoring different roads in between, or if they differ only at one

end point (start or end), e.g., roads going from / to residential

399399

Fig. 2: Block diagram of our attack.

complex or office areas. This may give the adversary more

confidence in a certain area than the individual rank.

C. Challenges

There are several challenges to the attack feasibility includ-

ing the geographic area size, impact of sensor noise, driver

behavior, and road similarity.

Area Size: The geographic area’s size has an impact on

the attack’s accuracy. Even in small cities such as Waltham

(Massachusetts, USA), there can be billions of possibilities

for a victim’s route. Moreover, routes with loops may also

significantly increase the search space.

Noisy Sensor Data: The quality of sensor data is key for

high attack accuracy. Unfortunately, today’s smartphones are

equipped with low-cost sensors that do not guarantee high

accuracy. Sensor accuracy is also dependent on the sensor’s

previous state, e.g., the acceleration can immediately increase

due to a street bump, but requires settling time before provid-

ing new useful information. Moreover, the magnetometer is

influenced by nearby magnetic fields from fans, speakers and

other electromagnetic devices.

Driver Behavior: The driving style of a driver also impacts

the estimation of the actual route. For instance, a driver may

frequently speed up or slow down due to traffic conditions or

change lanes to overtake other vehicles. These actions induce

additional noise in the sensor data in the form of spacial

perturbations or distortions.

Road Similarity: Even in ideal scenarios when clean sensor

data is obtained, the similarity of roads impacts the estimation

of the actual route. This is especially true for cities with grid-

like road structures such as Manhattan, New York.

D. Adversarial Model

Mobile Application: We assume that the rogue app collects

sensor data continuously, either actively or in background,

and intermittently transfers the data to the colluding server.

As a typical one hour trip collects approximately 800KB of

uncompressed data (80KB/hour for processed and compressed

data), detection by a user in the form of degraded network

behavior should be negligible in locations with active 3G and

4G networks or nominal Wi-Fi signal strength.

Device Position: We compensate for device orientation at

attack initiation (i.e., the time when the vehicle starts moving).

During travel, the device’s orientation should remain relatively

fixed within the reference frame of the vehicle. This supports

attack efficacy in a variety of realistic phone placements such

(a) Experimental route contains 6 turns
from Start (green) to Stop (red).

(b) Angle trace contains 6 slopes (turns)
and a few slight variations (curves).

Fig. 3: Experimental route and angle trace derived from gyroscope.

as the phone attached to a mount, residing in a cup holder, in

the driver’s pocket or in her handbag.

Location Information: While the attack described in this

work does not rely on the location information of the victim’s

trajectory at any point (e.g., no known starting point), we

assume a rough knowledge of her living/travel area (e.g.,

known to live in/frequent Manhattan, New York).

III. APPROACH

A. Overview

In its basic form, the system consists of a smartphone that

collects data and a post-processing server that generates a

ranked list of potential routes or clusters of routes. Figure 2

illustrates the design’s main components.

• Preparation: Road information from public map re-

sources are extracted and converted to specific database

structures. This is a one-time initialization step and the

structures can be reused for all subsequent attacks.

• Sensor Data Collection: Sensor data is recorded by the

app and sent to the colluding server. This step uses move-

ment detection based on accelerometer data to trigger

sensor recording exclusively during vehicle movement.

• Data Processing: On receiving the sensor data, the server

analyzes the data to derive the victim’s trace of turn an-

gles, curvatures, heading, accelerations and timestamps.

• Search: The search algorithm is run on the processed data

and a ranked list of matching routes is produced.

Sensor data provides important information about a victim’s

movements. Among the three sensor types (accelerometer,

gyroscope and magnetometer), the gyroscope is the most

useful for this attack because of the following reasons: (a)

The gyroscope provides more accurate data than the others;

(b) The gyroscope reveals turn angles and road curvature

of the undertaken route which are nearly static attributes

and traceable on a public map resource. We heavily weight

the gyroscope data in this attack as the accelerometer and

magnetometer strongly depend on dynamic factors such as

traffic/road conditions or proximate magnetic fields, which

are challenging to predict. Timestamps, accelerometer and

magnetometer readings are used as supporting data to reduce

noise and refine the results.

Data received from the gyroscope is a sequence of three

dimensional vectors reporting the rate of angular change along

the victim’s trajectory. Figure 3 illustrates an example of an ex-

perimental route and corresponding angle sequence (processed

400400

from gyroscope data) relative to initial heading. Here, large

changes in the angle trace indicate turns at intersections. Right

and left turns are represented by negative and positive slopes,

while minor variations (e.g., less than 30◦ in the example) in

between are attributed to road curvature.

We transform the Sensor-based Tracking Attack (Defini-

tion 1) to the problem of matching the angle trace and

curvature with possible routes. The objective is to identify

sequences of intersections and curvatures that match the slope

change found in the angle trace. Our approach consists of

graph construction based on OpenStreetMap [11], a public

map resource, and matching routes on this graph with the

actual angle trace using techniques similar to trellis codes

decoding [12]. Note that in our context, the graph size is

many orders of magnitude larger than typical trellis codes

used in communications. In addition, while trellis codes make

transitions and produce an output at each state, the victim’s

trajectory may traverse any number of atomic parts (transi-

tions) without making a turn (output), rendering the problem

more complex.

B. Graph Construction

Our search is performed on a directed graph structure. For

the sake of clarity, we first introduce some new definitions.

Consider a geographic area G = (B, C, θ, ϑ). We assert that a

connection between two atomic parts is a non-turn connection
if the turn angle at the connection is below a threshold φg3

(e.g., φg3 = 30◦, cf. Section IV-D). In this graph construction,

we are interested in identifying such connections that can

connect atomic parts together to create straight or curvy

roads without including significantly large turns. We call such

sequence of non-turn connected atomic parts a road segment
(or simply segment). Specifically, a sequence s = (r1, . . . ,
rl), where ri ∈ B, is a road segment if θ(ri, ri+1) ≤ φg3 for

i = 1, . . . , l−1. Intuitively, a segment is a route without large

turns at connections between its atomic parts. Additionally,

we call segment s a maximal-length segment2 if no atomic

part can be added to s to form a longer segment while still

preserving the non-turn condition. When a connection between

two atomic parts has a turn angle greater than φg3, it becomes

a connection between two segments, i.e., if r ∈ s, r′ ∈ s′ and

χ = (r, r′) ∈ C, then θ(r, r′) > φg3. In this case, we call χ a

segment connection or simply an intersection.

Our idea for constructing the directed graph G = (V,
E) is to represent each segment s by a vertex v ∈ V and

each segment connection χ by an edge e ∈ E. An example

construction is illustrated in Figure 1b. Intuitively, one will

stay at one vertex on the graph as long as she does not turn into

another segment. A turn at an intersection makes her traverse

to another vertex through an edge connecting them. Based on

the public map resource, we accordingly build our graph for

the whole geographic area. For each edge e corresponding

to segment connection χ, we use θ(χ) as the edge’s weight.

2Maximal-length segment is analogous to a longest route between two
nodes with an additional condition: weight (turn angle) must be small.

The length, speed limit, and curvature of a road segment s
are stored as attributes of the corresponding vertex v. This

information combined with the sensor data is used to match

the victim’s angle trace during the search. We note that for

any two segments s and s′ such that s′ ⊂ s (i.e., one is

a sub-sequence of the another), we simply remove s′ from

the graph, because any atomic part r and connection χ of s′

involved in the route search are also present in s, rendering

s′ redundant. Therefore, graph G essentially contains only

vertices corresponding to maximal-length segments, resulting

in more efficient route search with greatly reduced graph size.

C. Search Algorithm

Our search algorithm evaluates the routes when traversing

the graph and keeps the good routes at the end of each

step. When the search completes, a list of candidates is

returned with their evaluated score. At each step of the search,

outgoing edges from a given vertex are investigated for the

next candidate segment connection. The evaluation uses a

metric that is based on the difference between the edge weights

and the angle trace’s slopes. We improve the performance of

the basic search by incorporating an evaluation of segment

curvatures on the candidate routes. The curvatures of potential

routes are computed from coordinates of points extracted from

the map, while curvatures of the actual route are estimated

based on gyroscope samples collected between the slopes.

