
Typed Scheme:

From Scripts to Programs

A dissertation presented

by

Sam Tobin-Hochstadt

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

January, 2010

Abstract

The field of programming languages has recently experienced a renaissance,

especially in the field of untyped scripting languages. But when scripts writ-

ten in untyped languages grow into large programs, they may also become

difficult to maintain. To improve the maintainability of programs in untyped

languages, I propose porting portions into typed sister languages. To demon-

strate the feasibility of this approach, I have developed Typed Scheme, a

typed variant of PLT Scheme. Typed Scheme provides smooth and sound

interoperability with untyped PLT Scheme; it also features a novel type sys-

tem that supports idiomatic Scheme programming, so that the porting pro-

cess is relatively straightforward. I have validated the effectiveness of Typed

Scheme by porting thousands of lines of untyped PLT Scheme code.

iii

Why, anybody can have a brain. That’s a very mediocre commodity.

Every pusillanimous creature that crawls on the Earth or slinks

through slimy seas has a brain. Back where I come from, we have

universities, seats of great learning, where men go to become great

thinkers. And when they come out, they think deep thoughts and

with no more brains than you have. But they have one thing you

haven’t got: a diploma.

— The Wizard of Oz

Acknowledgments

My original debt is to James D. Jungbauer Jr. and James E. Hamblin, who

first taught me Scheme at the Johns Hopkins University Center for Talented

Youth. But to the extent that I am more than merely someone who knows

some Scheme, the credit is due to Matthias Felleisen, the advisor that I

needed, and that made me the researcher that I am today. Matthias has

been wise and impetuous, understanding and demanding, and has consis-

tently expected and obtained better from me than I myself did.

In between, I have been assisted by numerous people. Robby Findler

and Laszlo Babai encouraged me to go to Northeastern. Once there, my

colleagues have been wonderful resources: Dave Herman, Carl Eastlund,

Felix Klock, Jesse Tov, Christos Dimoulas, David Van Horn, Aaron Turon, Dan

Brown and many others have pushed me to make my ideas clearer and my

thinking more precise. Ryan Culpepper, Stevie Strickland and Ivan Gazeau

have been productive collaborators as well as fellow students. My colleagues

at Sun Labs: Eric Allen, David Chase, Victor Luchancgo, Christine Flood, and

Jan-Willem Maessen helped give me a wider perspective and fresh ideas. I

have also been fortunate to work with Robby Findler and Matthew Flatt,

both as co-authors and as co-developers. My committee, Mitch Wand, Olin

Shivers and Guy Steele, have helped improve this dissertation.

All my life, my parents have provided models of what it means to be an

academic, and they have encouraged me at every step as I have pursued that

life. One day I hope to live up to their example.

Finally, my greatest debt is to my wife, Katie Edmonds, for which no

thanks are enough.

