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Abstract When scripts in untyped languages grow into large programs, maintaining them
becomes difficult. A lack of explicit type annotations in typical scripting languages forces
programmers to must (re)discover critical pieces of design information every time they wish
to change a program. This analysis step both slows down the maintenance process and may
even introduce mistakes due to the violation of undiscovered invariants.

This paper presents Typed Scheme, an explicitly typed extension of PLT Scheme, an un-
typed scripting language. Its type system is based on the novel notion of occurrence typing,
which we formalize and mechanically prove sound. The implementation of Typed Scheme
additionally borrows elements from a range of approaches, including recursive types, true
unions and subtyping, plus polymorphism combined with a modicum of local inference.

The formulation of occurrence typing naturally leads to a simple and expressive ver-
sion of predicates to describe refinement types. A Typed Scheme program can use these
refinement types to keep track of arbitrary classes of values via the type system. Further,
we show how the Typed Scheme type system, in conjunction with simple recursive types, is
able to encode refinements of existing datatypes, thus expressing both proposed variations
of refinement types.

Keywords Scheme · Type Systems · Refinement types

1 Type Refactoring: From Scripts to Programs

Recently, under the heading of “scripting languages”, a variety of new languages have be-
come popular, and even pervasive, in web- and systems-related fields. Due to their popular-
ity, programmers often create scripts that then grow into large applications.
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Most scripting languages are untyped and provide primitives with flexible semantics to
make programs concise. Many programmers find these attributes appealing and use script-
ing languages for these reasons. Programmers are also beginning to notice, however, that
untyped scripts are difficult to maintain over the long run. The lack of types means a loss
of design information that programmers must recover every time they wish to change ex-
isting code. Both the Perl community (Tang, 2007) and the JavaScript community (ECMA,
2007) are implicitly acknowledging this problem by considering the addition of Common
Lisp-style (Steele Jr., 1984) typing constructs to the upcoming releases of their respective
languages. Additionally, type system proposals have been made for Ruby (Furr et al, 2009a)
and for Dylan (Mehnert, 2009)

In the meantime, industry faces the problem of porting existing application systems from
untyped scripting languages to the typed world. In response, we have proposed a theoreti-
cal model for this conversion process and have shown that partial conversions can benefit
from type-safety properties to the desired extent (Tobin-Hochstadt and Felleisen, 2006).
This problem has also sparked significant research interest in the evolution of scripts to pro-
grams (Wrigstad et al, 2009). The key assumption behind our work is the existence of an
explicitly typed version of the scripting language, with the same semantics as the original
language, so that values can freely flow back and forth between typed and untyped modules.
In other words, we imagine that programmers can simply add type annotations to a module
and thus introduce a certain amount of type-safety into the program.

At first glance, our assumption of such a typed sister language may seem unrealistic. Pro-
grammers in untyped languages often loosely mix and match reasoning from various type
disciplines when they write scripts. Worse, an inspection of code suggests they also include
flow-oriented reasoning, distinguishing types for variables depending on prior operations. In
short, untyped scripting languages permit programs that appear difficult to type-check with
existing type systems.

To demonstrate the feasibility of our approach, we have designed and implemented
Typed Scheme, an explicitly typed version of PLT Scheme. We have chosen PLT Scheme for
two reasons. On one hand, PLT Scheme is used as a scripting language by a large number of
users. It also comes with a large body of code, with contributions ranging from scripts to li-
braries to large operating-system like programs. On the other hand, the language comes with
macros, a powerful extension mechanism (Flatt, 2002). Macros place a significant constraint
on the design and implementation of Typed Scheme, since supporting macros requires type-
checking a language with a user-defined set of syntactic forms. We are able to overcome this
difficulty by integrating the type checker with the macro expander. Indeed, this approach
ends up greatly facilitating the integration of typed and untyped modules. As envisioned
(Tobin-Hochstadt and Felleisen, 2006), this integration makes it mostly straightforward to
turn portions of a multi-module program into a partially typed yet still executable program.

Developing Typed Scheme requires not just integration with the underlying PLT Scheme
system, but also a type system that works well with the idioms used by PLT Scheme pro-
grammers when developing scripts. It would be an undue burden if the programmer needed
to rewrite idiomatic PLT Scheme code to make it typeable in Typed Scheme. For this pur-
pose, we have developed a novel type system, combining the idea of occurrence typing with
subtyping, recursive types, polymorphism and a modicum of inference.

The design of Typed Scheme and its type system also allows for simple additions of so-
phisticated type system features. In particular, the treatment of predicates in Typed Scheme
lends itself naturally to treating predicates such as even? as defining refinements of existing
types, such a integers. This allows for a lightweight form of refinement types, without any
need for implication or inclusion checking.
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We first present a formal model of the key aspects of occurrence typing and prove it to
be type-sound. We then describe how refinement types can be added to this system, and how
they can be used effectively in Typed Scheme. Later we describe how to scale this calculus
into a full-fledged, typed version of PLT Scheme and how to implement it. Finally, we give
an account of our preliminary experience, adding types to thousands of lines of untyped
Scheme code. Our experiments seem promising and suggest that converting untyped scripts
into well-typed programs is feasible.

2 Overview of Typed Scheme

The goal of the Typed Scheme project is to develop an explicit type system that easily
accommodates a conventional Scheme programming style. Ideally, programming in Typed
Scheme should feel like programming in PLT Scheme, except for typed function and struc-
ture signatures plus type definitions. Few other changes should be required when going from
a Scheme program to a Typed Scheme program. Furthermore, the addition of types should
require a relatively small effort, compared to the original program. This requires that macros,
both those used and defined in the typed program, must be supported as much as possible.

Supporting this style of programming demands a significant rethinking of type systems.
Scheme programmers reason about their programs, but not with any conventional type sys-
tem in mind. They superimpose on their untyped syntax whatever type (or analysis) disci-
pline is convenient. No existing type system could cover all of these varieties of reasoning.

2.1 Occurrence Typing

Consider the following function definition:1

;; data definition: a Complex is either
;; - a Number or
;; - (cons Number Number)

;; Complex→ Number
(define (creal x)

(cond [(number? x) x]
[else (car x)]))

As the informal data definition states, complex numbers are represented as either a single
number, or a pair of numbers (cons).

The definition illustrates several key elements of the way that Scheme programmers
reason about their programs: ad-hoc type specifications, true union types, and predicates
for type testing. No datatype specification is needed to introduce a sum type on which the
function operates. Instead there is just an “informal” data definition and contract (Felleisen
et al, 2001), which gives a name to a set of pre-existing data, without introducing new
constructors. Further, the function does not use pattern matching to dispatch on the union
type. Instead, it uses a predicate that distinguishes the two cases: the first cond clause, which
treats x as a number and the second one, which treats it as a pair.

Here is the corresponding Typed Scheme code:

1 Standards-conforming Scheme implementations provide a complex number datatype directly. This ex-
ample serves only expository purposes.
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(define-type-alias Cplx (
⋃

Number (cons Number Number)))

(define: (creal [x : Cplx]) : Number
(cond [(number? x) x]

[else (car x)]))

This version explicates both aspects of our informal reasoning. The type Cplx is an abbrevi-
ation for the true union intended by the programmer; naturally, it is unnecessary to introduce
type abbreviations like this one. Furthermore, the body of creal is not modified at all; Typed
Scheme type-checks each branch of the conditional appropriately. In short, only minimal
type annotations are required to obtain a typed version of the original code, in which the
informal, unchecked comments become statically-checked design elements.

Our design also accommodates more complex reasoning about the flow of values in
Scheme programs.

(foldl scene+rectangle empty-scene (filter rectangle? list-of-shapes))

This code selects all the rectangles from a list of shapes, and then adds them one by one to
an initially-empty scene, perhaps in preparation for rendering to the screen. Even though the
initial list-of-shapes may contain shapes that are not rectangles, those are removed by the
filter function. The resulting list contains only rectangles, and is an appropriate argument to
scene+rectangle. No additional coercions are needed.

This example demonstrates a different mode of reasoning than the first; here, the Scheme
programmer uses polymorphism and the argument-dependent invariants of filter to ensure
correctness.

No changes to this code are required for it to typecheck in Typed Scheme. The type
system is able to accommodate both modes of reasoning the programmer uses with poly-
morphic functions and occurrence typing. In contrast, a more conventional type system such
as SML (Milner et al, 1997) would require the use of an intermediate data type, such as an
option type, to ensure conformance.

2.2 Refinement Types

Refinement types, introduced originally by Freeman and Pfenning (1991), are types which
describe subsets of conventional types. For example, the type of even integers is a refinement
of the type of integers. Many different systems have proposed distinct ways of specifying
these subsets (Rondon et al, 2008; Wadler and Findler, 2009). In Typed Scheme, we describe
a set of values with a simple Scheme predicate.

The fundamental idea is that a boolean-valued function, such as even?, can be treated as
defining a type, which is a subtype of the input type of even?. This type has no constructors,
but it is trivial to determine if a value is a member by using the predicate even?. For example,
this function produces solely even numbers:2

(: just-even (Number→ (Refinement even?)))
(define (just-even n)

(if (even? n) n (error ’not-even)))

This technique harnesses occurrence typing to work with arbitrary predicates, and not
just those that correspond to Scheme data types.

