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ABSTRACT
Demand for mobile devices continues to experience worldwide
growth. Within the U.S., there is a signi�cant shi� away from
broadband usage towards Smartphones as the primary Internet
entry point for consumers. Although technological advancements
have helped fuel demand for greater features and functionality
to enhance the user experience, they have also drawn a�ention
from malicious actors seeking to access and ex�ltrate increasingly
available sensitive and content rich personalized information.

In traditional Android based ex�ltration channels, the applica-
tion engaged in information acquisition is granted permission to
execute o�-board communications. �is tactic increases the pos-
sibility of detection by applications designed to identify this form
of behavior. In this paper, we sever the acquisition / ex�ltration
bundling by assigning independent responsibilities to two apps
communicating via a stealthy, permissionless, self-con�guring and
self-optimizing ultrasonic bridge. We present a framework for ana-
lyzing channel feasibility and performance, and apply it to 28 popu-
lar mobile devices. We demonstrate basic channel capability on 13
devices, achieving in certain cases, Bit Error Rates lower than 10-4

and Shannon capacity approaching 14 bps. We further demonstrate
two performance boosting solutions that build on these results:
a multichannel implementation which improves performance by
nearly 80% and; a single channel Amplitude Shi� Keying solution
that increases capacity three-fold.
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1 INTRODUCTION
In the U.S., broadband usage has slowed with the increased con-
sumption of Smartphones [5]. Mobile device adoption is widespread
with 3.9 billion smartphone subscriptions sold worldwide through
November 2016 with projected sales exceeding 6 billion by 2020 [14].
Smartphone sales alone in Q2 2016 reached 343.3 million units [18].
In order to enhance the smartphone user experience, manufactur-
ers frequently incorporate technological enhancements. Examples
include increasingly accurate MEMs sensors, cameras and micro-
phone arrays in addition to more powerful processors, enhanced
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communication radios and high capacity storage chips. �ese en-
hancements combined with user-friendly and incentive-driven App
Stores, help fuel demand for greater functionality, including the
control and storage of personal information. Unfortunately, this
increases security concerns due to the appeal of acquiring such rich
information for malicious purposes.

Google™ and Apple™ have tried to address these concerns by
implementing multi-layered security architectures. For example,
Android implements Application Sandboxing and a Permission
based framework, enabling users to control and grant / deny access
to sensitive resources. Security enhancements are regularly incor-
porated such as the introduction of permission groups (normal and
dangerous) and runtime authorization for dangerous permissions
(as of Android 6.0). Nevertheless, vulnerabilities are periodically
discovered with malicious applications a�empting to trick users
by exploiting design and implementation �aws [4]. �ese exploits
([10, 26, 28]) continue to be di�cult to detect.

�is paper presents a stealthy covert channel built upon an ul-
trasonic communications bridge between two co-resident Android
apps. �e bridge, which uses the speaker and the local sensor
package, leverages the smartphone’s resonance behavior, where
the resonance points are a function of the sensor design as inte-
grated into the device’s housing. Manufacturers typically design the
operating band in the linear region, well below the resonance fre-
quencies. However, if a stimulus generates frequency components
in the non-linear region near a resonance point, sensor sensitivity
increases and the accelerometer behaves as an ampli�er / resonator.

�ere is a threefold bene�t to the adversary. First, this is an
out-of-band communications pathway. Second, the channel’s high
frequency speaker emissions operate well beyond the voice band, af-
fecting audibility. �ird, it’s permissionless implementation greatly
contributes to stealthy operations, ‘hiding in plain sight’ with data
�owing freely as it circumvents system defenses.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the �rst to report the
existence of a same-device, permissionless and ultrasonic,
covert channel.

• Unique among Android covert channels, the transmi�er
monitors the received data which supports self-con�guration,
self-optimization, error correction and �ow control.

• �e channel is resilient to Android’s non-uniform event
reporting e�ects.

• We developed an automated framework to discover, iden-
tify and characterize the channel since it exists only in very
narrow bands of the spectrum and is device unique.

• We applied the framework on a set of 28 mobile devices
(spanning 18 di�erent models) and established channels
on 13 devices (4 unique models).
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• We evaluated channel capacity and throughput in three
environments: a laboratory, the Xamarin TestCloud™ and
the AWS Device Farm™ .

• We achieved device dependent theoretical Shannon capac-
ity approaching 14 bps.

• Beyond our basic channel, we achieved 80% and 3× im-
provements with our multichannel and Amplitude Shi�
Keying enhancements.

�e remainder of this paper is constructed as follows. In Sec-
tion 2, we describe the exploitation opportunity. Section 3 details
the system design and some of the practical limitations presented by
Android devices for this a�ack type. Section 4 describes test environ-
ment details, device selection and measures of e�ectiveness. Results,
including performance di�erences within identical device types,
are noted in Section 5. In Section 6, we highlight measured perfor-
mance and performance boosting techniques. Section 7 describes
mitigation options and we end with a related works discussion
followed by our conclusion in Section 8 and Section 9 respectively.

2 BACKGROUND AND MOTIVATION
Smartphone covert channels follow either inter or intra-device pat-
terns. Channel endpoints in the former case reside in separate physi-
cal structures and face elaborate proximity challenges. For example,
Do [11] used Frequency Shi� Keying of ultrasonic waves to commu-
nicate with a pre-positioned, external sink. Farshteindiker [15] used
a critically positioned, external ultrasonic device, a�xed to the tar-
get Android device. In each case, position, external coupling and a
participant unencumbered by Android limitations (i.e., permissions
including microphone usage) were key.