v

Contents

Abstract i

Acknowledgments v

Contents vii

List of Figures xi

1 From Scripts to Programs 1

2 Typed Scheme through Examples 5

2.1 Simple Typed Scheme . 5

2.2 Polymorphism and Local Type Inference 6

2.3 Integration with Untyped Scheme 7

2.4 Occurrence Typing . 8

2.5 Variable-arity Functions . 14

2.6 Refinement Types . 17

2.7 How to Check the Examples 17

3 Design Choices 27

3.1 Reject Ill-typed Programs . 27

3.2 Explicit Typing . 28

3.3 Module-level Granularity . 28

3.4 Pre-expanding Macros . 29

3.5 No New Idioms . 30

vii

viii CONTENTS

4 Prior Work 31

4.1 Static Checking for Scheme and LISP 31

4.2 Interlanguage Interoperability 35

4.3 Implementing Types in Scheme 36

4.4 Contracts and Modules . 37

5 Integrating Typed and Untyped Code 39

5.1 Relationship to Typed Scheme 39

5.2 An Informal Tour . 40

5.3 The Formal Framework . 45

5.4 Soundness . 51

6 Occurrence Typing 61

6.1 Syntax and Operational Semantics 62

6.2 Typing Rules . 66

6.3 A Small Example . 68

6.4 Manipulating Filters . 68

7 Extensions to Occurrence Typing 71

7.1 Adding Paths . 71

7.2 Using Logic . 75

7.3 Proving Soundness . 78

8 Refinement Types 85

8.1 Formalizing Refinements . 85

8.2 Soundness . 87

8.3 An Extended Example . 87

9 Variable-Arity Polymorphism 91

9.1 Syntax . 91

9.2 Type System . 93

10 Implementation 99

CONTENTS ix

10.1 Macros . 100

10.2 Modules, or You Want it When, Again? 102

10.3 Macro protocols . 111

10.4 Typing Terms . 113

10.5 Typing Modules . 118

11 Evaluation 131

11.1 Ported Programs . 132

11.2 Program Changes . 133

11.3 Statistics and Results . 140

12 Related Work 145

12.1 Gradual Typing . 145

12.2 Type System Features . 146

12.3 Refinement Types . 146

12.4 Types and Logic . 147

12.5 Occurrence Typing . 148

12.6 Variable-Arity Polymorphism 149

12.7 Types and Flow Analysis . 150

13 Conclusion 153

13.1 Contributions . 153

13.2 Future Work . 154

Bibliography 157

List of Figures

2.1 Higher-order Contract Examples 9

5.1 Scripting Language Syntax . 41

5.2 Migrated Language Syntax . 41

5.3 Runtime Syntax . 41

5.4 Reduction Rules . 42

5.5 Transformation to add Casts 50

5.6 Similarity . 52

5.7 Consistency Type System . 55

6.1 Syntax of Terms and Types . 62

6.2 Operational Semantics . 63

6.3 Core Type Rules . 64

6.4 Subtyping . 64

6.5 Filter Metafunctions . 65

6.6 Environment Operations . 65

6.7 Constant Typing . 70

6.8 Type Operations . 70

7.1 Grammar Extensions for Paths 72

7.2 Operational Semantics for Pairs 72

7.3 Modified Type Rules for Paths 73

7.4 New Type Rules for Pairs . 74

7.5 New Metafunctions for Paths 75

xi

xii LIST OF FIGURES

7.6 Grammar Extension for Logical Reasoning 76

7.7 If Rule with Logical Environment 77

7.8 Filter Derivation . 77

7.9 Expansion of Example 22 . 78

7.10 Abbreviated Type Derivation for Expanded Example 22 79

7.11 Auxiliary Type Rules for Subject Reduction Proof 80

7.12 Relations on Filters . 82

9.1 Syntax . 92

9.2 Type Validity rules . 94

9.3 Typing Rules for Pre-types . 95

9.4 Selected Type Rules . 96

9.5 Subst-dots and trans-dots . 97

10.1 A syntax-case macro . 101

10.2 Four kinds of references . 103

10.3 Side Effects and Compilation 106

10.4 Module invocations for the execution of more 107

10.5 typed-scheme module . 114

10.6 Typed definition and binding forms 116

10.7 Type Environment . 117

10.8 The type-checker . 127

10.9 The typed-scheme module . 128

10.10 Modified typed-scheme module 128

10.11 Type Checker . 129

11.1 Statistics . 141

CHAPTER 1

From Scripts to Programs

Recently, under the heading of “scripting languages”, a variety of new lan-

guages have become popular, and even pervasive, in web- and systems-

related fields [Lerdorf, Tatroe, and MacIntyre 2006; ECMA 1999; Matsumoto

2001; Ousterhout 1994; Van Rossum and Drake 2009; Wall, Christiansen,

and Schwartz 1996]. Due to their popularity, programmers often create

scripts that then grow into large applications.

Most scripting languages are untyped and provide primitives with flex-

ible semantics to make programs concise. Many programmers find these

attributes appealing and use scripting languages for these reasons. Program-

mers are also beginning to notice, however, that untyped scripts are difficult

to maintain over the long run. The lack of types means a loss of design in-

formation that programmers must recover every time they wish to change

existing code. Both the Perl community [Tang 2007] and the JavaScript

community [ECMA 2007; Herman and Flanagan 2007] are implicitly ac-

knowledging this problem with the addition of Common Lisp-style [Steele

Jr. 1990] typing constructs to the upcoming releases of their respective lan-

guages. In the meantime, industry faces the problem of porting existing

application systems from untyped scripting languages to the typed world.