2 In the subsequent formal development, we require a slightly more verbose syntax for refinement types.
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2.3 Other Type System Features

In order to support Scheme idioms and programming styles, Typed Scheme supports a num-
ber of type system features that have been studied previously, but are rarely found in a single,
full-fledged implementation. Specifically, Typed Scheme supports true union types (Pierce,
1991), as seen above. It also provides first-class polymorphic functions, known as impred-
icative polymorphism, a feature of the Glasgow Haskell Compiler (Vytiniotis et al, 2006).
In addition, Typed Scheme allows programmers to explicitly specify recursive types, as well
as constructors and accessors that manage the recursive types automatically. Finally, Typed
Scheme provides a rich set of base types to match those of PLT Scheme.

2.4 S-expressions

One of the primary Scheme data structures is the S-expression. We have already seen an
example of this in the preceding section, where we used pairs of numbers to represent com-
plex numbers. Other uses of S-expressions abound in real Scheme code, including using
lists as tuples, records, trees, etc. Typed Scheme handles these features by representing lists
explicitly as sequences of cons cells. Therefore, we can give an S-expression as precise a
type as desired. For example, the expression (list 1 2 3) is given the type (cons Number
(cons Number (cons Number ’()))), which is a subtype of (Listof Number).

Lists, of course, are recursive structures, and we exploit Typed Scheme’s support for
explicit recursive types to make Listof a simple type definition over cons. Thus, the subtyp-
ing relationship for fixed-length lists is simply a consequence of the more general rules for
recursive types.

Sometimes, however, Scheme programmers rely on invariants too subtle to be captured
in our type system. For example, S-expressions are often used to represent XML data, with-
out first imposing any structure on that data. In these cases, Typed Scheme allows program-
mers to leave the code dealing with XML in the untyped world, communicating with the
typed portions of the program just as other untyped code does.

2.5 Other Important Scheme Features

Scheme programmers also use numerous programming-language features that are not present
in typical typed languages. Examples of these include the apply function, which applies
a function to a heterogeneous list of arguments; the multiple value return mechanism in
Scheme; the use of arbitrary non-false values in conditionals; the use of variable-arity and
multiple-arity functions; and many others. Some variable-arity functions, such as map and
foldl, require special care in the type system (Strickland et al, 2009). All of these features
are widely used in existing PLT Scheme programs, and supported by Typed Scheme.

2.6 Macros

Handling macros well is key for any system that claims to allow typical Scheme practice.
This involves handling macros defined in libraries or by the base language as well as macros
defined in modules that are converted to Typed Scheme. Further, since macros can be im-
ported from arbitrary libraries, we cannot specify the typing rules for all macros ahead of
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time. Therefore, we must expand macros before typechecking. This allows us to handle al-
most all simple macros, and many existing complex macros without change, i.e., those for
which we can infer the types of the generated variables. Further, macros defined in typed
code require no changes. Unfortunately, this approach does not scale to the largest and most
complex macros, such as those defining a class system (Flatt et al, 2006), which rely on
and enforce their own invariants that are not understood by the type system. Handling such
macros remains future work.

3 Two Examples of Refinements

To demonstrate the utility of refinement types as provided by Typed Scheme, as well as
the other features of the language, we present two extended examples. The first tackles
the problem of form validation, demonstrating the use of predicate-based refinements. The
second encodes the syntax of the continuation-passing-style λ -calculus in the type system.

3.1 Form Validation

One important problem in form validation is avoiding SQL injection attacks, where a piece
of user input is allowed to contain an SQL statement and passed directly to the database. A
simple example is the query

(string-append "SELECT ∗ FROM users WHERE name = ’" user-name "’;")

If user-name is taken directly from user input, then it might contain the string "a’ or

’t’=’t", resulting in an query that returns the entire contents of the users table. More dam-
aging queries can be constructed, with data loss a significant possibility (Munroe, 2007).

One common solution for avoiding this problem is sanitizing user input with escape
characters. Unfortunately, sanitized input, like unsanitized input, is simply a string. There-
fore, we use refinement types to statically verify that only validated input is passed through
to the database. This requires two key pieces: the predicate, and the final consumer.

The predicate is a Typed Scheme function that determines if a string is acceptable as
input to the database:

(: sql-safe? (String→ Boolean))
(define (sql-safe? s) omitted )

No special type system machinery is required to write and use such a predicate. One
more step is needed, however, to turn this predicate into a refinement type:

(declare-refinement sql-safe?)

This declaration changes the type of sql-safe? to be a predicate for (Refinement sql-safe?
String).3

With this refinement type, we can specify the desired type of our query function:

(: query ((Refinement sql-safe? String)→ (Listof Result)))
(define (query user-name)

(run-query
(string-append "SELECT ∗ FROM users WHERE name = ’" user-name "’;")))

3 It is similar to the function sql-safe? being in the environment ∆ in the formalization of refinement types,
see section 5.
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Since (Refinement sql-safe? String) is a subtype of String, user-name can be used
directly as an argument to string-append.

We can also write a sanitize function that performs the necessary escaping, and use the
sql-safe? function and refinement types for static and dynamic verification:

(: sanitize (String→ (Refinement sql-safe? String)))
(define (sanitize s)

(define s∗ (string-map escape-char s))
(if (sql-safe? s) s (error "escape failed")))

The only function that is added to the trusted computing base is the definition of sql-safe?,
which can be provided by the database vendor. Everything else can be entirely user-written.

Alternative Solutions Another solution to this problem, common in other languages, would
have sanitize be defined in a different module, with SQLSafeString as an opaque exported
type. Unfortunately, this requires using an accessor whenever a SQLSafeString is used in
a context that expects a string (such as string-append). The use of refinement types avoids
both the dynamic cost of wrapping in a new type, as well as the programmer burden of
managing these wrappers and their corresponding accessors.

3.2 Restricted Grammars

Given a recursive data type, it is common to describe subsets of such data that are valid in a
particular context. Non-empty lists are a paradigmatic case, and are the original motivating
example for Freeman and Pfenning (1991) in their work on refinement types.

In Typed Scheme, the type for a list of Integers would be

(define-type IntList (Rec L (
⋃

’() (Pair Integer L))))

where Rec is the constructor for recursive types. Non-empty lists are just a single unfolding
of this type, without the initial ’() case:

(define-type NonEmpty (Pair Integer (Rec L (
⋃

’() (Pair Integer L))))

Of course, NonEmpty is a subtype of IntList.
Using this technique, we can encode other interesting examples of refinement types. To

demonstrate its expressiveness, we show how to encode the partitioned CPS of Sabry and
Felleisen (1993, Definition 8). We begin with encodings of variables, which distinguishes
variables ranging over user values (Vu) from variables ranging over continuations (Vk):

(define-type Vu Symbol)
(define-struct: Vk ([v : Symbol]))
(define-type V (

⋃
Vu Vk))

The λ and app constructors are both parameterized over their two field types. A λ con-
tains a variable and a body, while an app has an operator and an operand:

(define-struct: (V A) λ ([x : V] [b : A]))
(define-struct: (A B) app ([rator : A] [rand : B]))

(define-type (λU A) (λ Vu A))
(define-type (λK A) (λ Vk A))
(define-type (λA A) (λ V A))
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λU and λK are abbreviations for user-level and transformation-introduced abstractions. λA
allows any kind of variable.

With these preliminaries in place, we can define λ -terms:

(define-type Λ (Rec L (
⋃

V (λA L) (app L L))))

A term is either a variable (V ), an abstraction whose body is a term, or an application of two
terms.

We now transform the original definition of partitioned CPS terms:

P ::= (K W )
W ::= x | λk.K
K ::= k | (W K) | λk.K

We can write these definitions directly as Typed Scheme types:4

(define-type P (app K W))
(define-type W (

⋃
Vu (λK K)))

(define-type K (
⋃

Vk (app W K) (λK K))

All of the types are of course subtypes of Λ . Thus, compiler writers can write typeful func-
tions that manipulate CPS terms, while also using more general functions that accept arbi-
trary terms (such as evaluators) on them.

4 A Formal Model of Typed Scheme

Following precedent, we have distilled the novelty of our type system into a typed lambda
calculus, λT S. While Typed Scheme incorporates many aspects of modern type systems, the
calculus serves only as a model of occurrence typing, the primary novel aspect of the type
system, in conjunction with true union types and subtyping. The latter directly interact with
the former; other features of the type system are mostly orthogonal to occurrence typing.
This section first presents the syntax and dynamic semantics of the calculus, followed by the
typing rules and a (mechanically verified) soundness result.

4.1 Syntax and Operational Semantics

Figure 1 specifies the syntax of λT S programs. An expression is either a value, a variable, an
application, or a conditional. The set of values consists of abstractions, numbers, booleans,
and constants. Binding occurrences of variables are explicitly annotated with types. Types
are either >, function types, base types, or unions of some finite collection of types. We
refer to the decorations on function types as latent predicates and explain them, along with
visible predicates, below in conjunction with the typing rules. For brevity, we abbreviate
(
⋃

true false) as Boolean and (
⋃
) as ⊥.

The operational semantics is standard: see figure 7. Following Scheme and Lisp tradi-
tion, any non-false value is treated as true.