These details are discussed in Sections IV-A and IV-B.

D. Refining the Results

As the search based on gyroscope data is unaware of the

absolute orientation of the routes, we refine the results and

reduce the search time by using heading information derived

from the magnetometer to immediately eliminate bad routes

(e.g., east-west routes are filtered out when the actual trace

indicates north-south direction).

In addition, we exploit the accelerometer to identify idle

states and discard samples in such periods for better estima-

tion. We also extract speed information, available from Nokia’s

HERE platform [13], for each road and filter out routes by

comparing the actual travel time between intersections with the

time estimated for the segment under investigation. We provide

the details of this discussion in Sections IV-C and IV-D.

IV. SYSTEM DESIGN

A. Basic Search Algorithm

The search technique includes maintaining a list of scored

candidate victim routes while traversing the graph. Candi-

date routes have higher probability of matching the recorded

mobility trace. For the current discussion, we assume that

the adversary only exploits the gyroscope data to launch the

attack, i.e., we consider only gt from D = {(at, gt,mt)}. Let

α = (α1, . . . , αN) be the derived sequence of turn angles

at N intersections after processing gyroscope data gt. The

details of sensor data processing are discussed in Section IV-D.

In Sections IV-B and IV-C we refine the algorithm and improve

the performance by adding filtering rules and applying a more

401401

complex scoring method. Our goal at the moment is to find

θ = (θ1, . . . , θN) ∈ G, the potential sequences of turns that

maximize the probability of matching θ given the observation

of α. This probability, denoted P (θ|α), can be rewritten as:

P (θ|α) =
P (θ,α)

P (α)
=

P (α|θ)P (θ)

P (α)

As P (α) is the probability of a measurement α without

conditioning on θ, it is independent of θ. Thus, maximizing

P (θ|α) is equivalent to maximizing P (α|θ)P (θ). The distri-

bution of a priori probability P (θ) may depend on the driver,

city, and day/time of travel (e.g., home-to-work and work-

to-home routes during weekdays have significantly higher

probability than other routes). Since our goal is to demonstrate

the generality of the attack even if the adversary knows

nothing about the victim’s travel history, we consider P (θ)
to be equiprobable, i.e., any route has the same probability of

being taken by the victim. This presents the worst-case attack

scenario and gives a lower bound on the performance. If the

a priori probability P (θ) is known, we expect the attack to

achieve higher success probability than the performance we

report in this work. Under the assumption of equiprobable

a priori probability, the goal of maximizing P (α|θ)P (θ) is

equivalent to maximizing the probability P (α|θ) alone.

Samples taken from the gyroscope include noise as an

additional unknown amount in the angle trace, yielding the

angle α = θ + n, where n is the random noise vector. We

will show through experimental results in Section V, that the

gyroscope noise can be approximated by a N -dimensional

zero-mean normal distributionN (0, σ) with standard deviation

σ. Accordingly, P (α|θ) can be rewritten as:

P (α|θ) = P (n = α− θ) =
(
2πσ2

)−N
2 exp

(
−‖α− θ‖2

2σ2

)

where ‖ · ‖ indicates the L2 norm of a vector. As
(
2πσ2

)−N
2

is constant for a fixed N and σ, maximizing P (α|θ) is now

equivalent to minimizing ‖α − θ‖. Therefore, the adversary

obtains the optimal solution as stated in Theorem 1.

Theorem 1. Given graph G and a turn angle trace α with
normally distributed noise, the optimal route tracking solution
is θ∗ = argmaxθ∈G ‖α− θ‖.

Based on Theorem 1, our search algorithm (Algorithm 1)

aims at finding θ that minimizes ‖α−θ‖. The main idea is to

maintain a list of potential vertices (i.e., road segments) from

which we develop the possible routes. The algorithm takes as

input the graph G = (V,E) and a sequence (α1, . . . , αN).
The search consists of N rounds corresponding to a trace of

N intersections. While the algorithm is similar to trellis codes

decoding techniques in which paths are built up, maintained

or eliminated according to a metric, our search is improved by

filtering routes based on specific selection rules and keeping

only top candidate routes after a number of iterations.

The algorithm starts by considering all vertices of the graph

as potential starting points (initialization U0 ← V). In each

Input: G = (V,E), α1, . . . , αN

Output: UN

1 Initialization: U0 ← V ; U1 ← ∅; . . . UN ← ∅;
2 for k = 1 to N do
3 for u ∈ Uk−1 do
4 for v ∈ V such that (u, v) ∈ E do
5 if filter(u, v, αk) passed then
6 v.score← u.score+ scoring(u, v, αk);
7 v.prev ← u;

8 Uk ← Uk ∪ {v};
9 end

10 end
11 end
12 Uk ← pick top(Uk);
13 end

Algorithm 1: Search Algorithm

k-th round, we build a new list Uk of potential vertices as

follows. For each vertex u ∈ Uk−1, we explore all its outgoing

edges (u, v). During this traversal (line 4 – 10), filtering is

applied (line 5) to eliminate such vertices/segments whose

corresponding map data deviates too much from the actual

sensor data. In this basic algorithm, the filter checks if the

turn angle (i.e., the edge weight) between the current vertex

u and the candidate vertex v is within a specific range of the

actual turn αk. Specifically, an edge (u, v) passes the filter,

only if |θ(u, v)−αk| ≤ γ, in which case v is put into Uk as a

candidate for the next search iteration (line 8). The threshold

γ depends on the quality of sensor data and is evaluated

in Section V. We note that when a vertex v does not satisfy

the filtering rules, it simply means v is not used as a starting

point in the next iteration, but v may appear again if other

starting points connecting to v satisfy the conditions.

At the same time when filtering is passed, the edge (u, v)
is also evaluated for the likelihood to match the actual trace

by the scoring function (line 6). The score for each k-th turn

is computed by

scoring(u, v, αk) = d(αk, θ(u, v)) = |αk − θ(u, v)|, (1)

where we compute the angle distance based on L1 norm

instead of L2 norm for two main reasons: (a) computing L1

norm requires less overhead; (b) in practice, we observe that

L1-based matching generally outperforms L2-based, because

gyroscope errors are usually small (cf. Section V-A), allowing

L1-based estimation to better overcome sparse large errors,

while L2 norm tends to amplify such errors. The score of every

route is initialized to 0 (line 1) and evolves to
∑N

k=1 d(θ(u,
v), αk) after N iterations. When updating the score, we

additionally store the previous vertex (v.prev) of the candidate

in order to trace back the full route (without storing the whole

route) at the end of the search. We also note that as the list

of candidates is developed through each iteration with non-

negative metric, finding the actual route with loops is possible,

because loops simply increase the score and are treated as

regular routes (i.e., the search will terminate).

402402

Since routes with lower score have higher matching proba-

bility P (α|θ), we only keep the top K candidates at the end

of every iteration by calling pick top function (line 12). It is

noted that depending on attack configuration, pick top may

shorten the list of candidates only after some specific round.

At the end of the search, based on UN and previous vertex

information stored for each candidate, the outcome P = {R̂1,
. . . , R̂K} is appropriately produced and returned.

Effect of Filtering and Top Selection: While scoring

gradually distinguishes routes from each other, filtering can

immediately eliminate a route at early stage, which will not

be recovered later. There is a trade-off when determining the

filtering thresholds. A tight rule can reduce the search time

but may result in pruning more good routes due to early

errors, whereas loose criteria reduces false elimination rate but

increases running time and memory consumption. Similarly,

selecting top candidates after some specific iterations can de-

crease the search time yet potentially removes good candidates

that are bad at early stages. We leave the rigorous analysis of

such parameters as future work. Instead, based on simulations

and real driving experiments, we select appropriate parameters

with respect to both attack performance and computation

constraints such as memory and timing requirements. Using

such parameters, we can verify that filtering and top candidates

selection can actually improve the attack efficiency.