One possible solution is to rewrite the program in a typed language.

This requires vast investment of time and resources. It also imposes heavy

transition costs. Maintenance must be performed on two systems during the

1

2 CHAPTER 1. FROM SCRIPTS TO PROGRAMS

transition, and successfully reimplementing all of the system’s features in a

new language is extremely difficult. Also, the programmers must adjust to a

new language and style of programming. Instead of this, I propose to study

the gradual migration from untyped to typed code.

This brings me to my thesis:

Module-by-module porting of code from an untyped language to a

typed sister language allows for an easy transition from untyped

scripts to typed programs.

In support of this thesis, I have developed Typed Scheme, a typed sis-

ter language of PLT Scheme [Tobin-Hochstadt and Felleisen 2006; Culpep-

per, Tobin-Hochstadt, and Flatt 2007; Tobin-Hochstadt and Felleisen 2008;

Strickland, Tobin-Hochstadt, and Felleisen 2009]. The choice of PLT Scheme

(a dialect of Scheme [Sperber, Dybvig, Flatt, Van Straaten, Findler, and

Matthews 2009; Sussman and Steele Jr. 1975]) is important for two rea-

sons. On one hand, PLT Scheme is used as a scripting language by a large

number of users. It also comes with a large body of code, with contribu-

tions ranging from scripts to libraries to large operating-system like pro-

grams. On the other hand, the language comes with macros, a powerful

extension mechanism [Flatt 2002]. Macros place a significant constraint on

the design and implementation of Typed Scheme, since supporting macros

requires typechecking a language with a user-defined set of syntactic forms.

This difficulty can be mostly overcome by integrating the type checker with

the macro expander. Indeed, this approach ends up greatly facilitating the

integration of typed and untyped modules. As envisioned [Tobin-Hochstadt

and Felleisen 2006], this integration makes it mostly straightforward to turn

portions of a multi-module program into a partially typed yet still executable

program.

Developing Typed Scheme requires not just integration with the under-

lying PLT Scheme system, but also a type system that works well with the

3

idioms used by PLT Scheme programmers when developing scripts. It would

be an undue burden if the programmer needed to rewrite idiomatic PLT

Scheme code to make it typeable in Typed Scheme. For this purpose, Typed

Scheme comes with a novel type system. This type system combines the

concept of occurrence typing1 with additional novel features for handling

variable-arity polymorphism and refinement types.

The Structure of this Thesis

In this thesis, I describe the Typed Scheme experiment both formally and

informally, as well as its relation to past and present work by others. In

chapter 2, I give an example-driven overview of the major features of Typed

Scheme, and then describe at a high level how the typechecker is able to

handle various representative examples. Chapter 3 describes five key choices

made in the design of Typed Scheme, as well as the rationale for each. In

chapter 4, I describe the extensive previous work on which Typed Scheme is

based. This includes both previous type systems for Scheme and LISP and

prior work on interlanguage interoperability, as well as key language tech-

nologies on which the design of Typed Scheme is based. In the subsequent

five chapters, I describe the formal systems underlying the design of Typed

Scheme:

• Chapter 5 describes how software contracts mediate between typed

and untyped code, leading to a soundness proof for a mixed system.

This work previously appeared in the Dynamic Languages Symposium

at OOPSLA 2006 [Tobin-Hochstadt and Felleisen 2006].

• Chapter 6 describes occurrence typing, the primary novel feature of the

Typed Scheme type system. This work previously appeared at POPL

1The term “occurrence typing” for this idea in the context of a type system was also
coined independently of my work by Komondoor, Ramalingam, Chandra, and Field [2005].

4 CHAPTER 1. FROM SCRIPTS TO PROGRAMS

2008 [Tobin-Hochstadt and Felleisen 2008], and is under submission

in its present form.