4 Unfortunately, Typed Scheme currently requires the equivalent, but more verbose definition of P and K,
in which the other definitions are inlined:

(define-type P (app K (
⋃

Vu (λK K))))
(define-type K (Rec K (

⋃
Vk (app (

⋃
Vu (λK K)) K) (λU (app K (

⋃
Vu (λK K)))))))

We are investigating how to admit the shorter syntax directly.
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d,e, . . . ::= x | (e1 e2) | (if e1 e2 e3) | v Expressions
v ::= c | b | n | lx : τ.e Values
c ::= add1 | number? | boolean? | procedure? | not Primitive Operations

E ::= [] | (E e) | (v E) | (if E e2 e3) Evaluation Contexts

φ ::= τ | • Latent Predicates
ψ ::= τx | x | true | false | • Visible Predicate

σ,τ ::= > | Number | true | false | (σ φ→ τ) | (
⋃

τ . . .) Types

Fig. 1 Syntax

T-VAR
Γ ` x :Γ(x);x

T-NUM
Γ ` n : Number; true

T-CONST
Γ ` c : δτ (c); true

T-TRUE
Γ ` true :Boolean; true

T-FALSE
Γ ` false :Boolean; false

T-ABSPRED
Γ,x : σ ` e : τ;σ

′
x

Γ ` lx : σ.e : (σ
σ ′→ τ); true

T-ABS
Γ,x : σ ` e : τ;ψ

Γ ` lx : σ.e : (σ •→ τ); true

T-APP
Γ ` e1 : τ

′;ψ

Γ ` e2 : τ;ψ
′

` τ <: τ0

` τ
′ <: (τ0

φ→ τ1)

Γ ` (e1 e2) : τ1;•

T-APPPRED
Γ ` e1 : τ

′;ψ

Γ ` e2 : τ;x
` τ <: τ0

` τ
′ <: (τ0

σ→ τ1)

Γ ` (e1 e2) : τ1;σx

T-IF
Γ ` e1 : τ1;ψ1

Γ+ψ1 ` e2 : τ2;ψ2
Γ−ψ1 ` e3 : τ3;ψ3
` τ2 <: τ ` τ3 <: τ

ψ = combpred(ψ1,ψ2,ψ3)

Γ ` (if e1 e2 e3) : τ;ψ

Fig. 2 Primary Typing Rules

combpred(ψ ′,ψ,ψ) = ψ δτ (add1) = (Number •→ Number)
combpred(τx , true,σx ) = (

⋃
τ σ)x δτ (not) = (> •→ Boolean)

combpred(true,ψ1,ψ2) = ψ1 δτ (procedure?) = (> (⊥ •→>)→ Boolean)

combpred(false,ψ1,ψ2) = ψ2 δτ (number?) = (> Number→ Boolean)

combpred(ψ, true, false) = ψ δτ (boolean?) = (> Boolean→ Boolean)
combpred(ψ1,ψ2,ψ3) = •

Fig. 3 Auxiliary Operations

Γ + τx = Γ[x : restrict(Γ(x),τ) ]
Γ + x = Γ[x : remove(Γ(x), false) ]
Γ + • = Γ

Γ - τx = Γ[x : remove(Γ(x),τ) ]
Γ - x = Γ[x : false ]
Γ - • = Γ

restrict(σ,τ) = σ when ` σ <: τ

restrict(σ,(
⋃

τ . . .)) = (
⋃
restrict(σ,τ) . . . )

restrict(σ,τ) = τ otherwise
remove(σ,τ) = ⊥ when ` σ <: τ

remove(σ,(
⋃

τ . . .)) = (
⋃
remove(σ,τ) . . . )

remove(σ,τ) = σ otherwise

Fig. 4 Environment Operations



10

4.2 Preliminaries

The key feature of λT S is its support for assigning distinct types to distinct occurrences of a
variable based on control flow criteria. For example, to type the expression

(ł(x : (
⋃

Number Boolean))
(if (number? x) (= x 1) (not x)))

the type system must use Number for x in the then branch of the conditional and Boolean in
the else branch. If it can distinguish these occurrences and project out the proper component
of the declared type (

⋃
Number Boolean), the computed type of the function is

((
⋃

Number Boolean)→ Boolean).

The type system for λT S shows how to distinguish these occurrences; its presentation
consists of two parts. The first are those rules that the programmer must know and that
are used in the implementation of Typed Scheme. The second set of rules are needed only
to establish type soundness; these rules are unnecessary outside of the proof of the main
theorem.

Visible Predicates Judgments of λT S involve both types and visible predicates (see the
production for ψ in figure 1). The former are standard. The latter are used to accumulate
information about expressions that affect the flow of control and thus demand a split for
different branches of a conditional. Of course, a syntactic match would help little, because
programmers of scripts tend to write their own predicates and compose logical expressions
with combinators. Also, programmer-defined datatypes extend the set of predicates.

Latent Predicates In order to accommodate programmer-defined functions that are used
as predicates, the type system of λT S uses latent predicates (see φ in figure 1) to anno-
tate function types. Syntactically speaking, a latent predicate is a single type φ atop the
arrow-type constructor that identifies the function as a predicate for φ . This latent predicate-
annotation allows a uniform treatment of built-in and user-defined predicates. For example,

number? : (> Number→ Boolean)

says that number? is a discriminator for numbers. An eta-expansion preserves this property:

(λ (x:>) (number? x)) : (> Number→ Boolean).

Thus far, higher-order latent predicates are useful in just one case: procedure?. For
uniformity, the syntax accommodates the general case. We intend to study an integration of
latent predicates with higher-order contracts (Findler and Felleisen, 2002) and expect to find
additional uses.

The λT S calculus also accommodates logical combinations of predicates. Thus, if a pro-
gram contains a test expression such as:

(if (number? x) #t (boolean? x))

then Typed Scheme computes the appropriate visible predicate for this union, which is
(
⋃

Number Boolean)x . This information is propagated so that a programmer-defined func-
tion receives a corresponding latent predicate. That is, the bool-or-number function:

(ł(x : Any) (if (number? x) #t (boolean? x)))

acts like a predicate of type (Any
(
⋃

Number Boolean)→ Boolean) and is used to split types
in different branches of a conditional.
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4.3 Typing Rules

Equipped with types and predicates, we turn to the typing rules. They derive judgements of
the form

Γ ` e : τ;ψ.

It states that in type environment Γ , expression e has type τ and visible predicate ψ. The
latter is used to change the type environment in conjunction with if expressions.5 The type
system proper comprises the ten rules in figure 2.

The rule T-IF is the key part of the system, and shows how visible predicates are treated.
To accommodate Scheme style, we allow expressions with any type as tests. Most impor-
tantly, though, the rule uses the visible predicate of the test to modify the type environment
for the verification of the types in the two conditional branches. When a variable is used as
the test, we know that it cannot be false in the then branch, and must be in the else branch.

While many of the type-checking rules appear familiar, the presence of visible predicate
distinguishes them from ordinary rules:

– T-VAR assigns a variable its type from the type environment and names the variable
itself as the visible predicate.

– Boolean constants have Boolean type and a visible predicate that depends on their truth
value. Since numbers and primitive functions are always treated as true values, they have
visible predicate true.

– When we abstract over a predicate, the abstraction should reflect the test being per-
formed. This is accomplished with the T-ABSPRED rule, which gives an abstraction a
latent predicate if the body of the abstraction has a visible predicate referring to the
abstracted variable, as in the bool-or-number example.
Otherwise, abstractions have their usual type; the visible predicate of their body is ig-
nored. The visible predicate of an abstraction is true, since abstractions are treated that
way by if.

– Checking plain applications proceeds as normal. The antecedents include latent predi-
cates and visible predicates but those are ignored in the consequent.

– The T-APPPRED rule shows how the type system exploits latent predicates. The appli-
cation of a function with latent predicate to a variable turns the latent predicate into a
visible predicate on the variable (σx ). The proper interpretation of this visible predicate
is that the application produces true if and only if x has a value of type σ.

Figure 3 defines a number of auxiliary typing operations. The mapping from constants
to types is standard. The ternary combpred(−,−,−) metafunction combines the effects of
the test, then and else branches of an if expression. The most interesting case is the second
one, which handles expressions such as this:

(if (number? x) #t (boolean? x))

the equivalent of an or expression. The combined effect is (
⋃

NumberBoolean)x , as ex-
pected.

The environment operations, specified in figure 4, combine a visible predicate with a
type environment, updating the type of the appropriate variable. Thus, restrict(σ,τ) is σ

restricted to be a subtype of τ, and remove(σ,τ) is σ without the portions that are subtypes
of τ. The only non-trivial cases are for union types.

