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Abstract

Mobile smartphones are equipped with an increasingly large number of precise and so-

phisticated sensors. These sensors vastly enhance the user’s GUI experience, but they

also raise the risk of directly or indirectly leaking their private information. Mobile op-

erating systems (e.g., Android and iOS) mitigate such leakages by implementing app-

level sandboxing and resource permissions. These protections may suffice for traditional

privacy attacks using traditional hardware, however, they fail when attacks exploit side-

channels that bypass the protections. One example of such side-channels is the motion

sensors (Accelerometer, Gyroscope and Magnetometer) embedded in most modern smart-

phones. In this dissertation, we demonstrate two attacks that exploit the motion sensors

on smartphones to infer accurate private information about the users such as their typed

passwords and significant locations. To protect users from the above attacks and other

location / sensor side-channel attacks, we propose the design and implementation of a

mitigation framework called MATRIX for the Android ecosystem.

In the first part, we investigated the feasibility of keystroke inference when user

taps on a soft keyboard of a smartphone are captured by the Gyroscope and stereoscopic

Microphones sensors co-resident on the smartphone. Our experiments demonstrate that

by building machine learning models specific to the keyboard, using a combination of

multiple sensors and adequate filtering, it is possible to infer keystrokes with an accuracy

of 90-94% on the standard Android QWERTY and Numeric keyboards.

In the second part, we investigated the feasibility of inferring a vehicular user’s lo-

cations and traveled routes with high accuracy using information captured by the Ac-

celerometer, Gyroscope and Magnetometer sensors co-resident on the smartphone. We mod-

eled location inference as a maximum likelihood route identification problem on a graph

generated from OpenStreetMap. Our simulations from 11 cities worldwide demonstrate

that it is possible to output a ranked list of 10 routes containing the traveled route with
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probability higher than 50%. We validate the simulations with over 980 km of real driving

experiments from Boston and Waltham, MA that produce similar results.

In the third part, we discuss the design and implementation of the MATRIX frame-

work built to protect users from location and sensor side-channel attacks. The MA-

TRIX system gives users control and visibility over what and when location and sensors

information is accessible to mobile apps. It implements a PrivoScope service that audits

location and sensor accesses by all apps on the device and generates real-time notifica-

tions and graphs for visualizing these accesses; and a Synthetic Location service to enable

users to provide obfuscated or synthetic location trajectories or sensor traces to apps they

find useful, but do not trust with their private information. We also implemented a Lo-

cation Provider component that generates realistic privacy-preserving synthetic identities

and trajectories for users.
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Chapter 1

Introduction

Mobile smartphones are presently the primary means for users globally to communicate,

access information and even interact with the physical environment. They are used for

various day-to-day and business activities where several of those activities deal with sen-

sitive information like bank credentials, credit card numbers, email passwords, health

records, and location information. These devices are equipped with an increasingly large

number of precise and sophisticated sensors. These sensors vastly improve the quality

of the user’s interaction with the environment. To illustrate an example, the addition

of high accuracy GPS chips and Magnetometers have enabled the development of navi-

gation apps like Google Maps and Waze easing user commutes. Similarly, the addition

of Accelerometers and Gyroscopes have enabled the development of high quality user-

interactive games for the mobile platform.

1.1 Privacy Leakage from Smartphone Sensors

Smartphone sensors also pose significant threats for privacy breaches as they directly or

indirectly leak private information about their users. The leakage of location information

from the GPS sensor, for instance, has been a fast growing privacy concern. The commer-

cial GPS hardware available in modern smartphones is capable of triangulating a user’s

position within an accuracy of 3 meters. This GPS data can be fused with Wi-Fi and cel-

lular data to provide high accuracy location data even indoors, where GPS is ineffective.

This leakage enables more sophisticated threats such as tracking users, identity discovery,

and identification of home and work locations. It also increases the risk of the discovery

of behaviors, habits, preferences and one’s social network, which can potentially lead to

effective physical and targeted social engineering. To illustrate an example, the ‘Brightest

Flashlight’ app on the Google Play Store was recently sued by the Federal Trade Commis-
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sion (FTC) for deceiving customers and sharing their location information without their

knowledge [1]. This app with 4.7 stars rating and over one million users is just one exam-

ple of seemingly innocuous applications that deceive users. Despite the protections put in

place by mobile operating systems, applications can access sensitive information in ways

difficult for users to control and fully grasp. For example, when granted a permission to

access location information, an Android app can track users even after they close the app

and even after the phone is restarted.

The leakage of location information from the GPS sensor can be detected by careful

users who monitor the permissions of the apps they install and use on their device. For

example, a careful user can choose to not install a Flashlight app that requests location

permissions. A harder problem is to protect privacy leakage from side channel attacks

exploiting zero-permission sensors such as the Accelerometers, Gyroscopes and Magne-

tometers. Access to these sensors on current mobile operating systems (e.g., Android and

iOS) does not require any permissions from the users, nor does the system show any

notifications to the users1. This expanding attack surface is an attractive target for those

seeking to stealthily exploit privacy information, especially as users become increasingly

aware of location tracking systems [2, 3] and attempt to minimize their exposure by dis-

abling, limiting usage of, or removing tracking apps.

1.2 High-Level Overview

In this dissertation, we demonstrate two attacks that exploit the motion sensors on smart-

phones to infer accurate private information about the users such as their typed pass-

words and significant locations. In the first attack, we investigated the feasibility of

keystroke inference when user taps on a soft keyboard of a smartphone are captured

by the Gyroscope and stereoscopic Microphones sensors co-resident on the smartphone. Our

experiments demonstrate that by building machine learning models specific to the key-

board, using a combination of multiple sensors and adequate filtering, it is possible to

infer keystrokes with an accuracy of 90-94% on the standard Android QWERTY and Nu-

1As of now (Android 8.1) access to Accelerometer, Gyroscope, and Magnetometer is automatically granted

without user warnings nor explicit permission request in the manifest file.
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meric keyboards. In the second attack, we investigated the feasibility of inferring a vehic-

ular user’s locations and traveled routes with high accuracy using information captured

by the Accelerometer, Gyroscope and Magnetometer sensors co-resident on the smartphone.

We modeled location inference as a maximum likelihood route identification problem on

a graph generated from OpenStreetMap [4]. Our simulations from 11 cities worldwide

demonstrate that it is possible to output a ranked list of 10 routes containing the traveled

route with probability higher than 50%. We validate the simulations with over 980 km of

real driving experiments from Boston and Waltham, MA that produce similar results.

To protect users from the above attacks and other sensor side-channel / location

attacks, we designed and implemented a mitigation framework called MATRIX for the

Android ecosystem. The MATRIX system gives users control and visibility over what

and when location and sensors information is accessible to mobile apps. It implements

two services: a PrivoScope service that audits location and sensor accesses by all apps on

the device and generates real-time notifications and graphs for visualizing these accesses;

and a Synthetic Location service to enable users to provide obfuscated or synthetic location

trajectories or sensor traces to apps they find useful, but do not trust with their private

information. We also implemented a Location Provider component that generates realis-

tic privacy-preserving synthetic trajectories by modeling user locations’ and their move-

ments as Finite State Machines (FSM) with probabilistic transitions connecting states, user

schedule as a randomized linear program, incorporating traffic information into routes

from historical traffic APIs such as Google Maps Directions API [5], and shaping them

using statistical information about speed and acceleration from users behavior.

1.3 Single-stroke Language-Agnostic Keylogging

1.3.1 Attack Opportunity

The Accelerometer and Gyroscope sensors embedded in most modern smartphones can

detect keystroke vibrations when a user types on a soft keyboard. The magnitude and

orientation of these vibrations vary depending on the tap location, however, they are

quite similar for the same location. These vibrations can be mapped to the standard
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(a) Recorded Accelerometer vibrations
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(b) Recorded Gyroscope vibrations
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Figure 1.1: An example of the Accelerometer and Gyroscope vibrations and Microphone

tap sounds for the sequence ‘HELLO’.

QWERTY and Number keyboard layout creating a potential keylogger that infers user

keystrokes based on the vibration patterns. Microphone arrays are also becoming increas-

ing commonplace in smartphones. These microphones are sensitive enough to record user

keystroke tap sounds on a soft keyboard. The amplitude of the audio signal captured by

different microphones and the time delay between signals reaching the microphones can

also be analyzed for creating a potential keylogger.

Figure 1.1 shows the vibrations recorded by the Accelerometer (Figure 1.1a) and Gy-
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(a) Raw keystroke (left) and filtered keystroke (right) for first keystroke ‘Q’
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(b) Raw keystroke (left) and filtered keystroke (right) for second keystroke ‘Q’

Figure 1.2: An example of two raw Gyroscope keystrokes and the corresponding filtered

keystrokes for the letter ‘Q’.

roscope (Figure 1.1b) and tap sounds recorded by the Microphones (Figure 1.1c) on a HTC

One smartphone for the sequence ‘HELLO’. Note that the amplitude of the keystroke vi-

brations and sounds are significantly higher than at rest between two keystrokes. Also,

note that Accelerometer and Gyroscope vibrations for two keystrokes ‘L’ are similar to

each other and significantly different from the keystroke ‘H’ and ‘E’. The keystrokes for

‘L’ and ‘O’ look similar as they are adjacent keys on the QWERTY keyboard. Figures 1.2

and 1.3 show the raw and corresponding filtered Gyroscope data for two keystrokes each

for the letters ‘Q’ and ‘V’, respectively. Note that the raw Gyroscope data is affected by

noise in all the cases, that can be removed by frequency filtering. The filtered data for

two keystrokes of the letter ‘Q’ are similar to each other. Similarly, the filtered data for

two keystrokes of the letter ‘V’ are similar to each other but very distinct from those for

the letter ‘Q’. This implies that the attack accuracy can substantially benefit from noise

reduction using frequency filtering techniques.
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(a) Raw keystroke (left) and filtered keystroke (right) for first keystroke ‘V’
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(b) Raw keystroke (left) and filtered keystroke (right) for second keystroke ‘V’

Figure 1.3: An example of two raw Gyroscope keystrokes and the corresponding filtered

keystrokes for the letter ‘V’.

1.3.2 Motivation

The topic of keystroke inference from smartphone sensors has been studied by numer-

ous research groups in recent years. All of these studies used larger keyboard sizes and

different device orientations to infer user keystrokes. Cai & Chen [6] attempted to infer

number keystrokes on a Number only keyboard in Landscape mode using the Orienta-

tion sensor. They collected three data-sets on a HTC Evo 4G smartphone and achieved

a successful inference accuracy of about 70% on all three data-sets. Xu, Bai & Zhu [7]

attempted to infer lock screen passwords and numbers entered during a phone call using

the Accelerometer and Orientation sensor. They collected data-sets of several tap events

from three students using two smartphones, HTC Aria and Google Nexus (One), and

achieved an accuracy of about 99% for one user on the Google Nexus (One) and about

70% - 85% for the other users. Aviv et al. [8] attempted to infer PIN and pattern pass-

words using the Accelerometer on four different smartphones; Nexus One, G2, Nexus S
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and Droid Incredible. They reached an accuracy of 43% and 73% for PIN and pattern

passwords respectively, within 5 attempts from a set of 50 PINs and 50 patterns in a con-

trolled setting. Owusu et al. [9] attempted to infer characters on a QWERTY keyboard

in Landscape mode using the Accelerometer. They collected several data-sets on a HTC

ADR 6300 smartphone from four participants and showed that, out of 99 6-character pass-

words, it was possible to successfully infer 6 character passwords in 5 trials. Miluzzo et

al. [10] attempted to infer characters on a QWERTY keyboard in Landscape mode and

icon locations in Portrait mode using the Accelerometer and Gyroscope. They collected

a data-set on the Google Nexus S, Samsung Galaxy Tab 10.1 and iPhone 4 and showed

that locations of icons can be inferred with 79% and 65% accuracy for the iPhone and

Google Nexus S respectively, and characters could be inferred with 65% accuracy. Other

sensor attack vectors include the camera to create a 3D model of the user’s environ-

ment to zoom in objects of interest [11], the microphone to steal private information (e.g.,

credit card numbers) from phone conversations, the Accelerometer to infer smartwatch

keystrokes [12], and the Accelerometer to steal text typed on a physical keyboard in close

proximity to the smartphone [13].

The above attacks focus on keyboards that represent larger key sizes than the stan-

dard Android QWERTY and Number keyboard. Our motivation for this work is to

demonstrate that by using a combination of acoustics and sensors and a multi-tier ap-

proach based on the areas of keyboards, one can achieve a high prediction accuracy even

on the standard Android QWERTY and Number keyboard. Another motivation is to

demonstrate the feasibility of character and number inference using the sounds gener-

ated by the keystrokes and recorded by a device’s stereoscopic microphones. To achieve

our motivation, we developed an algorithm and framework based on statistical methods

and machine learning that can predict keystrokes without repetition or multiple attempts.

Our framework is language agnostic as we do not use any lexical properties of languages,

however, we do assume that the adversary knows the keyboard layout. We demonstrate

the algorithm using data collected at an office and in a restaurant. A malicious appli-

cation and a weak permission model for Android sensors coupled with data modeling

techniques make our attack feasible and consequential. We also show that the audio data
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can be combined with the Gyroscope to further boost the inference accuracy.

1.3.3 Contributions

Our contributions can be summarized as follows:

• We demonstrate that by recording the keystroke vibrations from the Gyroscope sen-

sor and the tap sounds from the stereoscopic Microphones co-resident on a smart-

phone, it is possible to infer user typed keys with a reasonably high accuracy of

above 90%. We also show that this accuracy can be boosted by combining the Gyro-

scope data and the Audio data. We implemented a system that can process this raw

keystroke data, perform noise filtering, build training models and use these models

to make language agnostic keystroke predictions on unknown test data.

• We designed and implemented a specialized meta-algorithm that divides the key-

board into areas and trains models using the Gyroscope and the Audio data specific

to those areas. The algorithm combines character-specific and area-specific models

to make more accurate predictions. We show that by combining our algorithm with

meta-algorithms such as Bagging and Boosting [14], we were able to achieve higher

per algorithm accuracy than an elementary use of the machine learning algorithms

on unknown test data.

• We also demonstrate the feasibility of Trojan apps that periodically query the An-

droid operating system for the foreground activity and can covertly record the Gy-

roscope and Microphones when a sensitive activity (e.g., Bank app) is being used.

1.4 Inferring User Routes and Locations

1.4.1 Attack Opportunity

The Gyroscope, Accelerometer and Magnetometer sensors on a smartphone can provide

useful information about a user’s route. Gyroscopes report the rate of angular change

experienced by a smartphone in the x, y and z axes which can be used to estimate turn

and curvature information. Accelerometers report the accelerations experienced by the

smartphone in all axes which translates to the speed of the vehicle. Magnetometers report
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(c) Recorded Gyroscope data
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Figure 1.4: An experimental route and the recorded Accelerometer, Gyroscope and Mag-

netometer data.
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the position of the smartphone with respect to magnetic North and can be used to esti-

mate the direction of heading of the vehicle. The information from these sensors can be

combined to form a route’s attributes which is then potentially traceable on a public map

resource. This can become an effective attack vector for tracking the vehicular movements

of users which can, in turn, easily lead to inferring the home and workplace of the user.

Typically, Accelerometers and Magnetometers are very unreliable due to sensitivity to

environmental factors but can still be used to calculate idle times and heading directions.

Figure 1.4 shows an example experimental driving route (Figure 1.4a) and the recorded

Accelerometer (Figure 1.4b), Gyroscope (Figure 1.4c) and Magnetometer (Figure 1.4d)

values from the smartphone. Note that the Gyroscope sensor reports significant posi-

tive deviations for every left turn and negative deviations for every right turn, while the

Magnetometer reports significant heading changes with respect to magnetic North for

these turns. The Gyroscope deviations can be integrated over time to calculate the turn

angles and curvatures of this route. The smaller deviations recorded by the two sensors

can be attributed to both road curvature and sensor / environmental noise. Also note

that the Accelerometer sensor reports the vehicle’s accelerations at all moments of the

route. These accelerations also contain sensor / environmental noise caused from vehicle

vibrations, road slopes and irregularities. The large spikes on the z axis can typically be

attributed to the quality of the road (e.g., potholes).

1.4.2 Motivation

The topic of location privacy has been extensively studied since the early days of mobile

phones. Cellular communication systems, as early as GSM, attempted to protect users’

identity by using temporary identifiers (e.g., TMSI) that increased the difficulty of track-

ing users. The attack surface significantly expanded recently with the pervasiveness of

mobile and sensing devices, open mobile platforms (running untrusted code) and ubiq-

uitous connectivity. One such example of location tracking involves monitoring the MAC

address of probe packets periodically transmitted by Wi-Fi cards. This has been exploited

by marketing companies and location analytics firms. For example, companies such as

Euclid Analytics state on their website that they collect “the presence of the device, its sig-
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nal strength, its manufacturer, and a unique identifier known as its Media Access Control

(MAC) address” in shopping malls [15]. This information is used to analyze large spatio-

temporal user traffic patterns. Another example is the startup Renew, that installed a

large number of recycling bins in London with the capability to track users. This allowed

them to identify users and their specific route and walking speed [16, 17]. The practicality

of such attacks using the physical and link layer information, however, remains limited

to adversaries with a physical presence in the vicinity of the user or with access to the

ISP infrastructure. Also, these attacks can be defeated by MAC address randomization

schemes such as the one introduced by Apple in its iOS 8 release [18].

Attacks that exploit the open nature of mobile platforms are more concerning as they

can be remotely triggered (e.g., from distant countries beyond the jurisdiction of a victim’s

country’s courts of law), and require virtually no deployment of physical infrastructure.

One common example of a location tracking attack is a malicious app obtaining and exfil-

trating the user’s location by accessing the mobile device’s location services that typically

rely on GPS, Wi-Fi, or cellular signals. Such attacks can be detected because the app must

request permission to access the location services on the smartphone. The attack can also

be defeated by users who disable location access for the app. Recently, researchers have

demonstrated stealthier attack vectors that rely entirely on zero-permission resources. For

example, Michalevsky et al. [19] leveraged the power usage of the phone and matched

them with known location power profiles to infer location. This technique is unreliable

when installed apps (e.g., Facebook, Skype) on the phone drain power. Zhou et al. [20]

analyzed speaker on/off times controlled by a GPS based navigation app to infer which

course a driver took based on the duration of audible driving instructions. This technique

is unreliable in situations when a user is stuck in traffic and also relies entirely on the user

using a navigation app while driving. Han et al. [21] exploited the Accelerometer and

Magnetometer, and leveraged a probabilistic dead reckoning method called Probabilistic

Inertial Navigation (ProbIN) to map probability of displacement to probability of motion.

They trained models using an association of sensor data and map data and observed

a resolution approaching 200 meters for their test data. This attack is not scalable due

to the need for acquiring sensor data corresponding to map data to train the models.
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Nawaz et al. [22] demonstrated that an Accelerometer and Gyroscope can be used to

identify ‘significant’ journeys independent of phone orientation and traffic. They applied

Dynamic Time Warping (DTW) to calculate the distance between various journeys and

use a k-medoids clustering approach to cluster similar routes together. Their attack is not

scalable because it uses the DTW algorithm that requires significant computing power

and resources for multiple routes.

The above attacks are impractical for large scale location tracking as they rely on

some historical information to make location inferences. Our motivation for this work is

to demonstrate the potential of tracking user mobility solely using the zero-permission

Accelerometer, Gyroscope and Magnetometer sensors on the smartphone, without explic-

itly requesting permissions to access the location services, and without any prior knowl-

edge about the user. To achieve our motivation, we model a user trajectory as a route on a

graph G = (V, E), where the vertices represent road segments and the edges represent in-

tersections. We formulate the identification of a user trajectory as the problem of finding

the maximum likelihood route on G given the sensors’ samples. Using techniques similar

to trellis codes decoding, we developed an algorithm that identifies the most likely routes

by minimizing a route scoring metric. The knowledge of the user’s route can easily lead

to inferring the home and workplace of the user. Further information about the user’s

identity can be derived by inspecting the town’s public database.

1.4.3 Contributions

Our contributions can be summarized as follows:

• We demonstrate that location tracking using zero-permission smartphone sensors

can be modeled as a graph-theoretic problem. We also demonstrate that user tra-

jectory inference from sensor data can be formulated as a problem of finding the

maximum likelihood route on the graph. To efficiently search the sensor data on

the graph, we designed and implemented an efficient location/trajectory inference

algorithm that incorporates road segments curvature, travel time, turn angles, Mag-

netometer information, and speed limits to identify the most likely routes, by mini-

mizing a route scoring metric.
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• We designed and implemented a location tracking framework to assess the potential

of this attack in realistic environments. The framework consists of six building

blocks: (1) road graph construction from the OpenStreetMap map data, (2) filtering

and processing the sensor data, and generating a compact sequence of tags that

match the semantic of a graph route, (3) a maximum likelihood route identification

algorithm, (4) simulation tool for generating realistic routes, (5) a mobile app to

record sensor data from real experiments, and (6) trajectory inference for simulated

and real mobility traces.

• We performed extensive simulations for 11 cities around the world with varying

population, road densities and topologies (including Atlanta, Boston, London, Man-

hattan, Paris and Rome). The results demonstrate that for most cities, it is possible

to output a short list of 10 routes containing the traveled route with probability

higher than 50%.

• We collected real driving measurements in Boston and Waltham, Massachusetts,

spanning over 980 km. The results demonstrate a probability of 30% (resp. 60%)

of inferring a list of 10 routes containing the true route in Boston (resp. Waltham).

These results are similar to simulations which implies that our simulation frame-

work may serve as an effective model for studying the attack in a larger scale where

experiments are limited.

1.5 Mitigating Location Leakage with Dynamic App Sandboxing

1.5.1 Motivation

The protections against location tracking attacks mostly revolve around obfuscating the

users’ location. Several research works have proposed solutions that induce noise in

the location data such that a user’s actual location cannot be derived from the resultant

location [23, 24, 25, 26, 27]. Others have devised solutions that sends the real location with

several dummy locations or within a data-set, and uses the query response pertaining to

the real location while discarding the rest [28, 29, 30, 31, 32, 33]. Others have proposed

stripping off all identifying information about a user before sending the real location
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data in order to protect the user’s privacy [34, 35]. Unfortunately, these solutions still

leak some information about their users and can be combined with other data (e.g., census

data) to infer user identities and their locations [36, 37]. Moreover, incomplete or incorrect

implementations of these solutions make them vulnerable to location discovery attacks.

Other protections against location tracking attacks include but are not limited to, rec-

ommending new security frameworks [2, 38, 39, 40, 41, 42, 43, 44, 45], tainting sensitive

data [46, 47], dynamic analysis [48, 49], static code analysis [50, 51, 52, 53], permissions

analysis [54], application retrofitting [55, 56, 57], analyzing Internet traffic for sensitive

information [58, 59], and even cryptographic techniques [60]. Most of these works are

orthogonal to the system we propose as their motivation and techniques differ. Mobile

operating systems also try to prevent undesired location tracking by implementing per-

missions that all apps must request for accessing location data. These measures, however,

are not very effective in preventing location tracking as users are often careless about

granting such permissions.

An alternative protection against location tracking attacks is the generation of syn-

thetic location trajectories [61, 62] which are independent of users real locations [63, 64].

These trajectories guarantee location privacy because it is not possible to derive the user’s

location from them, however, they risk denial of service if an adversary detects that the

trajectories are fake. To be effective against such detection, these trajectories must emulate

real movements and routes by incorporating real user transitions, movement schedules,

driving behavior and traffic information.

1.5.2 Proposed Solution

The proposed MATRIX framework generates realistic privacy preserving synthetic mo-

bility trajectories that are difficult to distinguish from real ones by an adversary. These

synthetic trajectories can also be customized by the users according to their preferences.