With intra-device channels, the source and sink are co-located,
exploiting same device resources for communication. Traditional
tactics include se�ing manipulation, state modi�cation, status ma-
nipulation and microphone based channels. �ese are becoming
increasingly less feasible due to recent improvements in Android
security. Deprecation of android.permission.ACCESS SUPERUSER
and the default enforcement mode con�guration for SELinux have
eliminated the granting of ‘su’ privileges, useful in accessing ker-
nel data structures. Further, adoption of runtime and deploy time
permission checks enables the user to determine the presence of
inappropriate resource consumption or unrelated activities. As a re-
sult, system resource manipulation a�acks such as the /proc a�acks
described by Marforio [23] now have limited e�ectiveness. Other
a�acks such as volume se�ing manipulation could be thro�led with
Operating System (OS) modi�cations that limit change rate, consis-
tent with human behavior. Using the �nger tap rate example, these
channels would be limited to 7 changes per second [12], severely
limiting performance.

Despite these aggressive security policies, a�ackers will continue
to seek alternatives. If the objective remains to execute a stealthy
same-device a�ack, then hiding from entities (including humans)
that monitor permission requests, resource consumption or per-
form unusual shared system resource manipulation is vital. To date,
Android covert channels circumvent at most, two of these detection
mechanisms. �e closest examples to encompassing all three are an
air-gapped work demonstrated by Al-Haiqi [1] and Deshotels [9]
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Figure 1: Sensor Response to 21050 Hz Tone Bursts on Sam-
sung Galaxy S5

using the vibrator as the source. �ere are two shortcomings to this
a�ack in that the vibrator requires permissions and, the vibration
may be audible either directly or from device movement relative
to the physical surface it rests upon, i.e., friction rub.

In the channel proposed herein, we address all three conditions.
We extend the two app approach o�ered by Marforio [23], La-
land [20] and Gasior [16] but in our context, the �rst app, isolated
from network connectivity, accesses sensitive information while
promising privacy. �is provides the illusion of comfort to the user.
Examples include calendars, contact lists, journals, password �le
managers and credit card managers. �e channel can be established
even with Do’s [11] recommendation to ask for permissions for any
resource request. Although applying this scheme to the device’s
speakers, which currently do not require permissions, audio access
can be justi�ed as the need for an alerting mechanism. �e second
app has sensor and network connectivity yet is blocked from di-
rect access to sensitive information. Examples include games and
�tness apps where sensor and network access are rationalized as
functionally relevant.

�is a�ack di�ers from Michalevsky [25], who reconstructed
voice from sub-200 Hz signals and Zhang [38] who used the ac-
celerometer to process speech, intending to detect ‘hotwords’ via
energy pa�ern identi�cation. In both cases, the energy from the
voice content was near to or below the sensor Nyquist frequency.
Although some aliasing exists, su�cient energy to yield results is
present in the passband. In our channel, the frequency identi�ca-
tion su�ers aliasing e�ects since the operating band is ≈ 2 orders
of magnitude above the Nyquist frequency.

Besides aliasing, High frequency signals face another impactful
challenge, �ltering. Typical MEMS devices will apply a Low Pass
Filter (LPF) to limit high frequency artifacts in the sensor signal
chain. A simple single order �lter a�enuates signals at 20 dB per
decade resulting in 40 dB of roll o� at our channel’s operating
frequencies (≈ 20 kHz). �e amount of power needed to detect the
signal becomes signi�cant. �is is supported by O’Reilly [31], who
used MEMs accelerometers as guitar pickups which realized 40 dB
a�enuation at 20 kHz for each X, Y, Z axis above 1 kHz. Assuming
that the pickups are exposed to an average stimulus of 60 dB of

185



An Autonomic and Permissionless Android Covert Channel WiSec ’17 , July 18-20, 2017, Boston, MA, USA

sound, near that of typical human voice, the power needed to
achieve the in-band detection level is 100 dB. �is is the equivalent
audio power of standing next to a powered lawnmower. �e 60 dB
sensitivity level is consistent with Michalevsky [25], noting that
the gyroscope could detect voice signals at 57 dB.

�is paper’s foundational concept is based on our discovery that
under speci�c conditions, highly correlated responses are observ-
able on the accelerometers when high frequency signals are Ampli-
tude Modulated (AM) when emi�ed from a device’s speaker(s). �e
signal is ampli�ed [13] when operating near the accelerometer’s
mounted resonance frequency yielding a response emulating an
AM non-coherent detector. We show in Figure 1, an example of this
e�ect with a pa�ern of three, 21,050 Hz, AM modulated tones and
the corresponding X axis accelerometer response. Signi�cantly,
this shows the envelope, meaning that the channel receiver need
not know the carrier frequency, eliminating the need for a priori
knowledge of the operating frequency.

3 SYSTEM DESIGN
3.1 Challenges
We faced four key challenges in developing this channel.
Stealth: �is requires operating without needing permissions and
avoiding resources that may be monitored or perform unusual
operations.
Device and Environmental Diversity: Device diversity a�ects
frequency identi�cation, bit rate and channel orthogonality. �e
system response limits operation to small, device speci�c frequency
bands with narrow coherence bandwidth, necessitating an au-
tonomous solution to identify frequency and pulsewidth. Addi-
tionally, environmental conditions require signal extraction from
noisy accelerometers.
Con�guration: To avoid a�ribution and linkage, the channel end-
points must function without direct communication.
Android Limitations: �e channel must operate despite sensor
sampling and event reporting intervals that are orders of magnitude
larger than the carrier frequency’s period, violating the Nyquist rate.
In addition, the Android system’s sensor event reporting scheme
is non-uniform.