5 Other control flow constructs in Scheme are almost always macros that expand into if, and that the
typechecker can properly check.
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S-REFL
` τ <: τ

S-FUN
` σ1 <: τ1 ` τ2 <: σ2

φ = φ
′ or φ

′ = •

` (τ1
φ→ τ2)<: (σ1

φ ′→ σ2)

S-UNIONSUPER
` τ <: σi 1≤ i≤ n

` τ <: (
⋃

σ1 · · ·σn)

S-UNIONSUB
` τi <: σ for all 1≤ i≤ n

` (
⋃

τ1 · · ·τn)<: σ

Fig. 5 Subtyping Relation

T-APPPREDTRUE
Γ ` e1 : τ

′;ψ Γ ` e2 : τ;ψ
′

` τ <: τ0 ` τ <: σ ` τ
′ <: (τ0

σ→ τ1)

Γ ` (e1 e2) : τ1; true

T-APPPREDFALSE
Γ ` e1 : τ

′;ψ Γ ` v : τ;ψ
′

` τ <: τ0 ` τ 6<: σ v closed
` τ
′ <: (τ0

σ→ τ1)

Γ ` (e1 v) : τ1; false

T-IFTRUE
Γ ` e1 : τ1; true Γ` e2 : τ2;ψ2

` τ2 <: τ

Γ ` (if e1 e2 e3) : τ;•

T-IFFALSE
Γ ` e1 : τ1; false Γ` e3 : τ3;ψ3

` τ3 <: τ

Γ ` (if e1 e2 e3) : τ;•

SE-REFL
` ψ <:? ψ

SE-NONE
` ψ <:? •

SE-TRUE
ψ 6= false
` true <:? ψ

SE-FALSE
ψ 6= true
` false <:? ψ

Fig. 6 Auxiliary Typing Rules

For the motivating example from the beginning of this section,

(ł(x : (
⋃

Number Boolean)) (if (number? x) (= x 1) (not x)))

we can now see that the test of the if expression has type Boolean and visible predicate
Numberx . As a consequence, the then branch is type-checked in an environment where x
has type Number; in the else branch, x is assigned Boolean.

Subtyping The definition of subtyping is given in figure 5. The rules are for the most part
standard, with the rules for union types adapted from Pierce’s (Pierce, 1991). One important
consequence of these rules is that ⊥ is below all other types. This type is useful for typing
functions that do not return, as well as for defining a supertype of all function types.

We do not include a transitivity rule for the subtyping relation, but instead prove that the
subtyping relation as given is transitive. This choice simplifies the proof in a few key places.

The rules for subtyping allow function types with latent predicates to be used in a context
that expects a function that is not a predicate. This is especially important for procedure?,
which handles functions regardless of latent predicate.
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E-DELTA
δ (c,v) = v′

(c v) ↪→ v′
E-BETA
(lx : τ.e v) ↪→ e[x/v]

E-IFFALSE
v = false

(if v e2 e3) ↪→ e3

E-IFTRUE
v 6= false

(if v e2 e3) ↪→ e2

L ↪→ R
E[L]→ E[R]

δ (add1,n) = n +1

δ (not, false) = true δ (not,v) = false v 6= false

δ (number?,n) = true δ (number?,v) = false

δ (boolean?,b) = true δ (boolean?,v) = false

δ (procedure?, lx : τ.e) = true δ (procedure?,c) = true

δ (procedure?,v) = false otherwise

Fig. 7 Operational Semantics

4.4 Proof-Technical Typing Rules

The typing rules in figure 2 do not suffice for the soundness proof. To see why, consider the
function from above, applied to the argument #f. By the E-BETA rule, this reduces to

(if (number? #f) (= #f 1) (not #f))

Unfortunately, this program is not well-typed according the primary typing rules, since =
requires numeric arguments. Of course, this program reduces in just a few steps to #t,
which is an appropriate value for the original type. To prove type soundness in the style of
Wright and Felleisen (Wright and Felleisen, 1994), however, every intermediate term must
be typeable. So our types system must know to ignore the then branch of our reduced term.

To this end, we extend the type system with the rules in figure 6. This extension assigns
the desired type to our reduced expression, because (number? #f) has visible predicate false.
Put differently, we can disregard the then branch, using rule T-IFFALSE.6

In order to properly state the subject reduction lemma, we need to relate the visible
predicates of terms in a reduction sequence. To this end, we define a sub-predicate relation,
written ` ψ <:? ψ ′. The relation is defined in figure 6; it is not used in the subtyping or
typing rules, being needed only for the soundness proof.

We can now prove the traditional lemmas. We work only with closed terms, since it
simplifies the possible predicates of the expression.

Lemma 1 (Preservation) If ` e : τ;ψ (with e closed) and e → e′, then ` e′ : τ ′;ψ ′ where
` τ ′ <: τ and ` ψ ′ <:? ψ.

Proof Sketch This is a corollary of two other lemmas: that plugging a well typed term
into the hole of an evaluation preserves the type of the resulting term, and that the e1 ↪→ e2

6 The rules in figure 6 are similar to rules used for the same purpose in systems with a typecase construct,
such as Crary et al (1998).
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preserves type when e1 is closed. These two lemmas are both proved by induction on the
relevant typing derivations. ut

Lemma 2 (Progress) If ` e :τ;ψ (with e closed) then either e is a value or e→ e′ for some
e′.

Proof Sketch By induction on the derivation of Γ ` e : τ;ψ. ut
From these, soundness for the extended type system follows. Programs with untypable

subexpressions, however, are not useful in real programs. We only needed to consider them,
as well as our additional rules, for our proof of soundness. Fortunately, we can also show
that the additional, proof-theoretic, rules are needed only for the type soundness proof, not
the result. Therefore, we obtain the desired type soundness result.

Theorem 1 (Soundness) If Γ ` e : τ;ψ, with e closed, using only the rules in figure 2, and
τ is a base type, one of the following holds

1. e reduces forever, or
2. e→∗ v where ` v : σ;ψ ′ and ` σ <: τ and ` ψ ′ <:? ψ.

Proof Sketch First, this is a corollary of soundness if the requirement is only that v
typechecks in the extended system, since it types strictly more terms. Second, the extended
system agrees with the non-extended system on all values of ground type (numbers and
booleans). Thus, v has the appropriate type even in the original system. ut

4.5 Mechanized Support

We employed two mechanical systems for the exploration of the model and the proof of
the soundness theorem: Isabelle/HOL (Nipkow et al, 2002) and PLT Redex (Matthews et al,
2004). Indeed, we freely moved back and forth between the two, and without doing so,
we would not have been able to formalize the type system and verify its soundness in an
adequate and timely manner.

For the proof of type soundness, we used Isabelle/HOL together with the nominal-
isabelle package (Urban, 2008). Expressing a type system in Isabelle/HOL is almost as
easy as writing down the typing rules of figures 2 and 6 (our formalization runs to 5000
lines). To represent the reduction semantics (from figure 7) we turn evaluation contexts into
functions from expressions to expressions, which makes it relatively straightforward to state
and prove lemmas about the connection between the type system and the semantics. Unfor-
tunately, this design choice prevents us from evaluating sample programs in Isabelle/HOL,
which is especially important when a proof attempt fails.

Since we experienced such failures, we also used the PLT Redex system (Matthews
et al, 2004) to explore the semantics and the type system of Typed Scheme. PLT Redex
programmers can write down a reduction semantics as easily as Isabelle/HOL programmers
can write down typing rules. That is, each line in figures 1 and 7 corresponds to one line
in a Redex model. Our entire Redex model, with examples, is less than 500 lines. Redex
comes with visualization tools for exploring the reduction of individual programs in the
object language. In support of subject reduction proofs, language designers can request the
execution of a predicate for each “node” in the reduction sequences (or graphs). Nodes and
transitions that violate a subject reduction property are painted in distinct colors, facilitating
example-based exploration of type soundness proofs.
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Every time we were stuck in our Isabelle/HOL proof, we would turn to Redex to develop
more intuition about the type system and semantics. We would then change the type system
of the Redex model until the violations of subject reduction disappeared. At that point, we
would translate the changes in the Redex model into changes in our Isabelle/HOL model
and restart our proof attempt. Switching back and forth in this manner helped us improve the
primary typing rules and determine the shape of the auxiliary typing rules in figure 6. Once
we had those, pushing the proof through Isabelle/HOL was a labor-intensive mechanization
of the standard proof technique for type soundness.

5 Formalizing Refinements

It is straightforward to add refinement types to the λT S calculus. We extend the grammar
with the new type constructor (R c τ), which is the refinement defined by the built-in func-
tion c, which has argument type τ.7 We restrict refinements to built-in functions so that
refinement types can be given to closed expressions and values such as 0. We then add two
new constants, even?, with type

(Number
(R even? Number)→ Boolean)

and odd?, with type

(Number
(R odd? Number)→ Boolean)

and the obvious semantics.
The subtyping rules for refinements require an additional environment ∆ , which speci-

fies which built-ins may be used as refinements. Extending the existing subtyping rules with
this environment is straightforward, giving a new judgement of the form ∆ `r τ1 <: τ2, with
the subscript r distinguishing this judgement from the earlier subtyping judgement. As an
example, the extended version of the S-REFL rule is

∆ `r τ <: τ

The new rule for refinement types is

c ∈ ∆ δτ(c) = (τ1
φ→ τ2) ∆ `r τ1 <: τ

∆ `r (R c τ1)<: τ

This rule states that a refinement of type τ1 is a subtype of any type of which τ1 is a subtype.
As expected, this means that ∆ `r (R c τ)<: τ.

The addition of this environment to the subtyping judgement requires a similar addition
to the typing judgement, which now has the form ∆ ,Γ `r e : τ;ψ.

This subtyping rule, along with the constants even? and odd?, are sufficient to write
useful examples. For example, this function consumes an even-consuming function and a
number, and uses the function if and only if the number is even.

(ł([f : ((Refinement even? Number)→ Number)] [n : Number])
(if (even? n) (f n) n))

No additional type rules are necessary for this extension. Additionally, any expression
of type (R c τ) can be used as if it has type τ, meaning that standard arithmetic operations
still work on even and odd numbers.