MATRIX dynamically and seamlessly sandboxes apps installed on the smartphone to re-

ceive synthetic feeds if specified by the user. To this end, we model user locations’ and

their movements from one location to another through Finite State Machines (FSM) with

probabilistic transitions connecting states. The states can represent being at home, at
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work, or being at a restaurant. The transitions between states represent routes that are

generated from graphs constructed from real road networks. To make the synthetic trajec-

tory realistic to an adversary, we first generate a randomized schedule (path in the FSM)

that satisfies the preferences in terms of timing, and expected presence in specific states.

This problem of generating a schedule is formulated as a randomized linear program. We

further incorporate traffic information from historical traffic APIs such as Google Maps

Directions API, shape them using statistical information about speed and acceleration

from users behavior, and also add noise to the synthetic data to emulate real GPS data,

in addition to incorporating walk times and idle times. One key aspect of MATRIX is

that it is a framework that was implemented and evaluated on Android mobile devices,

and features other capabilities such as seamlessly injecting synthetic sensor feeds, and

a PrivoScope service to monitor and analyze apps patterns for accessing location and

sensor services. PrivoScope provides users with real-time notifications and a graphical

interface to show how apps access their location information, or even permissionless sen-

sors (e.g., the time of location access, the accuracy of the location data received, the rate a

sensor was sampled, and whether the app was in foreground or background). This helps

users make more privacy informed decisions about providing synthetic location data to

apps using the MATRIX framework or uninstalling/disabling apps they do not trust. Fi-

nally, MATRIX can be used by security researchers to identify which apps misuse / leak

private location and sensors information, by injecting synthetic honey-data and observing

if it gets used in contexts not authorized by the users.

1.5.3 Contributions

Our contributions can be summarized as follows:

• We designed and implemented MATRIX, a framework and system for automatically

generating realistic privacy preserving synthetic identities and mobility trajectories

for users. The system generates these profiles by modeling user movements and

incorporating historical traffic and user driving characteristics to the movements.

MATRIX is integrated within Android without modifications to the operating sys-

tem, and allows a user to specify which apps should seamlessly receive real feeds
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and when, and which apps should receive synthetic feeds.

• We show that the basic problem of generating random mobility patterns with spatio-

temporal constraints can be formulated as a randomized Linear Program. To mit-

igate detection, MATRIX derives random routes with historical traffic information

and incorporates users speed and acceleration characteristics.

• We designed and implemented a PrivoScope service within MATRIX that enables

users to monitor, visualize, audit, and analyze when and how an app accesses their

location data and phone sensors, and potentially any sensitive service. The Privo-

Scope service also exposes a permission-protected API that allows other security

apps installed on the smartphone to get real-time information about which apps

access private location and sensors information.

• We extensively evaluated MATRIX to validate performance, reliability, and verify

realism of synthetic trajectories. On a set of 1000 popular Android apps, we report

negligible impact in terms of performance and reliability. On a set of 10 popular

location-driven apps, we report that MATRIX is undetected while at least one app

could detect fake non-MATRIX mobility patterns. Our user study involving 100

users indicates that the synthetic trajectories generated are difficult to differentiate

from real traces visually, with more users confusing synthetic trajectories to be real.

Our machine learning classification indicates that even a well trained algorithm only

achieves 63% accuracy correctly guessing if a trajectory is synthetic (compared to

50% for an algorithm that uses a coin-flip).

1.6 Outline

The rest of the dissertation is structured as follows. In Chapter 2, we demonstrate the key-

logging attack that uses the Gyroscope and stereoscopic Microphones on a smartphone, com-

bined with filtering algorithms and domain-specific machine learning to infer keystrokes

typed by a user. In Chapter 3, we demonstrate the location tracking attack that uses the

Accelerometer, Gyroscope and Magnetometer on a smartphone, combined with filtering al-

gorithms and efficient search algorithms on real map data to infer user traveled vehicular
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routes and locations with high accuracy. In Chapter 4, we describe the design and im-

plementation of the MATRIX framework that addresses some current privacy protection

weaknesses in the Android ecosystem and provides users with a tool to analyze how

apps access their private information as well as the capability to change how certain un-

trusted apps receive location and sensor data. In Chapter 5, we discuss some of the future

directions of this work.
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Chapter 2

Single-Stroke Language-Agnostic Keylogging

This chapter describes our keystroke inference system that extracts recordings of keystrokes

from the Gyroscope and Microphone sensors, performs noise filtering on the data, con-

solidates the data, trains machine learning algorithms using known keystrokes, and uses

the models to infer unknown keystrokes. In Section 2.1, we describe a scenario of how a

stealthy attack can be launched against a sensitive Android app by a victim inadvertently

downloading a malicious app. In Section 2.2, we describe the high-level architecture of

our system and discuss why the Gyroscope and Microphone sensors leak information

about a user’s typing activity. In Section 2.3, we describe our automated keystroke infer-

ence system, data collection process and the meta-algorithm. In Section 2.4, we outline the

evaluation metrics and present the results of our evaluations. In Section 2.5, we describe

previous related work and we conclude in Section 2.6.

2.1 Attack Vector

The adversary follows the steps described below to perform a successful attack. They

develop and distribute a malicious app usually as a Trojan and trick the victim into

installing the app through techniques such as social engineering (e.g., a malicious app

disguised as a game or a note taking app). Previous works have found examples of such

apps with backdoors in the Android marketplace [65, 66]. This app performs two roles

after installation on the victim’s smartphone. First, it presents a custom keyboard to the

user to collect typing behavior for training models. Second, after training, it listens in the

background for keystrokes from sensitive Android applications.

To successfully perform the first role, the malicious app starts collecting user’s typ-

ing behavior by using a custom keyboard and recording the Gyroscope and stereo Mi-

crophones. The microphone requires permissions and the adversary needs to declare it
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in the manifest file. To avoid raising the victim’s suspicions, the adversary justifies such

permissions by providing functionality such as: note taking and voice recognition. The

Trojan uploads this collected training data to a remote server to build prediction models

specific to the victim. The adversary can also use generic training data and prediction

models as a trade-off for performance and stealth.

To accomplish the second role, the Trojan runs in the background and queries the op-

erating system for the current foreground app. To reduce battery drain, these queries run

at predefined conservative intervals. On inferring that the victim opened a sensitive app

(e.g., a bank app), the Trojan starts to actively collect the Gyroscope and Microphone data.

The current foreground app can be found by using the ActivityManager class in Android

SDK. The recorded data is filtered and keystrokes are extracted by the application and

evaluated using the training models to infer the user’s typed keystrokes.

2.2 High-Level Approach

In this section, we describe the architecture of our keystroke inference system and also

discuss why the Gyroscope and Microphone sensors leak information about a user’s

typing activity.

2.2.1 Keystroke Inference from Sensor Data

Gyroscopes: The magnitude and orientation of the Gyroscope vibrations for every user

keystroke varies depending on the keystroke location. It also varies from device to device

as the vibrations reported are dependent on the location of the Gyroscope hardware.

These vibrations can be mapped to a standard fixed keyboard layout. Figure 2.2 shows

the location of the Gyroscope (in red), the Android sensor coordinate system relative to

the Gyroscope hardware, and the location of keys ‘Q’, ‘V’ and ‘I’ on a standard QWERTY

keyboard on the HTC One. Figure 2.1 shows the vibrations experienced by two keystrokes

each of keys ‘Q’, ‘V’ and ‘I’. We see that key ‘Q’ shows significant vibration in the y axis

and key ‘V’ shows significant vibration in the x axis. As the key ‘I’ is close to both the

axes, it does not show considerable vibration in both the axes.

The Gyroscope sensor can be easily accessed using the Android SDK [67] APIs de-
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Figure 2.1: Similarity between two keystrokes each for letters ‘Q’, ‘V’ and ‘I’ on a standard

QWERTY keyboard on the HTC One.

fined by the SensorManager class. A potential issue with using the SDK API is that the

sampling rate is not fixed and may reduce when more processor intensive services are

running, thereby reducing the inference accuracy. A solution for obtaining high and con-

stant sampling rate on a Android smartphone even when other high priority services are

running on the system is to use the Android NDK [68] APIs defined in sensors.h.

Microphones: Microphone arrays are becoming commonplace in smartphones. These

microphones are sensitive enough to capture user keystroke sounds on the soft keyboard.
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Figure 2.2: Location of the Accelerometer, Gyroscope and Microphones on the HTC One;

Approximate location of keys ‘I’, ‘Q’ and ‘V’ on the standard QWERTY keyboard.

Most newer devices (e.g., Apple iPhones, Google Pixel, HTC One series) are equipped

with microphone arrays that support stereo recording. Many other smartphones are

equipped with dual membrane microphones that focus on capturing different sound lev-

els (one for sensitivity and the other for distance) on a single microphone. In both these

arrangements, the audio captured by the arrays are combined and processed to provide

high quality and distortion free audio recording to users with the capability to detect

feeble sounds. This yields two attack vectors for inferring keystrokes: one that uses the

amplitude of audio signals at the microphones and the other that uses the time delay

between signals reaching the two microphones. We use a combination of both the tech-

niques to build our inference models.

Figure 2.2 shows the location of the Microphones (in blue) on the HTC One. For a

user tap location L on a device with maximum sampling rate Ts, the sampling delay TL

between two microphones LM1 and LM2 can be calculated as:

TL =
Ts ∗ |d(L, LM1)− d(L, LM2)|

c

Here, d(L, LM1) is the distance between the tap location L and microphone LM1,

d(L, LM2) is the distance between the tap location L and microphone LM2, and c is the

speed of sound (340 m/s). The distance between the two microphones on the HTC One

is about 0.134 m. The current maximum supported sampling rate for Android is 48 KHz.
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Figure 2.3: Sound waves of keystrokes recorded by the HTC One for keys ‘Q’ and ‘V’.

Using these values with the formula, a difference of 18 samples is obtained for taps in

close proximity to the microphones. This means that taps for different keystrokes will

produce varying sample differences based on their distance from the two microphones.

This difference will increase when smartphones start supporting higher sampling rates

such as 192 KHz, currently supported by Blue-ray. Using a rate of 192 KHz with the

formula, a difference of 75 samples can be obtained for taps in close proximity to the

microphones. This will significantly improve the accuracy of inference and is indicative

of the impact of the sampling rate on the accuracy. To illustrate the time delay between

two microphones, we recorded multiple keystrokes for keys ‘Q’ and ‘V’ on a standard

QWERTY keyboard on the HTC One at the maximum sampling rate of 48 KHz. Figure 2.3

shows an example of a single tap for the two keys. We found that, for multiple taps, the

two keys always have a delay between 8− 10 and 15− 17, respectively.

The Microphones can be easily accessed using the Android SDK APIs defined by the

AudioRecord class. Even though they require permissions from the user, they can run in

the background after the user accepts the permission without showing a notification. We

believe that this capability can be used maliciously and should be addressed.

2.2.2 System Architecture

The architecture of our keystroke inference system is composed of the components shown

in Figure 2.4. The App component is the Trojan that secretly records the Gyroscope and

stereo Microphones when a user types in our app (training data) or another security sen-

sitive app (test data). The raw Gyroscope and Audio data is uploaded to a colluding
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Figure 2.4: Architecture of the keystroke inference system.

server that implements the remaining components of our system to process this data,

create training models and perform evaluations on the test data. This raw data contains

user keystroke vibrations and sounds mixed with pauses and noise from external fac-

tors such as unstable hands (Gyroscope noise) or background music (Audio noise), see

Figures 2.6 and 2.7. The Preprocessing component removes noise from this data using ad-

equate filtering, extracts the user keystrokes, and performs fitting to resample the data.

The techniques used for filtering and extracting Gyroscope and Audio data are different

and require two separate preprocessing components. The Gyroscope and Audio data may

be combined for inference which also means that the two sets of data need to be time syn-

chronized with each other. The Synchronization component synchronizes the Gyroscope

and Audio data and then the Consolidation component merges the extracted, filtered and
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synchronized keystroke data. In order to classify unknown test data, the consolidated

data is used to build training models. The Training component analyzes the data for er-

rors, randomizes them and uses several machine learning algorithms to build different

inference models for the entire character set as well as specific areas on the keyboard.

These models are then used by the Evaluation component to perform predictions on the

unknown test data. The component uses a meta-algorithm that makes a final keystroke

prediction. The meta-algorithm uses a multi-step approach based on the specific layout

of Android QWERTY and Number keyboards to optimize the inference accuracy of test

keystrokes. Once predictions have been made for all unknown test data, the Accuracy

Evaluation component compares the predictions with the expected keystroke to evaluate

our system’s performance.

2.3 System Design and Algorithms

In this section, we describe the hardware used and software developed for the keystroke

inference system, the data collection process, the Gyroscope and Microphone noise fil-

tering and keystroke extraction process, the training process and the meta-algorithm that

was designed and implemented to make predictions on unknown test data.

2.3.1 Data Collection

Hardware & Software: We chose to evaluate our system and meta-algorithm on two

popular Android smartphones: a Samsung S2 running Android Lollipop and a HTC

One running Android Marshmallow. We developed an Android app that ran in two

separate modes for training and test data, and collected the Accelerometer, Gyroscope

and Microphone data in both the modes. The sensor data recorded during the training

mode was used for generating the inference models while the data collected in the test

mode was used for making predictions from these models. The key difference is that

the app invokes a background service in case of the test mode, to simulate a Trojan like

behavior when a sensitive app is in the foreground. These two modes are completely

independent of each other and do not overlap. This app also implemented a custom

keyboard with the same layout and capabilities as the standard Android QWERTY and
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(a) App using the QWERTY keyboard (b) App using the Number keyboard

Figure 2.5: Screenshots of the data collection app using both the standard QWERTY and

Number keyboards.

Number keyboard. The key difference here is that our keyboard has the capability to

detect a key press and inject this key press event into the Gyroscope recording.

Figure 2.5 shows the screenshot of the app and the custom QWERTY and Number

keyboards. The user presses a ‘Start Recording’ button and types data on the keyboard.

The training data is a set of pangrams (a sentence that contains every letter of the alpha-

bet) for the QWERTY keyboard and a set of randomly generated credit card numbers for

the Number keyboard. After typing their data, the user presses the ‘Stop Recording’ but-

ton that is visible after recording is started. During this typing session, the Accelerometer,

Gyroscope and Microphones are activated in the background and their data are recorded

and uploaded to the colluding server. Note that the Accelerometer data was collected

only during the initial phase of the experiment. We did not use this sensor subsequently

because its accuracy was significantly lower than the Gyroscope. The Accelerometer was

extremely sensitive to noise even when the phone was placed stationery on a table.
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Sensor Data Collection: The data was collected by seven participants using both the

QWERTY and Number keyboards in Portrait mode. About 50 samples per character and

number were collected from each participant for training the models. These participants

were asked to type in their normal style. We observed their typing behavior and all of

them held the device in one hand and typed using the index finger or thumb of the other.

One participant held the device in their right hand and the remaining in their left hand.

The main difference in typing behavior was the intensity with which the finger touched

the screen and the angles at which these devices were held.

The data on the HTC One was collected in two environments. Five participants

typed in a typical office environment and two of them also typed in a restaurant. The

office environment consisted of a cubicle with three computers and a server running

all the time, with additional noise from keyboards, doors opening and closing, people

talking and faint noises of vehicles from a nearby street (noise level around 49-52 dB).

The restaurant was much more noisier with background music, several people talking

and noise from utensils (noise level around 72-76 dB).

The data collected for the Gyroscope sensor were the keystroke’s timestamp, the

Gyroscope accuracy reported by the operating system, the x, y and z axis orientation

values at the maximum sampling rate for the device. We chose to discard the z axis

values as vibrations caused by keystrokes mainly affected the x and y planes. The data

collected from the Microphones were the channel 1 and channel 2 amplitudes recorded

by the two microphones. A sampling rate of 48 KHz was chosen as it is the maximum

sampling rate supported by Android.

Synchronization: The Gyroscope and Audio data are synchronized by injecting a mi-

crophone start event in the Gyroscope data. The Trojan app starts the Gyroscope and

Microphones in separate threads, however, the microphones are started only once the

Gyroscope has completely initialized. This is done to ensure that the Gyroscope sensor

starts at the highest sampling rate and does not get reduced to a lower rate due to re-

source consumption by the microphones. Once the microphone starts recording, the app

injects a start event into the Gyroscope data. The two are then recorded simultaneously.
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(d) Interpolated Keystroke

Figure 2.6: The stages of preprocessing (filtration, extraction and interpolation) for a

Gyroscope recorded keystroke.

2.3.2 Gyroscope Data Preprocessing

Contrary to previous works [6, 7, 10] that extracted features from the Gyroscope record-

ings, we use the raw Gyroscope x and y axes orientations as the feature set for ma-

chine learning. The Android Sensor API returns the rate of change of orientation in

radians/second. This raw data is filtered, extracted, interpolated and converted to a ma-

chine learning compatible format. Figure 2.6 shows the stages of preprocessing for a

recorded Gyroscope keystroke, these stages are described below.

Filtration: The Gyroscope noise induced by typing occurs mainly because of the insta-

bility of the hand, and this noise is typically high frequency. When this noise is much

lower than the change in orientation, i.e., high signal-to-noise ratio, it can be removed

by simple frequency filtering techniques. We use a Fast Fourier Transform filter [69] to

detect frequencies corresponding to the keystroke. We keep these frequencies unchanged

and zero out the amplitudes at the other frequencies. Applying an Inverse Fast Fourier
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Transform on this data yields the filtered keystroke data. This technique works quite

well, however, advanced filtering schemes such as Kalman Filtering [70] may be applied

for noisier data. When the noise is almost the same as the change in orientation, i.e.,

low signal-to-noise ratio, filtering may remove significant keystroke specific information

reducing the inference accuracy. One option would be to use the unfiltered raw data but

we observed that the accuracy with filtered data is much better than raw data. This is

because the noise in the data changes the waveform and makes them dissimilar even for

the same keystroke location. Another option is to observe the Gyroscope vibrations and

record only when the noise is under a threshold.

Extraction: The Trojan app we developed implements a custom keyboard for keystroke

detection, with the same layout as the standard Android keyboard. This keyboard injects

an event into the Gyroscope data when a key is pressed. Our system uses this as the start

of the keystroke and a constant time difference to compute the end of the keystroke. For

test, the peak amplitude of the audio data was used to detect the start of the keystroke.

Interpolation: The extracted Gyroscope keystrokes are of different sizes because the An-

droid SDK does not allow setting a fixed sampling rate for sensors. As machine learning

requires fixed length features, this data has to be resampled before training and making

predictions. Another reason for resampling is to increase the size of the data such that

minute changes are identified by the algorithms. We use Cubic Spline Interpolation [71]

to interpolate the data without changing the waveform of vibrations. Our evaluation

results confirm that greater number of samples increase the inference accuracy.

2.3.3 Audio Data Preprocessing

Similar to Gyroscope preprocessing, we use the raw audio recorded by the two micro-

phones (channel 1 and channel 2) for machine learning instead of extracting features.

This raw audio data is filtered, extracted, interpolated and converted to a machine learn-

ing compatible format. Figure 2.7 shows the stages of preprocessing for a recorded Audio

keystroke, these stages are described below.

Filtration: The noise in audio signals can be due to several external environmental fac-
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Figure 2.7: The stages of preprocessing (filtration, extraction and interpolation) for a

Microphones recorded keystroke.

tors such as background music, human conversations, and moving traffic. This noise is

typically high frequency that can be reduced by using frequency filtering techniques. To

extract keystrokes from noisy Audio data, we implemented a bandpass filter to pass all

frequencies in the range of 1.5 KHz to 3.5 KHz and filter out the remaining frequencies.

This frequency range was obtained by analyzing recordings on the HTC One such that

background noise was removed while retaining the frequencies of the tap sound. Band-

pass filtering is an effective technique when the keystroke tap and the noise frequencies

don’t overlap. A low signal-to-noise ratio can have a significant impact on the inference

accuracy and even when filters exist to remove noise, the noise removal algorithm may

also change the original waveform and decrease inference accuracy. One option is to

observe the microphones data and record only when the noise is under a threshold.

Extraction & Interpolation: We use the peak amplitude of the audio data to detect the

start of the keystroke. The channel with the higher amplitude becomes the base channel

and about two wavelengths are extracted to ensure that the peak of the other channel is
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Table 2.1: Accuracy of elementary Machine Learning algorithms for some sample sets.

Keyboard Sensor DT NB NN 10-NN

HTC One

QWERTY Microphones 86% 85% 90% 80%

QWERTY Combined 85% 81% 89% 84%

Number Microphones 70% 81% 72% 66%

Number Combined 68% 73% 78% 71%

Samsung S2

QWERTY Gyroscope 60% 61% 58% 52%

Number Gyroscope 74% 74% 82% 72%

also extracted. The extracted keystroke is then interpolated so that minute changes in the

data are detected as features by the machine learning algorithms.

2.3.4 Training Process

The keystroke inference system uses the specifics of Android QWERTY and Number

keyboard, and a number of steps and algorithms to develop adequate training models.

Consolidation: The filtered, extracted and interpolated Gyroscope and Microphone

keystrokes are consolidated to represent the keystroke’s features for machine learning.

Given N samples, the Gyroscope keystroke is represented as the list of all x and y ori-

entations, i.e., [x0, x1, . . . , xN−2, xN−1, y0, y1, . . . , yN−2, yN−1]. Given N samples, the Audio

keystroke is also represented as the list of all channel 1 (c1) and channel 2 (c2) ampli-

tudes, i.e.,. [c10, c11, . . . , c1N−2, c1N−1, c20, c21, . . . , c2N−2, c2N−1]. Note that N is the same

for both Gyroscope and Audio keystrokes, to give both these sensors an equal weight

during inference. These two lists of features are simply merged together when Combined

(Gyroscope + Microphones) data is desired for devices supporting stereo-Microphones.

Elementary Algorithms: The problem of inferring unknown user keystrokes using

models generated from a training set of known user keystrokes is a supervised classi-

fication problem. Therefore, we eliminated algorithms that are used in unsupervised

classification (e.g., K-Means). The algorithms we tested were Decision Trees, Naive Bayes,

K-Nearest Neighbor (k-NN), Hidden Markov Models, Support Vector Machines, Random
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(a) Area division of the QWERTY keyboard (b) Area division of the Number keyboard

Figure 2.8: Screenshots of the area divisions used by the Meta-Algorithm for both the

QWERTY and Number keyboards.

Forest and Neural Networks. From the above list, Decision Trees (DT), Naive Bayes (NB),

1-Nearest Neighbor (NN) and 10-Nearest Neighbor (10-NN) performed better and yielded

higher inference accuracies. Neural Networks also performed well but was discarded

due to heavy resource consumption. In the context of our work, instance-based methods

such as k-NN yield high accuracy as they try to find the closest match between the new

prediction and the training data. Table 2.1 shows the performance of these elementary

algorithms for three QWERTY and three Number keyboard sample sets. The results show

that none of these algorithms perform well on all areas of the keyboard because of over-

lapping instances. This observation drove us to design and develop a Meta-Algorithm

which considers the areas of keyboard before making predictions.

Area Division: The keyboards were divided into areas such that all keys in a specific

area can be distinguished from each other using at least one set of features. The area

division for a standard QWERTY keyboard in portrait mode is shown in Figure 2.8a.

These areas are chosen such that the y orientation differs for all keys in the area, while

the x orientation remains similar. For instance, the negative y orientation will be higher

for ‘Q’, lesser for ‘W’ and the least for ‘E’ in the area ‘QWE’. The area division for a

standard Number keyboard in portrait mode is shown in Figure 2.8b and follows the same

reasoning except for keys ‘8’ and ‘0’, where the x orientation will differ while y orientation

remains similar. We tested other area divisions as well but this division worked better

than the other divisions.

The Training Process: The goal of the training process is to build inference models for
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the entire character set as well as areas defined for the keyboard. The following steps

describe this process.