3.2 Solution Overview
As mentioned, we assign data the� and o�-board communications
to two separate apps. �ese apps communicate with one another
via an ultrasonic bridge using only two system shared and permis-
sionless resources, the speaker and the sensors. Typical operation
includes the bridge’s source forming the high frequency wave and
using the Android MediaPlayer API to control tone transmission
through the local speakers. �e receiver (the sink) uses the Sensor-
Manager API to monitor the resultant accelerometer perturbations
prior to decoding and ex�ltrating the data to an o�-board third party
using a cellular or Wi-Fi network (Figure 2). Post installation, the
a�ack occurs in two stages: 1) Channel Identi�cation (Phase 1) (ex-
clusively a source activity) which addresses channel parametrization
(e.g., carrier frequency, pulse width) and; 2) Data Transfer (Phase
2) (source and sink activity) which addresses the compromised data
transfer. �ere are three precondition assumptions: 1) Both apps
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Figure 2: Single Device Covert Communications Channel
System Design
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Figure 3: Spectral Components Illustration, Channel Identifca-
tion Sweep Pattern

were willingly deployed by the victim; 2) �e source has access to
the speakers and; 3) �e source has access to the compromised data.

�e technical challenge in operating ultrasonically is to address
carrier detection when accelerometer packages typically have ei-
ther cut-o� or sampling frequencies below 2 kHz. As mentioned
in Section 2, the carrier provides the energy stimulus to the sensor
which follows the shape of the Amplitude Modulated envelope mak-
ing receiver knowledge of the carrier irrelevant. It simply needs
to know as shared secrets, minimal con�guration information i.e.,
frame format and a small parameter set (i.e., a magic number).

�e channel is quite unique. Unlike traditional channels, the
transmi�er may monitor the identical data observed by the re-
ceiver, thereby establishing a channel and message feedback loop.
�is supports self-characterization and eliminates handshaking
and acknowledgements associated with reliable transmission. �is
mitigates device uniqueness (Dey [10], Das [8]) concerns and ad-
dresses the remaining Con�guration and Device and Environmental
Dissimilarity challenges.

3.3 Phase I: Channel Identi�cation
�e source synthesizes a frequency identi�cation (FID) sweep pat-
tern comprised of a set of discrete, coded frequency subpa�erns
using short interval spacing (i.e., 50 Hz and less). �e frequencies
range from 22,050 Hz to 16,000 Hz as shown in Figure 3 (see Sec-
tion 3.5 for rationale). Note that an 800 Hz marker was included to
support testing.
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We adopt a spreading technique commonly used in wireless
Direct Sequence Spread Spectrum (DSSS) applications. Using a
Pseudo Noise (PN) sequence in the FID subpa�ern improves signal
and clock recovery processing in the presence of interference. �is
technique is useful for signal extraction as the correlation result
is strong when matched to sequence. �e sequence (code) length
depends on the spreading gain needed, per Equation (1).

SpreadinдGain(dB) = 10 × loд10 (code lenдth) (1)

Using a Barker Code of length 11 (used in Wi-Fi DSSS) we can
achieve ≈ 10dB of spreading gain. M-Sequences, for example, can
be used for generating �exible length PN sequences [6], achiev-
ing (93.3 dB) with lengths in excess of 2,147,483,647. In a real
a�ack, the adversary can dynamically select the length based on
accelerometer noise measurements and the needed bandwidth.

We generate the coded pa�ern based on bit and frequency values
and modulate it using a Hanning window pa�ern. �is window
pa�ern was selected due to it’s limited distortion relative to others
such as Tukey and Flat top window functions albeit the la�er two
provide more energy. �e resulting pa�ern is sent to the media
player and played over the device’s speaker(s). While transmi�ing,
the source concurrently monitors the accelerometer’s X, Y and Z
axes responses and applies post-processing as follows:

• Generate a matched �lter of temporal length equal to
PN sequence lenдth × pulsewidth with sample points de-
rived from the event times.

• Correlate the sliding received signal data with the dynami-
cally created matched �lter. Correlation is computed for
each encoded frequency sequence f to obtain a scoref
value using Equation (2), where l is the encoding scheme
length, x[i] is the sensor measurement at i within l , µx is
the mean of all x over the sensor data length and EE[i] is
the encoding scheme’s ith code value within l , e.g., -1 or 1
for each chip as needed.

scoref = |
l∑
i=1

( |x[i]| − |µx |) · EE[i]| (2)

• Identify the frequency, f̂ , yielding the maximum correla-
tion magnitude using Equation (3). f̂ is coincident with
the best signal-to-noise ratio.

f̂ = argmax
f ∈{f1,f2,f3, ...fn }

scoref (3)

Correlation and Synchronization
�e matched �lter window is dynamically generated by the

app(s) as it slides over the sensor reporting events. Matched �lters
are ideal signal representations, commonly used to extract the orig-
inal signal in noisy environments. �is contrasts with traditional
�lters which may degrade the original signal during noise removal.
Here, the sample count is based on the number of event reports
within the sliding window while the values are determined from
the time positions relative to an ideal, uniformly spaced time based
sample set. As illustrated for a Samsung Galaxy S5 in Figure 4, non-
uniform sampling rates are present, a�ecting the matched �lter
sample points over the coded window. Options included processing
without correction or synthesizing evenly spaced events. However,
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Table 1: Correlation and Synchronization Notations
Notation De�nition

T �e set of all sensor recorded times
j �e relative position of each time report in T

CWj �e correlation window (matched �lter) starting at position j
Svj ⊂ S �e set of sensor values S within a correlation window starting

at j
Tsynch �e time yielding the best synchronization estimate

R �e set of all correlations
Rj �e jth correlation result where Rj = CWj · Svj

Marvasti [24] asserted that non-uniform sampling intervals may be
used in signal reconstruction if the average of the interval rate satis-
�es the Nyquist rate. �erefore, the matched �lter approach su�ces
provided this condition is met. Furthermore, it must be true for the
event samples relative to the pulsewidth. If so, events are processed
as is, otherwise the pulsewidth is increased until the condition is
met. �is addresses the Android Nyquist sampling limitation.