B. Advanced Algorithm & Scoring Metrics

While Algorithm 1 illustrates the main idea of our search

technique, it essentially represents a baseline attack, because

it relies only on the sequence of observed turn angles as the

single input source to the algorithm. We now incorporate, into

the basic search algorithm, the curvature of the undertaken

route and the travel time between turns.

Curve Similarity: We define the curvature of the route

as a sequence of angles between intersections. Consider the

victim’s travel between the k-th and (k + 1)-th intersections

and let Tkδ (δ is the sampling period, and Tk = 1, 2, . . .)
be the victim’s travel time for that distance. The curvature

is then expressed by Ck = (αk,1, . . . , αk,Tk
), where αk,i are

instantaneous directions at sampling time iδ on the k-th curve.

In order to match the sampled curvature with a candidate

curve, we assume that the vehicle movement along the curve is

at constant speed. On one hand, this simplifies the estimation

and greatly decreases the computation burden for each route.

Since on the other hand, no available data can provide suffi-

cient accuracy of the instantaneous vehicular velocity, finding

the best curve fit is challenging. However, our evaluation

shows that curve matching with constant speed assumption

considerably improves the attack performance. Specifically,

we compute the angle sequence on each candidate curve as

follows. For a candidate segment corresponding to a vertex

u (which is either straight or curvy), we divide it into Tk

equal-length sub-segments and consider each sub-segment as

a straight line, then we find the orientations of sub-segments

based on their geographic coordinates. Therewith, we obtain

ϑu = ϑ(u) = (ϑu,1, . . . , ϑu,Tk
) as the curvature of u, where

ϑu,i is the orientation of the i-th sub-segment.

Our goal is to maximize the probability P (ϑu|Ck) of

matching a candidate curve ϑu given the victim’s curve Ck

observed by the adversary. As discussed previously in Sec-

tion IV-A, due to the assumption of victim route equiproba-

bility, we instead search for such ϑu that maximizes

P (Ck|ϑu) = P (n = Ck − ϑu)

=
(
2πσ2

)−Tk
2 exp

(
−‖Ck − ϑu‖2

2σ2

)

where n← N (0, σ) is the normally distributed random vector

approximating the gyroscope noise. We determine the curve

similarity by

d(Ck,ϑu) =
1

Tk

Tk∑
i=1

|αk,i − ϑk,i|.

We note that the curve similarity, different from turn scoring

in Equation (1), is normalized to mitigate the effect of bias

scoring due to error accumulation on long curves (large Tk).

Travel Time Similarity: The tracking of the actual route

based on turn angles and curvature information so far does not

take into account the time scale of the victim’s travel on each

road segment. To incorporate this information in the attack, we

extract from Nokia’s HERE map [13] the maximum allowed

speed for every road in the geographic area G and compute

the minimum time required to travel from one intersection

to another along each road segment. Let tk ∈ D be the

actual time spent by the victim to travel from the k-th to the

(k + 1)-th intersection, and τ(u, v) be the minimum required

time (computed from speed limit) for traveling from the last

intersection to the current intersection (u, v) on the candidate

route. The metric for the travel time similarity is computed by

d(tk, τ(u, v)) = |tk − τ(u, v)|.
Final Scoring Function: By incorporating the likelihood

of the turn angles, the curvature, and the travel time along the

search route, our final scoring function becomes scoring(u, v,
αk, tk,Ck) and is computed as

ωAd(αk, θ(u, v)) + ωT d(tk, τ(u, v)) + ωCd(Ck,ϑu) (2)

where different weights ωA, ωT , ωC can be selected depen-

dently on the geographic area.

C. Filtering Rules

We extend the filtering rules in Algorithm 1 by exploiting

the magnetometer and the phone’s system time to quickly

exclude bad routes during the search.

1) Heading Check: At the time of each turn at an in-

tersection, we extract the heading of the vehicle from the

magnetometer sensor sample and check that the next segment’s

direction should be close to the heading direction after turning.

In practice, we observe that since the magnetometer may be

influenced by an external magnetic field, the heading derived

from the magnetometer is not always accurate.

403403

In order to exploit this information properly, we first verify

the magnetometer data to be reliable based on the magnitude of

the heading vector, which essentially depends3 on the specific

geographic area G. Specifically, the reliability is established

if Ml ≤ ‖mt‖ ≤ Mh, where mt ∈ D is the magnetometer

vector, and Ml,Mh are lower and upper bounds that depend

on G. Only after the reliability is assured, the orientation check

is performed. Specifically, with hk denoting the heading vector

(obtained after calibrating and rotating magnetometer vectors

mt, cf. Section IV-D) of the vehicle after turning at the k-

th intersection between u and v, and ϑv,1 be the orientation

of the first sub-segment of segment v. The heading check is

satisfied, if |hk −ϑv,1| ≤ φm, where φm is the magnetometer

error threshold. Note that in case of unreliable magnetometer

data, the check is not performed but v is not eliminated.
2) Travel Time Check: Due to the maximum speed limit on

each road, the travel time cannot be arbitrarily small. Our idea

for pruning impossible routes is as follows. Given the actual

travel time duration tk ∈ D between the k-th and (k + 1)-th
intersections, the maximum distance traveled by the vehicle is

Lk ≤ Lmax = βVmaxtk, where Vmax is the regulated speed

limit, and β ≥ 1 is the over-speeding ratio that can be reached

by the vehicle. Consequently, during the search we only keep

such candidate routes that are not longer than Lmax. To reduce

the computation overhead, we instead precompute tv = Lv

Vmax

for each candidate road segment v of length Lv , and our

timing rule becomes tk ≥ tv
β , i.e., Lv ≤ Lmax. We emphasize

that in realistic scenarios, since the vehicle may drive at any

speed below the limit or may get stuck in the traffic for an

unpredictable duration, the travel distance can be arbitrarily

small. Therefore, no non-zero lower bound on segment length

is established.

D. Sensor Data Processing
A big challenge in implementing this attack is extracting

accurate route information from noisy sensor data. Along with

the external factors discussed before (e.g., potholes, bumps,

road slopes, magnetic field and driver behavior), some internal

misconfiguration may also introduce errors in the data.
Axis Misalignment: Sensor x, y and z axes may not have

perfect orthogonal alignment. This causes a bias in the sensor

values which can be defined as the deviation from the expected

x, y and z values when the device is at rest. The bias can

typically be removed by subtracting them from the reported

x, y and z sensor values.
Thermal Noise: The sensor’s x, y and z axes values may

also vary with the device/sensor temperature. Some Operating

Systems compensate for this noise by pre-filtering the data,

but at the cost of reduced accuracy.
Given these errors, we decompose the sensor data process-

ing into error compensation and trace extraction tasks.
1) Error Compensation: Error compensation consists of a

calibration phase followed by rotation of the data. Note that

while our discussion focuses on gyroscope data, similar tasks

can be performed for accelerometer.

3Heading vector’s magnitude is higher for Temperate than Tropical cities.

(a) Experimental route (b) Recorded gyroscope data

(c) Calibrated gyroscope data (d) Rotated gyroscope data

Fig. 4: Error compensation steps for gyroscope data.

Calibration: The gyroscope sensor bias and vehicle vibra-

tion result in angle drift, i.e., the values change linearly4 in

time even at idle. An example of experimental route is shown

in Figure 4a. As gyroscope data is reported as a sequence

of angle change between sampling periods, we integrate them

over time to obtain the relative (with respect to the initial

recording) angle sequence in x, y, z axes depicted in Figure 4b,

which shows a large positive drift in the y axis. To compensate

for the drift, we assume the vehicle is at parked state in

the calibration phase (we note that this is only required

once for subsequent attacks). The drift vector is estimated

as Δα = E[Δα/Δt], the expected angle change rate. The

calibration is then performed by subtracting Δα from the angle

sequence (Figure 4c). Note that complete removal of drift is a

difficult task and would require more computation-expensive

mechanisms, e.g., Sensor Fusion algorithms.

Rotation: Recall that a victim can place her smartphone

in any orientation in the vehicle. To simplify the attack com-

putation, we rotate the sensor data to a reference coordinate

system, where the x axis points from left to right of the driver,

the y axis aligns with the heading direction of the vehicle, and

the z axis points upward perpendicularly to the Earth surface.