I. Training models are built for predicting areas of the keyboard using a voting [72]

algorithm. This algorithm uses the predictions of all provided algorithms and their

confidence values to determine the area of the test keystroke. The voting model

uses ensembling techniques such as Bagging and Boosting to improve the accuracy

of the predictions. Ensembling builds multiple models from subsets of the training

data, analyzes the accuracy of the subsets to detect incorrectly classified instances,

and then uses these instances again with different weights or averaging to build

better predictive models.

II. Training models are built for the entire character set using all the algorithms. These

models also use ensembling. If the training data is Combined (Gyroscope + Micro-

phones), then training models for Microphone data are also built. This is because

the Gyroscope data for certain areas of the keyboard that are close to the actual

hardware may be weaker that other areas, and this weak Gyroscope data may re-

duce the overall accuracy of the model for that area.

III. Training models are built for all character sets within an area, for each area. These

models also use ensembling. If the training data is Combined (Gyroscope + Mi-

crophones), then training models for Microphone data are also built. Our system

evaluates these models using multi-fold cross validation. In cross validation, a sub-

set of the training data is provided to the model as test data and the accuracy of

the model is computed. By using multiple folds, a model can be tested multiple

times with different training data to ensure generalization and their accuracies are

averaged. The system uses this accuracy to determine which models are better for

an area and uses these models for predictions for that area.

IV. The two best algorithms for an area (determined in step III) are used to form a

voting algorithm. This voting algorithm is used to make the final prediction in case

all previous steps do not converge on a prediction. In case the algorithms predict

different keystrokes, their confidence values are used to make the final prediction.
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Figure 2.9: Flow diagram of the Area-Based Meta-Algorithm for keystroke inference.

2.3.5 Area-Based Meta-Algorithm

The keystroke inference accuracy achieved using elementary algorithms was not high (cf.

Table 2.1), and different algorithms predicted different keys for the same test keystroke.

To address this, we developed a Meta-Algorithm that utilizes our area specific models

at multiple levels to infer keystrokes with higher accuracy than traditional algorithms.

Our evaluation demonstrates that the Meta-Algorithm yields much higher accuracy. Fig-

ure 2.9 shows the flow diagram of our Meta-Algorithm and the levels of evaluations. The

following steps describe the process of keystroke inference using this algorithm.

I. The test keystroke is first evaluated using the area voting model. The goal of this

step is to identify the area of the keystroke and load the appropriate models for that
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area. The system evaluates the models built for every area and maintains a list of

the models that have yielded high accuracy with the training data for that area. For

instance, the area ‘IOP’ on the QWERTY keyboard of a HTC One may have weak

Gyroscope data (as it is close to the Gyroscope hardware) implying that the Com-

bined model will also be weak. The system detects this and loads the Microphone

only model for evaluation instead of the combined model.

II. The test keystroke is then evaluated using the loaded character set models. We use

these models before the area-specific models to ensure that any prediction errors

by the voting model (in step I) is detected and corrected. For example, the voting

model may have predicted the area of a test keystroke as ‘IOP’ when the actual key

pressed was ‘K’. This is possible because of the presence of weak or noisy Gyroscope

data in the voting model. The system will load the Microphone models when the

Gyroscope data is weak and can then evaluate the test keystroke correctly based on

the audio data. If more than 75% of the models predict the same key, then this key

is chosen as the final prediction and no additional steps are performed.

III. The test keystroke is then evaluated using the area-specific models. This step is only

executed when the character models (in step II) were not successful in predicting the

keystroke. One reason could be the prediction of neighboring keys which belong to

another area. For example, a character set based model may predict the key as ‘A’

when the actual key is ‘Q’. These keys are neighbors on a standard Android QW-

ERTY keyboard and may contain similar vibrations and audio characteristics. When

the test data is evaluated specifically using the models for area ‘QWE’, then they

can only predict a keystroke from this area and may predict the correct keystroke.

If more than 50% of the models predict the same key, then this key is chosen as the

final prediction and no additional steps are performed.

IV. The test keystroke is finally evaluated using a voting model consisting of the two

best algorithms for that area. This model outputs the final prediction based on

the prediction and confidence values of the two loaded algorithms. This step will

generally be executed when the test data is quite noisy and difficult to infer. We do
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Table 2.2: Area-wise accuracy on a QWERTY keyboard for a HTC One sample set.

Area Gyroscope Microphones Combined

Q, W, E 84% 90% 92%

R, T, Y, U 86% 86% 92%

I, O, P 79% 90% 99%

A, S, D 84% 94% 97%

F, G, H 70% 89% 92%

J, K, L 71% 84% 89%

X, Z 88% 80% 98%

C, V, B 83% 93% 93%

N, M 77% 90% 100%

not discard the data but attempt to make a final prediction based on the two best

algorithms for that area.

2.4 Evaluation

We evaluate the keystroke inference system using the following metrics: the performance

of the Gyroscope, Microphones and Combined (Gyroscope + Microphones) sensors for

different areas of the keyboard; the performance of the Meta-Algorithm for individual

Machine Learning algorithms in comparison to traditional use of these algorithms; and

the performance of the Meta-Algorithm for all the collected user sample sets.

2.4.1 Impact of Sensors on Keyboard Areas

Table 2.2 shows the area-wise inference accuracy of the Gyroscope, Microphones and

Combined sensors for a sample set collected on the QWERTY keyboard in portrait mode,

on the HTC One. The table shows that the Gyroscope predictions are inconsistent across

areas as compared to the Microphones which is consistent throughout. This is because

the Gyroscope vibrations are dependent on the location of the key with respect to the Gy-

roscope hardware. The areas ‘IOP’, ‘ASD’ and ‘NM’ are close to the Gyroscope hardware

and do not exhibit significant vibration on the y axis. Their inference depends more on

the x axis vibrations yielding lower accuracy for these areas. The areas ‘XZ’, ‘ASD’, and

‘QWE’ are further from the Gyroscope hardware and exhibit significant vibrations on the
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Table 2.3: Accuracy of the Meta-Algorithm when applied to individual Machine Learning

algorithms for some sample sets.

Keyboard Sensor DT NB NN 10-NN

HTC One

QWERTY Microphones 94% 86% 93% 85%

QWERTY Combined 95% 80% 93% 91%

Number Microphones 80% 81% 79% 76%

Number Combined 81% 77% 81% 77%

Samsung S2

QWERTY Gyroscope 68% 61% 60% 55%

Number Gyroscope 82% 76% 84% 79%

y axis. Their inference depends on vibrations in both x and y axes yielding higher accu-

racy for these areas. Microphone predictions, on the other hand, are location independent

as they rely on the speed of sound traveling over the surface. The table also shows that

the accuracy of the microphones is higher than the Gyroscope in most of the areas, the

only exception being area ‘XZ’. Combining the data from the two sensors yields higher

accuracy than the individual sensors in cases when the Gyroscope data for an area is not

weak. In situations where the Gyroscope data is weak, our system attempts to detect this

and performs inference using just the Microphone models for that area.

2.4.2 Impact of Meta-Algorithm on Individual Algorithms

Table 2.3 shows the performance of the Meta-Algorithm when applied to individual Ma-

chine Learning algorithms, compared to the elementary use of these algorithms (cf. Ta-

ble 2.1). Note that the same sample sets are used in both the evaluations so that the results

can be directly compared. The table shows that our Meta-Algorithm improves the infer-

ence accuracy for every sample set. This improvement varies for every Machine Learning

algorithm. The table shows that the Decision Tree (DT) algorithm benefits the most from

the Meta-Algorithm, with high increase in inference accuracies (8% - 13%). The Naive

Bayes (NB) algorithm does not benefit much from the Meta-Algorithm, with low increase

in inference accuracies (0% - 4%).
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Table 2.4: Final Single-stroke Meta-Algorithm accuracy for all sample sets collected in the

Office environment.

User Keyboard Count Gyroscope Microphones Combined

HTC One

User1 Number 306 68% 93% 93%

User2 Number 200 44% 94.5% 93%

User3 Number 300 72% 91% 91%

User4 Number 300 75% 94% 95.5%

User5 Number 323 45% 83% 83%

User3 QWERTY 782 80.5% 89.5% 94%

User4 QWERTY 860 56% 83% 83%

User5 QWERTY 877 66% 73.5% 84%

Samsung S2

User1 Number 137 75.5% - -

User2 Number 542 84% - -

User3 Number 202 83% - -

User4 Number 200 81.5% - -

User5 Number 512 81% - -

User1 QWERTY 366 63.5% - -

User2 QWERTY 620 77% - -

User5 QWERTY 312 74% - -

2.4.3 Performance of the Meta-Algorithm

Table 2.4 shows the final inference accuracy of the Meta-Algorithm for all sample sets

collected in the Office environment. The table shows that it is possible to achieve high

accuracy using just the stereo-Microphones of the device. We achieved an inference ac-

curacy of 89.5% on the QWERTY keyboard for User3, and an accuracy of 94.5% on the

Number keyboard for User2. In some cases such as the QWERTY keyboard sample for

User3, combining the Gyroscope and the Audio data can boost inference and it is possible

to reach an accuracy of 94% even on the QWERTY keyboard. In some cases such as the

Number keyboard for User2, combining the data may also result in a decrease in accuracy.

This is likely when the Gyroscope data is weak, does not contain significant vibrations

or contains significant noise. We built our system to detect such weak Gyroscope data
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using cross-validation of training samples but we did come across situations when the

cross-validation yielded high accuracy for weak Gyroscope data. One alternative could

be to manually define which models should be loaded for specific areas using the knowl-

edge of the Gyroscope hardware location for that smartphone model. There were some

sample sets where the Gyroscope inference accuracy was as low as 44− 56%. We eval-

uated them manually to find that our filtering techniques were unable to handle large

Gyroscope drifts. These drifts can be compensated by using a Kalman filter combining

the Accelerometer and Gyroscope data.

2.4.4 Impact of Noise on Meta-Algorithm

We also evaluated our keystroke inference system in scenarios when the attack may not

perform so well. An example of external environmental scenarios affecting inference are

very noisy restaurants, while an example of non-environmental scenarios is soft typing.

To evaluate these scenarios, we asked two participants to collect keystrokes in a restau-

rant with noise levels between 72 dB and 76 dB. Using just the Microphones, the system

achieved an accuracy of 42% and 56% for 212 and 226 test keystrokes, respectively. An-

other two participants were chosen who typed with very soft touches. In their case,

the system achieved a low accuracy of less than 20% using both the Gyroscope and Mi-

crophones data. A manual analysis of the data revealed that the keystrokes could not

be differentiated from the background noise. We also asked two participants to collect

keystrokes on a Samsung Tab 3 tablet, and achieved an accuracy of 36% and 45% for 106

and 234 test keystrokes, respectively. Note that this inference was made using just Gyro-

scope data as the tablet did not support stereo recording. Both participants held the tablet

in two hands and typed with their thumbs, reducing the vibrations caused by typing.

2.4.5 End-to-end Attack Evaluation

To illustrate an end-to-end attack, we modified our Trojan app to query the foreground ac-

tivity every five seconds. In Android, every UI page is known as an activity. An app may

have multiple activities, each with a different class name. An adversary can easily deter-

mine the functionality of an app using these class names. For example, the login activity
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Figure 2.10: Screenshot of the bank activity used for demonstrating the end-to-end attack.

Table 2.5: Final Meta-Algorithm accuracy for 100 random PIN numbers and 100 random

Credit Card numbers.

Total Correct Correct Digits Accuracy

PINs

100 84 376 94%

Credit Cards

100 52 1467 91.5%

is named as com.*****.mobile.LoginActivity for the banking app used for demonstration

(parts of the class name hidden here for anonymity of the app). Figure 2.10 shows the

screenshot of this activity. The Trojan starts recording the Gyroscope and Microphones

when it detects a login activity or credit card input activity in the foreground.

We collected 100 four digit random numbers and 100 sixteen digit random numbers

simulating PINs and credit card numbers from our participants. Table 2.5 shows the

accuracy reported by the Meta-Algorithm for these PINs and credit card numbers. For

four digit PIN numbers, the system correctly predicted 376 digits out of 400 digits and 8
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additional keystrokes were detected by the system. Out of the 100 PIN numbers, 84 were

predicted completely correctly in a single attempt. For sixteen digit credit card numbers,

the system correctly predicted 1467 digits out of 1600 digits and 12 additional keystrokes

were detected by the system. Out of the 100 credit card numbers, 52 were predicted

completely correctly in a single attempt.

2.4.6 Impact of Assumptions on Attack Performance

In this subsection, we discuss the impact that the assumptions made for this work may

have on the attack performance.

Training Data Collection: In this work, we assume that the Trojan app collects at

least 50 keystrokes for each character from the user. These keystrokes are then used as

the training data to build generalized training models. This assumption can be easily

realized by an adversary by implementing and distributing a note-taking app, or simply

a typing tutor app that customizes the sentences to build the training data fairly quickly.

Known Keyboard Layout: Our assumption of known keyboard layout does not impact

attack performance because the training models and the attack use the same device and,

therefore, the same keyboard layout. This simplifies the attack as the adversary does

not have to worry about customization for different devices having different form-factors

and hardware layouts. Even when the operating system is updated to another version, the

key sizes of the Android keyboard remain standard to ensure usability and preventing

the users from re-learning a new layout.

2.5 Related Work

Cai & Chen [6] were the first to study the feasibility of number keystroke inference attacks

using an Android device’s orientation sensor. They developed an Android app called

TouchLogger and collected three data-sets on a HTC Evo 4G phone using a Number only

keypad in Landscape mode. Their experiments achieved a successful inference accuracy

of 71.5% for all three data-sets and demonstrated that such an attack was feasible.

Owusu et al. [9] studied the feasibility of area and character inference using an An-
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droid device’s Accelerometer sensor. They developed an Android app called ACCessory

for collecting data-sets on a HTC ADR 6300 phone from four participants. The partici-

pants were instructed to hold the phone and enter keys in a certain manner and several

data-sets were collected for screen area and characters using a QWERTY keypad in Land-

scape mode. The data-sets were used to build a predictive model to evaluate the accuracy

of area and passwords inference. Their experiments showed that, out of 99 6-character

passwords, it was possible to successfully infer 6 passwords in 5 trials.

Xu, Bai & Zhu [7] used two motion sensors, Accelerometer and Orientation, to study

the feasibility of inference of the lock screen password and the numbers entered during a

phone call, such as credit card and PIN numbers. They developed an Android app called

TapLogger that stealthily logs these numbers by using the Accelerometer sensor to detect

the occurrence of taps and the Orientation sensor to infer which number was typed by

the user. They collected data-sets of several tap events from three students using two

phones, HTC Aria and Google Nexus (One), and unlike other experiments, performed

the training and classification on the smartphone itself. Their experiments achieved an

accuracy of about 99% for one user on the Google Nexus (One) and about 70% - 85%

accuracy for the other users.

Cai & Chen [73] studied the impact of different settings on the accuracy of keystroke

predictions. They varied different factors in their settings, such as user habits, screen

size, device type, layout orientation, etc. Their results show that side channel attacks

stay possible and practical regardless of the setting. Although the attacks are feasible,

the inference accuracy varies. They used Google Nexus S, HTC Evo 4G, Galaxy Tab 10.1,

Motorola Xoom in their experiments with 21 users, and demonstrated that 4 digit PIN

can be guessed correctly after 81 attempts, 65% of times.

Aviv et al. [8] demonstrated the possibility of inferring PIN and pattern password

by exploiting the Accelerometer on four different smartphones; Nexus One, G2, Nexus S

and Droid Incredible. Their results and evaluations were based on 24 users, divided into

two groups of 12. Each group performed controlled (seating) and uncontrolled (walking)

experiments. In the controlled setting, they reached an accuracy of 43% and 73% for
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PIN and pattern passwords respectively, within 5 attempts from a set of 50 PINs and 50

patterns. In the uncontrolled setting, they could predict PINs and patterns 20% and 40%

of times respectively, within 5 attempts.

Miluzzo et al. [10] presented a framework called TapPrints that used the Accelerom-

eter and Gyroscope to identify icon locations and infer characters typed on a keyboard.

They collected a data-set on two Android devices, the Google Nexus S and Samsung

Galaxy Tab 10.1, and a iPhone 4. The experiment with icon locations was performed with

the device in Portrait mode while other experiments with the character keypad were per-

formed with the device in Landscape mode. By using ensemble machine learning, they

showed that on an average, locations of icons can be inferred with 79% and 65% accuracy

for the iPhone and Google Nexus S respectively and characters could be inferred with

65% accuracy. They also showed that some icons or characters can be inferred with an

accuracy of up to 90% and 80% respectively.

Marquardt et al. [13] demonstrated that an Android app with access to the device’s

Accelerometer can be used to recover text typed on a physical keyboard the device is

placed in close proximity with. They showed that if a device is placed within 2 inches of

a physical keyboard and the keyboard is used for typing, then by measuring the relative

physical position and distance between the vibrations, they could recover words with

accuracy as high as 80%.

Templeman et al. [11] proposed a proof-of-concept visual malware called PlaceRaider.

It opportunistically used the camera and other sensory data from a smartphone to create a

3D model of the user’s environment. This 3D model allows the adversary to navigate and

zoom in areas of interest to examine the individual images corresponding to that region.

Another example of sensory malware is Soundcomber [74] which uses microphone to

steal private information such as credit card numbers from phone conversations.

Table 2.6 summarizes the inference accuracy and the attack characteristics (i.e., the

smallest keyboard used for the attack, the key size ratio compared with QWERTY key-

board in portrait mode, and number of attempts required) of the closely related works

in comparison to our attack. We must note the following regarding key size ratio: (1)
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Table 2.6: Summary of the attack characteristics and inference accuracy of related works

in comparison to our keylogging attack.

Smallest Keyboard Size Ratio Attempts Inference Accuracy

Aviv et al. [8] Lock Screen > 4.0 5 43% of 50 4-digit PINs

TapLogger [7] Lock Screen > 4.0 1 99%, 75%, 84% for 4-digit PINs for 3 users

TouchLogger [6] Number in Landscape ∼ 2.9 1 71.5% for individual digits

Cai & Chen [73] Number in Portrait ∼ 2.3 81 65% for 4-digit PINs

ACCessory [9] QWERTY in Landscape ∼ 1.2 5 6 of 99 6-character passwords

TapPrints [10] QWERTY in Landscape ∼ 1.2 1 65% for individual characters

This Attack QWERTY in Portrait 1 1 83%-95% for individual characters

this ratio is an approximation of the area of the keys on the current Android keyboards,

and (2) the key sizes used in the related works are for older keyboards that were larger

than the current keyboards. Our keystroke inference system performs significantly better

even with smaller key sizes than other works. It also differs from previous works as it

uses the stereo-recording capability of smartphones, a combination of sensor and acous-

tic information, adequate sensor and audio noise filtering, keyboard specific information,

domain-specific machine learning, and a multi-tier approach in the Meta-Algorithm. This

combination achieves a higher inference accuracy for the standard Android keyboards.

2.6 Conclusion

In this chapter, we investigated the feasibility of keystroke inference when user taps on

a soft keyboard of a smartphone are captured by the Gyroscope and stereoscopic Micro-

phones sensors co-resident on the smartphone. We demonstrated that it is possible to infer

keystrokes with an accuracy of 90-94% on the standard Android QWERTY and Numeric

keyboards by using a combination of multiple sensors, adequate filtering, and building

machine learning models specific to the keyboard.
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Chapter 3

Inferring User Routes and Locations

This chapter describes our location tracking attack that exploits the zero-permission Ac-

celerometer, Gyroscope and Magnetometer sensors, and public map resources to track

vehicular users. We developed a framework to assess the feasibility of this attack and op-

timize tracking by (1) creating architecture blocks that addresses challenges in inference,

(2) modeling location tracking from sensors as a graph theoretic problem, and (3) devel-

oping efficient search algorithms that maximize probability of finding the traveled route

in a small set of results. In Section 3.1, we describe a scenario of how a stealthy attack can

be launched by a victim inadvertently downloading a malicious app. In Section 3.2, we

formalize the problem, identify the challenges, define the adversarial model, and describe

the high-level architecture of our system. Section 3.3 provides a detailed description of

our graph construction technique, and design of the search algorithms and filters. In Sec-

tion 3.4, we outline the evaluation metrics and present the results of our evaluations.

In Section 3.5, we describe previous related work and we conclude in Section 3.6.

3.1 Attack Vector

The victim is engaged in the act of driving a vehicle where they are co-located with an

active smartphone. The adversary’s goal is to track the victim without the use of tradi-

tional position determining services such as GPS, cell tower pings, or Wi-Fi / Bluetooth

address harvesting. To prepare for an attack, the adversary uploads a seemingly in-

nocuous mobile app to a publicly accessible Application Store. The app is subsequently

downloaded and installed by the victim on their smartphone. While providing the victim

with its advertised features, this malicious app additionally collects sensor data from the

Accelerometer, Gyroscope and Magnetometer.

The attack is triggered when the app detects that a victim is starting to drive. Sensor
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data is recorded in the background, without visible indication of the recording activity,

and uploaded to a colluding server whenever Internet access is available. Based on this

sensor data, the adversary can derive driving information such as turn angles, route

curvatures, accelerations, headings and timestamps. Combined with publicly available

geographic area attributes, the adversary can learn the actual route taken without the

need of any location services / information.

3.2 High-Level Approach

In this section, we formalize the problem of location tracking using zero-permission sen-

sors, outline some of the challenges in tracking, define the adversarial model and describe

the architecture of our location tracking system.

3.2.1 Location Privacy Leakage from Sensor Data

We introduce our terminology and notations used to describe the problem space. Con-

sider a geographic area represented by a set of roads. Each road is either straight or

has curvature that is detectable by the smartphone’s sensors. A connection is created

when a road bisects, furcates, joins with other roads, or turns into a different direc-

tion (cf. Figure 3.1a). These connections divide roads into multiple atomic parts, which

only connect with other atomic parts at their end points. Therefore, a geographic area

G can be uniquely described as G = (B, C, θ, ϑ), where B is a set of atomic parts, and

C = {χ = (r, r′)|r, r′ ∈ B} consists of ordered pair of connections χ = (r, r′) indicat-

ing the connection between two atomic parts r and r′. The turn angle associated with a

connection χ, which captures the real-world travel direction from r to r′, is given by the

function θ. A positive angle θ(χ) > 0 indicates a left turn, and a negative value θ(χ) < 0

indicates a right turn. Finally, the atomic parts preserve the road curvature determined

by ϑ(r). The computation of θ and ϑ functions is based on the public map information.

We define a route taken by the driver as a sequence R of connected atomic parts,

R = (r1, . . . , rN), where (ri, ri+1) ∈ C. Two routes R and R̂ are identical if the sequences

of atomic parts have the same size and are component-wise equal, i.e.,R = R̂ if ri = r̂i for

all i. Along the driving trajectory, the app obtains a set of sensor data D = {(at, gt, mt)}
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(a) Connections are created when a road bisects (B), furcates (F), joins (J) with

another road, or turns (T) into a different direction. Created atomic parts:
−→
BA,
−→
BC,
−→
BD,
−→
CB,
−→
DB,
−→
JG,
−→
EJ,
−→
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(b) Graph construction: every one-way road segment s1, s3, s4, s5 is represented by one vertex,

while two vertices s2,NS and s2,SN are created for the north-south (NS) and south-north (SN) direc-

tions of the road segment s2, respectively.

Figure 3.1: Example of a hypothetical road network, and its mapping to a graph for

location tracking.

consisting of the vectors at, gt and mt taken from the Accelerometer, Gyroscope and

Magnetometer respectively. These vectors are sampled according to discrete time periods

t = 0, δ, 2δ, . . ., where δ is the sampling period. Based on D, an adversary launches the

tracking attack as follows.