�e dot product of the matched �lter with the signal window is
computed. �e result is normalized over the window’s event count
and maintained for analysis.

Table 1 shows the notations de�ned for synchronization. We
derive Tsynch (Equation 4), the sequence‘s communication frame
temporal reference start point.

Tsynch = max |Rj |∀R (4)

where
Rj = CWj · Svj (5)

Figure 5 illustrates this synchronization method applied to a Sam-
sung Galaxy S6’s X axis accelerometer. �e window’s amplitude
was reduced in size to support visualization.
Pulse Width Determination

A�er obtaining the operating frequency(ies), the source synthe-
sizes a new set of test pa�erns using those frequency(ies) while
varying the pulsewidth. �e source measures the bit error rate
(BER) associated with each pulsewidth, calculates the throughput
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using Equation (8), selects the desired throughput level and uses the
corresponding pulsewidth for Phase II. Operationally, pulsewidth
selection is a function of reporting rate which is device limiting
per the provider’s con�guration and / or sensor characteristics. If
narrow pulsewidths, ≈ 10 msec or less are desired, repetition codes,
interpolation or other compensation techniques may be needed to
account for lower sensor event reporting rates.
Sweep Granularity

Initially, we used 50 Hz sweep increments to restrict transmis-
sion time and reduce power consumption. Since the risk is missed
channel recognition, most of our reported results can be considered
a lower bound for channel identi�cation and performance.

3.4 Phase II: Data Transfer
Once the optimal channel parameters have been identi�ed, the
source packages the compromised data into transmission frames.
Each frame consists of a preamble, the payload, a CRC �eld and an
end of frame marker. �e initial preamble consists of a synchroniza-
tion sequence, parametric information and a shared secret magic
number used by the sink to determine pulse width. With higher
BER environments, payload coding (spreading) may be added. An
additional shared secret in the initial preamble designating the
spreading gain con�guration could su�ce. Like the source in Phase
I, the sink processes the received data using the matched �lter and
synchronizes to the transmission frame. It subsequently applies dis-
crimination techniques to retrieve the parametric information and
compromised data prior to repackaging for o�-board transmission.

3.5 Key Stealth Factors
Zero Permissions and Detectability: Engaging only zero per-
mission resources, i.e., the speaker, sensors and media players is key.
Detection risk is reduced by avoiding microphones, the vibrator,
shared �les and message passing Android APIs.
Audibility from Spectral Components: User hearing is another
detection concern. We selected the operating frequency band in
part, based on speech studies by Beiter and Talley [2], who stud-
ied the auditory response of college age women. �ey observed
hearing threshold changes of −160 dB/octave between 16 kHz and
20 kHz. More recently, Jungmee Lee et. al. [21] demonstrated that
signi�cant sound pressure level power increase (≥ 8 dB) is needed
to normalize (�a�en) hearing above 15 kHz.

Consequently, we selected 16 kHz as our lower frequency limit.
Looking ahead, most vulnerabilities were uncovered at frequen-
cies greater than 20 kHz, while all were above 17.7 kHz. Operating
below 20 kHz depends on the a�acker’s risk tolerance. �e upper
limit was set at below the Nyquist frequency, assuming the media
player used a 48 kHz sampling rate. Although operable to 24 kHz,
distortion is perceived at frequencies near the Nyquist frequency.
Audio Volume andDistortion: Certain devices produced audible
artifacts during FID testing. �ese intermi�ent clicks we suspect
are the result of clipping, inter-modulation distortion or mechanical
noise from speaker movement. �ese were noticeable in most de-
vices under test (DUT) when sending tones at the maximum (unity)
sine wave amplitude (SWA) and at full player and full speaker
volume se�ings. In virtually all cases, reducing the SWA to 0.99

and speaker volume to дetStreamMaxVolume − 1 eliminated the
artifacts.

3.6 Performance Boosting Design
We developed two techniques to enhance performance: Multichan-
nel operation and Amplitude Shi� Keying (ASK). For multichannel
operation, performance improvement is a function of the total
number of the device’s contributing sensor axes. In this case, we
demonstrated multi-axial, single sensor responses. For example,
the Galaxy S6 and S5 X and Y accelerometer axes respond to dif-
ferent and non-harmonically overlapping ultrasonic frequencies.
By generating a waveform representing a weighted summation (to
avoid clipping) of independent axis-speci�c waves, we can evoke
axial responses concurrently. Channel setup requires executing a
series of tests with di�erent weights, measuring axial BERs and
identifying those factors yielding the highest aggregate capacity.

ASK feasibility resulted from accelerometer sensitivity to speaker
power levels. With ASK, the bit rate (BR) is a function of symbol rate
and the loд2 of the symbol set size, see Equation (6). Channel setup
requires a series of tests where each symbol’s max and min over an
observed range should not overlap with any other symbols’ max or
min. �e degree of amplitude separation drives the symbol count.
�e receiver can be informed of the symbol count and symbol am-
plitude range in the Phase II preamble. Advanced approaches can
combine these techniques to further increase channel capacity.