7 τ is inferred from the type of c in the implemented system, as demonstrated in section 3.
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eraseτ ((R c τ)) = eraseτ (τ)

eraseτ ((τ
τ ′→ σ)) = (eraseτ (τ)

eraseτ (τ
′)

→ eraseτ (σ))

eraseτ ((τ
•→ σ)) = (eraseτ (τ)

•→ eraseτ (σ))
eraseτ (Number) = Number
eraseτ (true) = true
eraseτ (false) = false
eraseτ (>) = >
eraseτ ((

⋃
τ . . .)) = (

⋃
eraseτ (τ) . . .)

eraseλ (lx : τ.e) = lx : eraseτ (τ).eraseλ (e)
eraseλ ((e1 e2)) = (eraseλ (e1) eraseλ (e2))
eraseλ ((if e1 e2 e3)) = (if eraseλ (e1) eraseλ (e2) eraseλ (e3))
eraseλ (n) = n
eraseλ (c) = c
eraseλ (b) = b
eraseλ (x) = x

eraseψ (τx ) = eraseτ (τ)x
eraseψ (x) = x
eraseψ (•) = •
eraseψ (true) = true
eraseψ (false) = false

eraseΓ (x : τ, . . .) = x : eraseτ (τ), . . .

erase`(Γ ` e : τ;ψ) = eraseΓ (Γ ) ` eraseλ (e) :eraseτ (τ);eraseψ (ψ)

Fig. 8 Erasure Metafunctions

5.1 Soundness

Proving soundness for the extended system with refinements raises the interesting question
of what additional errors are prevented by the refinement type extension. The answer is
none; no additional behavior is ruled out. This is unsurprising, of course, since the soundness
theorem from section 4.4 does not allow the possibility of any errors. But even if errors were
added to the operational semantics, such as division by zero, none of these errors would be
prevented by the refinement type system. Instead, refinement types allow the specification
and enforcement of types that do not have any necessary correspondence to the operational
semantics of the language.

We therefore adopt a different proof strategy. Specifically, we erase the refinement types
and are left with a typeable term, which reduces appropriately. Given a type in the extended
language, we can compute a type without refinement types, simply by erasing all occur-
rences of (R c τ) to τ. The definition of this function, eraseτ is given in figure 8, along with
its extension to terms (eraseλ ), predicates (eraseψ ), environments (eraseΓ ) and judgments
(erase`). We also assume the obvious modifications to δτ .

With these definitions in hand, we can conclude the necessary lemmas for proving
soundness.

Lemma 3 (Typing Erased Terms) If ∆ ,Γ `r e : τ;ψ, then erase`(Γ ` e : τ;ψ).

Proof By induction on the derivation of ∆ ,Γ `r e : τ;ψ. ut

Lemma 4 (Reducing Erased Terms) If e1→ e2, then eraseλ (e1)→ eraseλ (e2).

Proof By induction on the derivation of e1→ e2. ut
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We can combine these lemmas with our earlier preservation and progress lemmas to
conclude soundness.

Theorem 2 (Soundness with Refinement Types) If ∆ ,Γ `r e : τ;ψ, with e closed, using
only the rules in figure 2, and τ is a base type or a refinement of a base type, one of the
following holds

1. e reduces forever, or
2. e →∗ v where erase`( ` v : σ;ψ ′) and ` eraseτ(σ) <: eraseτ(τ) and ` eraseψ(ψ

′) <:?
eraseψ(ψ).

6 From λT S To Typed Scheme

It is easy to design a type system, and it is reasonably straightforward to validate some
theoretical property. However, the true proof of a type system is a pragmatic evaluation.
To this end, it is imperative to integrate the novel ideas with an existing programming lan-
guage. Otherwise it is difficult to demonstrate that the type system accommodates the kind
of programming style that people find natural and that it serves its intended purpose.

To evaluate occurrence typing rigorously, we have implemented Typed Scheme. Natu-
rally, occurrence typing with refinements, in the spirit of λT S makes up only the core of this
language; we have supplemented it with a number of important ingredients, both at the level
of types and at the level of large-scale programming.

6.1 Type System Extensions

As argued in the introduction, Scheme programmers borrow a number of ideas from type
systems to reason about their programs. Chief among them is parametric polymorphism.
Typed Scheme therefore allows programmers to define and use polymorphic functions. For
example, the map function is defined as follows:

(define: (a b) (map [f : (a→ b)] [l : (Listof a)]) : (Listof b)
(if (null? l) l

(cons (f (car l)) (map f (cdr l)))))

The definition explicitly quantifies over type variables a and b and then uses these variables
in the type signature. The body of the definition, however, is identical to the one for untyped
map; in particular, no type application is required for the recursive call to map. Instead, the
type system infers appropriate instantiations for a and b for the recursive call.

In addition to parametric polymorphism, Scheme programmers also exploit recursive
subtypes of S-expressions to encode a wide range of information as data. To support ar-
bitrary regular types over S-expressions as well as conventional structures, Typed Scheme
provides explicit recursive types, though the programmer need not manually fold and unfold
instances of these types.

Consider the type of binary trees over cons cells:

(define-type-alias STree (µ t (
⋃

Number (cons t t))))

A function for summing the leaves of such a tree is straightforward:

(define: (sum-tree [s : STree]) : Number
(cond [(number? s) s]

[else (+ (sum-tree (car s)) (sum-tree (cdr s)))]))
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In this function, occurrence typing allows us to discriminate between the different branches
of the union; the (un)folding of the recursive (tree) type happens automatically.

Finally, Typed Scheme supports a rich set of base types, including vectors, boxes, pa-
rameters, ports, and many others. It also provides type aliasing, which greatly facilitates type
readability.

6.2 Local Type Inference

In order to further relieve the annotation burden on programmers, Typed Scheme provides
two simple instances of what has been called “local” type inference (Pierce and Turner,
2000).8 First, local non-recursive bindings do not require type annotations. For example, the
following fragment typechecks without annotations on the local bindings:

(define: (m [z : Number]) : Number
(let∗ ([x z]

[y (∗ x x)])
(− y 1)))

By examining the right-hand sides of the let∗, the typechecker can determine that both x and
y should have type Number.

The use of internal definitions can complicate this inference process. For example, the
above code could be written as follows:

(define: (m [z : Number]) : Number
(define x z)
(define y (∗ x x))
(− y 1))

This fragment is macro-expanded into a letrec; however, recursive binding is not re-
quired for typechecking this code. Therefore, the typechecker analyzes the letrec expres-
sion and determines if all of the bindings can be treated non-recursively. If so, the above
inference method is applied.

Second, local inference also allows the type arguments to polymorphic functions to be
omitted. For example, the following use of map does not require explicit type instantiation:

(map (lambda: ([x : Number]) (+ x 1)) ’(1 2 3))

To accommodate this form of inference, the typechecker first determines the type of the
argument expressions, in this case (Number→ Number) and (Listof Number), as well as
the operator, here (All (a b) ((a→ b) (Listof a)→ (Listof b))). Then it matches the argument
types against the body of the operator type, generating a substitution. Finally, the substitution
is applied to the function result type to determine the type of the entire expression.

For cases such as the above, this process is quite straightforward. When subtyping is
involved, however, the process is complex. Consider this, seemingly similar, example:

(map (lambda: ([x : Any]) x) ’(1 2 3))

Again, the second operand has type (Listof Number), suggesting that map’s type variable b
should substituted with Number, the first operand has type (Any→ Any), suggesting that
both a and b should be Any. The solution is to find a common supertype of Number and
Any, and use that to substitute for a.

8 This modicum of inference is similar to that in recent releases of Java (Gosling et al, 2005).
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Unfortunately, this process does not always succeed. Therefore, the programmer must
sometimes annotate the arguments or the function to enable the typechecker to find the
correct substitution. For example, this annotation instantiates foldl at Number and Any:

#{foldl @ Number Any}

In practice, we have rarely needed these annotations; local inference almost always suc-
ceeds.

6.3 Adapting Scheme Features

PLT Scheme comes with numerous constructs that need explicit support from the type sys-
tem. We describe several of the more important ones here.

– The most important one is the structure system. A define-struct definition is the fun-
damental method for constructing new varieties of data in PLT Scheme. This form of
definition introduces constructors, predicates, field selectors, and field mutators. Typed
Scheme includes a matching define-struct: form. Thus the untyped definition

(define-struct A (x y))

which defines a structure A, with fields x and y, becomes the following in Typed Scheme:

(define-struct: A ([x : Number] [y : String]))

Unsurprisingly, all fields have type annotations.
The define-struct: form, like define-struct, introduces the predicate A?. Scheme pro-
grammers use this predicate to discriminate instances of A from other values, and the
occurrence typing system must therefore be aware of it. The define-struct: definition
facility can also automatically introduce recursive types, similar to those introduced via
ML’s datatype construct.
Programmers may define structures as extensions of an existing structure, similar to
extensions of classes in object-oriented languages. An extended structure inherits all
the fields of its parent structure. Furthermore, its parent predicate cannot discriminate
instances of the parent structure from instances of the child structure. Hence, it is imper-
ative to integrate structures with the type system at a fundamental level.

– PLT Scheme encourages placing all code in modules, but the top level still provides
valuable interactivity. Typed Scheme supports both definitions and expression at the
top-level, but support is necessarily limited by the restrictions of typechecking a form
at a time. For example, mutually recursive top-level functions cannot be defined, since
type checking of the first happens before the second is entered.