Definition 1 (Sensor-based Tracking Attack). Let A be the attack deployed by the adversary

on the received sensor data D given geographical area G. The outcome of the attack is a ranked list

P of K possible victim routes P = A(G,D) = {R̂1, . . . , R̂K}, where R̂i has higher probability

than R̂j of matching with the victim’s actual trajectory, if i < j.

A successful tracking attack will be one in which a small set of results yield a route list

containing the truth route. We aim to design an attack that satisfies this objective with
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success probability significantly higher than a random guess. In particular, we evaluate

the attack efficiency according to the following metrics.

Definition 2 (Individual Rank). Given the user’s actual trajectory R and the outcome of the

attack P = A(G,D), the individual rank of the attack is k, if R = R̂k. The rank is uninteresting

if R is not found in P .

The individual rank k reflects the attack’s success in estimating that the victim’s route is

in top k of the outcome list. We are interested in the probability of such event happening,

i.e., Pidv
k := P(R ∈ {R̂1, . . . , R̂k}), and evaluate the attack performance based on it (see

Section 3.4). While Pidv
k shows the possibilities of the victim’s route being in a top k rather

than telling which among the top is the actual route, the probability Pidv
1 is precisely the

probability of finding the victim’s route. This probability, though small (e.g., Pidv
1 ≈ 13%

for Boston and ≈ 38% for Waltham in our preliminary real-driving experiments), is still

considerably high given the fact that the search space contains billions of routes. In

practice, a top k with small k (e.g., k ≤ 5) is a very serious breach. An adversary may

collect such lists through the span of multiple days and refine the lists to find exactly the

victim’s daily commute route. Moreover, with more resources, the adversary can quickly

check every potential route in the list to learn about the victim.

While the individual rank reflects the performance of the attack in terms of finding

the exact route, in practice a rough estimation of the victim’s route is usually enough to

create a significant privacy threat. For example, targeted criminal activity (i.e., robbery

and kidnapping) could result from the physical proximity knowledge derived from the

attack. To justify this threat, we define a cluster of routes as a set {R̂1, . . . , R̂l} in which

any two routes are similar. The similarity of routes R̂ and R̂′ is defined as d(R̂, R̂′) < ∆,

where d(R̂, R̂′) = ∑N−1
i=1 ‖Loc(χ̂i) − Loc(χ̂′i)‖ is the sum of distances between connec-

tion points χ̂i = (r̂i, r̂i+1), χ̂′i = (r̂′i , r̂′i+1) on R̂ and R̂′, Loc(·) denotes the geographic

coordinates, and ∆ is a threshold value.

By clustering, the attack now returns the outcome as another ranked list similar to

one in Definition 1. Routes belonging to the same cluster are removed and only the best

one of the corresponding cluster is included in the list. Specifically, if Acluster(G,D) =
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{R̂1, . . . , R̂K}, then d(R̂i, R̂j) ≥ ∆ for any i, j, and R̂i is a representative route of cluster

i. We now introduce the cluster rank metric as follows.

Definition 3 (Cluster Rank). Given the user’s actual trajectoryR and the outcome of the attack

P = Acluster(G,D), the cluster rank of the attack is k, if d(R, R̂k) < ∆. The rank is uninteresting

if no such k is found.

Similar to individual rank, we are interested in the probability of a route being in the top

k of clusters, i.e., Pclt
k := P(R ∈ cluster1 ∪ . . . ∪ clusterk). Based on the cluster rank metric,

the adversary may eliminate similar routes and focus computation power on additional

routes to improve the search results. Clustering is useful when similar roads / turns are

present to effect a nearly identical result. For instance, the adversary may group routes

with the same end points while ignoring different roads in between, or if they differ only

at one end point (start or end), e.g., roads going from / to residential complex or office

areas. This may give the adversary more confidence in an area than the individual rank.

3.2.2 Challenges in Inference

There are several challenges to the attack feasibility including the geographic area size,

impact of sensor noise, driver behavior, and road similarity.

Area Size: The geographic area’s size has an impact on the attack’s accuracy. Even in

small cities like Waltham (Massachusetts, USA), there are billions of possible routes for a

victim. Moreover, routes with loops may also significantly increase the search space.

Noisy Sensor Data: The quality of sensor data is key for high attack accuracy. Unfor-

tunately, today’s smartphones are equipped with low-cost sensors that do not guarantee

high accuracy. Sensor accuracy is also dependent on the sensor’s previous state, e.g., the

acceleration can spike due to a street bump but requires settling time before providing

new useful information. The Magnetometer is influenced by nearby magnetic fields from

fans, speakers and other electromagnetic devices.

Driver Behavior: The driving style of a driver also impacts the estimation of the actual

route. For instance, a driver may frequently speed up or slow down due to traffic condi-

tions or change lanes to overtake other vehicles. These actions induce additional noise in
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the sensor data in the form of spatial perturbations or distortions.

Road Similarity: Even in ideal scenarios when clean sensor data is obtained, the simi-

larity of roads impacts the estimation of the actual route. This is especially true for cities

with grid-like road structures such as Manhattan, New York.

3.2.3 Adversarial Model

Mobile Application: We assume that the malicious app collects sensor data continu-

ously, either actively or in background, and intermittently transfers the data to the col-

luding server. As a typical one hour trip collects approximately 800 KB of uncompressed

data (80 KB/hour for processed and compressed data), detection by a user in the form

of degraded network behavior should be negligible in locations with active 3G and 4G

networks or nominal Wi-Fi signal strength.

Device Position: We compensate for device orientation at attack initiation (i.e., the time

when the vehicle starts moving). During travel, the device’s orientation should remain

relatively fixed within the reference frame of the vehicle. This supports attack efficacy in

a variety of realistic phone placements such as the phone attached to a mount, residing

in a cup holder, in the driver’s pocket or in her handbag.

Location Information: While the attack described in this work does not rely on the

location information of the victim’s trajectory at any point (e.g., no known starting point),

we assume a rough knowledge of their living / travel area (e.g., known to live in /

frequent Manhattan, New York).

3.2.4 System Architecture

In the most basic form, the system consists of a smartphone that collects data and a post-

processing server that generates a ranked list of potential routes or clusters of routes.

Figure 3.2 illustrates the design’s main components.

• Preparation: Road information from public map resources are extracted and con-

verted to specific database structures. This is a one-time initialization step and the

structures can be reused for all subsequent attacks.
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Figure 3.2: Block diagram of the location tracking attack.

• Sensor Data Collection: Sensor data is recorded by the app and sent to the colluding

server. This step uses movement detection based on Accelerometer data to trigger

sensor recording exclusively during vehicle movement.

• Data Processing: On receiving the sensor data, the server analyzes the data to derive

the victim’s trace of turn angles, curvatures, heading, accelerations and timestamps.

• Search: The search algorithm is run on the processed data and a ranked list of

matching routes is produced.

Sensor data provides important information about a victim’s movements. Among

the three sensors, the Gyroscope sensor is most useful for this attack because of the

following reasons: (a) The Gyroscope reports more accurate data than the others; (b) The

Gyroscope reveals turn angles and road curvature of the undertaken route which are

nearly static attributes and traceable on a public map resource. We heavily weight the

Gyroscope data in this attack as the Accelerometer and Magnetometer strongly depend

on dynamic factors such as traffic / road conditions or proximate magnetic fields, which

are challenging to predict. Timestamps, Accelerometer and Magnetometer readings are

used as supporting data to reduce noise and refine the results.

Data received from the Gyroscope is a sequence of three dimensional vectors re-

porting the rate of angular change along the victim’s trajectory. Figure 3.3 illustrates an

example of an experimental route and the corresponding angle sequence (processed from

Gyroscope data) relative to the initial heading. Here, large changes in the angle trace
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(a) Experimental route contains 6 turns from

Start (green) to Stop (red).
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(b) Angle trace contains 6 slopes (turns) and a

few slight variations (curves).

Figure 3.3: An experimental route and the angle trace derived from the Gyroscope.

indicate turns at intersections. Right and left turns are represented by negative and pos-

itive slopes, while minor variations (e.g., less than 30◦ in the example) in between are

attributed to road curvature.

We transform the Sensor-based Tracking Attack (Definition 1) to the problem of

matching this angle trace and curvature with possible routes. The objective is to iden-

tify sequences of intersections and curvatures that match the slope change found in the

angle trace. Our approach consists of graph construction based on OpenStreetMap, a

public map resource, and matching routes on this graph with the actual angle trace using

techniques similar to trellis codes decoding [75]. Note that in our context, the graph size

is many orders of magnitude larger than typical trellis codes used in communications. In

addition, while trellis codes make transitions and produce an output at each state, the

victim’s trajectory may traverse any number of atomic parts (transitions) without making

a turn (output), rendering the problem more complex.

3.3 System Design and Algorithms

In this section, we describe our technique for constructing graphs for location tracking

using sensor data, a basic search algorithm and scoring scheme using just Gyroscope turn

information, and then a more advanced algorithm and filtering scheme using other sensor

data. We also describe the error compensation and trace extraction steps performed on

the sensor data to improve the search results.
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3.3.1 Graph Construction

Our search is performed on a directed graph structure. For the sake of clarity, we first

introduce some new definitions. Consider a geographic area G = (B, C, θ, ϑ). We assert

that a connection between two atomic parts is a non-turn connection if the turn angle

at the connection is below a threshold φg3 (e.g., φg3 = 30◦, cf. Section 3.3.5). In this

graph construction, we are interested in identifying such connections that can connect

atomic parts together to create straight or curvy roads without including significantly

large turns. We call such sequence of non-turn connected atomic parts a road segment

(or simply segment). Specifically, a sequence ~s = (r1, . . . , rl), where ri ∈ B, is a road

segment if θ(ri, ri+1) ≤ φg3 for i = 1, . . . , l − 1. Intuitively, a segment is a route without

large turns at connections between its atomic parts. Additionally, we call segment ~s a

maximal-length segment1 if no atomic part can be added to ~s to form a longer segment

while still preserving the non-turn condition. When a connection between two atomic

parts has a turn angle greater than φg3, it becomes a connection between two segments,

i.e., if r ∈~s, r′ ∈~s′ and χ = (r, r′) ∈ C, then θ(r, r′) > φg3. In this case, we call χ a segment

connection or simply an intersection.

Our idea for constructing the directed graph G = (V, E) is to represent each segment

~s by a vertex v ∈ V and each segment connection χ by an edge e ∈ E. An example

construction is illustrated in Figure 3.1. Intuitively, one will stay at one vertex on the

graph as long as they do not turn into another segment. A turn at an intersection makes

them traverse to another vertex through an edge connecting them. Based on the public

map resource, we accordingly build our graph for the whole geographic area. For each

edge e corresponding to segment connection χ, we use θ(χ) as the edge’s weight. The

length, speed limit, and curvature of a road segment ~s are stored as attributes of the

corresponding vertex v. This information combined with the sensor data is used to match

the victim’s angle trace during the search. We note that for any two segments ~s and ~s′

such that ~s′ ⊂ ~s (i.e., one is a sub-sequence of the another), we simply remove ~s′ from

the graph, because any atomic part r and connection χ of~s′ involved in the route search

1Maximal-length segment is analogous to a longest route between two nodes with an additional condition:

weight (turn angle) must be small.
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are also present in ~s, rendering ~s′ redundant. Therefore, graph G essentially contains

only vertices corresponding to maximal-length segments, resulting in more efficient route

search with greatly reduced graph size.

3.3.2 Basic Search Algorithm

The search technique includes maintaining a list of scored candidate victim routes while

traversing the graph. When the search completes, a list of candidates is returned with

their evaluated score. These routes have higher probability of matching the recorded

mobility trace. For the current discussion, we assume that the adversary only exploits the

Gyroscope data to launch the attack, i.e., we consider only gt from D = {(at, gt, mt)}. Let

~α = (α1, . . . , αN) be the derived sequence of turn angles at N intersections after processing

the Gyroscope data gt. The details of sensor data processing are discussed in Section 3.3.5.

In Sections 3.3.3 and 3.3.4, we refine the algorithm and improve the performance by

adding filtering rules and applying a more complex scoring method. Our goal at the

moment is to find ~θ = (θ1, . . . , θN) ∈ G, the potential sequences of turns that maximize

the probability of matching ~θ given the observation of~α. This probability, denoted P(~θ|~α),

can be rewritten as:

P(~θ|~α) = P(~θ,~α)
P(~α)

=
P(~α|~θ)P(~θ)

P(~α)

As P(~α) is the probability of a measurement ~α without conditioning on ~θ, it is in-

dependent of ~θ. Thus, maximizing P(~θ|~α) is equivalent to maximizing P(~α|~θ)P(~θ). The

distribution of a priori probability P(~θ) may depend on the driver, city, and day / time of

travel (e.g., home-to-work and work-to-home routes during weekdays have significantly

higher probability than other routes). Since our goal is to demonstrate the generality

of the attack even if the adversary knows nothing about the victim’s travel history, we

consider P(~θ) to be equiprobable, i.e., any route has the same probability of being taken

by the victim. This presents the worst-case attack scenario and gives a lower bound

on the performance. If the a priori probability P(~θ) is known, we expect the attack to

achieve higher success probability than the performance we report in this work. Under

the assumption of equiprobable a priori probability, the goal of maximizing P(~α|~θ)P(~θ) is

equivalent to maximizing the probability P(~α|~θ) alone.
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Input: G = (V, E), α1, . . . , αN

Output: UN

1 Initialization: U0 ← V; U1 ← ∅; . . . UN ← ∅;

2 for k = 1 to N do

3 for u ∈ Uk−1 do

4 for v ∈ V such that (u, v) ∈ E do

5 if filter(u, v, αk) passed then

6 v.score← u.score + scoring(u, v, αk);

7 v.prev← u;

8 Uk ← Uk ∪ {v};

9 end

10 end

11 end

12 Uk ← pick top(Uk);

13 end
Algorithm 1: Search Algorithm

Samples taken from the Gyroscope include noise as an additional unknown amount

in the angle trace, yielding the angle ~α = ~θ +~n, where ~n is the random noise vector. We

will show through experimental results in Section 3.4.1, that the Gyroscope noise can be

approximated by a N-dimensional zero-mean normal distribution N (0, σ) with standard

deviation σ. Accordingly, P(~α|~θ) can be rewritten as:

P(~α|~θ) = P(~n =~α−~θ) =
(
2πσ2)− N

2 exp

(
−‖~α−

~θ‖2

2σ2

)

where ‖ · ‖ indicates the L2 norm of a vector. As
(
2πσ2)− N

2 is constant for a fixed N and

σ, maximizing P(~α|~θ) is now equivalent to minimizing ‖~α−~θ‖. Therefore, the adversary

obtains the optimal solution as stated in Theorem 1.

Theorem 1. Given graph G and a turn angle trace~α with normally distributed noise, the optimal

route tracking solution is ~θ∗ = arg minθ∈G ‖~α−~θ‖.

Based on Theorem 1, our search algorithm (Algorithm 1) aims at finding ~θ that minimizes
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‖~α−~θ‖. The main idea is to maintain a list of potential vertices (i.e., road segments) from

which we develop the possible routes. The algorithm takes as input the graph G = (V, E)

and a sequence (α1, . . . , αN). The search consists of N rounds corresponding to a trace

of N intersections. While the algorithm is similar to trellis codes decoding techniques

in which paths are built up, maintained or eliminated according to a metric, our search

is improved by filtering routes based on specific selection rules and keeping only top

candidate routes after a number of iterations.

The algorithm starts by considering all vertices of the graph as potential starting

points (initialization U0 ← V). In each k-th round, we build a new list Uk of potential

vertices as follows. For each vertex u ∈ Uk−1, we explore all its outgoing edges (u, v).

During this traversal (line 4 – 10), filtering is applied (line 5) to eliminate such vertices /

segments whose corresponding map data deviates too much from the actual sensor data.

In this basic algorithm, the filter checks if the turn angle (i.e., the edge weight) between

the current vertex u and candidate vertex v is within a specific range of the actual turn αk.

An edge (u, v) passes the filter only if |θ(u, v)− αk| ≤ γ, in which case v is put into Uk as

a candidate for the next search iteration (line 8). The threshold γ depends on the quality

of sensor data and is evaluated in Section 3.4.1. Note that when a vertex v does not satisfy

the filtering rules, it simply means v is not used as a starting point in the next iteration,

but may appear again if other starting points connecting to v satisfy the conditions.

At the same time when filtering is passed, the edge (u, v) is also evaluated for the

likelihood to match the actual trace by the scoring function (line 6). The score for each

k-th turn is computed by

scoring(u, v, αk) = d(αk, θ(u, v)) = |αk − θ(u, v)|, (3.1)

where we compute the angle distance based on L1 norm instead of L2 norm for two

main reasons: (a) computing L1 norm requires less overhead; (b) in practice, we observe

that L1-based matching generally outperforms L2-based, because Gyroscope errors are

usually small, allowing L1-based estimation to better overcome sparse large errors while

L2 norm tends to amplify such errors. The score of every route is initialized to 0 (line

1) and evolves to ∑N
k=1 d(θ(u, v), αk) after N iterations. When updating the score, we
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additionally store the previous vertex (v.prev) of the candidate in order to trace back the

full route (without storing the whole route) at the end of the search. We also note that

as the list of candidates is developed through each iteration with non-negative metric,

finding the actual route with loops is possible, because loops simply increase the score

and are treated as regular routes (i.e., the search will terminate).

Since routes with lower score have higher matching probability P(~α|~θ), we only keep

the top K candidates at the end of every iteration by calling pick top function (line 12). It is

noted that depending on attack configuration, pick top may shorten the list of candidates

only after some specific round. At the end of the search, based on UN and previous vertex

information stored for each candidate, the outcome P = {R̂1, . . . , R̂K} is appropriately

produced and returned.

Effect of Filtering and Top Selection: While scoring gradually distinguishes routes

from each other, filtering can immediately eliminate a route at an early stage that can

not be recovered later. There is a trade-off when determining the filtering thresholds.

A tight rule can reduce the search time but may result in pruning more good routes

due to early errors, whereas loose criteria reduces false elimination rate but increases

running time and memory consumption. Similarly, selecting top candidates after some

specific iterations can decrease the search time yet potentially removes good candidates

that are bad at early stages. We leave the rigorous analysis of such parameters as future

work. Instead, based on simulations and real driving experiments, we select appropriate

parameters with respect to both attack performance and computation constraints such as

memory and timing requirements.

3.3.3 Advanced Algorithm & Scoring Metrics

Algorithm 1 illustrates the main idea of our search technique, however, it represents a

baseline attack as it relies only on the sequence of observed turn angles as the single

input source to the algorithm. We now incorporate, into the basic search algorithm, the

curvature of the undertaken route and the travel time between turns.

Curve Similarity: We define the curvature of the route as a sequence of angles between
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intersections. Consider the victim’s travel between the k-th and (k + 1)-th intersections

and let Tkδ (δ is the sampling period, and Tk = 1, 2, . . .) be the victim’s travel time for

that distance. The curvature is then expressed by ~Ck = (αk,1, . . . , αk,Tk), where αk,i are

instantaneous directions at sampling time iδ on the k-th curve.

In order to match the sampled curvature with a candidate curve, we assume that

the vehicle movement along the curve is at constant speed. Since no available data can

provide sufficient accuracy for the instantaneous vehicular velocity, finding the best curve

fit is challenging. The constant speed approach simplifies the estimation and greatly de-

creases the computation burden for each route. Our evaluation shows that curve matching

with constant speed assumption considerably improves the attack performance. Specifi-

cally, we compute the angle sequence on each candidate curve as follows. For a candidate

segment corresponding to a vertex u (which is either straight or curvy), we divide it into

Tk equal-length sub-segments and consider each sub-segment as a straight line, then we

find the orientations of sub-segments based on their geographic coordinates. This gives

us ~ϑu = ϑ(u) = (ϑu,1, . . . , ϑu,Tk) as the curvature of u, where ϑu,i is the orientation of the

i-th sub-segment.

Our goal is to maximize the probability P(~ϑu|~Ck) of matching a candidate curve ~ϑu

given the victim’s curve ~Ck observed by the adversary. Due to the assumption of victim

route equiprobability, as discussed previously in Section 3.3.2, we instead search for ~ϑu

values that maximizes

P(~Ck|~ϑu) = P(~n = ~Ck −~ϑu) =
(
2πσ2)− Tk

2 exp

(
−‖

~Ck −~ϑu‖2

2σ2

)
where ~n ← N (0, σ) is the normally distributed random vector approximating the Gyro-

scope noise. We determine the curve similarity by

d(~Ck,~ϑu) =
1
Tk

Tk

∑
i=1
|αk,i − ϑk,i|.

Note that curve similarity, different from turn scoring in Equation (3.1), is normalized to

mitigate the effect of bias scoring due to error accumulation on long curves (large Tk).

Travel Time Similarity: The tracking of the actual route based on turn angles and cur-

vature information so far does not take into account the time scale of the victim’s travel on
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each road segment. To incorporate this information in the attack, we extract from Nokia’s

HERE map [76] the maximum allowed speed for every road in the geographic area G

and compute the minimum time required to travel from one intersection to another along

each road segment. Let tk ∈ D be the actual time spent by the victim to travel from the

k-th to the (k + 1)-th intersection, and τ(u, v) be the minimum required time (computed

from speed limit) for traveling from the last intersection to the current intersection (u, v)

on the candidate route. The metric for the travel time similarity is computed by

d(tk, τ(u, v)) = |tk − τ(u, v)|.

Final Scoring Function: By incorporating the likelihood of the turn angles, the cur-

vature, and the travel time along the search route, our final scoring function becomes

scoring(u, v, αk, tk, ~Ck) and is computed as

ωAd(αk, θ(u, v)) + ωTd(tk, τ(u, v)) + ωCd(~Ck,~ϑu) (3.2)

where different weights ωA, ωT, ωC can be selected dependently on the geographic area.

3.3.4 Filtering Rules

The search based on Gyroscope data is unaware of the absolute orientation of the routes.

To refine the results and reduce the search time, we exploit the heading information de-

rived from the Magnetometer to immediately eliminate bad routes (e.g., east-west routes

are filtered out when the actual trace indicates north-south direction). In addition, we

exploit the Accelerometer to identify idle states and discard samples in such periods for

better estimation. We also extract speed information for each road and filter out routes

by comparing the actual travel time between intersections with the time estimated for the

segment under investigation.

Heading Check: At the time of each turn at an intersection, we extract the heading

of the vehicle from the Magnetometer sensor sample and check that the next segment’s

direction should be close to the heading direction after turning. In practice, we observe

that the Magnetometer may be influenced by an external magnetic field and the heading

derived from the Magnetometer is not always accurate.
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In order to exploit this information properly, we first verify that the Magnetometer

data is reliable. When reliable, the magnitude of the heading vector will be within a

certain range of values based on the geographic area G. Specifically, the reliability is

established if Ml ≤ ‖mt‖ ≤ Mh, where mt ∈ D is the Magnetometer vector, and Ml , Mh

are lower and upper bounds that depend on G. Also, most acceleration will be reported

on the Accelerometer’s y axis indicating that the device points in the vehicle’s direction.

Only after the reliability is assured, the orientation check is performed. The heading

check is satisfied if |hk − ϑv,1| ≤ φm, where hk denotes the heading vector of the vehicle

after turning at the k-th intersection, ϑv,1 is the orientation of the first sub-segment of

segment v connected to u, and φm is the Magnetometer error threshold. Note that in case

of unreliable Magnetometer data, the check is not performed but v is not eliminated.