BR = loд2 (#symbol levels ) × Symbol Rate (6)

4 TESTING AND EVALUATION APPROACH
4.1 Test Environments
�ree primary test environments were used in this study; a so�ware
development laboratory, the AWS Device Farm™ and the Xamarin
TestCloud™. �e laboratory test pool consisted of devices avail-
able to laboratory personnel. Within the lab environment, location
and orientation (screen up) were �xed. Placement was near lab-
oratory personnel performing normal activities. Within several
hundred feet outside the site was an uncooperative environment
that included construction projects, nearby rail lines and vehicular
tra�c from the urban surroundings. Less frequent perturbations
emanated from the Android device directly i.e., ringing and event
alerts. We believe that the environment was well suited for ex-
amining covert channel potential due to its similarity to urban
residential environments. Since the TestCloud and Device Farm en-
vironments were uncontrollable (i.e., orientation, ambient acoustic
and vibrational noise, co-resident testing), the devices were tested
as is. Device Farm and TestCloud devices were oriented similarly
(screen up), veri�ed by Z axis readings. At testing inception, Test-
Cloud had over 1200 unique Android device types while Device
Farm had more than 150. We also ran FID tests in a busy café to
further evaluate channel robustness in highly frequented locations.
Environmental Assessment

Microphone and accelerometer readings were recorded concur-
rently for a Samsung Galaxy S6 in each test environment. We
assumed that calibration errors and component dri� tracked simi-
larly among identical device types. Since calibration data nor access
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Figure 6: Accelerometer Distribution
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Figure 7: Environment Noise Spectra

to the physical devices themselves in the cloud cases was available,
each measurement was relative to its last calibrated reference.

Figure 6 and Figure 7 show the distribution of the accelerometer
magnitudes (

√
x2 + y2 + z2) and their corresponding ambient en-

vironments’ frequency spectra respectively. Since the distributions
are Gaussian in form, their standard deviation σ can be used to esti-
mate the accelerometer noise. �e recorded audio noise gain, P , can
be used to estimate environmental noise levels. �e AWS hosted
devices exhibit high accelerometer noise (0.035 ≤ σ ≤ 0.15) and
environmental noise gain (30 dB ≤ P ≤ 80 dB) relative to its Lab-
oratory equivalent (i.e., three to eight orders of magnitude higher),
suggesting that the AWS™ environment is very noisy.

As a group, the Xamarin TestCloud™, café and laboratory had
similar accelerometer and environmental noise levels. Note that

the sensors report ultrasonic, audible and infrasonic signal compo-
nents which all compete for bandwidth.

4.2 Data Collection
Phase I testing consisted of executing FID tests at least �ve times
for each device under test (DUT). Follow-up bit error rate testing
con�rmed channel existence thereby avoiding false positive results.
Phase II testing consisted of a series of test and evaluate cycles until
the aggregate payload size was at least ten times the inverse of the
aggregate BER.
Automation: Calabash-android scripts, based on a user interface
(UI) automation library for Android apps, controlled the device
data collection process using the following test sequence: 1) Start
the audio pa�ern, 2) Wait for audio pa�ern completion, 3) Upload
the sensor �les to our server, 4) Wait for upload completion and 5)
Loop as con�gured.
Noise Mitigation: Each DUT underwent repetitive frequency
identi�cation tests to mitigate spurious environmental e�ects. Al-
though results were averaged over the number of tests, smoothing
e�ectiveness depends on perturbation magnitude and duration. Al-
though most environmentally induced noise is observable in the Z
axis accelerometer when at rest (assuming it rests with the screen
up), occasionally the perturbation couples over to X and Y leading
to inter-run variation. Sustained background noise would require
additional processing such as noise cancellation, greater spreading
and larger pulse widths and window lengths. Mitigation is easier
than in traditional communication systems due to the closed loop
nature of the channel since the transmi�er has access to the same
sensor data as the receiver, allowing for dynamic channel parameter
adjustment and / or frame retransmission.

4.3 Device Selection
We implemented our source and sink app pairs on 18 models of
smartphones (a total of 28 physical devices). �ese models were
selected based on their popularity, availability in the test environ-
ments, Android versions, and sensor sampling rate. Although we
sought to target the most popular phones during the selection pro-
cess, we saw no clear consensus market ranking. However, Suvarna
and Top101news [35, 36] suggest that the Samsung S6 is one most
popular smartphones with a 5.47% global market share as of the
�rst half of 2016. �e same source writes that the Nexus 6, Galaxy
S6 and Galaxy Note 4 comprise ≈ 20% of all Android devices in
the US market. Finding multiple instances of devices across envi-
ronments was challenging. Balancing popularity, availability and
repeatability needs, we reduced our sample size to the 28 devices.
�e speci�c list is available in Table 2.

4.4 Evaluation Approach
We applied classic communications theory to evaluate channel
capacity and throughput. Shannon capacity provides a theoreti-
cal measure of e�ectiveness (MOE) using realized bit error rates.
�roughput provides an MOE that includes additional implementa-
tion factors such as payload length and frame length. While there
are numerous methods to improve performance, two of which (mul-
tichannel and Amplitude Shi� Keying) were implemented and are
discussed in Section 6.
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Table 2: Tested Devices by Environment
Device Model Laboratory TestCloud Device Farm

HTC 10 *
HTC One M9 * *

Huawei HONOR 6 *
Huawei Nexus 6P *
Huawei P8lite *

LG G5 *
LG Nexus 5 * *
LG Nexus 5x *
LG Nexus 7 *
LG Optimus L90 *

Motorola G3 * *
Motorola Nexus 6 *
OnePlus One * *
Samsung Galaxy Note 4 * * *
Samsung Galaxy S3 *
Samsung Galaxy S5 * * *
Samsung Galaxy S6 * * *

Sony Xperia Z3 *
Note: * indicates evaluated within the speci�c environment

�eoretical Capacity: We assume a binary symmetric channel
(BSC) [7], with a Bit Error Rate, BER. �e Shannon channel ca-
pacity C , provides a theoretically achievable upper bound on the
channel throughput and is computed as shown in Equation (7)
factoring in the pulsewidth PW. �is theoretical upper bound, is
practically approachable with proper codes of large block length
(e.g., turbo-codes, or LDPC codes) [22].