After rotation, the x and y values are then used to measure

pitch and roll respectively, while turn angle information is

indicated in the z axis (Figure 4d).

2) Trace Extraction: In the reference coordinate system, we

use the z values of gyroscope data to extract the victim’s turn

angles at intersections and curves between them, while accel-

eration vectors are used to improve the search performance by

detecting vehicle’s idle states.

Turn and Curve Detection: Based on z values of gyro-

scope vectors after rotation, left and right turns are distin-

guished according to positive and negative angle changes. Our

idea for identifying intersections is illustrated in Figure 4d,

where left turns are identified by an increasing slope within a

short period of time and right turns correspond to decreasing

slope. More precisely, let zi be the gyroscope value on the z

4Our observation suggests linear model well approximate the angle drift.

404404

TABLE I: Default parameters used in evaluation.

Parameter Value
Scoring weights ωA = 2.5, ωT = 0.1, ωC = 2.5

Turn/curve detection threshold φg1 = 1◦, φg2 = 10◦, φg3 = 30◦

Turn angle filtering threshold γ = 60◦

Heading filtering threshold φm = 90◦

Travel time filtering threshold β = 1.5
Noise distribution μ = 0.003, σ = 7.54
Sampling period δ = 100ms

Top candidates limit K = 5000, for iterations k ≥ 2

axis at time iδ in the rotated angle trace. An intersection is

found if it satisfies all the following conditions:

1) Start turn: The angle change between time iδ and (i+
1)δ is higher than a threshold φg1, i.e., |zi+1−zi| > φg1,

which captures the event that the vehicle is starting to

make a turn or enter a curve.

2) Large deviation: The largest deviation on a slope under

investigation must be greater than a threshold φg2, i.e.,

maxi∈slope |zi+1 − zi| > φg2. This distinguishes the real

turn from a slight curve on the route.

3) Large turn angle: If the difference between the first

and the last angle on a slope is greater than φg3, i.e.,

|zi+n−zi| > φg3, the slope is recognized as a real turn,

and the value αk = zi+n − zi is the turn angle for the

corresponding k-th intersection.

A curve is recognized if the first condition is met, but the other

two conditions do not hold at the same time. In other cases,

the road segment under investigation is considered a straight

segment. The parameters φg1, φg2, and φg3 are configured

accordingly to the geographic area.

Idle State Detection: Despite the limited accuracy of the

accelerometer to reveal the precise instantaneous vehicular

speed, we can still exploit it to differentiate an idle state (e.g.,

vehicle stops at traffic lights) from movement on a straight

road. In both cases, the gyroscope does not expose large

enough variations for detecting angle changes with adequate

accuracy. However, with accelerometer, the former case results

in nearly zero magnitudes of acceleration vectors, while the

values are considerably larger with higher fluctuations for the

latter case. With idle states detected, we can better estimate

the actual non-idle time and improve the attack performance.

V. EVALUATION

In this section, we evaluate the attack efficiency based on

simulations and real driving experiments. First, we justify the

accuracy of gyroscope sensor and present our selection criteria

for cities chosen for evaluation. Subsequently, we present our

simulation and real driving results with a discussion on attack

performance and the implications on user privacy. The attack

parameters with default values are given in Table I.

A. Accuracy of Gyroscope

While the accelerometer and magnetometer accuracy de-

pend heavily on the environment rendering them more suitable

for filtering improbable routes with relaxed rules, the gyro-

scope sensor is less impacted by the environment. Therefore,

it is important to first justify the accuracy of gyroscope data.

(a) HTC One M7 (b) LG Nexus 5

(c) LG Nexus 5X (d) Samsung S6

Fig. 5: Gyroscope noise distributions measured in real driving exper-
iments for different smartphones.

For this justification, we measure the accuracy based on real

driving experiments as follows. We use 4 smartphones of

different brands and models, and take total 70 driving routes in

both Boston and Waltham (Massachusetts, USA). To assess the

gyroscope errors, we extract the truth turn angles θi of taken

routes from OpenStreetMap, then for each θi, we obtain the

gyroscope angle αi (after sensor data processing phase) and

compute turn errors ei = αi − θi. As observed from Figure 5

showing histogram of ei, the error distribution for each phone

closely follows a normal distribution with more than 95%
of errors below 10◦. Table II indicates almost equal noise

standard deviation of each device. For all routes combined

for 4 phones, the mean μ and standard deviation σ values are

0.003 and 7.54, respectively.

TABLE II: List of phones tested for accuracy along with the number
of turns, and the gyroscope noise’s mean and standard deviation.

Phone No. Turns N Mean μ Std. dev. σ
HTC One M7 482 1.73◦ 7.07◦

LG Nexus 5 618 -0.77◦ 7.89◦

LG Nexus 5X 170 -1.12◦ 6.40◦

Samsung S6 238 -0.57◦ 7.51◦

B. Selection of Cities

To assess the attack’s impact on diverse cities of the world,

we identified 11 cities for simulations based on their size,

density and road structure. Table III summarizes their attack-

related characteristics such as the graph size (number of

vertices |V | and edges |E|) and distribution of turn angles

at intersections (mean μturn and standard deviation σturn).

Big cities such as Atlanta, Boston, London, Madrid, Paris,

and Rome create larger graphs than the rest according to our

construction method. While Manhattan is quite populated, it

has the smallest graph in our set, because our graph only

contains maximal-length segments. Nevertheless Manhattan is

dominated by long east-west and north-south roads, many of

which are parallel. Despite having similar graph size as Man-

hattan, Concord and Waltham are attributed to a larger standard

405405

TABLE III: List of cities used for evaluation with their characteristics:
graph size (|V |, |E|) and turn angle distribution (μturn, σturn).

City |V| |E| Mean μturn Std Dev σturn
Atlanta, GA, USA 10529 25557 88.73◦ 17.58◦

Berlin, Germany 4708 19752 88.21◦ 19.87◦

Boston, MA, USA 8010 22149 89.69◦ 20.52◦

Concord, MA, USA 3049 6467 88.13◦ 29.58◦

London, UK 9468 21968 87.83◦ 20.38◦

Madrid, Spain 10012 30144 86.41◦ 25.13◦

Manhattan, NY, USA 1033 3699 89.23◦ 17.81◦

Paris, France 6744 11204 86.35◦ 26.26◦

Rome, Italy 9408 20577 85.98◦ 26.15◦

Sunnyvale, CA, USA 5592 12302 88.59◦ 16.00◦

Waltham, MA, USA 3366 9437 88.93◦ 20.53◦

(a) Sunnyvale (b) Boston

(c) Rome (d) Concord

Fig. 6: Distribution of intersection turn angles in selected cities.

deviation σturn. The top cities of grid-like road structure are

Atlanta, Sunnyvale, and Manhattan with low values of σturn.

Boston, Berlin, and London have more spread out turns, but

not as much as Paris and Rome. Figure 6 shows the turn

angle distributions for some selected cities, where we observe

that the majority of intersections in Sunnyvale are 90◦ while

Boston, Rome, and Concord have more unique turns.

C. Creation of Simulated Routes

For each selected city, we test the feasibility of the attack

by running the system on simulated routes. In case of Boston

and Waltham, we also collect 70 driving experiments used for

experimental evaluation described in Section V-E. Both sets

of simulated and real routes are converted to the same format

for compatibility, in which the user’s route is represented as a

sequence U = ((h1, α1, t1,C1), . . . , (hN , αN , tN ,CN)). The

heading vector hi represents the direction of vehicle right

before entering an intersection with turn angle αi, whereas

ti and Ci are the time duration and curvature of the travel

between the previous intersection and the next one.

Route Generation: Based on the constructed graph G = (V,
E) for a selected city G, each simulated route is created by first

randomly choosing a route length N ← {4, . . . , 11}, then the

route is formed by adding N random connected segments that

satisfy (a) turn angle constraint: 30◦ ≤ |αi| ≤ 150◦, (b) travel

time constraint: ti ≥ 10 s. Note that as these segments are

maximal-length, the system may choose connections that are

large distances apart for larger segments. In our simulations,

the generated routes are between ≈ 0.5 km and ≈ 48.15 km
with an average length of ≈ 7.15 km.