Travel Time Check: Due to the maximum speed limit on each road, the travel time

cannot be arbitrarily small. Given the actual travel time duration tk ∈ D between the k-th

and (k + 1)-th intersections, the maximum distance traveled by the vehicle is Lk ≤ Lmax =

βVmaxtk, where Vmax is the regulated speed limit, and β ≥ 1 is the over-speeding ratio

that can be reached by the vehicle. Consequently, during the search we only keep such

candidate routes that are not longer than Lmax. To reduce the computation overhead, we

instead precompute tv = Lv
Vmax

for each candidate road segment v of length Lv, and our

timing rule becomes tk ≥ tv
β , i.e., Lv ≤ Lmax. We emphasize that in realistic scenarios,

since the vehicle may drive at any speed below the limit or may get stuck in the traffic

for an unpredictable duration, the travel distance can be arbitrarily small. Therefore, no

non-zero lower bound on segment length is established.

3.3.5 Sensor Data Processing

A big challenge in implementing this attack is extracting accurate route information from

noisy sensor data. Along with the external factors discussed before (e.g., potholes, bumps,

road slopes, magnetic field and driver behavior), some internal misconfiguration may also

introduce errors in the data.

Axis Misalignment: Sensor x, y and z axes may not have perfect orthogonal alignment.

This causes a bias in the sensor values which can be defined as the deviation from the
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(c) Calibrated Gyroscope data
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(d) Rotated Gyroscope data

Figure 3.4: Error compensation steps for Gyroscope data for an experimental route.

expected x, y and z values when the device is at rest. The bias can typically be removed

by subtracting them from the reported x, y and z sensor values.

Thermal Noise: The sensor’s x, y and z axes values may also vary with the device /

sensor temperature. Some Operating Systems compensate for this noise by pre-filtering

the data, but at the cost of reduced accuracy.

Given these errors, we decompose the sensor data processing into error compensation

and trace extraction tasks.

Error Compensation: Error compensation consists of a calibration phase followed by

rotation of the data. Note that while our discussion focuses on Gyroscope data, similar

tasks can be performed for the Accelerometer and Magnetometer.

Calibration: The Gyroscope sensor bias and vehicle vibration result in angle drift, i.e.,

the values change linearly2 in time even at idle. An example of experimental route is

shown in Figure 3.4a. The Gyroscope data is reported as a sequence of angle change

2Our observation suggests linear model well approximates the angle drift.
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between sampling periods, and integrated over time to obtain the relative (with respect

to the initial recording) angle sequence in x, y, and z axes shown in Figure 3.4b. For

the experimental route, the resulting angle sequence shows a large positive drift in the y

axis. To compensate for the drift, we assume the vehicle is in a parked state in the cali-

bration phase (we note that this is only required once for subsequent attacks). The drift

vector is estimated as ∆α = E[∆α/∆t], the expected angle change rate. The calibration is

then performed by subtracting ∆α from the angle sequence (Figure 3.4c). Note that com-

plete removal of drift is a difficult task and would require more computation-expensive

mechanisms, e.g., Sensor Fusion algorithms.

Rotation: Recall that a victim can place their smartphone in any orientation in the

vehicle. To simplify the attack computation, we rotate the sensor data to a reference

coordinate system, where the x axis points from left to right of the driver, the y axis aligns

with the heading direction of the vehicle, and the z axis points upward perpendicularly

to the Earth surface. After rotation, the x and y values are then used to measure pitch

and roll respectively, while turn angle information is indicated in the z axis (Figure 3.4d).

Trace Extraction: The rotated Gyroscope data contains all the turn and curvature infor-

mation in the z axis. We use these z values of the Gyroscope data to extract the victim’s

turn angles at intersections and curves between them. The acceleration vectors are used

to improve the search performance by detecting vehicle’s idle states.

Turn and Curve Detection: The left and right turns of a route are distinguished accord-

ing to positive and negative angle changes in the rotated data. Our idea for identifying

intersections is illustrated in Figure 3.4d, where left turns are identified by an increasing

slope within a short period of time and right turns correspond to decreasing slope. More

precisely, let zi be the Gyroscope value on the z axis at time iδ in the rotated angle trace.

An intersection is found if it satisfies all the following conditions:

1. Start turn: The angle change between time iδ and (i + 1)δ is higher than a threshold

φg1, i.e., |zi+1 − zi| > φg1, which captures the event that the vehicle is starting to

make a turn or enter a curve.
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Table 3.1: Default parameters used in evaluation of the location tracking system.

Parameter Value

Scoring weights ωA = 2.5, ωT = 0.1, ωC = 2.5

Turn/curve detection threshold φg1 = 1◦, φg2 = 10◦, φg3 = 30◦

Turn angle filtering threshold γ = 60◦

Heading filtering threshold φm = 90◦

Travel time filtering threshold β = 1.5

Noise distribution µ = 0.003, σ = 7.54

Sampling period δ = 100 ms

Top candidates limit K = 5000, for iterations k ≥ 2

2. Large deviation: The largest deviation on a slope under investigation must be

greater than a threshold φg2, i.e., maxi∈slope |zi+1 − zi| > φg2. This distinguishes

the real turn from a slight curve on the route.

3. Large turn angle: If the difference between the first and the last angle on a slope is

greater than φg3, i.e., |zi+n − zi| > φg3, the slope is recognized as a real turn, and the

value αk = zi+n − zi is the turn angle for the corresponding k-th intersection.

A curve is recognized if the first condition is met, but the other two conditions do

not hold at the same time. In all other cases, the road segment under investigation is con-

sidered a straight segment. The parameters φg1, φg2, and φg3 are configured accordingly

to the geographic area.

Idle State Detection: Despite the limited accuracy of the Accelerometer to reveal the

precise instantaneous vehicular speed, we can still exploit it to differentiate an idle state

(e.g., vehicle stops at traffic lights) from movement on a straight road. In both cases,

the Gyroscope does not expose large enough variations for detecting angle changes with

adequate accuracy. However, the former case results in nearly zero magnitudes of acceler-

ation vectors on the Accelerometer, while the values are considerably larger with higher

fluctuations for the latter case. The idle states, therefore, can be extracted as blocks of

time that have near zero Accelerometer magnitudes. With idle states detected, we can

better estimate the actual non-idle time and improve the attack performance.
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Figure 3.5: Gyroscope noise distributions as measured in real driving experiments for

different smartphones.

3.4 Evaluation

In this section, we evaluate the attack efficiency based on simulations and real driving

experiments. First, we justify the accuracy of the Gyroscope sensor and present our

selection criteria for cities chosen for evaluation. Subsequently, we present our simulation

and real driving results with a discussion on attack performance and its implications on

user privacy. The attack parameters with default values are given in Table 3.1.

3.4.1 Accuracy of the Gyroscope

The Gyroscope sensor is less impacted by the environment in comparison to the Ac-

celerometer and Magnetometer. The sensor is also heavily weighted in our attack. There-

fore, it is important to first justify the accuracy of Gyroscope data by measuring the turn

errors based on real driving experiments. We use 4 smartphones of different brands and

models, and take total 70 driving routes in both Boston and Waltham (Massachusetts,

USA). To assess the Gyroscope errors, we extract the truth turn angles θi of taken routes
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Table 3.2: List of phones tested for accuracy along with the number of turns, and the

Gyroscope noise’s mean and standard deviation.

Phone Turns N Mean µ Std. dev. σ

HTC One M7 482 1.73◦ 7.07◦

LG Nexus 5 618 -0.77◦ 7.89◦

LG Nexus 5X 170 -1.12◦ 6.40◦

Samsung S6 238 -0.57◦ 7.51◦

from OpenStreetMap, then for each θi, we obtain the Gyroscope angle αi (after sensor

data processing phase) and compute turn errors ei = αi − θi. As observed from Figure 3.5

showing histogram of ei, the error distribution for each phone closely follows a normal

distribution with more than 95% of errors below 10◦. Table 3.2 indicates almost equal

noise standard deviation of each device. For all routes combined for 4 phones, the mean

µ and standard deviation σ values are 0.003 and 7.54, respectively.

3.4.2 Evaluation of Simulation Routes

Selection of Cities: To assess the attack’s impact on diverse cities of the world, we

identified 11 cities for simulations based on their size, density and road structure. Ta-

ble 3.3 summarizes their attack-related characteristics such as the graph size (number of

vertices |V| and edges |E|) and distribution of turn angles at intersections (mean µturn

and standard deviation σturn).

Big cities such as Atlanta, Boston, London, Madrid, Paris, and Rome create larger

graphs than the rest according to our construction method. While Manhattan is quite

populated, it has the smallest graph in our set because the graph only contains maximal-

length segments. Manhattan is dominated by long east-west and north-south roads, many

of which are parallel forming fewer segments. The top cities with grid-like road structures

are Atlanta, Manhattan, and Sunnyvale with low values of σturn. Berlin, Boston, London,

and Waltham have more spread out turns, but not as much as Madrid, Paris, Rome, and

Concord. Figure 3.6 shows the turn angle distributions for some selected cities, where we

observe that the majority of intersections in Sunnyvale and Manhattan are 90◦ while the

others have more unique turns.
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Table 3.3: List of cities used for the location tracking attack evaluation with their charac-

teristics: graph size (|V|, |E|) and turn angle distribution (µturn, σturn).

City |V| |E| Mean µturn Std Dev σturn

Atlanta, GA, USA 10529 25557 88.73◦ 17.58◦

Berlin, Germany 4708 19752 88.21◦ 19.87◦

Boston, MA, USA 8010 22149 89.69◦ 20.52◦

Concord, MA, USA 3049 6467 88.13◦ 29.58◦

London, UK 9468 21968 87.83◦ 20.38◦

Madrid, Spain 10012 30144 86.41◦ 25.13◦

Manhattan, NY, USA 1033 3699 89.23◦ 17.81◦

Paris, France 6744 11204 86.35◦ 26.26◦

Rome, Italy 9408 20577 85.98◦ 26.15◦

Sunnyvale, CA, USA 5592 12302 88.59◦ 16.00◦

Waltham, MA, USA 3366 9437 88.93◦ 20.53◦

Creation of Simulation Routes: We test the feasibility of the attack on selected cities

by running the system on simulated routes. In case of Boston and Waltham, we also col-

lected 140 driving routes used for experimental evaluation (cf. Section 3.4.3). Both sets of

simulation and real routes are converted to the same format for compatibility, in which

the user’s route is represented as a sequence U = ((h1, α1, t1, ~C1), . . . , (hN , αN , tN , ~CN)).

The heading vector hi represents the direction of vehicle right before entering an inter-

section with turn angle αi, whereas ti and ~Ci are the time duration and curvature of the

travel between the previous intersection and the next one.

Route Generation: Using the constructed graph GG = (V, E) for a selected city G, each

simulation route is created by first randomly choosing a route length N ← {4, . . . , 11}

and then adding N random connected segments that satisfy (a) turn angle constraint:

30◦ ≤ |αi| ≤ 150◦, (b) travel time constraint: ti ≥ 10 s. Note that as these segments

are maximal-length, the system may choose connections that are large distances apart

for larger segments. In our simulations, the generated routes are between ≈ 0.5 km and

≈ 48.15 km with an average length of ≈ 7.15 km.

Adding Noise: To simulate realistic scenarios, we add various levels of noise to the
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Figure 3.6: Distribution of intersection turn angles in selected cities.

route’s characteristics. The Magnetometer noise nm is added to hi by a uniform distribu-

tion such that −90◦ ≤ nm ≤ 90◦. To mimic the travel time in practice, we add uniform

distributed noise nt to ti such that ti
β ≤ ti + nt ≤ ti

β′ , where β is the over-speeding ratio and

β′ is the lower bound speed ratio which attempts to model the slow driver or traffic jam.

While β is fixed to 1.5, β′ is varied depending on simulation scenarios defined shortly

below. The Gyroscope noise is finally added to both turn angles αi and curvature ~Ci ac-

cording to a normal distribution N (µ, σ) with µ = 0.003 (obtained from Section 3.4.1).

Note that the noise margin with simulated Magnetometer and travel time is relatively

higher than in reality; for instance, the Magnetometer error is found to be only around
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60◦ for our devices, while in practice drivers rarely exceed 15% (i.e., β = 1.15) of speed

limit (e.g., 75 mph in a 65 mph speed zone in Boston).

Simulation Scenarios: To understand the attack performance under various environ-

ments, our simulation evaluation is performed and reported for different scenarios in

which several noise parameters are adjusted from the above settings.

• Ideal: noise-free scenario (upper bound performance).

• Worst: σ = 10, β′ = 0.1. In this scenario, we consider heavy traffic and old smart-

phones with less accuracy.

• Typical: σ = 8, β′ = 0.5. In this scenario, we consider moderate traffic and current

smartphones. Note that σ = 8 is slightly higher than the experimental value σ =

7.54, implying a slightly harder attack.

• Future: σ = 6, β′ = 0.5. In this scenario, we consider moderate traffic and future

smartphones equipped with more accurate sensors as MEMs technology progresses.

Simulation Results: We evaluate the potential of the attack for all cities in Table 3.3

using the above 4 noise scenarios. In total, there are 44 test cases and we generate a

new set of 2000 simulation routes for each test case. We use the same scoring weights

ωA = 2.5, ωT = 0.1, ωC = 2.5 for every city. These weights are selected as they are

relatively good for all cities, and our main simulation goal is to evaluate the attack using

the same configuration for different city profiles. Other parameters used for the attack are

specified in Table 3.1. The attack outcome is evaluated according to both individual rank

and cluster rank. For the latter metric, we choose the proximity threshold ∆ = 500 meters,

which typically covers a few house blocks or apartment buildings.

Figures 3.7 and 3.8 shows the Cumulative Distribution Function (CDF) of individual

and cluster ranks (i.e., Pidv and Pclt) produced by the attack. For the Typical scenario, we

see that the system is able to find more than 50% (resp. 60%) of exact routes (resp. clusters

of routes) in the top 10 results for all cities except for Atlanta, Berlin, and Manhattan. Even

in the Worst scenario, more than 35% (resp. 40%) of exact routes (resp. clusters) are found

in the top 10 results. In case of cluster rank, we examine the results in more detail and
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(b) Atlanta (σ = 17.58)

0 20 40 60 80 100

Individual Ranks

0

20

40

60

80

100

C
D

F

0 20 40 60 80 100

Cluster Ranks

Ideal

Future

Typical

Worst

(c) Manhattan (σ = 17.81)
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Figure 3.7: Attack performance on simulation routes for cities with less unique turns (low

σturn).

find that each cluster comprises of a small set of routes (approximately 1-20 routes per

cluster). This explains why cluster ranks are only slightly better than individual ranks.

Among cities having low σturn (less unique turns) in Figure 3.7, Manhattan results in

lower ranking than Atlanta and Sunnyvale even when it has a higher σturn and smaller

graph size (lower |V| and |E|). This can be attributed to two factors: (1) Manhattan has

mostly straight roads reducing the curvature impact on scoring, and (2) most roads are

parallel rendering heading filters ineffective. Atlanta and Sunnyvale, on the other hand,

have more curvy roads that do not run in parallel. Atlanta has a lower ranking than

Sunnyvale due to many more segments and connections that significantly increase the

search space and inversely affect the results. Berlin, like others in this group, has many

90◦ turns and straighter roads and reports results in between Atlanta and Sunnyvale.

Among cities having high σturn (more unique turns) in Figure 3.8, the turn angle

impact on scoring is high (especially very high for Madrid, Rome, Paris and Concord,

cf. Table 3.3). The attack for Concord is most successful because its high number of
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(b) Boston (σ = 20.52)
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(c) Waltham (σ = 20.53)
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(f) Paris (σ = 26.26)
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Figure 3.8: Attack performance on simulation routes for cities with more unique turns

(high σturn).
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curvy roads and unique turns helps diversify the route’s score, and the small graph size

significantly reduces the search space. Paris creates somewhat more difficulty for the

adversary in comparison to Rome and London even though it has a higher σturn and

lower |V| and |E|. This can be explained by the fact that many internal roads in Paris

are straight, reducing the curvature impact on scoring. Madrid, like Paris, also has a lot

of straight roads and the rankings are slightly lower than Paris due to a high |V|. The

attack seems easy in Rome and London thanks to the high variations in curvature in both

cities. Boston has lower ranking than London even when it is similar in turn distributions

and graph size. This is mainly because Boston has several grid-like residential areas such

as South Boston and Back Bay that create much confusions for routes passing through

such areas. Waltham’s road structure is similar to Boston’s except that it is much smaller,

which becomes the main factor for increasing the attack performance.

3.4.3 Evaluation of Real Driving Experiments

To measure the attack efficiency in reality, we collected real driving experiments in Boston

and Waltham. For each city, over 70 different routes were driven. These routes emulated

realistic scenarios, e.g., traveling between residential areas, shopping stores, office, or city

centers. There were 4 drivers participating in the experiments and they were instructed

to (1) place the phone anywhere but in fixed position during collection, (2) idle for at

least 10 seconds before driving, and (3) drive within the city limit and take a minimum of

3 turns on their route. These requirements allow us to model typical realistic scenarios,

in which the victim puts their phone in a stable position (cup holder, mount, etc.), then

takes a few seconds to put on the seatbelt, and adjust the seat, mirrors, or lights. In

this initial study, we did not consider situations when the vehicle starts by reversing. We

emphasize that given the limited resources, we aimed to obtain a data-set as diverse as

possible and did not request the drivers to repeat the same routes. Still, all routes consist

of total ≈ 980 km, including driving in both peak and off-peak hours. Scoring weights

(ωA, ωT, ωC) were fine-tuned based on road characteristics: (3.0, 0.1, 2.75) for Boston, and

(2.25, 0.1, 2.5) for Waltham. Boston has more unique turns than curves attributing to the

higher ωA, while Waltham has more unique curves than turns attributing to higher ωC.
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Figure 3.9: Real driving experiments statistics showing the GPS traces for all traveled

routes; and the Turn and Distance distributions for all routes combined.

Waltham has typically less traffic than Boston, therefore, we assign lower ωA and ωC to

increase the impact of ωT.

Figure 3.9 shows the distribution of turns made on all routes, total traveled distances,

and the GPS traces. Note that GPS is used only for ground truth comparison. The shortest

route driven was ≈ 0.75 km and the longest ≈ 7.25 km. Additionally, 4 more routes were

driven to consider scenarios of driving in a circle, taking many turns (≥ 20), and traveling

longer distances (≥ 20 km). These routes were also used to test the system’s stability.

Figure 3.10 shows the attack performance in terms of both individual and cluster

ranks. The reported results are a worst-case scenario with no a priori information on the

user’s routes. We see that roughly 60% of routes in Waltham and roughly 30% of routes

in Boston are in the top 10 individual ranks. When top 1 is considered (i.e., exact route),

the success probability reduces to 38% for Waltham and 13% for Boston, respectively.
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Figure 3.10: Attack performance on real driving experiments collected in Boston and

Waltham.

The gap between individual and cluster ranks is about 10%, which is almost similar to

simulations. The number of routes per cluster is around 2-3 for most top ranked clusters.

The performance for both cities lies between the simulation’s Typical and Worst scenarios.

However, the results for Boston are closer to the Worst scenario, while Waltham’s are much

like the Typical. The main reason for this difference is the traffic in Boston that caused

more variations in estimating non-idle time than Waltham. The small gap between real

and simulation results shows that our simulation framework may serve as an effective

model for studying the attack in a larger scale where experiments are limited.

3.4.4 Feasibility of the Attack

The colluding server was setup as a Linux Virtual Machine on a Dell PowerEdge R710

server. It had 2x4 cores with 16 threads running at 2.93 GHz, with 32 GB of RAM. The

system is written in Python and run using PyPy, a fast Python JIT compiler. We measure

the feasibility of the attack in terms of execution time for processing data and searching

routes. The search time specifically depends on the route length and graph size.

Data Processing: The longest experimental route (approximately 45 minutes long) in

our set requires ≈ 1.4 s to process the sensor data and produce a trace of heading, turns,

curves, and timestamps, while an average route takes 0.1− 0.2s.

Route Search: The search algorithm has a worst case time complexity of O(nve), where
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Table 3.4: Test cases for impact of parameters and calibration.

Test case Parameter settings

Optimized As in Section 3.4.3

TurnW As Optimized, except ωT = 0, ωC = 0

TimeW As Optimized, except ωA = 0, ωC = 0

CurveW As Optimized, except ωA = 0, ωT = 0

HeadingTh As Optimized, except φm = 30◦

TimeTh As Optimized, except β = 1.0

TurnTh As Optimized, except γ = 20◦

Uncalibrated Optimized without calibration

n denotes the number of turns in a route, v denotes the number of vertices in graph

G = (V, E), and e denotes the number of edges of v such that (v, e) ∈ E. The value of n is

typically quite small for a route (< 10). The value of e is also not large and varies based

on the length of maximal-length segments of the area. For Atlanta, the largest city in our

set, this value ranges between 1 and 123, with a mean of 30. Note that this represents a

worst case timing for our attack, and the top path selection and filtering rules significantly

reduce the search space (cf. Sections 3.3.2 and 3.3.4). In reality, the search for each route

in Atlanta takes only about 2.2 s. For Concord, the smallest one, each route takes about

0.4 s. We use 15 threads to parallelize the search on multiple routes, and 1 remaining

thread for control and management. Using these settings, the simulation of 88000 routes

took ≈ 21 hours to complete (≈ 0.85 s per route).

This indicates that the attack is practical (e.g., less than 4 seconds for a long route in

Atlanta). With adequate resources, an adversary can quickly search millions of routes.

3.4.5 Impact of Algorithm Parameters on Attack Performance

In this subsection, we study the attack performance under various conditions such as

when calibration is not performed, or the algorithm parameters are not carefully se-

lected. We use the real driving experiments from Boston and Waltham and re-perform

evaluation changing one parameter at a time to better understand the impact of individ-

ual parameters. For comparison, the performance achieved with parameters optimized
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(a) Impact of changing parameters and calibration for Waltham experiments.
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(b) Impact of changing parameters and calibration for Boston experiments.

Figure 3.11: Impact of changing parameters and calibration on the attack for real driving

experiments.

in Section 3.4.3 is referred to as the Optimized test case (cf. Table 3.4 and Figure 3.11).

Scoring Weights: To justify the impact of each scoring weight, we ignore the other

weights by setting them to zero in the scoring function, cf. Equation (3.2). Figure 3.11a

shows that curvature is the most useful factor for success probability in Waltham, while

turns only slightly increases the performance. This is not only applicable to Waltham, but

also to cities that have numerous roads with unique curvature. Figure 3.11b shows that

turns is somewhat more useful for success probability in Boston. The travel time varies

more due to external factors such as traffic or unknown speed, making it less impactful.

Hence, weights must be selected based on the target area to maximize the attack success.
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Filtering Thresholds: Filtering allows quick elimination of bad routes, however, it

can also falsely remove good routes. To see the performance impact from over-filtering,

we reduce the thresholds for turn, heading, and travel time as specified in Table 3.4.

We observe from Figure 3.11 that tighter turn, heading and travel time thresholds do

not significantly decrease performance, which implies that the sensors have small noise

margin and stricter rules can be applied to speed up the search if execution time is of

high priority.

Calibration: Recall that drivers were instructed to stay idle for at least 10 s before driv-

ing. While this allows for easy calibration, an alternative calibration method can be used

that first detects idle time (based on Accelerometer) and then computes the Gyroscope

drift during that state. This enables calibration whenever the vehicle is idle (e.g., stopped

at traffic lights) and the parking assumption can be relaxed. We observe from Figure 3.11

that performance does not decrease significantly even without calibration. The individ-

ual ranks drop by 10%− 15% in comparison with Optimized which implies calibration is

optional rather than a required operation.

3.4.6 Impact of Assumptions on Attack Performance

In this subsection, we discuss the impact that the assumptions made for this work may

have on the attack performance.

Route Equiprobability: We emphasize that the reported results in this work are based

on the worst-case assumption of no a priori information of the victim’s travel history.

Knowing the starting or ending point would improve the accuracy. On the other hand,

such travel history information can be built up over time to improve the attack. We plan

to study such extensions in the future.