C =
1

PW
× (1+BER× log2 (BER)+ (1−BER)× log2 (1−BER)) (7)

�roughput: �roughput, TH o�ers an implementation and per-
formance speci�c assessment of transmission rates. For an uncoded
channel:

TH =
1

PW
×
Lenдth − FraminдBits

Lenдth
× (1 − BER)Lenдth (8)

5 EVALUATION RESULTS
�is section presents the Channel Identi�cation and Bit Error Rate
testing results and concludes with a discussion covering intra-
family similarity (identicality).

5.1 Channel Identi�cation Results
Channel ID Results Summary

Nearly 25% of the 18 unique device models evaluated tested
positive for vulnerability to our a�ack. We observe that the vulner-
ability is not universally present within a family of products lines,
i.e., successful a�acks could not be carried out on the Galaxy S3 vs.
the Galaxy S6 and Galaxy S5, all Samsung products.
Devices with Positive Results

Figure 8 illustrates the sensor measurement correlation test re-
sults as a function of frequency. �is highlights sensor sensitivity
to the frequency sweep stimulus. �ree Samsung devices, the S6, S5
and Note 4, exhibited positive responses to the a�ack as seen in Fig-
ures 8a to 8c respectively. Nexus 6 testing also revealed a potential
channel, see Figure 8d. �ese plots provide graphical representa-
tions of Equation (2), showing each frequency’s correlation score.
�e preferred operating point is the frequency associated with the
largest excursion from 0.000. Channel presence was con�rmed in
all cases using bit error rate testing whose results are discussed in
Section 5.2.
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(d) Motorola Nexus 6
Figure 8: Devices with Vulnerability

Table 3: Devices with Indeterminate Channels
Device Model API Device Model API

HTC One M9 22 LG Nexus 5x 23
HTC Ten 23 LG Nexus 7 17

Huawei HONOR 6 17 LG Optimus L90 19
Huawei Nexus 6 23 Motorola G3 22
Huawei P8lite 22 OnePlus One 19

LG G5 23 Samsung Galaxy S3 19
LG Nexus 5 22 Sony Xperia Z3 21

Devices with Indeterminate Results
We were unable to establish a channel using our frequency range

in fourteen devices listed in Table 3. In cases where the correlation
values deviated from the nominal level yet were weak (less than

190



WiSec ’17 , July 18-20, 2017, Boston, MA, USA Kenneth Block, Sashank Narain, and Guevara Noubir

50100150200250

Pulsewidth (Msec)

10−5

10−4

10−3

10−2

10−1

B
it

E
rr

or
R

at
e

S5
S6
Note 4
Nexus 6

(a) Bit Error Rate vs. Pulse Width

50100150200250

Pulsewidth (Msec)

0

2

4

6

8

10

12

14

C
ap

ac
ity

B
its

/S
ec

S5
S6
Note 4
Nexus 6

(b) Capacity vs. Pulsewidth
Figure 9: Error and Capacity Summary

±0.004), we con�rmed the false positive with BER testing. Occa-
sionally, simultaneous peaks occurred in more than one sensor
axis. �is indicated a strong external force such as seen during
signi�cant impulse noise (shock) or a periodic external stimulus.
Follow-up bit error rate testing to identify false positive conditions
is needed since the Note 4 and Nexus 6 have simultaneous peaks
as a legitimate operating condition.
Environmental In�uence

All device types demonstrating susceptibility were proven in the
laboratory and/or the Xamarin TestCloud™ and café. No channel
could be established with these same devices in the AWS Device
Farm™ due to noise levels. From Section 4, AWS™ had the highest
sound pressure levels and Accelerometer variance of all testing
environments.

5.2 Error Testing Results
We executed BER testing, per Section 4.2, on each channel capable
device at four pulse widths, 250, 200, 100, and 50 msec. If no error
was found we conservatively set the BER to 10-4.
Bit Error Rate Results Summary

�e BER vs. pulse width results are provided in Figure 9a and
summarized in Table 4. In general, the BER decreases inversely
with increased pulse width. Excluding the Galaxy Note 4, and the
Nexus 6, the S5 and S6 had BERs in the 10-3 or be�er range at 250
and 200 msec pulse widths. All, excluding the Galaxy S6, tail o�
below 200 msec with BERs worse than 10-2 as pulse widths ap-
proach 100 msec. At 50 msec, all exhibited degraded performance.
Interestingly, the 250 msec BER for the Nexus 6 was less than its
200 msec measurement while the BER for the Note 4, S5 and S6
peaked at 10-4 and monotonically degraded as PW deceased.

Regarding the Galaxy Note 4, we anticipated that as an older
device, it would have poorer performance than its test peers. �is is
apparent as we observe poor resolving capability below 250 msec.