– Variable-arity functions also demand special attention from the type perspective. PLT
Scheme supports two forms of variable-arity functions: rest parameters, which bundle up
extra arguments into a list; and case-lambda (Dybvig and Hieb, 1990), which, roughly
speaking, introduces dynamic overloading by arity. A careful adaptation of the solutions
employed for mainstream languages such as Java and C# suffices for some of these
features; for others, we have developed additional type system extensions to handle the
unique features of PLT Scheme (Strickland et al, 2009).

– Dually, Scheme supports multiple-value returns, meaning a procedure may return multi-
ple values simultaneously without first bundling them up in a tuple (or other compound
values). Multiple values are given special treatment in the type checker because the con-
struct for returning multiple values is a primitive function (values), which can be used
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in higher-order contexts. Such higher-order uses of values benefit from extensions to
handle variable-arity polymorphism, as described above (Strickland et al, 2009).

– Finally, Scheme programmers use the apply function, especially in conjunction with
variable-arity functions. The apply function consumes a function, a number of values,
plus a list of additional values; it then applies the function to all these values.
Because of its use in conjunction with variable-arity functions, we type-check the appli-
cation of apply specially and allow its use with variable-arity functions of the appropriate
type.
For example, the common Scheme idiom of applying the function + to a list of numbers
to sum them works in Typed Scheme: (apply + (list 1 2 3 4)).

6.4 Special Scheme Functions

A number of Scheme functions, either because of their special semantics or their particular
roles in the reasoning process of Scheme programmers, are assigned types that demand some
explanation. Here we cover just two interesting examples: filter and call/cc.

An important Scheme function, as we saw in section 2, is filter.
When filter is used with predicate p?, the programmer knows that every element of the

resulting list satisfies p?. The type system should have this knowledge as well, and in Typed
Scheme it does:

filter : (All (a b) ((a b→ Boolean) (Listof a)→ (Listof b))

Here we write (a b→ Boolean) for the type of functions from a to Boolean that are predicates
for type b. Note how the latent predicate of filter becomes the type of the resulting elements.
In a setting without occurrence typing, this effect has only been achieved with dependent
types or with explicit casting operations.

For an example, consider the following definition:

(define: the-numbers (Listof Number)
(let ([lst (list ’a 1 ’b 2 ’c 3)])

(map add1 (filter number? lst))))

Here the-numbers has type (Listof Number) even though it is the result of filtering numbers
from a list that contains both symbols and numbers. Using Typed Scheme’s type for filter,
type-checking this expression is now straightforward. filter can of course be user-defined,
the straightforward implementation is accepted with the above type. The example again
demonstrates type inference for local non-recursive bindings.

The type of call/cc must reflect the fact that invoking a continuation aborts the local
computation in progress:

call/cc : (All (a) (((a→⊥)→ a)→ a))

where ⊥ is the empty type, expressing the fact that the function cannot produce values.
This type has the same logical interpretation as Peirce’s law, the conventional type for
call/cc (Griffin, 1990) but works better with our type inference system.

6.5 Programming in the Large

PLT Scheme has a first-order module system (Flatt, 2002) that allows us to support multi-
module typed programs with no extra effort. In untyped PLT Scheme programs, a module
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#lang typed-scheme
(provide LoN sum)
(define-type-alias LoN (Listof Number))
(define: (sum [l : LoN]) : Number

(if (null? l) 0 (+ (car l) (sum (cdr l))))))

#lang typed-scheme
(require m1)
(define: l : LoN (list 1 2 3 4 5))
(display (sum l)))

Fig. 9 A Multi-Module Typed Scheme Program

consists of definitions and expressions, along with declarations of dependencies on other
modules, and of export specifications for identifiers. In Typed Scheme, the same module
system is available, without changes. Both defined values and types can be imported or pro-
vided from other Typed Scheme modules, with no syntactic overhead. The types of provided
identifiers is taken from their initial definition. In the example in figure 9, the type LoN and
the function sum are provided by module m1 and can therefore be used in module m2 at
their declared types.

Additionally, a Typed Scheme module, like a PLT Scheme module, may contain and
export macro definitions that refer to identifiers or types defined in the typed module.

6.6 Interoperating with Untyped Code

Importing from the Untyped World When a typed module must import functions from an
untyped module—say PLT Scheme’s extensive standard library—Typed Scheme requires
dynamic checks at the module boundary. Those checks are the means to enforce type sound-
ness (Tobin-Hochstadt and Felleisen, 2006). In order to determine the correct checks and in
keeping with our decision that only binding positions in typed modules come with type
annotations, we have designed a typed import facility. For example,

(require/typed scheme [add1 (Number→ Number)])

imports the add1 function from the scheme library, with the given type. The require/typed
facility expands into contracts, which are enforced as values cross module boundaries (Find-
ler and Felleisen, 2002). In this example, the use of require/typed is automatically rewritten
to a plain require along with a contract application using the contract (number? .→ . num-
ber?).

An additional complication arises when an untyped module provides an opaque data
structure, i.e., when a module exports constructors and operators on data without exporting
the structure definition. In these cases, we do not wish to expose the structure merely for the
purposes of type checking. Still, we must have a way to dynamically check this type at the
boundary between the typed and the untyped code and to check the typed module.

For these situations, Typed Scheme supports opaque types, in which only the predicate
for testing membership is specified. This predicate can be trivially turned into a contract, but
no operations on the type are allowed, other than those imported with the appropriate type
from the untyped portion of the program. Of course, the predicate is naturally integrated into
the occurrence type system, allowing modules to discriminate precisely the elements of the
opaque type.
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Here is a sample usage of the special form for importing a predicate and thus defining
an opaque type:

(require/typed [opaque xml Doc document?])

It imports the document? function from the xml library and uses it to define the Doc type.
The rest of the module can now import functions with require/typed that refer to Doc.

Exporting to the Untyped World When a typed module is required by untyped code,
the typed code must be protected (Tobin-Hochstadt and Felleisen, 2006). Since exports from
typed code come equipped with a type, they are automatically guarded by contracts, without
additional effort or annotation by the programmer. Unfortunately, because macros allow
unchecked access to the internals of a module, macros defined in a typed module cannot
currently be imported into an untyped context.

7 Implementation

We have implemented Typed Scheme as a language for the PLT Scheme environment, and
it is available in the standard PLT Scheme distribution (Culpepper et al, 2007). 9 The imple-
mentation is available from http://www.plt-scheme.org .

Since Typed Scheme is intended for use by programmers developing real applications, a
toy implementation was not an option. Fortunately, we were able to implement all of Typed
Scheme as a layer on top of PLT Scheme, giving us a full-featured language and standard
library. In order to integrate with PLT Scheme, all of Typed Scheme is implemented using
the PLT Scheme macro system (Culpepper et al, 2007). When the macro expander finishes
successfully, the program has been typechecked, and all traces of Typed Scheme have been
compiled away, leaving only executable PLT Scheme code remaining. The module can then
be run just as any other Scheme program, or linked with existing modules.

7.1 Changing the Language

Our chosen implementation strategy requires an integration of the type checking and macro
expansion processes.

The PLT Scheme macro system allows language designers to control the macro expan-
sion process from the top-most abstract syntax node. Every PLT Scheme module takes the
following form:

(module m language
. . . )

where language can specify any library. The library is then used to provide all of the core
Scheme forms. For our purposes, the key form is #%module-begin, which is wrapped
around the entire contents of the module, and expanded before any other expansion or eval-
uation occurs. Redefining this form gives us complete control over the expansion of a Typed
Scheme program. At this point, we can typecheck the module and signal an error at macro-
expansion time if it is ill-typed.

9 The implementation consists of approximately 10000 lines of code and 6800 lines of tests.

http://www.plt-scheme.org
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7.2 Handling Macros

One consequence of PLT Scheme’s powerful macro system is that a large number of con-
structs that might be part of the core language are instead implemented as macros. This
includes pattern matching (Wright and Duba, 1995), class systems (Flatt et al, 2006) and
component systems (Flatt and Felleisen, 1998), as well as numerous varieties of condition-
als and even boolean operations such as and. Faced with this bewildering array of syntactic
forms, we could not hope to add each one to our type system, especially since new ones
can be added by programmers in libraries or application code. Further, we cannot aban-
don macros—they are used in virtually every PLT Scheme program, and we do not want to
require such changes. Instead, we transform them into simpler code.

In support of such situations, the PLT Scheme macro system provides the local-expand
primitive, which expands a form in the current syntactic environment. This allows us to
fully expand the original program in our macro implementation of Typed Scheme, prior to
type checking. We are then left with only the PLT Scheme core forms, of which there are
approximately a dozen.

7.3 Cross-Module Typing

In PLT Scheme programs are divided up into first-order modules. Each module explicitly
specifies the other modules it imports and the bindings it exports. In order for Typed Scheme
to work with actual PLT Scheme programs, it must be possible for programmers to split up
their Typed Scheme programs into multiple modules.

Our type-checking strategy requires that all type-checking take place during the expan-
sion of a particular module. Therefore, the type environment constructed during the type-
checking of one module disappears before any other module is considered.

Instead, we turn the type environments into persistent code using Flatt’s reification strat-
egy (Flatt, 2002). After typechecking each module, the type environment is reified in the
code of the module as instructions for recreating that type environment when that module is
expanded. Since every dependency of a module is visited during the expansion of that mod-
ule, the appropriate type environment is recreated for each module that is typechecked. This
implementation technique has the significant benefit that it provides separate compilation
and typechecking of modules for free.