Fixed Position: Our assumption of fixed phone position is realistic in various scenarios

(e.g., many states in the USA prohibit hand-held use). However, users may still interact

with their phones while driving. We describe an idea (we did not implement it) that can

increase the possibility of distinguishing between a real turn and a change in phone’s

orientation due to user interaction. The idea is based on the observation that human
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interaction (e.g., touching, holding in hand) induces high variations in sensor data in all

3 dimensions for a short duration. Note that if the variations are low, the attack is barely

affected and there is no need for detection. When such events are detected, we simply

ignore the sensor data, and later, re-perform rotation to reflect the phone’s new position.

In practice, however, more complex algorithms would be required to deal with noise and

unknown human behaviors, which can be studied in the future.

Detection of Vehicle Start: In this work, we assume that it is feasible to determine

when a user enters their vehicle. This can be done a posteriori with the app continuously

recording the sensors (storing a window of few minutes) and using techniques described

in [77] to detect when the user stops walking and steps into the vehicle.

Reversing: In this work, we assume forward-only motion of drivers. While reversing can

be detected using the Accelerometer, a more complex problem may arise when turning is

performed at the same time as reversing (e.g., making a U-turn or parallel parking). This

increases the search space, and our algorithm would have to be extended to roll back to

previous states along all candidate routes.

Known City: Knowledge about the victim’s city can be obtained in several ways. For

instance, the app can detect the city based on IP address when the victim is connected to

Wi-Fi or cellular networks. Additionally, an adversary with access to the victim’s social

network can find the victim’s city, frequently visited places, and even route patterns. A

powerful adversary can also run the attack on multiple geographic areas in parallel. These

techniques can be combined together to devise an effective attack.

3.5 Related Work

Smartphone privacy attacks have recently attracted significant interest. They typically fall

into one of three categories: (1) most attacks use cellular signals, GPS, Wi-Fi, Bluetooth,

NFC, Wi-Fi Direct and other radio communication mechanisms (henceforth, we will refer

to them as wireless location support systems or WLSS), (2) sensor centric attacks use

native smartphone sensors such as the Gyroscope, Accelerometer and Magnetometer as

data sources with no WLSS involvement, and (3) the hybrid cases are where the victim
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makes available, albeit to a limited community and on a limited basis, their location.

These attacks use WLSS and sensor data integration.

Fawaz et al. [2] reported that 85% of surveyed users expressed concern about convey-

ing location information. Some countermeasures emerged in the form of location privacy

protection mechanisms or LPPMs. These services obfuscate location information by mod-

ifying precision or performing location transformation. As they attempt to deflect WLSS

centric threats, LPPMs remain ineffective in mitigating our threat.

WLSS Based Attacks: WLSS based attacks typically require either apps installed on

a smartphone with appropriate permissions or significant presence within the network

infrastructure. We do not address the former as the user consciously forfeited some

degree of position anonymity. The infrastructure attack involves taking over some of the

infrastructure components or injecting signature probes and are subject to detection by

conventional means (i.e. IDS or IPS solutions). WLSS attacks provide accuracies near 90%

when attempting path identification.

Qian et al. [78] attempted targeted cellular DoS attacks. Of relevance is identifying the

specific smartphone location as a precursor to the attack. The attack seeks to gain IP iden-

tification using techniques like active probes and fingerprints. By measuring promotion

delay and Round Trip Time (RTT), cellphone localization is achieved with granularity to

the Location Area Code (LAC) / Radio Network Controller (RNC) range. Its effectiveness

is limited due to measurement tuning needs and RNC sharing observed among smaller

cities. This expands the geographical area cross section from which to identify the user.

As with WLSS attacks, introducing network probes may enable detection.

Kune et al. [79] describe location determination via leakage from lower level Global

System for Mobile Communications (GSM) broadcasts, in particular, a victim’s tempo-

rary identifier. For this attack to work, the attacker must initiate a Paging Control Chan-

nel (PCCH) paging request targeting the victim and passively listen for broadcast PCCH

messages. Although relatively simple, it places the attacker as an active network partici-

pant which risks detection. It also requires a priori knowledge of the victim’s telephone

number. Position resolution was observed to within 1 km2.
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Bindschaedler et al. [80] use a group of 802.11 access ports to eavesdrop on proxi-

mate target smartphones in order to evaluate mixing zone effectiveness. Data collection

includes device time, location, device identifier and content. Although victims may at-

tempt to hide via a mix-zone network where MAC addresses are synchronously changing

(assuming sufficient group membership), tracking can be achieved. This attack requires

collusion of multiple APs and Wi-Fi or equivalent communications mechanisms. This

may be impractical to set up exclusive of the most sophisticated attackers.

Hybrid Attacks: There are a number of works [81, 82, 83, 84, 85, 86, 87] that combine

WLSS data with motion / inertial sensors to infer user location, mode of transit, orienta-

tion and behavior. Of those surveyed, we find best case accuracies near 80%. Although

positional accuracy benefits offered by these mechanisms are interesting, these attacks

generally require obtaining a ’fix’ via WLSS functionality prior to leveraging sensor data.

This exposes the attacker to WLSS discovery mechanisms.

Zhang et al. [88] developed the SensTrack system which identifies turning points

using a smartphone’s Accelerometer to determine speed, distance, and orientation. Ad-

ditionally, they use sensors with adaptive Wi-Fi and GPS switching to address location

contexts where GPS is less effective (i.e. indoor locations). Their system achieved pre-

diction errors of nominally 3.128 meters versus 5 for good GPS signal strength. This

approach assumes some location predetermination using GPS for initial reference posi-

tion. Furthermore, the short distances within a building do not offer the challenges one

realizes in the spatial-temporal context of driving a vehicle.

Sensor Only Attacks: The following attacks are most representative of our approach as

they rely entirely on zero-permission sensor sources. Table 3.5 summarizes the scalability

and inference accuracy of these related works in comparison to our attack.

Han et al. [21] suggested a method of location inference using the Accelerometer and

Magnetometer. Leveraging a probabilistic dead reckoning method called Probabilistic

Inertial Navigation (ProbIN), they mapped probability of displacement to probability of

motion. Training data associates sensor data with map truth. Resolution is observed

approaching 200 meters, the length of a typical city block. Their small sample size limited
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Table 3.5: Summary of the scalability and inference accuracy of related works in compar-

ison to our location tracking attack.

Scalable to Cities? Inference Accuracy

ProbIN [21] Not scalable, needs sensor data mapped to dif-

ferent roads for training

Location resolution of 200 meters

Nawaz et al. [22] Not scalable, uses DTW that requires significant

computing power

Accurately clustered 43 routes in 8 clusters

Zhou et al. [89] Not practical, (1) traffic variation impacts accu-

racy and (2) requires navigation app

Accuracy of 70% in a small sample set

PowerSpy [19] Not scalable, needs power profile mapped to

different locations for training

Accuracy of 66% with moderate count of apps,

20% with more apps

This Attack Scalable, algorithm searches large routes in

large cities in seconds

More than 50% of exact routes in top 10 search

results for 8 out of 11 cities

the experimental path length range to between 1 km and 9.7 km. Although claiming

better accuracy than achievable using Wi-Fi or cellular techniques, their approach greatly

depends on acquiring training data which may present a resource challenge (i.e. time and

labor) in large scale scenarios.

Nawaz et al. [22] demonstrate that a smartphone’s Accelerometer and Gyroscope can

be used to identify ‘significant’ journeys independent of phone orientation and traffic.

This is because Gyroscope signatures obtained from multiple journeys of the same route

exhibit similar patterns that differ only in amplitude and time compression or expansion.

They apply Dynamic Time Warping (DTW) to calculate the distance between various

journeys and use a k-medoids clustering approach to cluster similar routes together. A

route is labeled as significant if it is traveled more times than a predefined threshold.

They test this technique for two cities using 43 real driving experiments and showed that

the routes were accurately clustered in 8 clusters defined for the two cities. This attack

presents a resource challenge in large scale scenarios because DTW has a time complexity

of O(mn), where m and n are the number of Gyroscope samples in the two routes. For any

small or large city, comparing two short 10 minute routes at a low Gyroscope sampling

rate of 20 Hz (totaling 12, 000 samples) requires 144, 000, 000 iterations. Our attack is
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significantly more efficient as even large cities like Atlanta require a hundredth of the

iterations in the worst case, i.e., 1, 579, 350 iterations assuming 10 turns, 15 edges per

vertex and no filtering. The use of filtering significantly decreases the iterations. Grid

road networks are addressed differently as they depend on turn count as a uniqueness

metric and suggest that their technique is effective for reasonably long routes because

such routes exhibit a unique sequence of turns even when individual turns are similar.

Zhou et al. [89] describe a novel technique that analyzes verbal directions provided

by a GPS based navigation app. Using a second zero-permissions app, they measure

speaker on/off times controlled by the navigation app. The attacker can infer which

course a driver took due to the duration of these audible driving instructions. Permission

for speaker usage is not required as of this writing. Associating talk time to an off-board

synthesized instruction driving set yields a 30% false positive rate over a small sample

size (7 out of 10 correct). This approach requires the use of a voice enabled navigation

system. Furthermore, it assumes that the navigation app is trustworthy.

Michalevsky et al. [19] introduce a power based scheme, called PowerSpy, that distin-

guishes a user route from a set of possible routes in real-time. Furthermore, they attempt

to infer new routes by constructing projected route power profiles that are aggregated

from shorter, known segment power profiles, all using 3G networks. With a ’modest’

number of applications running, they achieve accurate results in 2/3 of the scenarios

while the results degrade to an accuracy of 1/5 with additional active applications such

as Facebook and Skype. In addition, they are limited by the need to provide data to the

learning machine which itself limits scalability in obtaining training data.

Behavior Analysis: This research area involves determining user modality from smart-

phone sensors. For example, ergonomic / activity identification is discussed in [90]. The

authors use learned data from walking, jogging, climbing stairs, sitting, and standing to

ascertain user activity. They identified and collected data for 43 features from a 29 person

sample set. Raw data was evaluated using the WEKA data mining tool suite to develop

decision tree, logistic and regression and multilayer neural network models. Excluding

motions associated with moving up and down stairs, the method can identify activity
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nearly 90% of the time. Although of a single modality and reasonably well suited for

human activity identification, this has limited ability to ascertain paths with much less

start and stop points.

Lee and Mase [91] studied the feasibility of detecting user behavior such as sitting,

standing, walking on level ground, going up or down a stairway as well as determining

the number of steps taken to infer a person’s location in an indoor environment. They de-

veloped a system using the Accelerometer and Gyroscope sensors to measure the forward

and upward acceleration and angle of the user’s legs. Additionally, the compass is used

to determine the direction of movement. The phone is mounted on different body loca-

tions and a dead-reckoning method is applied to estimate the user’s location. The authors

show that their system efficiently calculated the number of steps and location for eight

individuals, using a predefined database of selected locations in an office environment.

They claim a high recognition ratio of 91.8% for ten unique location transitions.

Other Works of Interest: Two additional works are noteworthy. They include a pat-

tern matching / machine vision approach to path traversal tracking and a framework to

measure the effectiveness of the attack.

There are numerous examples in the literature for matching shapes, patterns and

contours. We identify one here for this discussion. Kupeev et al. [92] decomposed shape

contours in terms of segments for purposes of determining similarity of contours. They

were able to analyze 24 shape distances with 32 unique quantized rotation angles against

one another. The error rate appeared to be less than 10%. Of importance is the limited use

of this technique observed in the location privacy space. This approach’s weaknesses are

similar to other contour matching solutions in that the subtle differences in road contours

may not be distinguishable between similar yet geographically separate roads.

Shokri et al. [93] suggest a framework for scoring location privacy protection mech-

anisms. Here, they define a triad taxonomy of accuracy, certainty and correctness where

the latter represents the metric that determines the privacy of user. To our knowledge,

this is the first significant attempt at establishing an evaluation framework for comparing

privacy schemes.
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3.6 Conclusion

We modeled the problem of tracking vehicular users as the problem of identifying the

most likely route on a graph derived from the city’s roads public database. The perfor-

mance results of our algorithms, both simulations and experimental, indicate that in most

cities a significant number of users are vulnerable to tracking by seemingly innocuous ap-

plications that do not request permissions to any sensitive information. We believe that

this calls for rigorous methods and tools to mitigate side-channel attacks making use of

mobile phones sensors.
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Chapter 4

Mitigating Location Leakage with Dynamic App

Sandboxing

This chapter describes the design and implementation of the MATRIX framework for An-

droid that addresses some current privacy protection weaknesses in the Android ecosys-

tem, and provides users with a tool to analyze how apps access their private information

as well as the capability to change how certain untrusted apps receive location and sensor

data. The chapter is structured as follows. In Section 4.1, we discuss the status of current

Android privacy and protection mechanisms with a special focus on location and sensor

information. In Section 4.2, we outline the high-level design of MATRIX and discuss how

it addresses weaknesses in current privacy protection mechanisms. In Section 4.3, we

describe some of the previous related work. Section 4.4 provides a detailed description

of MATRIX’s architecture and services. Section 4.5 provides a detailed description of our

technique for generating realistic privacy-preserving synthetic user identities and mobil-

ity trajectories. In Section 4.6, we outline the evaluation metrics and present the results of

our evaluations. We conclude in Section 4.7.

4.1 Privacy in Android Location and Sensors

This section provides a background on Android location and sensor specific APIs and

current privacy protection schemes in the context of MATRIX. The weaknesses in these

schemes are also discussed.

4.1.1 Android Location & Sensor APIs

The MATRIX framework requires auditing location and sensor API calls and changing

the location information reported to an app in some contexts. This information can be
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Service in an Android device.

audited / modified on an Android device by monitoring specific APIs.

Location information can be requested using four set of APIs and their communi-

cation occurs as shown in Figure 4.1. The LocationManager is the core API that is pro-

vided by default in all versions of the Android SDK. The FusedLocationProviderClient,

FusedLocationProviderApi (deprecated) and the LocationClient (deprecated) are pro-

vided by Google Play services as recommended closed source alternatives that consume

less battery for higher accuracy data. All these APIs contain certain request* and

remove* calls that allow apps to register and unregister for receiving location updates

(e.g., requestLocationUpdates in LocationManager) 1©. These managers communicate

with the LocationManagerService, a privileged service that runs within the system con-

text and communicates with the drivers over the Binder interface 2©. The manager and

the service check whether the app has the required permissions (ACCESS FINE LOCATION

or ACCESS COARSE LOCATION) to request location updates and registers the app’s listener.

These listeners are implementation of the LocationListener interface, PendingIntent or

LocationCallback classes in Android 3©. Once registered, location information is sent

asynchronously to the listeners based on the criteria set by the app (e.g., quality, rate,

latency) 4©. The managers also contain additional calls like getLastLocation that can

return a location update immediately.

Sensor information (e.g., Accelerometer, Gyroscope, Magnetometer) can be requested
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in much the same way as the location managers, by using the SensorManager API. The

listener for sensor updates are an implementation of the SensorEventListener interface

in Android. It is important to note that access to these sensors does not require any

permissions in any versions of Android. Also, these sensors can be accessed by apps in

the background, without any notification or visual cues to the user.

4.1.2 Location Privacy Protections

Android implements some location privacy protection mechanisms that are aimed to give

users the capability to control how and whether certain apps can access their location

data. These protections are discussed below.

Permissions Model: The most important location privacy protection is implemented

in the form of permissions that apps must request in order to access location services.

Android has two permissions that can be used to obtain the user’s location information:

ACCESS FINE LOCATION or ACCESS COARSE LOCATION or both. The former allows apps to

access high accuracy location information, while the latter provides obfuscated location

information to hide the user’s location. Before Android Marshmallow, these location per-

missions were requested by the app at install time giving a user the option to either install

or reject the app completely. Recently, Android switched to a run-time permissions model

where the permissions are requested when an app accesses location specific APIs, giving

the user the option to deny that specific call and continue using the app.

GPS Activity Notification: The Android operating system displays a notification icon

on the notification bar of the device, whenever any app requests location information

from the GPS location provider. This notification can also be expanded in some versions

of Android to reveal the location data received, and the accuracy of this data.

Location Obfuscation: The Android operating system implements a location obfusca-

tion scheme to hide a user’s location from apps using just the ACCESS COARSE LOCATION

permission. The implementation is in com.android.server.location.LocationFudger

under the Android source tree [94]. We analyzed this code to find that the real location

information is obfuscated in two steps. First, a random offset is applied to the location to
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mitigate against accurate detection of grid transitions when a user crosses a grid bound-

ary. This offset is changed slowly over time (e.g., once every hour) to mitigate against

location inference attacks, where numerous samples are collected over time and averaged

to get accurate location. Second, the primary means of obfuscation is to snap the offset

data (already mitigated against grid transitions) to a grid. This grid radius chosen by

most recent versions of Android is 2000m. We call this technique a space-time snapping.

4.1.3 Weaknesses in Current Protections

The privacy protection mechanisms discussed above are not sufficient for protecting a

user’s privacy. Some of their weaknesses are discussed below. Note that these weak-

nesses are labeled (W#) for ease of referring to them in the next sections. Moreover, App

stores (e.g., Google Play Store) do not provide enough information about the privacy

practices of an app, and entrust the decision of installing the app on the user. Without

any information, users are more than likely to install an app if they require the services

provided by that app.

Weak Permissions Model (W1): The dynamic permission model implemented by

Android is a good step in notifying users about access to their location information.

However, this protection is limited as users can set the option to always allow access.

This means that the user will not be notified about location access again even if the app’s

context has changed, i.e., location is accessed from another activity or from a background

service, or a previously benign app is updated with a privacy intrusive version.

Weak Location Activity Notification (W2): The location access notification icon is dis-

played only when an app registers for continuous location updates. Other means of loca-

tion access can bypass this protection. One such example is the getLastKnownLocation

call in LocationManager which can be invoked numerous times for receiving continuous

location updates. Furthermore, the notification simply indicates that some app has ac-

cess to location and no further information is given to the user to make privacy-aware

decisions. Also, no versions of Android display notifications for sensor access using the

SensorManager even when they are now known to leak location information.
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Non-existent Auditing Capabilities (W3): Android does not provide a framework

to audit how apps access a user’s private information. This capability was added in

Android Jellybean (4.3) in a permission manager called App Ops, but later removed

from Android KitKat onwards. The removal might have been caused by a substantial

number of apps crashing, when specific permissions were denied to those apps.

Restricted Privacy Preferences (W4): Android does not provide a framework for

users to define their privacy preferences for apps installed on their device. Users with

Android Marshmallow onwards have the capability to deny location access to certain apps

by disallowing location permissions. In earlier versions of Android, users could simply

deny location access completely on the device. While this provides privacy guarantees to

users, certain apps can then deny service to the users. One may argue that users should

simply not use apps that they don’t trust. However, there are situations in which users

do not wish to disclose their locations, in particular at some moments in time, and still

require the app. One example of this is when the app is turned-off or in the background.

Location Granularity Settings (W5): Android implements two accuracy levels for

location data which apps can request. For fine location, an app can receive location

updates with a granularity of up to 3 meters. For coarse location, it can receive obfuscated

location updates with a minimum accuracy of a city block. This obfuscated location still

leaks some information about the user’s location. There is currently no mechanism for

users to completely hide their location by sending out synthetic information.

4.2 High-Level Approach

The MATRIX framework was implemented with the objective of addressing all location

privacy protection weaknesses in modern Android operating system. To the best of our

knowledge, our framework is currently the only one to provide real-time visual notifi-

cations of location and sensor access activity to the users. The notification bar is updated

whenever an app accesses these sensors and displays which apps are actively accessing

information from which sensors on the device (W2). The framework implements fine

auditing capabilities designed for both end-users and researchers / security apps desir-
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ing to assess the privacy posture of installed apps on the device. End-users can view all

location and sensor access information as intuitive graphs. Other apps can get access to

the audit logs via a permission protected secure API (W3).

The MATRIX framework also implements a location privacy preference module that

enables users to set the type of location data an installed app can receive. This module

currently implements three settings for location granularity: Block level, City level and

Synthetic (W4). MATRIX is the first, to the best of our knowledge, to automatically gener-

ate realistic randomized privacy-preserving synthetic identities and trajectories for users

by modeling a user’s mobility patterns as a finite state machine, modeling timing con-

straints as a Linear Program, generating state transitions as a graph route with historical

traffic information, and incorporating user driving behavior in the routes (W5).

MATRIX uses a different approach for location permissions. It relies on the default

permission manager provided by Android Marshmallow and onwards, but restricts lo-

cation access for background apps by default. Instead of completely denying location

information, it detects if the requesting app is in the background and provides it the last

location fix that the app received in foreground to prevent it from tracking users (W1).

The high-level design of the framework comprises of four main modules: an API Call

Interceptor Service, an App-activity PrivoScope Service, a Synthetic Location Service, and

a Synthetic Location Provider. The API Call Interceptor Service intercepts calls to location

and sensor APIs so that their parameters can be logged or modified. We implemented this

service using the Xposed Framework [95] as it is open-source, well supported and popular

among Android users. The App-activity PrivoScope Service generates and logs events

when a privacy sensitive API is invoked. It provides a graphical interface to the users

to monitor, visualize, audit, and analyze when and how an app accesses their location

data and phone sensors. It also exposes a permission-protected API that allows other

security apps installed on the smartphone to get real-time information about which apps

access the location and sensors information. The Synthetic Location Service provides an

interface to the user to set their location privacy preferences for any app. The last module,

the Synthetic Location Provider generates realistic privacy preserving synthetic identities
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Figure 4.2: The MATRIX framework integration into the Android ecosystem.

and mobility trajectories for users and communicates with the Synthetic Location Service

to provide it obfuscated / synthetic locations whenever the service requests for it.

Figure 4.2 shows how the MATRIX framework integrates into the Android ecosys-

tem. The PrivoScope Service and Synthetic Location Service are implemented as system

services that run in the same context as other system services like Camera and Location

services. These services are registered in the system server registry and start whenever

the device boots up. Apps installed on the smartphone interact with these services using

public APIs exposed by the PrivoScope Manager and the Synthetic Location Manager.

These managers are loaded inside the app’s process and communicate with the corre-
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sponding services using the Binder IPC. The services implement the protections that

ensure that only authorized apps use their services. At the user level, MATRIX imple-

ments the PrivoScope GUI that provides a graphical interface to the users to analyze the

app’s privacy practices, and the Location Preference GUI that enables users to set their

location privacy preferences. These activities also use the PrivoScope and Synthetic Loca-

tion managers to communicate with the corresponding system services. The next sections

describe some of the related works, the architecture of these services, and the synthetic

identities and trajectories generation technique in detail.

4.3 Related Work

A large body of research has focused on mitigating location and other private information

leakage attacks on Android devices. Most of these works are orthogonal to our system as

their motivation and techniques differ. Examples of such work include, but are not limited

to, recommending new security frameworks [2, 38, 39, 41, 44, 45], location obfuscation

[23, 24, 25, 26, 27], location cloaking [28], generating dummy locations [29, 30, 31, 32,

33, 96], tainting sensitive data [46, 47], dynamic analysis [48, 49], static code analysis

[50, 51, 52, 53], permissions analysis [54], application retrofitting [55, 56, 57], analyzing

Internet traffic for sensitive information [58, 59], and even cryptographic techniques [60].

Synthesizing human mobility has also been studied in the context of opportunistic

networks [97, 98, 99, 100], ad-hoc and vehicular wireless networks [101, 102, 103, 104],

building group or community based mobility models [105, 106, 107, 108], predicting loca-

tion of moving objects [109, 110], and for implementing efficient location update mecha-

nisms [111, 112, 113, 114]. Some research has also focused on generating synthetic traces

for user privacy [61, 63, 64], however, their traces are not very realistic as they do not

satisfy the traffic constraints for different roads on different times of the day, nor take into

account user driving patterns. In [63, 111], speed patterns from real GPS traces are simply

superimposed on synthetic traces based on the street type without accounting for traffic

conditions of the road. These speed patterns can also be repeated and can be detected. In

[61], the synthetic traces are derived from real traces which does not apply in our context

of generating completely synthetic identities for users. We describe some of the closest
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works to our approach in more detail.