Table 4: Error Rate Summary
Device Model Pulse Width (Msec) BER

Motorola Nexus 6 50 0.1162
Motorola Nexus 6 100 0.0552
Motorola Nexus 6 200 0.0001
Motorola Nexus 6 250 0.1780
Samsung Galaxy S5 50 0.1898
Samsung Galaxy S5 100 0.0240
Samsung Galaxy S5 200 0.0001
Samsung Galaxy S5 250 0.0001
Samsung Galaxy S6 50 0.0616
Samsung Galaxy S6 100 0.0001
Samsung Galaxy S6 200 0.0001
Samsung Galaxy S6 250 0.0001
Samsung Galaxy Note 4 50 0.1965
Samsung Galaxy Note 4 100 0.1444
Samsung Galaxy Note 4 200 0.00832
Samsung Galaxy Note 4 250 0.0001

Table 5: Device Pool Identicality
Device Model Series Location Test Case X Freq Y Freq Z Freq

Motorola Nexus 6 - Xamarin 1 20500 17950 16600
Motorola Nexus 6 - Xamarin 2 17950 18400 17950
Samsung Galaxy S5 V TF 1 21050 17600 20100
Samsung Galaxy S5 V TF 2 21200 20650 17700
Samsung Galaxy S5 V Xamarin 3 20150 17950 20400
Samsung Galaxy S6 T TF 1 20500 19400 19400
Samsung Galaxy S6 T TF 2 20700 20550 21050
Samsung Galaxy S6 F Xamarin 3 20350 20950 20200
Samsung Galaxy S6 F Xamarin 4 16050 20650 16850
Samsung Galaxy Note 4 T TF 1 18250 18150 18150
Samsung Galaxy Note 4 F Xamarin 2 18150 18050 17950
Samsung Galaxy Note 4 F Xamarin 3 18000 18000 18000
Notes: TF = Test Facility, NA = Unremarkable Correlation, Boldface = Best Freq.

Resident in the Xamarin cloud, the Nexus 6 exhibited unusual
performance at 250 msec. �is is worthy of additional study as it is
the only device exhibiting counter-intuitive behavior.

5.3 Device Family Uniformity
We compared the FID performance of three Galaxy S5s, four Galaxy
S6s, three Galaxy Note 4s and two Google Nexus 6s to assess perfor-
mance of similar device types. �e tests were conducted in either
the local test facilities (TF) or in the Xamarin TestCloud™. All device
types, excluding the Nexus 6s, had at least one instance in both.

Each tested device exhibited positive FID responses, see Table 5
with the Nexus 6s exhibiting multi-frequency responses. In at least
one case there was overlap in sensitive frequencies (18.4 kHz), al-
beit not at the peak sensitivities. Regarding the remaining devices,
no two ‘like’ devices sampled demonstrated sensitivity to the same
frequencies for a given axis. Within a speci�c device family, i.e.,
the Galaxy S6 (excluding the Nexus 6), the frequency di�erences
are less than 1100 Hz. �e sample size is too small to draw any
conclusions regarding the extent of the di�erences. Despite iden-
tical con�gurations as in the ‘T’ series S6 and the ‘F’ series Note
4, di�erences were observed. However, it demonstrates the e�ect
of element (component, OS, manufacturing process) variability be-
tween identical versions and variants. �is reinforces the viability
of the self-identi�cation method described earlier, allowing for the
a�ack independence.

Surprisingly, one of the Xamarin S6s and Xamarin S5s had an
axial Y component as the preferred operating frequency that didn’t
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occur in other phones. We checked the Z axis readings for orien-
tation yet the gravity and magnitude levels were consistent. We
suspect damage or a di�erent or modi�ed chip set was utilized.

6 CAPACITY, THROUGHPUT AND
PERFORMANCE BOOSTING

�is section includes a summary of baseline channel, multichannel
and Amplitude Shi� Keying performance.

6.1 Capacity
We computed the channel capacity from Equation (7) for each of
the susceptible devices using the measured BERs. �e results are
illustrated in Figure 9b. �e capacity levels which we hope to the-
oretically achieve, approach 14, 10, 6 and 6 for the S6, Nexus 6, S5
and Note 4 respectively.
6.2 �roughput
As with the capacity analysis, we derived the throughput from the
BERs by applying Equation (8) with frame lengths ranging from
64 to 512 bits. We assumed lengths for the synchronization frame,
CRC and end of frame marker (EOF) of 23, 16 and 8 respectively.

�e best throughput, ≈ 4 bits/sec, occurs on the S6 (see Fig-
ure 10a) with a 64 bit frame length and a PW of 100 msec. �e
S5 (see Figure 10b) and Nexus 6 (see Figure 10d) similarly o�er a
throughput of ≈ 2 bps with a 200 msec pulse width, also with length
of 64 bits. �e Note 4, see Figure 10c, throughput peaks out with
a 250 msec PW and a frame length of 64 bits.

Given the discrepancy between channel capacity and throughput,
it is clear that the channel is suboptimal as con�gured. �rough-
put degradation occurs at the narrowest pulse widths which are
typically coincident with the highest BERs. Utilizing coding tech-
niques [22] at these particular rates, would allow the throughput
to approach theoretical capacity levels.

6.3 Performance Boosting Evaluation
We use a simple example to put the results in context. We assume
that there are 308 [3] contacts stored in a device. If each contact’s
size is 100 bytes, the entire contact list can be leaked in 6.8 hours
assuming a 10 bps ex�ltration rate. Additionally, approximately 90%
of adults have less than 10 passwords to manage [19]. Assuming
each has length 12 bytes, the password management �le could be
ex�ltrated in ≈ 1.5 minutes. We can achieve greater performance
with the following boosting techniques.
Multichannel Performance

Since several devices exhibited multi-axial responses to non-
overlapping and non-harmonically related frequencies, we sought
to evaluate the feasibility of multichannel communications. To
evaluate this hypothesis, we generated a multichannel test pat-
tern for the Galaxy S6 by aggregating the individual X / Y axis
peak response frequencies (20,500 Hz, 20,250 Hz) with amplitude
weights of 1.0/0.0, 0.9/0.1, 0.8/0.2, . . . , 0.0/1.0. BER tests were subse-
quently executed on the aggregated pa�ern yielding capacity gains
nearly twice that of a single channel (see Figure 11a). Although
suboptimal, this demonstrated the basic multichannel capability.
Improved BERs may be realized by including peak to average power
correction to minimize energy loss.
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Figure 10: �roughput vs. Pulse Width for Uncoded Com-
munication