Noise Adding: To simulate realistic scenarios, we add

various levels of noise to the route’s characteristics. The mag-

netometer noise nm is added to hi by a uniform distribution
such that −90◦ ≤ nm ≤ 90◦. To mimic the travel time in

practice, we add uniform distributed noise nt to ti such that
ti
β ≤ ti + nt ≤ ti

β′ , where β is the over-speeding ratio, and β′

is the lower bound speed ratio which attempts to model the

slow driver or traffic jam. While β is fixed to 1.5, β′ is varied

depending on simulation scenarios defined shortly below. The

gyroscope noise is finally added to both turn angles αi and

curvature Ci according to a normal distribution N (μ, σ) with

μ = 0.003 (obtained from Section V-A). We note that the

noise margin with simulated magnetometer and travel time is

relatively higher than in reality; for instance, the magnetometer

error is found to be only around 60◦ for our devices, while in

practice drivers rarely exceed 15% (i.e., β = 1.15) of speed

limit (e.g., 75mph over the limit 65mph in Boston).

Simulation Scenarios: To understand the attack perfor-

mance under various environments, our simulation evaluation

is performed and reported for different scenarios, in which

several noise parameters are adjusted from the above settings.

• Ideal: noise-free scenario (upper bound performance).

• Worst: σ = 10, β′ = 0.1. In this scenario, we consider

heavy traffic and old smartphones with less accuracy.

• Typical: σ = 8, β′ = 0.5. In this scenario, we consider

moderate traffic and current smartphones. Note that, σ =
8 is slightly higher than the experimental value σ = 7.54,

implying a slightly harder attack.

• Future: σ = 6, β′ = 0.5. In this scenario, we consider

moderate traffic and future smartphones equipped with

more accurate sensors as MEMs technology progresses.

D. Simulation Results

We evaluate the potential of the attack for all cities in Ta-

ble III using the 4 different scenarios specified in Section V-C.

In total, there are 44 test cases and for each, we generate a new

set of 2000 simulated routes. We use the same scoring weights

ωA = 2.5, ωT = 0.1, ωC = 2.5 for every city. These weights

are selected as they are relatively good for all cities, and our

main simulation goal is to evaluate the attack using the same

configuration for different city profiles. Other parameters used

for the attack are specified in Table I. The attack outcome

is evaluated according to both individual rank and cluster
rank. For the latter metric, we choose the proximity threshold

Δ = 500meters, which typically covers a few house blocks

or apartment buildings.

Figure 7 shows the Cumulative Distribution Function (CDF)
of individual and cluster ranks (i.e., P idv and P clt) produced by

the attack. For the Typical scenario, we see that the system is

able to find more than 50% (resp. 60%) of exact routes (resp.

clusters of routes) in the top 10 results for all cities except for

Atlanta, Berlin, and Manhattan. Even in the Worst scenario,

more than 35% (resp. 40%) of exact routes (resp. clusters)

406406

(a) Sunnyvale (σ = 16.00) (b) Atlanta (σ = 17.58) (c) Manhattan (σ = 17.81)

(d) Berlin (σ = 19.87) (e) London (σ = 20.38) (f) Boston (σ = 20.52)

(g) Waltham (σ = 20.53) (h) Madrid (σ = 25.13) (i) Rome (σ = 26.15)

(j) Paris (σ = 26.26) (k) Concord (σ = 29.58)

Fig. 7: Attack performance on simulated routes for various cities. Graphs are arranged in ascending order of turn distribution σ.

are discovered in the top 10 results. In case of cluster rank,

we examine the results in more details (excluded in this paper

due to lack of space) and find that each cluster comprises

a relatively small set of routes (approximately 1-20 routes

per cluster). This explains why cluster ranks are only slightly

better than individual ranks.

Among cities having low σturn (less unique turns) in the

top row of Figure 7, Manhattan results in lower ranking

than Atlanta and Sunnyvale even when it has a higher σturn

and smaller graph size (lower |V | and |E|). This can be

attributed to two factors: (1) Manhattan has mostly straight

roads reducing the curvature impact on scoring, and (2) most

roads are parallel rendering heading filters ineffective. Atlanta

and Sunnyvale, on the other hand, have more curvy roads

that do not run in parallel. Atlanta has lower ranking than

Sunnyvale, because it has a lot more segments and connections

that significantly increase the search space and inversely affect

the results. Berlin, like others in this group, has more 90◦ turns

and straighter roads, and its reported results are in between

Atlanta’s and Sunnyvale’s.

In the middle and bottom rows of Figure 7, since the

cities have high value of σturn, the turn angle impact on

scoring is high (especially very high for Rome, Paris and

Concord, cf. Table III). Attack for Concord is most successful,

because the high number of curvy roads and unique turns

helps diversify the route’s score, and the small graph size

significantly reduces the search space. Paris creates somewhat

more difficulty for the adversary than both Rome and London

even though it has a higher σturn and lower |V | and |E|.
This can be explained by the fact that many internal roads in

Paris are straight, reducing the curvature impact on scoring.

Madrid, like Paris, also has a lot of straight roads, but due to

high |V |, it results in slightly lower rankings than Paris. The

attack seems easy in Rome and London thanks to the high

variations in curvature in both cities. Boston has lower ranking

than London even when it is similar in turn distributions and

graph size. This is mainly because Boston has several grid-

like residential areas such as South Boston and Back Bay that

create much confusions for routes passing through such areas.

Waltham’s road structure is very similar to Boston’s except

that it is much smaller, which becomes the main factor for

increasing the attack performance.

407407

(a) Traveled routes in Boston (b) Traveled routes in Waltham

(c) Turns Distribution (d) Distance Distribution

Fig. 8: Real experiments statistics: (a-b): GPS traces of all traveled
routes; (c-d): Turn and Distance distributions for all routes combined.

E. Real Driving Experimental Results

To measure the attack efficiency in actuality, we carried out

real driving experiments in Boston and Waltham. For each city,

over 70 different routes were taken. These routes emulated

mostly realistic scenarios, e.g., traveling between residential

areas, shopping stores, office, or city centers. There were 4
drivers participating in the experiments, who were instructed

to (1) place the phone anywhere but in fixed position during

collection, (2) idle at least 10 seconds before driving, and

(3) drive within the city limit and take a minimum of 3
turns on their routes. These requirements allow us to model

typical realistic scenarios, in which the victim, after putting

her phone in a stable position (cup holder, mount, etc.), may

take a few seconds before starting to drive to check for her

safety, such as tying her seatbelt, and adjusting the seat,

mirrors, or lights. In this initial study, we did not consider

situations when the vehicle starts by reversing. We emphasize

that given the limited resources, we aimed to obtain a data-

set as diverse as possible, therefore we did not request the

drivers to repeat the same routes. Still, all routes consist of

total ≈ 980 km, including driving in both peak and off-peak

hours. Scoring weights (ωA, ωT , ωC) were fine-tuned based

on road characteristics: (2.5, 0.1, 3) for Boston, and (2.25,
0.1, 2.5) for Waltham. Both cities (especially Boston) have

more unique curves than turns attributing to the higher ωC .

Waltham has typically less traffic than Boston, therefore, we

assign lower ωA and ωC to increase impact of ωT .

Figure 8 shows the distribution of turns made on all routes,

total traveled distances, and GPS traces. Note that GPS is used

only for ground truth comparison. The shortest route taken was

≈ 0.75 km, the longest≈ 7.25 km. Additionally, 4 more routes

were taken to consider scenarios of driving in a circle, taking

many turns (≥ 20), and traveling longer distances (≥ 20 km).

These routes were also used to test the system’s stability.