Beresford et al. [40] addressed weakness W1 (cf. Section 4.1.3) on Android devices

by implementing MockDroid, a modified version of Android 2.2.1 with a user controlled

permissions manager. The system allowed users to define mock permissions for apps

installed on the device. The location mock permission was implemented to block all

location fixes from reaching the app simulating a lack of available location information.

The authors ran the system on 27 apps and showed that most of the apps continued to

function with reduced functionality. This system is similar to the current permissions

manager of Android, however, does not mitigate any other weaknesses (W2-5).

Agarwal and Hall [42] addressed weakness W4 on iOS devices by implementing

ProtectMyPrivacy (PMP) as a mitigation system for jailbroken devices. The system inter-

cepted calls that access user’s private data and could substitute user-defined anonymized

data in it’s place, based on the user’s decision. They also implemented a crowd-sourced

app-privacy recommendation system using recommendations from their users. One lim-

itation of this system is that the anonymized data is selected by the user at run-time, and

therefore unrealistic and random. This can be easily detected by an app. They also do

not address weaknesses W2 and W3 that can help users make more informed privacy

decisions regarding apps.

Liu et al. [43] addressed weaknesses W1 and W3 on rooted Android devices by imple-

menting a system called Personalized Privacy Assistant (PPA). This system is a modified

App Ops permission manager that shows an app’s recent requests and also how often

an app requested that resource in the past 7 days. The system uses this information to

generate daily privacy nudges to motivate users to interact and change their privacy set-

tings. They also implemented a privacy settings recommender system modeled using a

SVM classifier and trained by their initial user’s privacy settings. During evaluation, they

showed that 78.7% of the recommendations were accepted by another group of partici-

pants. One weakness of this system is that the usage information is limited to the count

of requests and does not provide additional information (e.g., time and durations of re-

quests, was the app in the background?) to help users make informed privacy decisions.
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Table 4.1: Summary of the protections implemented by current privacy protection systems

in comparison with MATRIX.

MockDroid PMP PPA Zheng et al. Fawaz & Shin MATRIX

System Implemented X X X X X

Addresses Weakness 1 (W1) X X X

Addresses Weakness 2 (W2) X

Addresses Weakness 3 (W3) X X

Addresses Weakness 4 (W4) X X X

Addresses Weakness 5 (W5) X X X

Zheng et al. [104] address weakness W5 by proposing an agenda driven mobility

model that considers a person’s daily social activities for motion generation. They derive

this agenda from the National Household Travel Survey (NHTS) information by the U.S.

Department of Transportation. The first agenda and all subsequent activities are based on

the NHTS activity distribution, and addresses are picked at random from many addresses

for the corresponding activity. The start time of the first agenda determines the schedule

for the entire day and each activity starts immediately after the mean dwell time + longest

transition time from previous activity. The route between two activities assumes a longest

possible time given by the Dijkstra’s algorithm and does not change for different traffic

patterns at different times of the day, nor incorporates any user driving behavior.

Fawaz and Shin [2] address weaknesses W4 and W5 on Android devices by imple-

menting LP-Guardian, a privacy protection framework, modifying the Android source.

The framework changes location granularity of installed apps based on the threat posed

by the app and its location granularity requirements. It automatically coarsens the lo-

cation to a city level if it identifies a request from an A&A library, the app is in the

background, or the app is a weather app. It synthesizes the location for fitness apps but

preserves features of the actual route such as the distance traveled. The framework sup-

plies a synthetic location if it determines that it is not safe to release the location. For other

apps, the system checks with the user if they are comfortable with the location release

and coarsens the location if they decline. The weakness with this system is that, unless

chosen very carefully, the synthetic traces generated for real traces will not snap to streets
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(e.g., different street lengths and curvatures) and can be easily detected as synthetic.

Table 4.1 displays a summary of the protections implemented by related works in

comparison to our system. MATRIX significantly improves on these systems by address-

ing their weaknesses and all the privacy protection weaknesses in Android.

4.4 MATRIX Architecture

This section describes the architecture of the services implemented by the MATRIX frame-

work, namely the API Call Interceptor Service, the App-activity PrivoScope service, and

the Synthetic Location service. The synthetic location generation technique used by the

Synthetic Location service is described in Section 4.5.

4.4.1 MATRIX API Call Interceptor

Implementing an audit framework on Android requires privileged access for intercepting

API calls. Previous mitigation frameworks, with the exception of Boxify [38], were im-

plemented by either modifying the Android source code, using rooted devices, or using

third party frameworks such as the Xposed Framework. The Xposed framework adds an

extended app process executable in the /system/bin folder of the device when installed.

This extended app process adds an additional jar file to the classpath and calls methods

even before the main method of the Zygote process is called. This allows apps to hook

system method calls that are otherwise inaccessible from an app’s process.

The Xposed framework approach is advantageous because it gives MATRIX the ca-

pability to ‘hook’ non-native methods and modify their functionality. It is also supported

for different versions of Android ensuring that the system is portable. Another advan-

tage is that it does not require root to function on the device. We developed a simple tool

that automates the installation of the Xposed framework through a custom recovery (e.g.,

TWRP [115]), with neither rooting the phone, nor user intervention. The framework and

TWRP recovery are both open-source and consistently analyzed and updated by a large

community of Android users, making them quite reliable and secure.

The MATRIX system uses the Xposed framework to intercept location and sensor
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API calls. The framework exposes an abstract class called XC MethodHook with two calls,

beforeHookedMethod and afterHookedMethod, that can alter a method’s execution. As

the name implies, an implementation of beforeHookedMethod would execute before the

actual method, while afterHookedMethod would execute after the actual method has

executed. One example usage in our context is hooking the requestLocationUpdates

method of LocationManager to generate an event in the afterHookedMethod call every

time an app requests location updates. This event contains all the relevant information

about the request and sent to the PrivoScope Service for logging and notification.

4.4.2 The App-activity PrivoScope Service

The PrivoScope service is implemented closely following the Android design paradigms.

The goal is to implement an efficient system with minimal overhead that can easily inte-

grate into the Android ecosystem. Another goal is to provide a modular audit framework

that can be extended to incorporate other modules in the future. At a high level, this ser-

vice uses the Xposed framework to intercept location and sensor APIs, generates events

containing the audit details, adds the events to a database and displays real-time usage

notifications. The service also exposes a permission protected API that other apps can

register to get real-time and archived audit events. It also implements a GUI interface for

the users to analyze app behavior on their device. The motivation is to help users make

privacy aware decisions regarding installed apps. Figure 4.3 shows example screenshots

of the PrivoScope GUI, where Figure 4.3a shows the PrivoScope real-time location and

sensor usage notification, Figure 4.3b shows a list of installed apps sorted on most recent

access of location and sensor APIs, Figure 4.3c shows an app’s details, and Figure 4.3d

shows a timeline of Accelerometer access by an app at different times. Note that the app’s

life-cycle is color coded for the user to differentiate between foreground and background

accesses. Here, the blue color indicates that the app was in the foreground while gray

would indicate background access. The evaluation and performance analysis of Privo-

Scope is reported in Section 4.6.2.

The architecture of the PrivoScope service for a requestLocationUpdate method call

from LocationManager is shown in Figure 4.4. Note that the same flow applies to method
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(a) PrivoScope Notification Bar (b) App Selection Activity

(c) App Detail Activity (d) Accelerometer Activity Timeline

Figure 4.3: Example screenshots of the MATRIX PrivoScope service’s Graphical User

Interface.
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Figure 4.4: A high-level architecture diagram of the MATRIX PrivoScope service.

calls from the other location managers and the sensor manager. Like other Android

services, the PrivoScope service implements a manager called PrivoScopeManager that

exposes public APIs for other apps and a system service called PrivoScopeService that

performs all the security sensitive operations and checks if apps have appropriate access

rights for method calls.

The control flows like this: An app requests continuous location updates using the

requestLocationUpdate method call from LocationManager. The manager and the priv-

ileged LocationManagerService validate the app’s access by checking its requested per-

missions 1©. Once access is validated, the API interceptor service generates an event

containing all relevant information to be logged for auditing. All user privacy infor-

mation contained by the request are ignored. For example, this specific event would

contain the system time, the app package name, the activity invoking the request, whether the

app is background or foreground, the requested location provider, and the requested accuracy and

sampling rate 2©. This event is then sent to the PrivoScopeManager for logging using an

addAuditEvent method call exposed by the manager 3©. The PrivoScopeManager for-

wards this event to the PrivoScopeService which validates whether the package name

in the event is the same as the package name of the app making the request. This ensures
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security as only apps generating an event can add the event. The event is discarded if the

package names do not match and a SecurityException is thrown. In case of a success-

ful match, the event is added to the service’s database 4©. The PrivoScopeService also

sends this event to a Notification service that keeps track of all active apps accessing lo-

cation and sensor APIs and updates the notification bar with this new event information

5©. The PrivoScopeManager exposes a requestAuditEvents method call that other apps

on the device can register for receiving real-time audit events. This call is protected us-

ing a custom permission called GET AUDIT EVENTS and apps must request this permission

for access. The PrivoScopeManager sends the event to all registered apps that receive

this event asynchronously using a AuditEventListener callback interface 6©. Based on

whether this event was successfully added to the database or not, the addAuditEvent

method call returns a boolean value to the LocationManager 7©. Note that steps 3© to 7©

execute in a new thread to ensure that the app functionality and the performance is not

impacted by PrivoScope. After step 3©, the requestLocationUpdate method call simply

terminates as its return type is a void. The other method calls and managers return the

expected values and their functionality is not updated by PrivoScope 8©.

4.4.3 The Synthetic Location Service

The architecture of the Synthetic Location service is shown in Figure 4.5, again in the con-

text of receiving location updates from the LocationManager API. Note that the same flow

applies to all the other location managers. The Synthetic Location service implements

a manager called SyntheticLocationManager that exposes public APIs for other apps

and a system service called SyntheticLocationService that manages and protects the

database storing the user location preferences, and connects with the LocationProvider

to request obfuscated / synthetic locations.

The control flows like this: When an app requests continuous location updates (with

the correct permissions) using the requestLocationUpdates call from LocationManager,

the first steps that occur are the listener registration (cf. Section 4.1.1) and addition of

the audit event to the PrivoScope service’s database (cf. Section 4.4.2). 1©, 2©. After reg-

istration is completed, all the location fixes generated by the LocationManagerService
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Figure 4.5: A high-level architecture diagram of the MATRIX Synthetic Location service.

are typically sent asynchronously to the app’s LocationListener, PendingIntent or

LocationCallback implementation. In MATRIX, these location fixes are intercepted

by a LocationListenerProxy that proxies it to the app’s listener. The proxy works by

hooking the Location object that is used by all the managers to send location fixes to

the app’s listener. This enables it to modify the location object before the app loads

the information using the get* method calls (e.g., getLatitude() and getLongitude())

3©. The LocationListenerProxy requests the SyntheticLocationManager to provide an

updated location for the app, based on the app’s location preference set by the user.

The manager forwards this request to the SyntheticLocationService that maintains

and protects the database storing the user location preference for each app 4©. The

SyntheticLocationService looks up the user’s location preferences in the database, and

communicates with the LocationProvider to request an obfuscated / synthetic location

if the user has chosen to receive such location information for the app. The default pref-

erence set for an app requesting fine location is block level obfuscated data (500m) 5©. An

updated location object is returned to the SyntheticLocationService which forwards it

to the SyntheticLocationManager. The SyntheticLocationManager sends this location

to the LocationListenerProxy that updates it before the user accesses the location 6©, 7©.
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(a) Real Location (b) App Selection Activity

(c) Location Preference (d) Synthetic Location

Figure 4.6: Example screenshots of the MATRIX Synthetic Location service’s Graphical

User Interface.
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The Synthetic Location service currently provides four settings for per-app location

privacy: High Accuracy, Block Level Accuracy, City Level Accuracy and Synthetic Lo-

cations. The high accuracy option set for an app tells the service to not obfuscate or

synthesize locations for this app. For block level and city level accuracy, we extended the

default Android LocationFudger implementation to support different grid resolutions.

We found this technique to be effective against location inference attacks. The current

grid radius settings for block level and city level accuracy are 500m and 5000m, respec-

tively. Note that the High Accuracy and Block Level Accuracy options are only available

for apps requesting fine location using the ACCESS FINE LOCATION permission. This is be-

cause apps that use ACCESS COARSE LOCATION permissions already receive coarser location

data than that provided by the two options.

Figure 4.6 shows screenshots, illustrating the Synthetic Location service for a GPS

tracking app. Note that this app is used for demonstrating how the service works because

it displays the user location on the screen, and it is not a malicious app. Figure 4.6a shows

the test app displaying the user’s real location, Figure 4.6b shows the list of installed

apps that request location permissions, Figure 4.6c shows the location privacy preference

for the test app being changed to synthetic, and Figure 4.6d shows the test app now

displaying a synthetic location in another city. This synthetic location is provided based

on the time of the day and a realistic GPS trace created for the user for that specific day.

4.5 Generating Synthetic Trajectories

This section provides a detailed description of our technique for generating realistic

privacy-preserving synthetic identities and mobility trajectories.

4.5.1 Modeling User States

A user’s synthetic movements are defined as an automated probabilistic state machine

with a finite set of S states Q = {Q0, . . . , QS−1}. The states, in this context, represent

a sequence of tuples {(Loc(Qi), tmin,i, amin,i, amax,i)}, where Loc(Qi) is the geographic co-

ordinates of state Qi, tmin,i is the minimum time spent in the state, and amin,i, amax,i are

the lower and upper time bounds for arrival at the state. The geographic coordinates of
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the states are obtained from OpenStreetMap by parsing the ‘building’ and ‘amenity’ tags

[116, 117] of all ways and nodes for the given area. For instance, a ‘Home’ state can be

chosen as a way or node in OpenStreetMap whose building type is one of the following:

‘apartments’, ‘house’, ‘residential’, or ‘bungalow’. Similarly, a ‘Work’ state can be chosen

from the ‘commercial’ or ‘industrial’ tags. The other attributes are used for scheduling

the user’s activity for each day and set based on typical times that these activities occur.

Note that the attributes are set to default values when they are unimportant for a state,

i.e., tmin,i = 0, amin,i = 00:00:00, and amax,i = 23:59:59. In the simplest form, a state ma-

chine may contain just two synthetic states Q = {Q0, Q1}, where Q0 = ‘Home’ and Q1 =

‘Work’. We label these as significant states as the user spends most of their time in one of

these states. The geographic coordinates Loc(Q0) and Loc(Q1) are randomly chosen from

the list of all locations with the relevant tags. Assuming no ‘Work from Home’ scenarios,

the probabilities P(Q0) and P(Q1) of occurrence of these states is taken to be 1.

The state machine is made more realistic by adding synthetic states like Q2 = ‘School’,

Q3 = ‘Gas Station’, Q4 = ‘Lunch’ and Q5 = ‘Dinner’. We label these as transitional states

because a user will temporarily visit these states when transitioning between significant

states (i.e., Q0 and Q1). For a transitional state Qi, the geographic coordinates Loc(Qi) is

selected from a set of locations Loc = {Loc1, . . . , LocN} with the relevant tags, such that its

distance is shortest from the significant states, i.e., Loc(Qi) = arg minL∈Loc d(L, Loc(Q0))+

d(L, Loc(Q1)). Note that, unlike significant states, visits to transitional states are occasional

based on some specific frequency of occurrence. This frequency, denoted by fi, is derived

from a uniform distribution U (l, u) with l and u as the bounds for the frequency of visits

to that state (e.g., once a week to once a month). In case of ‘Gas Station’ specifically, the

system chooses a random mileage m and gas capacity c, and calculates the frequency as

the number of days a user can travel between the significant states before the gas level

goes below 1/4th of capacity, i.e., f3 = int( 0.75mc
d(Loc(Q0),Loc(Q1))+d(Loc(Q1),Loc(Q0))

). Assuming

W workdays in a year, the probability of occurrence for any transitional state Qi is then

calculated as P(Qi) = (W/ fi)/W.

The transition probability between states Qi and Qj, denoted by χi,j, is equivalent

to the compound probability of the two independent states, i.e., P(χi,j) = P(Qi)P(Qj).
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Figure 4.7: Example of a simplified finite state machine simulating a user’s movements

based on some transition probabilities.

The following conditions determine if a state Qi can transition to state Qj: (1) Qi is

a significant state and the originating state for Qj, (2) Qj is a significant state and the

destination state for Qi, or (3) the two states originate from the same significant state

Qs and distance d(Loc(Qs), Loc(Qi)) < d(Loc(Qs), Loc(Qj)). The significant states are

always connected and their probabilities are calculated as P(χ0,1) = 1−∑S−1
i=2 P(χ0,i) and

P(χ1,0) = 1−∑S−1
i=2 P(χ1,i), respectively. All other transitions have a probability of 0.

Note that users can go for ‘Lunch’ in the afternoon and ‘Dinner’ in the evening from

the ‘Work’ state. If we use the same ‘Work’ state for both transitions, the probabilities

are split when they clearly are different transitions. To address this, the ‘Work’ state is

internally represented as two states: Q1a for afternoon and Q1e for evening. Also note that

the model described here is for weekdays, and a similar model is created for weekends

with a different set of states (e.g., the user may leave from ‘Home’ to watch a ‘Movie’, eat

‘Dinner’ and return ‘Home’).

Figure 4.7 provides an intuition for our automated finite state machine model. This

specific model comprises of 6 states Q = {Q0, · · · , Q5} and their transition probabilities

are shown. We see that it is possible to transition from state Q0 to states Q1, Q2 or Q3.

102



Figure 4.8: Example of a GPS trajectory generated for an entire day, given the state ma-

chine and transition probabilities in Figure 4.7.

As the transition probability P(χ0,1) is 0.78, the model should typically choose state Q1

≈ 8 times out of 10. This makes sense as a user will mostly go to ‘Work’ from ‘Home’

but may sometimes need to drop their kids to ‘School’ or fill up gas at a ‘Gas Station’.

Figure 4.8 shows an example of a synthetic trajectory generated for a user for a day. On

this particular day, the user goes from ‘Home’ to ‘Work’ in the morning and stops to eat

‘Dinner’ from ‘Work’ to ‘Home’ in the evening.

4.5.2 Graph Construction

The synthetic trajectories for a geographic area G is generated using a directed graph

GG = (V, E), constructed from the OpenStreetMap road network of that area. Recall that

this geographic area can be represented as G = (B, C, θ, ϑ), where B is a set of atomic

parts, and C = {χ = (r, r′)|r, r′ ∈ B} consists of ordered pair of connections χ = (r, r′)

indicating the connection between two atomic parts r and r′. The turn angle associated

with a connection χ is given by function θ and the atomic part’s curvature is given by ϑ(r)
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Figure 4.9: Example of a road network and its graph representation. The sections of road

between intersections represent vertices v, and the intersections represent edges e.

(cf. Section 3.2). In this graph construction, we represent each atomic part~r by a vertex

v ∈ V and each connection χ by an edge e ∈ E. A default speed limit is assigned to each

atomic part~r based on its ‘highway’ type in OpenStreetMap. For example, a ‘motorway’

highway symbolizes Interstates in USA which have speed limits ≈ 65mph. The length,

speed limit, and geographic coordinates of the atomic part~r are stored as attributes of the

corresponding vertex v. The length and speed limit are used to calculate the fastest time

of travel between the endpoints. Note that this is a one time initialization step for the area.

Figure 4.9 shows an example road network and the corresponding graph construc-

tion. The graph is used to generate routes between two synthetic states using the Dijkstra’s

algorithm. One may argue that Google Maps Directions API can be used directly to gen-

erate routes instead of our graph, however, using the graph provides an advantage that

these routes can be easily randomized by simply choosing a different edge of a vertex. It

is also easier to specify additional waypoints to get more granular historical traffic from

the Google API than what it currently provides.
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4.5.3 Synthesizing the Trajectory

The finite state machine generated for a user and the graph constructed for an area are

used for synthesizing mobility trajectories for the user. This is a 3 step process: (1)

synthesize the user states for the entire day, (2) synthesize the schedule to satisfy the time

constraints, and (3) synthesize the trajectory based on the schedule.

Synthesizing the user states: The state machine of a user is loaded every day to gener-

ate a route of the states the user will visit that day. This route always starts and ends at the

initial state Q0 (‘Home‘) and traverses through Q1 (‘Work‘), i.e., R = [Q0, . . . , Q1, . . . , Q0].

The first state Q0 can transition to any connected state Qi based on the transition proba-

bilities of Q0. The state Qi can then transition to any of its connected state Qj based on the

transition probabilities of Qi, and so forth forming a chain that ends at the final state Q0.

Note that the construction technique of the state machine ensures that this route traverses

through Q1. Let P(χi) = {P(χi,0), . . . , P(χi,S−1)} denote the set of all transitional proba-

bilities of state Qi. To obtain the next state, the system first derives a random transitional

probability from a uniform distribution P = U (0, 1). This probability P is then compared

with the cumulative probabilities of all transitions in P(χi). A state Qj is selected if P lies

between the previous state’s cumulative probability and its cumulative probability, i.e.,

P(X ≤ χi,j−1) < P ≤ P(X ≤ χi,j).

Synthesizing the schedule: A realistic schedule should satisfy the time constraints

set for every state in a user’s state machine, such as arriving at work between 8am and

9am or dropping children to school before 8:30am. The schedule should also satisfy the

amount of time spent in each state, such as working for at least 8hrs. The schedule

should also account for the time spent in transitioning from one state to the next, such as

driving for 0.5hrs to get from home to work. All these constraints can be formulated as

linear equalities or inequalities, therefore, defining the problem of scheduling as a Linear

Program (LP). Let ta
i and td

i be the arrival and departure times at / from state Qi. The

above constraints can be formulated as follows: arriving at state Qi between 8am and

9am is formulated as 8am < ta
i ≤ 9am, specifying that the user works at least 8hrs is

formulated as td
i+1 − ta

i ≥ 8.0, and the time spent in transitioning from home to work is

105



formulated as ta
i+1− td

i = 0.5. Naturally, all the times are specified in UTC for consistency

and bounded by the day’s limits (i.e., 00:00:00 - 23:59:59).

This set of linear equality and inequality constraints define a convex polytope of all

the schedules satisfying the state constraints, and the transition time constraints between

the states. Let T = (ta
1, td

1, . . . , ta
S, td

S) denote a vector of all the arrival and departure

time instants for a route containing S states. One simple way of finding a point on this

polytope is by defining an objective function for the vector T with random coefficients, i.e.,

c = (c1, . . . , cS) where ci ∈ [−1, 1]. Let t(χi,j) denote the total time spent in transitioning

between two states Qi and Qj. Also, recall that tmin,i specifies the minimum time spent in

state Qi and amin,i, amax,i specify the time bounds of arrival at the state. Using the above

attributes, the LP is formally defined as:

Maximize
S

∑
i=1

(cita
i + citd

i ) where ci ∈ [−1, 1]

Subject to: amin,j < ta
j ≤ amax,j for j = 1, 2, . . . , S

td
j+1 − ta

j ≥ tmin,j for j = 1, 2, . . . , S− 1

ta
j+1 − td

j = t(χj,j+1) for j = 1, 2, . . . , S− 1

Solving this LP identifies a corner of the polytope but not a random element within

it. If the coefficients of the objective function were repeated, the LP will output the

same schedule. To address this, we compute a random point within the polytope by

finding different corners of the polytope using random coefficients, and then computing

a random linear combination of these corners. More precisely, let C = {C1, . . . , CN}

denote a set of N corners of the polytope obtained using random coefficients, and let r =

{r1, . . . , rN} denote a set of positive random numbers such that ∑N
i=1 ri = 1. The random

solution defining the user’s schedule for that day is then calculated as Sol = ∑N
i=1 riCi.