We analyzed potential cross coupling e�ects by calculating the
Spearman [34] rank order correlation and Pearson product-moment
correlation [39] coe�cients for each weighted pair to identity any
bleed-over, i.e., X a�ecting Y, Y a�ecting X etc. From Table 6, we
see very low axial coupling. Ignoring directionality, the worst-
case correlation was less than 0.119, suggesting that interference
is inconsequential for this particular device-frequency pair.
Amplitude Shi� Keying

We selected eight distinct, non-overlapping amplitude symbol
levels to demonstrate ASK. Figure 11b shows the symbols ampli-
tudes in 16 bit pa�erns separated by quiet periods for illustration
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Figure 11: Performance Boosting

Table 6: Multichannel Axial Correlation
Weight (X/Y) Correlation Type Axial Pair Coe�cient Two Tailed p Value

0.0/1.0 Pearson XY -0.119 < 10−5

0.0/1.0 Pearson XZ 0.018 0.0002
0.0/1.0 Pearson YZ -0.001 0.7663
0.0/1.0 Spearman XY -0.091 < 10−5

0.0/1.0 Spearman XZ 0.023 < 10−5

0.0/1.0 Spearman YZ -0.0014 0.767
1.0/0.0 Pearson XY -0.079 < 10−5

1.0/0.0 Pearson XZ 0.001 0.827
1.0/0.0 Pearson YZ 0.0074 0.106
1.0/0.0 Spearman XY -0.0531 < 10−5

1.0/0.0 Spearman XZ 0.0013 0.7801
1.0/0.0 Spearman YZ 0.0067 0.1421

purposes. �is corresponding bit rate (BR) boost from Equation (6),
is three times the single amplitude rate.

7 MITIGATION
Adverse e�ects, resource consumption and channel �exibility drive
mitigation e�ectiveness. Spectral limiting techniques i.e., �lter-
ing frequencies above 20 kHz diminishes sound quality due to the
hypersonic e�ect [29], discouraging those seeking higher �delity
sound. Reducing sensor reporting rates slows the transmission rate
by forcing an increase in channel pulsewidth. Sensor fusion may
o�er a solution where multiple sensor readings combine to infer a
valid condition. However, the channel’s frequency summation abil-
ity supports operating with concurrent sensor stimulation, thereby
potentially thwarting this defense. Some a priori characterization of
valid conditions are needed to generate the appropriate approach.

Other possibilities relate to sensing activities such as monitoring
player content over time. Although resource intensive and com-
plex, a defender could monitor the sound (spectral) content and
perform envelope detection on data snippets sent to the device play-
ers. Preferably, the OS could monitor apps that use the speaker(s)
and the sensors, reporting resource usage normalized over access
time to ascertain anomalous behavior. Unfortunately, this might
be untimely for real time detection of one-time ex�ltration events.

Relying strictly on permissions for access control to prevent
channel execution is perilous historically. Monitoring all apps as
resources are accessed and subsequently querying the user for di-
rection, depends on user sophistication and requires patience. For
example, solutions such as Audroid [30] target audio covert channel
mitigation. Defending this particular a�ack would require approval
each time there are speaker only requests. �ese types of frequent
query approaches may encourage the user to disable enforcement
mode or worse, root the device which encourages a broader set of
a�acks. Even with this defensive tactic and a sophisticated user,
functional plausibility enhances obfuscation. Consider the source
masquerading as calendar app which utilizes an audible alarm for
appointment alerts. In this case, it has legitimate need to use the
speaker. �e sink alternatively, needs permission for sensor ac-
cess. However, if it masquerades as a game, a legitimate use, the
defense collapses. If the source is blocked from sensor access, it
could cumbersomely and ine�ciently use device family historical
data, transmi�ing across a large spectrum without feedback.

8 RELATEDWORK
Farshteindiker [15], based on Son’s [33] work, developed a chan-
nel that relies on an ‘implant’, an external device that stimulates
the smartphone’s gyroscope with high frequency energy. Due to
sensitivity with the sensor module location, this device contacts
the victim smartphone at a predetermined position. Complexity is
high, requiring a priori target information.

Schlegel [32], Marforio [23], Yue [37] and Okhravi [27] addressed
system se�ing manipulation. Examples included vibration se�ing,
volume se�ing, screen state, socket creation / breakdown discovery,
intent type, processor frequency and timing manipulation. Al-
though channel data rates ranged from 3 to over 3000 bps, current
Android security features (i.e., using SELinux) limit the ability to
create such channels.

Microphone based inter-device channels face the challenge of
prearranged proximity. Examples include: Do [11] who used Audio
Frequency Shi� Keying operating within the 20 kHz to 22 kHz
band to communicate between air gapped devices; Hanspac [17],
who developed a mesh channel between two Lenovo T400 series
computers operating in the 18 kHz+ range and O‘Malley [28], who
demonstrated inter-computer communications in the 20 kHz to
23 kHz band.

Dey [10] and Das [8] demonstrated the existence of device sig-
natures unique to the manufacturing process. Variation (see sec-
tion 5.3) in our channel frequencies supports their observations.

9 CONCLUSION
We demonstrated that a zero permissions, ultrasonic covert channel
can be created and self-parametrized on certain Android devices
using the speaker and the sensor suite as the channel’s endpoints.
Individual axis channel capacity approached 14 bits per second
limited by the testing scope and device type. Furthermore, we
demonstrated that we can increase the data rate by including multi-
channel and Amplitude Shi� Keying capabilities to yield rates up
to and including 3 times the basic channel capability. �e path for-
ward includes broadening the test base to include next generation
devices and evaluating suitable mitigation techniques.
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