• Chapter 7 presents two extensions to occurrence typing, allowing it to

faithfully capture more Scheme idioms. This work is currently under

submission.

• Chapter 8 describes how refinement types can be added to an oc-

currence typing system in a lightweight yet expressive fashion, and

presents an extended example. This work was discussed at the Work-

shop on Script to Program Evolution, 2009 [Tobin-Hochstadt and Find-

ler 2009] and is under submission in its current form.

• Chapter 9 describes the many ways that Scheme programmers use

variable-arity functions, and the technique of variable-arity polymor-

phism for typechecking them. This work previously appeared at the

European Symposium on Programming, 2009 [Strickland et al. 2009].

Building upon the PLT Scheme module and macro system, Typed Scheme

is implemented entirely as a library. This implementation, and the tech-

niques on which it is based, are described in chapter 10. The implementa-

tion was previously presented at the Workshop on Scheme and Functional

Programming, 2007 [Culpepper et al. 2007]. Using this implementation, a

number of programmers have ported existing PLT Scheme code to Typed

Scheme. This experience, along with quantitative measurements of the

changes required, is described in chapter 11.

Chapter 12 compares Typed Scheme to other related work and explains

additional connections to the literature. I conclude in chapter 13.

CHAPTER 2

Typed Scheme through Examples

In this chapter, I describe the general outlines of Typed Scheme via a se-

ries of examples. This includes simple typed programs, the integration be-

tween typed and untyped code, occurrence typing, and variable-arity poly-

morphism. In sections 2.1-2.6 these are described informally, and section 2.7

provides more detail to give an overview of how the system works.

2.1 Simple Typed Scheme

The obligatory Hello, World Typed Scheme program is:

Example 1#lang typed-scheme
(display "Hello, World!\n")

This example demonstrates several salient features of Typed Scheme. First, a

Typed Scheme program is a PLT Scheme module [Flatt 2002], which begins

with the token #lang. Second, the typed-scheme token after #lang specifies

that the module is written in the Typed Scheme language. The program is

otherwise identical to the corresponding untyped Scheme program.

When more complex programs are required, the type system requires

slightly more help from the programmer:

5

6 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

Example 2#lang typed-scheme
(: collatz (Number→ Number))
(define (collatz n)

(cond
[(= 1 n) 1]
[(even? n)
(collatz (/ n 2))]

[else (collatz (add1 (∗ 3 n)))]))
(collatz 17)

In this example, we define the function collatz, and provide an annotation

for its input and output types. These annotations are required for every

top-level definition.

Typed Scheme programs can also define and manipulate new data struc-

tures:

Example 3#lang typed-scheme
(define-struct: person ([first : String] [last : String]))
(: greeting (person→ String))
(define (greeting n)

(format "˜a ˜a" (person-first n) (person-last n)))
(greeting (make-person "Bob" "Smith"))

The define-struct: form defines a new structure, with selectors, predi-

cate, and constructor. The name of the structure (here person) is used as the

name of the type. The fields must be given types by the programmer, but the

selectors (person-first and person-last), predicate (person?), and constructors

(make-person) are given types automatically from the field types.

2.2 Polymorphism and Local Type Inference

Typed Scheme supports first-class polymorphic functions.1 For example, list-

ref has the type (∀ (α) ((Listof α) Integer→ α)). It can be defined in Typed

Scheme as follows:
1Such functions are not always parametric, because occurrence typing can be used to

examine the arguments.

2.3. INTEGRATION WITH UNTYPED SCHEME 7

Example 4(: list-ref (∀ (α) ((Listof α) Integer→ α)))
(define (list-ref l i)

(cond [(not (pair? l)) (error "empty list")]
[(= 0 i) (car l)]
[else (list-ref (cdr l) (− i 1))]))

The example illustrates two important aspects of polymorphism in Typed

Scheme. First, the abstraction over types is explicit in the polymorphic type

of list-ref but implicit in the function definition. Second, typical uses of

polymorphic functions, e.g., car and list-ref , do not require explicit type in-

stantiation. Instead, the required type instantiations are reconstructed from

the types of the arguments.