Note that as synthesizing the schedule using LP requires pre-calculated transition

times t(χi,j), the system calculates this time using the ‘pessimistic’ traffic model of Google

Maps Directions API. The departure time is chosen as the mean of the time constraints for

the start state. This typically gives us a worst case transition time between two states and

can be used for scheduling. Note that for synthesizing the final trajectory, the ‘best guess’
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Figure 4.10: Distribution of the absolute values of accelerations for both Real (µ = 0.61,

M = 0.34, σ = 0.79) and Synthetic (µ = 0.61, M = 0.32, σ = 0.78) routes.

traffic model is used which provides more accurate traffic representation.

Synthesizing the route between two states: The route between two synthetic states

is generated using the graph GG = (V, E) constructed for the area G. The system uses

the Dijkstra’s algorithm to find the fastest route between the states, using the length and

speed limit information present in each vertex v. The resulting route is split into mul-

tiple waypoints based on turns and stop signs (extracted from OpenStreetMap). These

waypoints are given as input to the Google Maps Directions API to obtain historical traffic

information about the route. The departure time is specified based on the schedule gen-

erated for that day. The route obtained from the Google API consists of multiple steps

and can be represented as R = [r1, . . . , rS], where S denotes the number of steps. Each

step ri is attributed with geographic and traffic related information ri = (B, dstep, tstep)i,

where B is the list of geographic coordinates of this step, dstep is the length of this step,

and tstep is the time to traverse this step.

To generate realistic trajectories, all steps of a route must incorporate user driving

behavior while also adhering to the step’s traffic constraints, i.e., dstep and tstep. To under-

stand the user driving behavior, we analyzed 400 driving routes collected from 2 drivers

and 4 phones (LG Nexus 5, LG Nexus 5X, Samsung Note 4, and Google Pixel). These

routes covered a distance of ≈ 1400kms in and around the city of Boston, consisting of
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both highway and internal roads, as well as peak and off-peak hours. The acceleration

and speed information were extracted from these routes for every second to analyze their

distribution. We found the speeds to be randomly distributed, however, the absolute

values of accelerations approximate to an exponential distribution (mean µ = 0.61, me-

dian M = 0.34, and standard deviation σ = 0.79) as shown in Figure 4.10a. Note that

the distribution is an approximation and not truly exponential because µ < σ, where

µ = σ is a property of exponential distributions. Analyzing individual routes, the range

of means of the absolute accelerations, denoted by [ ¯|a|min, ¯|a|max], varied between 0.1m/s2

and 1.1m/s2. The range of standard deviations of the absolute accelerations, denoted by

[σ(|a|)min, σ(|a|)max], were between 0.4m/s2 and 1.1m/s2. The bounds of all acceleration

values, denoted by [amin, amax], were between −7m/s2 and 7m/s2. Also, the means of the

acceleration values were ≈ 0m/s2 for every individual route.

The above constraints can be formulated as a list of equalities and inequalities, this

time defining a non-linear constraint optimization problem. Such problems can be solved

by using Sequential Quadratic Programming (SQP) methods. Let a = (a1, . . . , aN) denote

a vector of acceleration values for each step, where N denotes the travel time of the

step, i.e., N = int(tstep). Let v0 denote the initial speed coming into this step and v =

(v1, . . . , vN) denote a vector of speeds calculated from v0 and the vector a. The objective

of this optimization is to find an optimal vector a that minimizes |v̄− (dstep/tstep)| < ∆ to

adhere to the traffic constraints, where v̄ is the mean of vector v, and dstep, tstep represent

the step’s distance and time. The ∆ is a threshold that determines whether the minimized

objective function value is acceptable. All rejected optimizations are retried with a higher

number of iterations till a valid solution satisfying the threshold is found. We observed

that this optimization typically yields an optimal vector a that approaches the lower mean

bound of the absolute accelerations ¯|a|min, for most optimizations. To address this, we

derive a new lower mean bound for every route from a uniform distribution and use the

following range for optimization: [ ¯|a|rand, ¯|a|max], where ¯|a|rand = U ( ¯|a|min, ¯|a|max− δ), and

δ is a small constant to ensure that ¯|a|rand < ¯|a|max. The optimal vectors ai for every step

i are merged to represent the route’s accelerations. Note that a bounded constraint of the

form x1 ≤ x ≤ x2 can be rewritten as (x2 − x)(x− x1) ≥ 0 for simplifying the constraint
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for the solver. Using the above attributes, the route optimization for each step is formally

defined as:

Minimize |v̄− (dstep/tstep)|

Subject to: ā = 0

( ¯|a|max − ¯|a|)( ¯|a| − ¯|a|rand) ≥ 0

(σ(|a|)max − σ(|a|))(σ(|a|)− σ(|a|)min) ≥ 0

σ(|a|)− ¯|a| ≥ 0

Bounds: amin ≤ aj ≤ amax for j = 1, 2, . . . , N

Some additional constraints applied to the optimization are that v0 = 0 for the first

step and vN = 0 for the last step of the route. This optimization is improved by providing

an initial guess of bounded accelerations derived from a gaussian distribution N (v̄′, 2),

where µ = v̄′ is the mean step speed, i.e., v̄′ = dstep/tstep, and σ = 2m/s is the standard

deviation of the speed. Figure 4.10b shows the distribution of the absolute accelerations

generated for the synthetic trajectories. We can observe that the parameters and shape of

the distribution closely follows the parameters and shape of the real distribution.

Note that this work uses a linear model for synthesizing walks from the state’s geo-

graphic coordinates to a vertex on the graph, and vice versa. The vertex containing a point

nearest to the state’s coordinates is chosen, and the driving route is started or stopped at

this point. This simple model assumes a constant walking speed as our main focus was

on driving. We plan to study models for generating realistic walk patterns in the future.

Also note that as GPS data accuracy varies, a small random gaussian noise is added to

each coordinate of the final trajectory.

4.6 Evaluation

In this section, we evaluate the MATRIX framework using the following metrics: the

portability and stability of the framework for 1000 popular apps, the performance over-

heads of the framework, detection of synthetic trajectories by regular users, detection of

synthetic trajectories by 10 popular location based apps, and the detection of synthetic
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Table 4.2: Results of the Stability test for the MATRIX framework using 1000 popular

Android apps on 4 smartphones.

Phone Version No Install Success Failure

HTC One M7 Lollipop
0 892 108

0 894 106

HTC One M9 Marshmallow
15 796 189

15 791 194

LG Nexus 5 Lollipop
0 938 62

0 944 56

LG Nexus 5X Marshmallow
0 851 149

0 848 152

trajectories by Machine Learning algorithms. The first two metrics validate the stability

and performance of the framework, while the rest validate the realism of the synthetic

trajectories generated by the framework.

4.6.1 Framework Portability and Stability

The MATRIX framework is compatible with Android KitKat (i.e., SDK level 19) and

onwards. It has been tested to work with Xposed Framework API versions 82 to 88

(current). These Xposed versions are also compatible with Android KitKat and onwards.

This implies that the MATRIX framework can be ported to ≈ 93% of all Android devices

globally [118], without any modifications1.

The framework stability was evaluated using 4 smartphones: a HTC One M7 running

Lollipop, a HTC One M9 running Marshmallow, a LG Nexus 5 running Lollipop, and a

LG Nexus 5X running Marshmallow. The test was performed on 1000 randomly chosen

popular apps from the Google Play Store. All these apps had a minimum rating of 4.0 and

a minimum vote count of 10, 000 users. From these apps, 583 requested fine or coarse lo-

cation permissions and the remaining accessed sensor data using the SensorManager API.

These 1000 apps were first run successively on a stock Android version of these smart-

1According to the Android Dashboard (as of December 10, 2017), about 93.2% of Android devices run

KitKat or above.
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phones, using an automated UI application exerciser tool called Android Monkey [119].

Then, the 1000 apps were re-run on the same phones with MATRIX installed (including

Xposed) to monitor how many additional apps crash or fail to execute. The monkey tool

was configured with the same settings for both these tests (seed = 1, num events = 2500)

to ensure that the same set of pseudo-random events were generated.

Table 4.2 shows the results of the stability test for all the smartphones. The first row

for each phone shows the test results for the stock version and the second row shows the

test results for MATRIX. All the apps installed and ran on every phone except for 15 apps

on the HTC One M9 (possibly due to compatibility reasons). The number of successful

monkey runs are very similar in both the tests with the stock version performing better

on two phones and the MATRIX version performing better on the other two. We analyzed

the errors / crashes manually to check for Xposed or MATRIX specific errors and did not

find any. This validates that MATRIX remains stable and runs as expected for different

apps and under heavy usage.

4.6.2 Framework Performance

The MATRIX framework was extensively tested for performance overheads occurring

from the most expensive operations of the system. We identified 3 potential performance

bottlenecks in our system: (1) the API interception function using the Xposed framework;

(2) the add audit event function of the PrivoScope service; and (3) the location provider

function of the Synthetic Location service. We implemented a test app that invoked these

functions 1 million times to test performance. The execution time was calculated as the

difference between two System.nanoTime method calls placed immediately before and

after the function execution. The API interception bottleneck is essentially caused by the

Xposed framework loading and hooking method calls. To evaluate its performance, we

created an empty method inside our system and hooked it using the Xposed framework.

Table 4.3 shows the mean µ, standard deviation σ and the maximum time of exe-

cution for the three functions on the LG Nexus 5 and the LG Nexus 5X. The API inter-

ception function using the Xposed framework averaged about µ = 0.2ms on both the

phones, which is negligible from a usage perspective. The add audit event function of
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Table 4.3: Results of the Performance analysis of the MATRIX framework for 2 smart-

phones.

Phone Service Mean (µ) Std (σ) Max

LG Nexus 5

Xposed Framework 0.2 ms 0.3 ms 17.1 ms

Add Audit Event 4.3 ms 3.8 ms 67.1 ms

Update Location 11.1 ms 7.7 ms 87.6 ms

LG Nexus 5X

Xposed Framework 0.2 ms 0.15 ms 5.7 ms

Add Audit Event 3.2 ms 1.6 ms 26.8 ms

Update Location 5.7 ms 1.5 ms 16.0 ms

the PrivoScope service had a low µ for both the phones (4.3ms and 3.2ms, resp), and its

performance was also acceptable. The location provider function of the Synthetic Loca-

tion service had a relatively higher µ and σ for the Nexus 5 (µ = 11.1ms, σ = 7.7ms). We

believe this overhead is due to database lookups performed by the service to check the

location preferences for the app. Overall, the entire system can run with an average over-

head of 15.6ms on the Nexus 5 and 9.1ms on the Nexus 5X which should have a negligible

impact on the user experience. The sum of worst case performances overhead at 171.8ms

on the Nexus 5 should also not affect user experience since such overhead occurs rarely.

4.6.3 Detection of Synthetic Trajectories by Regular Users

To evaluate this metric, we conducted two separate user studies; one comprising of a

group of 12 students from the university and the other comprising of 100 users from

Amazon Mechanical Turk [120]. The survey asked the users to visually analyze 20 driv-

ing trajectories and label them as either ‘Real’ or ‘Synthetic’ based of their observations

about the trajectory. Figure 4.11a shows one example of a real driving route and Fig-

ure 4.11b shows the corresponding generated synthetic route given to the users of the

study. The green marker marks the start location, the white markers are 500m apart, and

the red marker marks the stop location. These markers display the time the vehicle was

at the given location. Note that the two routes follow a different path to the destination,

however, they have similar travel times. This difference is because the Dijkstra’s algorithm

finds the fastest route between source and destination from the graph. We verified that
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(a) Real Driving Route

(b) Generated Synthetic Trajectory

Figure 4.11: An example of the similarity between a real route and a generated synthetic

route for the same start and end locations, and similar departure time.

the synthetic route is the same as recommended route by Google Maps for the endpoints.

The intuition behind two studies was to understand the results from two perspec-

tives; one of users who know the area very well and other of users unaware of the area.

The university area was chosen so that the students were aware of its traffic congestions.

The trajectories were created as follows: First, we drove 10 unique routes close to the

university area, each starting and ending at different locations and times of the day. Each

route can be represented as R = [n1, . . . , nL], where n is a node, and L is the number of

nodes in the route. Each node ni is attributed with timing and geographic information

ni = (ti, Loc(ni)), where ti is the timestamp, and Loc(ni) is the node’s geographic coor-

dinates. Then, we generated 10 synthetic routes similar to the 10 real routes using the
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Figure 4.12: Cumulative results of the user study for real driving and generated syn-

thetic trajectories. The results show confusion among the users regarding validity of the

trajectories in both the studies.

timestamp of the first node (i.e., t1) and geographic coordinates of the end nodes (i.e.,

Loc(n1) and Loc(nL)) for each route R. The trajectories were shuffled so they appear in a

random order. For the mechanical turk study, we also added three very noisy trajectories

which looked obviously synthetic to find users who did not take the survey seriously.

Figures 4.12a and 4.12b show the cumulative results of the university study and the

mechanical turk study. For the mechanical turk study, they show the results only for 54

users who correctly detected all the obviously noisy traces.

University Students Study: For the real trajectories, ≈ 64.2% of the trajectories were

labeled as ‘Real’ and the rest were labeled as ‘Synthetic’. For the synthetic trajectories,
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Table 4.4: Cumulative results of the User Study on Amazon Mechanical Turk sorted by

the number of noisy trajectories correctly labeled.

Noisy Surveyors Real Trajectories Synthetic Trajectories

Real Synthetic Real Synthetic

0 100 65.1% 34.9% 66.0% 34.0%

1 91 65.4% 34.6% 65.9% 34.1%

2 72 65.7% 34.3% 65.4% 34.6%

3 54 68.3% 31.7% 64.4% 35.6%

≈ 65.8% of the trajectories were labeled as ‘Real’ and the rest were labeled as ‘Synthetic’.

Note that more users of this study confused the ‘Synthetic’ trajectories to be ‘Real’.

Amazon Mechanical Turk Study: For the real trajectories, ≈ 68.3% of the trajectories

were labeled as ‘Real’ and the rest were labeled as ‘Synthetic’. For the synthetic trajecto-

ries, ≈ 64.4% of the trajectories were labeled as ‘Real’. The above results are for the 54

users who detected all the obviously noisy trajectories. Table 4.4 shows the cumulative

results of the mechanical turk study based on the number of noisy trajectories detected

by the users. We can see that the results are not significantly different even for all 100

users, however, more users labeled the ‘Synthetic’ routes as ‘Real’.

The results indicate that it was difficult for the users to differentiate synthetic and

real driving trajectories. There was confusion in both groups regarding the validity of

the trajectories. Evaluating individual routes, we saw that this confusion applied to each

trajectory as none of them were labeled as ‘Real’ or ‘Synthetic’ unanimously by all users.

4.6.4 Detection of Synthetic Trajectories by Popular Apps

We evaluated this metric using 10 popular location based apps (listed in Table 4.5) from

the Google Play Store. These apps rely heavily on location data to provide the expected

functionality to their users. The test was performed by feeding these apps three different

types of synthetic location data and monitoring their behavior. In test 1 (Synthetic), the

synthetic trajectories were generated using the techniques described in Section 4.5.3. In

test 2 (HS), the trajectories from test 1 were time compressed by a factor of 5 such that
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Table 4.5: Results of the Synthetic Trajectories detection test on 10 popular Android apps

that rely on location data.

App Name Category Rating Synthetic High Speed

(HS)

HS + Teleport

(HS + T)

Ingress Adventure Game 4.3 X Detected Detected

Pokémon Go Adventure Game 4.1 X X X

Geocaching Health & Fitness 4.0 X X X

Glympse Social 4.5 X X X

Family Locator Lifestyle 4.4 X X X

happn Lifestyle 4.5 X X X

Yelp Travel & Local 4.3 X X X

Foursquare Food & Drink 4.1 X X X

Waze Maps & Navigation 4.6 X X Unstable

Google Maps Travel & Local 4.3 X X Unstable

the user appeared to move 5 times faster (e.g., at 300km/h in a 60km/h speed zone). In

test 3 (HS + T), the trajectories from test 2 were perturbed by large noises (≈ 1000m) such

that the user appeared to teleport to different locations very quickly. The expected results

was that apps that detect fake location should be able to easily detect the HS and HS + T

trajectories, but not the Synthetic trajectories.

Table 4.5 shows the results of the three tests for our test apps. None of the apps were

able to detect synthetic locations in the Synthetic trajectories test. Even for HS and HS +

T trajectories, with the exception of Ingress, none of the other apps detected the presence

of high speed and noisy synthetic locations. Ingress did not ban us from playing the

game, however, it denied points when it detected that the user was moving too fast or

teleporting. Pokémon Go is also known to ban users, however, we did not get banned

during our tests even after capturing many Pokémons using the noisy data. This is likely

because the ban threshold is set to high to prevent users from going to a higher level by

cheating. All the remaining apps kept performing their functions without detecting the

presence of the synthetic data. Note that Waze and Google Maps navigation operated

properly for HS but became unstable for HS + T, which was expected as they constantly

updated the routing information based on the teleported locations.
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Table 4.6: Results of the Machine Learning algorithms evaluation showing the ‘Real’ and

‘Synthetic’ prediction accuracy.

Algorithm Real Trajectories Synthetic Trajectories

Real Synthetic Real Synthetic

Decision Trees 53% 47% 38% 62%

Random Forest 61% 39% 37% 63%

Nearest Neighbor 50% 50% 43% 57%

10 Nearest Neighbor 49% 51% 43% 57%

Naive Bayes 86% 14% 86% 14%

Neural Networks 95% 5% 96% 4%

SVM 5% 95% 3% 97%

These observations indicate that popular apps that rely on location data fail to check

the validity of the received data. Some of these apps (Ingress, Pokémon Go, Foursquare

and Google Maps) implement checks to detect whether the MockLocationProvider [121]

is enabled on the device. The only app that checked location validity in our set was

Ingress, and it was unable to detect any discrepancies in the synthetic trajectories gener-

ated by our system.

4.6.5 Detection of Synthetic Trajectories by Machine Learning Algorithms

We evaluated this metric using the 400 routes collected for analyzing user driving be-

havior (cf. Section 4.5.3). These set of routes were labeled as ‘Real’ classifier. For each

real route, a corresponding synthetic route was generated using the real route’s departure

time, and start and end locations. These set of routes were labeled as ‘Synthetic’ classifier.

The following 9 features were extracted from both set of routes for training the machine

learning models: max and min acceleration, mean and standard deviation of accelerations, mean

and standard deviation of absolute accelerations, maximum speed, idle time and distance traveled.

The models were built and the predictions were averaged over 1000 iterations. In each

iteration, 90% of the dataset from each set were randomly chosen for training data, and

the remaining 10% from each set were test data.

Table 4.6 shows the list of algorithms that were tested, and their prediction accuracies
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for the ‘Real’ and ‘Synthetic’ test trajectories. Note that in our context, the ideal results

should be a 50-50 split, i.e., 50% of ‘Real’ routes are predicted as ‘Synthetic’ and 50% of

‘Synthetic’ routes are predicted as ‘Real’. We can observe that most algorithms (except

Decision Trees and Random Forest) have an average prediction accuracy close to 50%.

Three of those algorithms (Naive Bayes, Neural Network and SVM) display results biased

towards one of the two classifiers implying that the models had difficulty predicting the

correct classifier and defaulted to one classifier. The Decision Trees and Random Forest

models could detect ≈ 63% of the ‘Synthetic’ trajectories as synthetic. However, these

numbers also do not signify large detection rate for our synthetic trajectories. We must

note that this evaluation is preliminary as 400 routes do not suffice for these algorithms to

build generalized models from training data, and the models may be subject to overfitting.

We intend to extend our dataset in the future to incorporate more routes and run this

evaluation again for more generalized models.

4.7 Conclusion

We presented the design and evaluation of MATRIX, a framework and system that ad-

dresses some current privacy protection weaknesses in Android, and provides users with

a tool to analyze how apps access their private information as well as the capability to

provide obfuscated / synthetic data to untrusted apps. Synthetic, yet realistic, mobility

trajectories have the potential to reduce privacy leaks and enable the understanding of

how users’ location information is exploited by mobile apps. We demonstrated that MA-

TRIX is portable to most Android devices globally, has low-overhead, is reliable, and

generates privacy-preserving synthetic trajectories that are difficult to differentiate from

real mobility trajectories by an adversary.
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Chapter 5

Future Work

The two attacks described in this work demonstrate a worst-case attack performance,

with no a priori information about the victim. We believe that this performance can

be significantly improved if more information about the victim is collected over time.

The MATRIX framework is a preliminary step in implementing an extensible mitigation

framework open to the research community and users globally. In this section, we discuss

some of the possible future extensions of this work.

Single-stroke Language-Agnostic Keylogging: This attack demonstrated the feasibil-

ity of inferring single keystrokes and does not use any lexical properties of languages.

The focus was on inferring passwords, PINs and credit card numbers from sensitive apps

in a single attempt. In reality, users may use these apps multiple times and enter their

credentials each time to get access. The Gyroscope and Microphone recordings of the

keystrokes from the multiple recordings can be averaged together to offset the noise and

improve the attack performance. Moreover, multiple predictions of the same keystroke

for a specific index of a password increases confidence in that keystroke and helps an

adversary focus on the other indexes. We intend to study the impact due to collecting

multiple samples from the victim on the attack performance in the future. The attack can

also be extended to infer user typed sentences such as sensitive emails. This would re-

quire a priori knowledge about the language a victim uses for typing, however, this can be

easily inferred from the geographic location of the users (e.g., from their IP address). This

attack can be implemented by combining our keystroke inference meta-algorithm with

Natural Language Processing (NLP) techniques. We also intend to study this extension

of our attack in the future.

Inferring User Routes and Locations: This attack demonstrated the feasibility of in-

ferring a victim’s vehicular routes with no a priori information about them. Like the
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previous attack, the focus was on inferring the route in a single attempt from a single

recording of the sensors. We also assumed that all victim routes are equiprobable. In

reality, the probability of certain routes occurring are much higher than the others. For

example, a victim who works in a office will have a higher probability of driving from

home to office, and office to home during the weekdays. Such travel history information

can also be built up over time to improve the attack performance. One potential tech-

nique for inference in such cases could be to detect significant routes by clustering very

similar routes together. The turns and curvatures of all routes in a cluster can be aver-

aged together to obtain more accurate turn and curvature information. Another potential

technique could be to update the search algorithm to maximize the likelihood of finding

the starting vertex. We intend to study the above two techniques in the future.

The simulations for all cities in our set were performed using the same attack con-

figuration of scoring weights and filtering thresholds. We intend to perform a rigorous

analysis of these parameters to determine the ideal settings for different road networks.

We believe this will significantly improve the attack performance for every city.

Extensions to the MATRIX Framework: The current MATRIX framework implemen-

tation focuses on location based attacks that exploit the location and sensor APIs on

Android smartphones. Other attack vectors such as Wi-Fi and telephony APIs can also be

exploited to track users. Some other attack vectors such as the Camera and Microphone

APIs can also be exploited to snoop on user activities. We intend to extend our Privo-

Scope service to audit these APIs and provide a framework and system that gives users a

bigger picture of how apps access their private data. For synthetic location generation, we

focused mostly on vehicular routes in this work and implemented a simple linear model

for simulating user walks. Some of our next steps will be to support realistic pedes-

trian mobility-patterns and incorporate other design mechanisms for generating mobility

patterns (e.g., [122]). We will also be working on updating our current synthetic loca-

tion generation technique such that it provides better resiliency against machine learning

detection algorithms. We also intend to use this framework in the future to feed honey-

synthetic data to apps and study how apps misuse users location information.
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