Figure 9 shows the attack in terms of both individual and

cluster ranks. The reported results are a worst-case scenario

(a) Boston (b) Waltham

Fig. 9: Attack performance on real driving experiments.

with no a priori information on the user’s routes. We see that

roughly 50% of routes in Waltham and roughly 30% of routes

in Boston are in the top 5 individual ranks. When top 1 is

considered (i.e., exact route), the success probability reduces to

38% for Waltham, and 13% for Boston, respectively. The gap

between individual and cluster ranks is about 10%, which is

almost similar to simulations. The number of routes per cluster

is around 2-3 for most top ranked clusters. The performance

for both cities lies between the simulation’s Typical and

Worst scenarios. However, the results for Boston are closer

to the Worst scenario, while Waltham’s are much like the

Typical. The main reason for this difference is the traffic in

Boston that caused more variations in estimating non-idle time

than Waltham. The small gap between real and simulation

results shows that our simulation framework may serve as an

effective model for studying the attack in a larger scale where

experiments are limited.

F. Feasibility of the Attack

The colluding server was setup inside a Linux Virtual

Machine (VM) on a Dell PowerEdge R710 server. The VM

has 2x4 cores with 16 threads running at 2.93GHz, with

32GB of RAM. The attack is written in Python and run using

PyPy, a fast Python JIT compiler. We measure the feasibility

of attack in terms of execution time for processing data and

searching routes. The search time specifically depends on the

route length and graph size.

Data Processing: The longest experimental route (approx-

imately 45 minutes) in our set requires ≈ 1.4 s to process the

sensor data and produce a trace of heading, turns, curves, and

timestamps, while an average route takes 0.1− 0.2s.

Route Search: For the largest city in our set, Atlanta,

the search for each route takes about 2.2 s. For Concord, the

smallest one, each route takes about 0.4 s. We use 15 threads

to parallelize the search on multiple routes, and 1 remaining

thread for control and management. The simulation of 88000
routes takes ≈ 21 hours to complete (≈ 0.85 s per route).

While not a formal benchmark, it still implies that the attack

is practical (e.g., less than 4 seconds for a long route in

Atlanta). With adequate resources, an adversary can handle

millions of routes fairly quickly.

G. Impact of Algorithm Parameters and Assumptions

In this subsection, we study the attack performance under

various conditions such as when calibration is not performed,

408408

Fig. 10: Impact of parameters and calibration on Waltham experi-
ments.

or the algorithm parameters are not carefully selected. We use

the real driving experiments from Waltham in this investigation

and re-perform evaluation changing one parameter at a time

to better understand the impact of individual parameters.

For comparison, the performance achieved with parameters

optimized in Section V-E is referred to as the Optimized test

case (cf. Table IV and Figure 10).

TABLE IV: Test cases for impact of parameters and calibration.

Test case Parameter settings
Optimized As in Section V-E

TurnW As Optimized, except ωT = 0, ωC = 0
TimeW As Optimized, except ωA = 0, ωC = 0
CurveW As Optimized, except ωA = 0, ωT = 0

HeadingTh As Optimized, except φm = 30◦

TimeTh As Optimized, except β = 1.0
TurnTh As Optimized, except γ = 20◦

Uncalibrated Optimized without calibration

Scoring Weights: To justify the impact of each scoring

weight, we ignore the other weights by setting them to zero

in the scoring function, cf. Equation (2). Figure 10 shows

that curvature is the most useful factor for success probability,

while travel time only slightly increases the performance. This

is not only applicable to Waltham, but also to cities that have

numerous roads with unique curvature. The travel time varies

more due to external factors such as traffic or unknown speed,

making it less impactful. Hence, weights must be selected

based on the target area to maximize the attack success.

Filtering Thresholds: Filtering allows quick elimination of

bad routes, however, it can also falsely remove good routes. To

see the performance impact from over-filtering, we reduce the

thresholds for turn, heading, and time as specified in Table IV.

We observe several interesting facts from Figure 10. First,

tighter heading and turn thresholds only slightly decrease

performance, which implies that the sensors have small noise

margin. Therefore, stricter rules can be applied to speed up the

search if execution time is of high priority. On the other hand,

stricter travel time threshold results in considerably lower

performance, which reveals that over-speeding is a common

practice in real driving.

Calibration: Recall that for the real driving experiments,

drivers were instructed to stay idle for at least 10 s before

driving. While this allows for easy calibration, an alternative

calibration method can be used, in which we first detect idle

time (based on accelerometer) and then compute the gyroscope

drift during that state. This enables calibration whenever

the vehicle is idle (e.g., stopping at traffic lights) and the

parking assumption can be relaxed. In Figure 10, however, we

show that even without calibration, the performance does not

decrease significantly. In fact, the individual ranks drop only

by 10%− 15% in comparison with Optimized which implies

calibration is an optional rather than a required operation.

Route Equiprobability: We emphasize that the reported

results in this work are based on the worst-case assumption of

no a priori information of the victim’s travel history. Knowing

the starting or ending point would improve the accuracy. On

the other hand, such travel history information can be built

up over time to improve the attack. We plan to study such

extensions in future work.

Fixed Position: Our assumption of fixed phone position

is realistic in various scenarios (e.g., many states in the USA

prohibit hand-held use). However, if users interact with their

phones, we describe an idea (we did not implement it) that can

help increase possibility of distinguishing between a real turn

and a change in phone’s orientation due to user interaction.

Our idea is based on the observation that human interaction

(e.g., touching, holding in hand) induces high variations in

sensor data in all 3 dimensions for a short duration. Note that

if the variations are low, the attack is barely affected and there

is no need for detection. When such events are detected, we

simply ignore the sensor data, and later, re-perform rotation

to reflect the phone’s new position. In practice, however, more

complex algorithms would be required to deal with noise and

unknown human behaviors, which can be studied in the future.

Detection of Vehicle Start: In this work, we assume that it

is feasible to determine when a user enters their vehicle. This

can be done a posteriori with the app continuously recording

(and storing a window of few minutes) and using techniques

similar to Android step detection [14] to detect when the user

stops walking and steps into the vehicle.

Reversing: In this work, we assume only forward motion of

drivers. While reversing can be detected using the accelerom-

eter, a more complex problem may arise when turning is

performed at the same time as reversing (e.g., making a U-turn

or pulling out of a parallel parking spot). This increases the

search space, and our algorithm would have to be extended to

roll back to previous states along all candidate routes.

Known City: Knowledge about the victim’s city can be

obtained in several ways. For instance, the app can detect

the city based on IP address when the victim is connected

to Wi-Fi or cellular networks. Additionally, an adversary with

access to the victim’s social network can find the victim’s city,

frequently visited places, and even route patterns. A powerful

adversary can also run the attack on multiple geographic areas

in parallel. These techniques can be combined together to

devise an effective attack.

VI. COUNTERMEASURES

Access to motion sensors is granted without permissions or

any notifications to the user as they are still underestimated as

a source of privacy leakage. Several detection and protection

409409

mechanisms can be used to mitigate this attack, for example,

when installing an app, permissions to the sensors must be

explicitly requested by the app. Also, like location, a notifi-

cation (with app name) should be displayed to the user when

sensors are accessed. To deal with attacks that also require

access to sensors for other activity, more complex mechanisms

are required such as closely monitoring the Internet traffic and

energy consumption, or generating adequate artificial noise in

the data before providing it to the app. While the above make

the attack more difficult, effective protection mechanisms

are beyond the scope of this work and considered an open

problem. The mechanisms discussed should be implemented in

the OS to ensure prevention globally, however, they can also be

implemented using dynamic instrumentation tools like ddi [15]

or recently, using app sandboxing tools like Boxify [16].

VII. RELATED WORK

Smartphone privacy attacks have recently attracted sig-

nificant interest. They typically fall into one of the three

categories. Some attacks use cellular signals, GPS, Wi-Fi,

Bluetooth, NFC, Wi-Fi Direct and other radio communications

mechanisms (henceforth, we will refer to them as wireless

location support systems or WLSS). Sensor centric attacks

use native smartphone sensors such as the gyroscope, ac-

celerometer and magnetometer as data sources with no WLSS

involvement. The hybrid cases are where the victim makes

available, albeit to a limited community and on a limited

basis, her location. These attacks use WLSS and sensor data

integration. Fawaz et al. [1] reported that 85% of surveyed

users expressed concern about conveying location information.