Further, our type environments are keyed by PLT Scheme identifiers, which maintain
information on which module they were defined in, providing several advantages. First,
the technique described by Flatt (2002) and adapted for Typed Scheme by Culpepper et al
(2007) allows the use of one typed module from another without having to redeclare types.
Second, standard tools for operating on PLT Scheme programs, such as those provided by
DrScheme (Findler et al, 2002) work properly with typed programs and binding of types.

7.4 Performance

There are three important aspects to the performance of Typed Scheme: the performance of
the typechecker itself, the overhead of contracts generated for interoperation, and the over-
head that Typed Scheme’s runtime support imposes on purely typed program. We address
each in turn.
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The typechecker is currently notably slower than macro expansion without typecheck-
ing, but is not problematically slow. Even large files typecheck in just a few seconds. We
have optimized the typechecker significantly over the development of Typed Scheme; the
most significant optimization is interning of all type representations, allowing constant-time
type comparison and substantially reducing memory use.

The overhead of contracts can be substantial, depending on the particular contracts gen-
erated. In some cases, contracts can change the asymptotic complexity of existing programs.
We hope to investigate techniques for lazy checking of contracts (Findler et al, 2007) to alle-
viate this problem. However, this overhead is only imposed when crossing the typed-untyped
boundary, which we predict will be rare in inner loops and other performance critical code.
Adding types to selected portions of the DrScheme (Findler et al, 2002) implementation
resulted in no measurable slowdown.

Finally, the implementation of Typed Scheme imposes no runtime overhead on pro-
grams, with the exception of the need to load the code associated with the library. Thus
typed code executes at full speed. We are investigating optimization opportunities based on
the type information (St-Amour et al, 2010).

7.5 Limitations

Our implementation has two significant limitations at present. First, we are unable to dynam-
ically enforce some types using the PLT contract system. For example, although checking
polymorphic types (Guha et al, 2007; Ahmed et al, 2009) is supported, variable-arity poly-
morphism is not. Additionally, mutable data continues to present problems for contracts. As
solutions for these limitations are integrated into the PLT Scheme contract system, more of
Typed Scheme’s types will be dynamically enforceable.

The second major limitation is that we cannot typecheck code that uses the most com-
plex PLT Scheme macros, such as the unit and class systems. These macros maintain their
own invariants, which must be understood by the typechecker in order to sensibly type the
program. For example, the class macro maintains a vtable for each class, which in this im-
plementation is a set of methods indexed by symbols. Typing such an implementation would
require either a significant increase in the complexity of the type system or special handling
of such macros. Since these macros are widely used by PLT Scheme programmers, we plan
to investigate both possibilities.

8 Practical Experience

To determine whether Typed Scheme is practical and whether converting PLT Scheme pro-
grams is feasible, we conducted a series of experiments in porting existing Scheme programs
of varying complexity to Typed Scheme.

Educational Code For small programs, which we expected to be written in a disciplined
style that would be easy to type-check, we turned to educational code. Our preliminary
investigations and type system design indicated that programs in the style of How to Design
Programs (Felleisen et al, 2001) would type-check successfully with our system, with only
type annotations required.

To see how more traditional educational Scheme code would fare, we rewrote most
programs from two additional text books: The Little Schemer (Friedman and Felleisen, 1997)
and The Seasoned Schemer (Friedman and Felleisen, 1996). Converting these 500 lines of



25

code usually required nothing but the declaration of types for function headers. The only
difficulty encountered was an inability to express in our type system some invariants on
S-expressions that the code relied on.

Second, we ported 1,000 lines of educational code, which consisted of the solutions to
a number of exercises for an undergraduate programming languages course. Again, handing
S-expressions proved the greatest challenge, since the code used tests of the form (pair?
(car x)), which does not provide useful information to the type system (formally, the visible
predicate of this expression is •). Typing such tests required adding new local bindings. This
code also made use of a non-standard datatype definition facility, which required adaptation
to work with Typed Scheme.

Libraries We ported 500 lines of code implementing a variety of data structures from
Søgaard’s galore.plt library package. While these data structures were originally designed
for a typed functional language, the implementations were not written with typing in mind.
Two sorts of changes were required for typing this library. First, in several places the li-
brary failed to check for erroneous input, resulting in potentially surprising behavior. Cor-
recting this required adding tests for the erroneous cases. Second, in about a dozen places
throughout the code, polymorphic functions needed to be explicitly instantiated in order for
typechecking to proceed. These changes were, again, in addition to the annotation of bound
variables.

Applications A research intern ported two sizable applications under the direction of
the first author. The first was a 2,700 line implementation of a game, written in 2007, and
the second was a 500 line checkbook managing script, maintained for 12 years.

The game is a version of the multi-player card game Squadron Scramble.10 The original
implementation consists of 10 PLT Scheme modules, totaling 2,700 lines of implementation
code, including 500 lines of unit tests.

A representative function definition from the game is given in figure 10. This function
creates a turn object, and hands it to the appropriate player. It then checks whether the game
is over and if necessary, constructs the new state of the game and returns it.

The changes to this complex function are confined to the function header. We have
converted the original define to define: and provided type annotations for each of the formal
parameters as well as the return type. This function returns multiple values, as is indicated by
the return type. Other than the header, no changes are required. The types of all the locally
bound variables are inferred from the bodies of the individual definitions.

Structure types are used extensively in this example, as well as in the entire implemen-
tation. In the definition of the variables the-end and the-return-card, occurrence typing is
used to distinguish between the res and end structures.

Some portions of the implementation required more effort to port to Typed Scheme. For
example, portions of the data used for the game is stored in external XML files with a fixed
format, and the program relies upon the details of that format. However, since this invariant
is neither checked nor specified in the program, the type system cannot verify it. Therefore,
we moved the code handling the XML file into a separate, untyped module of fewer than 50
lines that the typed portion uses via require/typed.

Scripts The second application ported required similarly few changes. This script main-
tained financial records recorded in an S-expression stored in a file. The major change made
to the program was the addition of checks to ensure that data read from the file was in the cor-
rect format before using it to create the relevant internal data structures. This was similar to
the issue encountered with the Squadron Scramble game, but since the problem concerned

10 Squadron Scramble resembles Rummy; it is available from US Game Systems.
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(: play-one-turn (Player Cards Cards Hand→
(values Boolean RCard Hand Attacks From)))

(define (play-one-turn player deck stck fst:discs)
(define trn (create-turn (player-name player) deck stck fst:discs))
;; — go play
(define res (player-take-turn player trn))
;; the-return-card could be false
(define-values (the-end the-return-card)

(cond
[(ret? res) (values #f (ret-card res))]
[(end? res) (values #t (end-card res))]))

(define discards:squadrons (done-discards res))
(define attacks (done-attacks res))
(define et (turn-end trn))
(values the-end the-return-card discards:squadrons attacks et))

Fig. 10 A Excerpt from the Squadron Scramble Game

a single function, we added the necessary checks rather than creating a new module. The
other semantic change to the program was to maintain a typing invariant of a data structure
by construction, rather than after-the-fact mutation. As in the case of the Galore library, we
consider this typechecker-mandated change an improvement to the original program, even
though it has already been used successfully for many years.

9 Related Work

The history of programming languages knows many attempts to add or to use type informa-
tion in conjunction with untyped languages. Starting with LISP (Steele Jr., 1984), language
designers have tried to include type declarations in such languages, often to help compilers,
sometimes to assist programmers. From the late 1980s until recently, people have studied
soft typing (Cartwright and Fagan, 1991; Aiken et al, 1994; Wright and Cartwright, 1997;
Henglein and Rehof, 1995; Flanagan and Felleisen, 1999; Meunier et al, 2006), a form of
type inference to assist programmers debug their programs statically. This work has mainly
been in the context of Scheme but has also been applied to Python (Salib, 2004). Recently,
the slogan of “gradual typing” has resurrected the LISP-style annotation mechanisms and
has had a first impact with its tentative inclusion in Perl6 (Tang, 2007).

In this section, we survey this body of work, starting with the soft-typing strand, because
it is the closest relative of Typed Scheme. We conclude with a discussion of refinement types.

9.1 Types for Scheme

The goal of the soft typing research agenda is to provide an optional type checker for pro-
grams in untyped languages. One key premise is that programmers shouldn’t have to write
down type definitions or type declarations. Soft typing should work via type inference only,
just like ML. Another premise is that soft type systems should never prevent programmers
from running any program. If the type checker encounters an ill-typed program, it should
insert run-time checks that restore typability and ensure that the type system remains sound.
Naturally, a soft type system should minimize these insertions of run-time checks. Further-
more, since these insertions represent potential failures of type invariants, a good soft type
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system must allow programmer to inspect the sites of these run-time checks to determine
whether they represent genuine errors or weaknesses of the type system.

Based on the experiences of the second author, soft type systems are complex and brittle.
On one hand, these systems may infer extremely large types for seemingly simple expres-
sions, greatly confusing the original programmer or the programmer who has taken on old
code. On the other hand, a small syntactic change to a program without semantic conse-
quences can introduce vast changes into the types of both nearby and remote expressions.
Experiments with undergraduates—representative of average programmers—suggest that
only the very best understood the tools well enough to make sense of the inferred types and
to exploit them for the assigned tasks. For the others, these tools turned into time sinks with
little benefit.