Some countermeasures emerged in the form of location privacy

protection mechanisms or LPPMs. These services obfuscate

location information by modifying precision or performing

location transformation. As they attempt to deflect WLSS

centric threats, LPPMs remain ineffective in mitigating our

threat. As of this publication and to our knowledge, no service

exists to address our proposed threat.

A. WLSS Based Attacks

WLSS based attacks typically require either apps installed

on a smartphone with appropriate permissions or significant

presence within the network infrastructure. We do not address

the former as the user consciously forfeited some degree of

position anonymity. The infrastructure attack involves taking

over some of the infrastructure components or injecting signa-

ture probes and are subject to detection by conventional means

(i.e. IDS or IPS solutions). WLSS attacks provide accuracies

near 90% when attempting path identification.

In Qian et al. [17], the authors attempt targeted cellular DoS

attacks. Of relevance is identifying the specific smartphone

location as a precursor to the attack. The attack seeks to

gain IP identification using techniques like active probes

and fingerprints. By measuring promotion delay and Round

Trip Time (RTT), cellphone localization is achieved with

granularity to the Location Area Code (LAC)/Radio Network

Controller (RNC) range. Its effectiveness is limited due to

measurement tuning needs and RNC sharing observed among

smaller cities. This expands the geographical area cross section

from which to identify the user. As with WLSS attacks,

introducing network probes may enable detection.

Kune et al. [18] describe location determination via leakage

from lower level Global System for Mobile Communications

(GSM) broadcasts, in particular, a victim’s temporary iden-

tifier. For this attack to work, the attacker must initiate a

Paging Control Channel (PCCH) paging request targeting the

victim and passively listen for broadcast PCCH messages.

Although relatively simple, it places the attacker as an active

network participant which risks detection. It also requires a

priori knowledge of the victim’s telephone number. Position

resolution was observed to within 1 km2.

Bindschaedler et al. [19] use a group of 802.11 access ports

to eavesdrop on proximate target smartphones in order to

evaluate mixing zone effectiveness. Data collection includes

device time, location, device identifier and content. Although

victims may attempt to hide via a mix-zone network where

MAC addresses are synchronously changing (assuming suffi-

cient group membership), tracking can be achieved. This attack

requires collusion of multiple APs and Wi-Fi or equivalent

communications mechanisms. This may be impractical to set

up exclusive of the most sophisticated attackers.

B. Hybrid Attacks

There are a number of works [20–26] that combine WLSS

data with motion/inertial sensors to infer user location, mode

of transit, orientation and behavior. Of those surveyed, we find

best case accuracies near 80%. Although positional accuracy

benefits offered by these mechanisms are interesting, these

attacks generally require obtaining a ’fix’ via WLSS function-

ality prior to leveraging sensor data. This exposes the attacker

to WLSS discovery mechanisms.

Zhang et al. [27] developed the SensTrack system which

identifies turning points using a smartphone’s accelerometer

to determine speed, distance, and orientation. Additionally,

they use sensors with adaptive Wi-Fi and GPS switching to

address location contexts where GPS is less effective (i.e.

indoor locations). Their system achieved prediction errors of

nominally 3.128 meters versus 5 for good GPS signal strength.

This approach assumes some location predetermination using

GPS for initial reference position. Furthermore, the short

distances within a building do not offer the challenges one

realizes in the spatial-temporal context of driving a vehicle.

C. Sensor Only Attacks

The following attacks are most representative of our ap-

proach as they rely entirely on zero-permission sensor sources.

Han et al. [28] suggested a method of location inference

using the accelerometer and magnetometer. Leveraging a prob-

abilistic dead reckoning method called Probabilistic Inertial

Navigation (ProbIN), they mapped probability of displacement

to probability of motion. Training data associates sensor data

with map truth. Resolution is observed approaching 200 me-

ters, the length of a typical city block. Their small sample

410410

size limited the experimental path length range to between

1 km and 9.7 km. Although claiming better accuracy than

achievable using Wi-Fi or cellular techniques, their approach

greatly depends on acquiring training data which may present a

resource challenge (i.e. time and labor) in large scale scenarios.

In Nawaz et al. [29], the authors demonstrate that a smart-

phone’s accelerometer and gyroscope can be used to identify

‘significant’ journeys independent of phone orientation and

traffic. This is because gyroscope signatures obtained from

multiple journeys of the same route exhibit similar patterns

that differ only in amplitude and time compression or ex-

pansion. They apply Dynamic Time Warping to calculate

the distance between various journeys and use a k-medoids

clustering approach to cluster similar routes together. A route

is labeled as significant if it is traveled more times than a

predefined threshold. They test this technique for two cities

using 43 real driving experiments and showed that the routes

were accurately clustered in 8 clusters defined for the two

cities. Grid road networks are addressed in a different manner.

Here, they depend on turn count as a uniqueness metric and

suggest that their technique is effective for reasonably long

routes because such routes exhibit a unique sequence of turns

even when individual turns are similar.

In Zhou et al. [30], the authors describe a novel technique

that analyzes verbal directions provided by a GPS based

navigation app. Using a second zero-permissions app, they

measure speaker on/off times controlled by the navigation app.

The attacker can infer which course a driver took due to the

duration of these audible driving instructions. Permission for

speaker usage is not required as of this writing. Associating

talk time to an off-board synthesized instruction driving set

yields a 30% false positive rate over a small sample size (7

out of 10 correct). This approach requires the use of a voice

enabled navigation system. Furthermore, it assumes that the

navigation app is trustworthy.

Michalevsky et al. [10] introduce a power based scheme

that distinguishes a user route from a set of possible routes

in real-time. Furthermore, they attempt to infer new routes by

constructing projected route power profiles that are aggregated

from shorter, known segment power profiles, all using 3G

networks. With a ’modest’ number of applications running,

they achieve accurate results in 2/3 of the scenarios while the

results degrade to an accuracy of 1/5 with additional active

applications such as Facebook and Skype. In addition, they are

limited by the need to provide data to the learning machine

which itself limits scalability in obtaining training data.

D. Behavior Analysis

This research area involves determining user modality from

smartphone sensors. For example, ergonomic/activity identi-

fication is discussed in [31]. The authors use learned data

from walking, jogging, climbing stairs, sitting, and standing to

ascertain user activity. They identified and collected data for 43
features from a 29 person sample set. Raw data was evaluated

using the WEKA data mining tool suite to develop decision

tree, logistic and regression and multilayer neural network

models. Excluding motions associated with moving up and

down stairs, the method can identify activity nearly 90% of

the time. Although of a single modality and reasonably well

suited for human activity identification, is has limited ability

to ascertain paths with much less start and stop points.

Lee and Mase [32] studied the feasibility of detecting user

behavior such as sitting, standing, walking on level ground,

going up or down a stairway as well as determining the number

of steps taken to infer a person’s location in an indoor envi-

ronment. They developed a system using the accelerometer

and gyroscope sensors to measure the forward and upward

acceleration and angle of the user’s legs. In addition, the

compass is used to determine the direction of movement. The

phone is mounted on different body locations and a dead-

reckoning method is applied to estimate the user’s physical

location. The authors show that their system efficiently calcu-

lated the number of steps and location for eight individuals,

using a predefined database of selected locations in an office

environment. They claim a high recognition ratio of 91.8% for

ten unique location transitions.

E. Other Works of Interest

Two additional works are noteworthy. They include a pattern

matching/machine vision approach to path traversal tracking

and a framework to measure the effectiveness of the attack.

In terms of matching shapes, patterns and contours, there are

numerous examples in the literature. We identify one here for

this discussion. Kupeev et al. [33] decomposed shape contours

in terms of segments for purposes of determining similarity

of contours. They were able to analyze 24 shape distances

with 32 unique quantized rotation angles against one another.

The error rate appeared to be less than 10%. Of importance

is the limited use of this technique observed in the location

privacy space. This approach’s weaknesses are similar to other

contour matching solutions in that the subtle differences in

road contours may not be distinguishable between similar yet

geographically separate roads.

In Shokri et al. [34], the authors suggest a framework for

scoring location privacy protection mechanisms. Here, they

define a triad taxonomy of accuracy, certainty and correctness

where the later represents the metric that determines the

privacy of user. To our knowledge, this is the first significant

attempt at establishing an evaluation framework. Although not

utilized in this work, it provides a foundation for evaluating

in the future, our results when compared with truth.

VIII. CONCLUSION

We modeled the problem of tracking vehicular users as the

problem of identifying the most likely route on a graph derived

from the city’s roads public database. The performance results

of our algorithms, both simulations and experimental, indicate

that in most cities a significant number of users are vulnerable

to tracking by seemingly innocuous applications that do not

request permissions to any sensitive information. We believe

that this calls for rigorous methods and tools to mitigate side-

channel attacks making use of mobile phones sensors.

411411

REFERENCES

[1] K. Fawaz and K. G. Shin, “Location privacy protection

for smartphone users,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. ACM, 2014, pp. 239–250.

[2] Senate Judiciary Committee, “S.2171 - Location Privacy

Protection Act of 2014,” https://www.congress.gov/bill/

113th-congress/senate-bill/2171, 2014.

[3] Euclid Analytics, “Privacy statement,” http:

//euclidanalytics.com/privacy/statement/, accessed:

May, 2015.

[4] S. Datoo, “This recycling bin is following you,” http:

//qz.com/112873/this-recycling-bin-is-following-you/,

Quartz, August 2013, accessed: May, 2015.

[5] Z. M. Seward and S. Datoo, “City of london halts

recycling bins tracking phones of passers-by,”

http://qz.com/114174/city-of-london-halts-recycling-

bins-tracking-phones-of-passers-by/, Quartz, August

2013, accessed: May, 2015.

[6] L. Hutchinson, “iOS 8 to stymie trackers and

marketers with mac address randomization,”

http://arstechnica.com/apple/2014/06/ios8-to-

stymie-trackers-and-marketers-with-mac-address-

randomization/, June 2014, accessed: May, 2015.

[7] A. Cassola, W. Robertson, E. Kirda, and G. Noubir,

“A practical, targeted, and stealthy attack against wpa

enterprise authentication,” in Proceedings of the 20th An-
nual Network & Distributed System Security Symposium,
NDSS’13, 2013.

[8] FTC, “Android flashlight app developer settles FTC

charges it deceived consumers,” https://www.ftc.gov/

news-events/press-releases/2013/12/android-flashlight-

app-developer-settles-ftc-charges-it-deceived, December

2013, accessed: November, 2015.

[9] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke

language-agnostic keylogging using stereo-microphones

and domain specific machine learning,” in Proceedings
of the 2014 ACM Conference on Security and Privacy in
Wireless & Mobile Networks, 2014.

[10] Y. Michalevsky, A. Schulman, G. A. Veerapandian,

D. Boneh, and G. Nakibly, “Powerspy: Location tracking

using mobile device power analysis,” in Proceedings of
the 24th USENIX Conference on Security Symposium.

Washington, D.C.: USENIX Association, Aug. 2015, pp.

785–800.

[11] OpenStreetMap, “OpenStreetMap Project,”

https://www.openstreetmap.org/.

[12] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.,

2004.

[13] Nokia, “HERE Map,” https://maps.here.com/.

[14] Android SDK, “Step detection,” http://developer.android.

com/reference/android/hardware/Sensor.html#TYPE

STEP DETECTOR.

[15] Collin R. Mulliner, “Dynamic Dalvik

Instrumentation Framework for Android,”

https://github.com/crmulliner/ddi.

[16] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von

Styp-Rekowsky, “Boxify: Full-fledged app sandboxing

for stock android,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX

Association, 2015, pp. 691–706.

[17] Z. Qian, Z. Wang, Q. Xu, Z. M. Mao, M. Zhang, and

Y.-M. Wang, “You can run, but you can’t hide: Exposing

network location for targeted DoS attacks in cellular

networks,” in Proceedings of the 19th Annual Network
& Distributed System Security Symposium, Feb. 2012.

[18] D. F. Kune, J. Koelndorfer, N. Hopper, and Y. Kim,

“Location leaks over the GSM air interface,” in Proceed-
ings of the 19th Annual Network & Distributed System
Security Symposium, Feb. 2012.

[19] L. Bindschaedler, M. Jadliwala, I. Bilogrevic, I. Aad,

P. Ginzboorg, V. Niemi, and J.-P. Hubaux, “Track me if

you can: On the effectiveness of context-based identifier

changes in deployed mobile networks.” in NDSS. The

Internet Society, 2012.

[20] N. Marmasse and C. Schmandt, “A user-centered location

model,” Personal and Ubiquitous Computing, vol. 6, no.

5-6, pp. 318–321, 2002.

[21] D. Patterson, L. Liao, D. Fox, and H. Kautz, “Inferring

high-level behavior from low-level sensors,” in UbiComp
2003: Ubiquitous Computing, ser. Lecture Notes in Com-

puter Science, A. Dey, A. Schmidt, and J. McCarthy, Eds.

Springer Berlin Heidelberg, 2003, vol. 2864, pp. 73–89.

[22] D. Ashbrook and T. Starner, “Using GPS to learn sig-

nificant locations and predict movement across multiple

users,” Personal Ubiquitous Comput., vol. 7, no. 5, pp.

275–286, Oct. 2003.

[23] D. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic,

K. Olson, S. Wang, D. Fox, and H. Kautz, “Opportunity

knocks: A system to provide cognitive assistance with

transportation services,” in UbiComp 2004: Ubiquitous
Computing, ser. Lecture Notes in Computer Science,

N. Davies, E. Mynatt, and I. Siio, Eds. Springer Berlin

Heidelberg, 2004, vol. 3205, pp. 433–450.

[24] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello,

“Extracting places from traces of locations,” in Proceed-
ings of the 2nd ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots,

ser. WMASH ’04. ACM, 2004, pp. 110–118.

[25] K. Laasonen, M. Raento, and H. Toivonen, “Adaptive

on-device location recognition,” in Pervasive Computing,

ser. Lecture Notes in Computer Science, A. Ferscha and

F. Mattern, Eds. Springer Berlin Heidelberg, 2004, vol.

3001, pp. 287–304.

[26] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Learning

and inferring transportation routines,” Artificial Intelli-
gence, vol. 171, no. 5-6, pp. 311–331, Apr. 2007.

[27] L. Zhang, J. Liu, H. Jiang, and Y. Guan, “Senstrack:

Energy-efficient location tracking with smartphone sen-

sors,” Sensors Journal, IEEE, vol. 13, no. 10, pp. 3775–

3784, Oct 2013.

412412

[28] J. Han, E. Owusu, L. Nguyen, A. Perrig, and J. Zhang,

“Accomplice: Location inference using accelerometers

on smartphones,” in Communication Systems and Net-
works (COMSNETS), 2012 Fourth International Confer-
ence on, Jan 2012, pp. 1–9.

[29] S. Nawaz and C. Mascolo, “Mining users’ significant

driving routes with low-power sensors,” in Proceedings
of the 12th ACM Conference on Embedded Network
Sensor Systems, ser. SenSys ’14. ACM, 2014, pp. 236–

250.

[30] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,

X. Wang, C. A. Gunter, and K. Nahrstedt, “Identity,

location, disease and more: Inferring your secrets from

android public resources,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communica-
tions Security, ser. CCS ’13. ACM, 2013, pp. 1017–

1028.

[31] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity

recognition using cell phone accelerometers,” SIGKDD
Explor. Newsl., vol. 12, no. 2, pp. 74–82, Mar. 2011.

[32] S.-W. Lee and K. Mase, “Activity and location recog-

nition using wearable sensors,” Pervasive Computing,
IEEE, vol. 1, no. 3, pp. 24–32, July 2002.

[33] K. Kupeev and H. Wolfson, “On shape similarity,” in Pat-
tern Recognition, 1994. Vol. 1 - Conference A: Computer
Vision amp; Image Processing., Proceedings of the 12th
IAPR International Conference on, vol. 1, Oct 1994, pp.

227–231 vol.1.

[34] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and

J.-P. Hubaux, “Quantifying location privacy,” in Security
and Privacy (SP), 2011 IEEE Symposium on, May 2011,

pp. 247–262.

413413