Roughly speaking, soft typing systems fall into one of two classes, depending on the
kind of underlying inference system. The first soft type systems (Cartwright and Fagan,
1991; Wright and Cartwright, 1997; Henglein and Rehof, 1995; Henglein, 1994) used infer-
ence engines based on Hindley-Milner though with extensible record types. These systems
are able to type many actual Scheme programs, including those using outlandish-looking
recursive datatypes. Unfortunately, these systems severely suffer from the general Hindley-
Milner error-recovery problem. That is, when the type system signals a type error, it is
extremely difficult—often impossible—to decipher its meaning and to fix it.

In response to this error-recovery problem, others built inference systems based on
Shiver’s control-flow analyses (1991) and Aiken’s and Heintze’s set-based analyses (Aiken
et al, 1994; Heintze, 1994). Roughly speaking, these soft typing systems introduce sets-of-
values constraints for atomic expressions and propagate them via a generalized transitive-
closure propagation (Aiken et al, 1994; Flanagan and Felleisen, 1999). In this world, it is
easy to communicate to a programmer how a values might flow into a particular operation
and violate a type invariant, thus eliminating one of the major problems of Hindley-Milner
based soft typing (Flanagan et al, 1996).

Our experience and evaluation suggest that Typed Scheme works well compared to soft
typing. First, programmers can easily convert entire modules with just a few type decla-
rations and annotations to function headers. Second, assigning explicit types and rejecting
programs actually pinpoints errors better than soft typing systems, where programmers must
always keep in mind that the type inference system is conservative. Third, soft typing sys-
tems do not support type abstractions well. Starting from an explicit, static type system for
an untyped language should help introduce these features and deploy them as needed.

The Rice University soft typing research inspired occurrence typing. These systems em-
ployed if-splitting rules that performed a case analysis for types based on the syntactic pred-
icates in the test expression. This idea was derived from Cartwright (1976)’s typecase con-
struct (also see below) and—due to its usefulness—is generalized by our framework. The
major advantage of soft typing over an explicitly typed Scheme is that it does not require
any assistance from the programmer. In the future, we expect to borrow techniques from
soft typing for automating some of the conversion process from untyped modules to typed
modules.

Shivers (1991) presented 0CFA, which also uses flow analysis for Scheme programs.
He describes a possible extension to account for occurrence-typing like behavior for literal
applications of the predicate number?, but did not discuss more general aspects of the issue.

Henglein and Rehof (1995) used a flow analysis to convert Scheme programs to ML
programs, while minimizing runtime checks. While this is also converting Scheme programs
to typed programs, it is intended as a compilation step, not a refactoring, and the ML code is
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not intended to be maintained as the primary form of the program. Additionally, their system
does not take predicate tests into account, which is the primary focus of occurrence typing.

Aiken et al (1994) describe a type inference system using conditional types, which refine
the types of variables based on patterns in a case expression. Since this system is built on
the use of patterns, abstracting over tests as the T-ABSPRED rule does, or combining them,
as with or is impossible.

9.2 Gradual Typing

Under the name “gradual typing”, several other researchers have experimented with the
integration of typed and untyped code (Siek and Taha, 2006; Herman et al, 2008; Wadler
and Findler, 2009; Wrigstad et al, 2009). This work has been pursued in two directions.
First, theoretical investigations have considered integration of typed and untyped code at a
much finer granularity than we present, providing soundness theorems which prove that only
the untyped portions of the program can go wrong. This is analogous to our earlier work on
Typed Scheme (Tobin-Hochstadt and Felleisen, 2006), which provides such a soundness
theorem, which we believe scales to full Typed Scheme and PLT Scheme. These gradual
typing systems have not been scaled to full implementations.

Second, Furr et al (2009a,b) have implemented a system for Ruby which is similar to
Typed Scheme. They have also designed a type system which matches the idioms of the
underlying language, and insert dynamic checks at the borders between typed and untyped
code. Their work does not yet have a published soundness theorem, and requires the use of
a new Ruby interpreter, whereas Typed Scheme runs purely as a library for PLT Scheme.

Bracha (2004) suggests pluggable typing systems, in which a programmer can choose
from a variety of type systems for each piece of code. Although Typed Scheme requires
some annotation, it can be thought of as a step toward such a pluggable system, in which
programmers can choose between the standard PLT Scheme type system and Typed Scheme
on a module-by-module basis.

9.3 Type System Features

Many of the type system features we have incorporated into Typed Scheme have been ex-
tensively studied. Polymorphism in type systems dates to Reynolds (1983). Recursive types
are considered by Amadio and Cardelli (1993), and union types by Pierce (1991), among
many others. Intensional polymorphism appears in calculi by Harper and Morrisett (1995),
among others. Our use of visible predicates and especially latent predicates is inspired by
prior work on effect systems (Gifford et al, 1987).

9.4 Other Type Systems

Cartwright (1976) describes Typed Lisp, which includes typecase expression that refines
the type of a variable in the various cases; Crary et al (1998) re-invent this construct in the
context of a typed lambda calculus with intensional polymorphism. The typecase statement
specifies the variable to be refined, and that variable is typed differently on the right-hand
sides of the typecase expression. While this system is superficially similar to our type
system, the use of latent and visible predicates allows us to handle cases other than simple



29

uses of typecase. This is important in type-checking existing Scheme code, which is not
written with typecase constructs.

Visible predicates can also be seen as a kind of dependent type, in that (number? e)
could be thought of as having type true when e has a value that is a number. In a system
with singleton types, this relationship could be expressed as a dependent type. This kind
of combination typing would not cover the use of if to refine the types of variables in the
branches, however.

The term “occurrence typing” was coined independently by Komondoor et al (2005), in
the context of a static analysis system for Cobol. That system considers a specific syntactic
form of if tests: the comparison of variables with character literals. This accommodates a
common encoding of datatypes in Cobol programs. It does not allow for abstraction over
tests or any other form of predicates.

9.5 Type Systems for Untyped Languages

Multiple previous efforts have attempted to typecheck Scheme programs. Wand (1984),
Haynes (1995), and Leavens et al (2005) developed typecheckers for an ML-style type sys-
tem, each of which handle polymorphism, structure definition and a number of Scheme
features. Wand’s macro-based system integrated with untyped Scheme code via unchecked
assertions. Haynes’ system also handles variable-arity functions (Dzeng and Haynes, 1994).
However, none attempts to accommodate a traditional Scheme programming style.

Bracha and Griswold’s Strongtalk (1993), like Typed Scheme, presents a type system
designed for the needs of an untyped language, in their case Smalltalk. Reflecting the differ-
ing underlying languages, the Strongtalk type system differs radically from ours and does
not describe a mechanism for integrating with untyped code.

9.6 Refinement Types

Refinement types were originally introduced by Freeman and Pfenning (1991). Since then,
refinement types have been used in a wide variety of systems (Rondon et al, 2008; Wadler
and Findler, 2009; Flanagan, 2006). Previous refinement type systems come in two vari-
eties. Freeman and Pfenning’s original system used the underlying language of ML types to
specify subsets of the existing types, such as non-empty lists, defined by recursive datatype-
like specifications. Most other systems have paired predicates in some potentially-restricted
language with a base type, meaning the set of values of that base type accepted by that pred-
icate. Typically, this requires some algorithm for deciding implication between predicates
for subtyping. In some languages, this can be an external and almost always incomplete
theorem prover, as in the Liquid Typing and Hybrid Typing approaches.

Typed Scheme provides support for both of these approaches, as seen in section 3. To
support Freeman and Pfenning’s style, such data types can be directly encoded via recursive
types. Typed Scheme is able to handle all of Freeman and Pfenning’s examples in this fash-
ion. To support predicate style-refinement, Typed Scheme takes a different approach. First,
refinements are not specified using a special language of predicates or formulae but as in-
language predicates. This allows any computable set to be a refinement. Second, no attempt
is made to decide implication between predicates. Two distinct functions might be exten-
sionally equivalent, but the associated refinement types have no subtyping relationship. This
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frees both the programmer and the implementor from the burden of depending on a theorem
prover.

10 Conclusion

Migrating programs from untyped languages to typed languages is an important problem.
In this paper we have demonstrated one successful approach, based on the development
of a type system that accommodates the idioms and programming styles of our scripting
language of choice.

Our type system combines a simple new idea, occurrence typing, with a range of previ-
ously studied type system features with some widely used and some only studied in theory.
Occurrence typing assigns distinct subtypes of a parameter to distinct occurrences, depend-
ing on the control flow of the program. We introduced occurrence typing because our past
experience suggests that Scheme programmers combine flow-oriented reasoning with typed-
based reasoning. Occurrence typing also allows us to naturally extend the type system with
a simple and expressive form of refinement types, allowing for static verification of arbitrary
property checking.

Building upon this design, we have implemented and distributed Typed Scheme as a
package for the PLT Scheme system. This implementation supports the key type system
features discussed here, as well as integration features necessary for interoperation with the
rest of the PLT Scheme system.

Using Typed Scheme, we have evaluated our type system. We consider the experiments
of section 8 illustrative of existing code and believe that their success is a good predictor for
future experiments. We plan on continuing to port PLT Scheme libraries to Typed Scheme
and on exploring the theory of occurrence typing in more depth.

For a close look at Typed Scheme, including documentation and sources for its Is-
abelle/HOL and PLT Redex models, visit the Typed Scheme web page:

http://www.ccs.neu.edu/~samth/typed-scheme
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