2.3 Integration with Untyped Scheme

Typed Scheme integrates smoothly and safely with existing untyped Scheme

code. This means both that Typed Scheme modules can depend on untyped

Scheme modules, and that untyped Scheme modules can depend on Typed

Scheme modules. Further, the untyped code can never violate the invari-

ants of the Typed Scheme type system. This allows free choice of which

modules are refactored and ported to Typed Scheme. The simplest exam-

ple of typed/untyped integration merely uses a value from Typed Scheme in

untyped code.

Example 5#lang typed-scheme ;; module m1
(: x Number)
(define x 42)
(provide x)

#lang scheme
(require m1)
(add1 x)

Since the value is being used by untyped code, no new types must be speci-

fied. In contrast, when importing values from untyped code, the type must

8 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

be specified:

Example 6#lang scheme ;; module m2
(define x 42)
(provide x)

#lang typed-scheme
(require/typed m2 [x Number])
(add1 x)

The require/typed form allows the programmer to specify the type of

an imported binding (here x). The type is converted to a runtime con-

tract [Meyer 1992], which ensures that the value is appropriate to the type,

and raises an error if not. In the case of an error, for example if the value

of x was "42", blame is assigned to the series of modules involved. The

Typed Scheme type system ensures (see chapter 5) that the typed portion of

the program is never blamed for such runtime contract errors—instead, the

blame falls on one of the untyped modules.

The contract system also ensures appropriate blame for higher-order val-

ues [Findler and Felleisen 2002]. Here, errors are possible in both directions.

Several examples are given in figure 2.1. In example 7, the untyped module

uses the add5 procedure incorrectly, resulting in a runtime contract error

blaming the untyped module. In example 8, an incorrect use of the add5

procedure would result in a static type error. In example 9, the implementa-

tion of the untyped add5 procedure is incorrect, and thus a runtime contract

error is signaled, again blaming the untyped module. Finally, in example 10,

the contract error happens during the second application, but still correctly

blames the untyped module.

2.4 Occurrence Typing

Here is the simplest example of occurrence typing:2

2In the remainder of this chapter, module declarations will be omitted where unneces-
sary.

2.4. OCCURRENCE TYPING 9

Example 7#lang typed-scheme ;; module ho1
(: add5 (Number→ Number))
(define (add5 n) (+ 5 n))
(provide add5)

#lang scheme
(require ho1)
(add5 7)
(add5 "seven") ;; contract error

Example 8#lang scheme ;; module ho2
(define (add5 n) (+ 5 n))
(provide add5)

#lang typed-scheme
(require ho2 [add5 (Number→ Number)])
(add5 7)
;;(add5 ”seven”) - static type error

Example 9#lang scheme ;; module ho3
(define (add5 n) (number->string (+ 5 n)))
(provide add5)

#lang typed-scheme
(require ho3 [add5 (Number→ Number)])
(add5 7) ;; contract error

Example 10#lang typed-scheme ;; module ho4
(: add-blaster (Number→ (Number→ Number)))
(define ((add-blaster x) y)

(+ x y))

#lang scheme
(require ho4)
((add-blaster 1) "wrong") ;; contract error

Figure 2.1: Higher-order Contract Examples

10 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

Example 11. . . (if (number? x) (add1 x) 0) . . .

Regardless of the value of x, this program fragment always produces a num-

ber. Thus, our type system should accept this fragment, regardless of the

type assigned to x, even if it is a type such as String or Any, which are not

legitimate argument types for add1.

The key to typing example 11 is to assign the second occurrence of x a

different, more precise, type than it has in the outer context. Fortunately, we

know that for any value of type Number, number? returns #t (otherwise, it

returns #f). Therefore, it is safe to use Number as the type of x in the then

branch.

Example 12(define f
(λ ([x : (

⋃
String Number)])

(if (number? x) (add1 x) (string-length x))))

The function f in example 12 always produces a number. If (number? x)

produces #t, x is an appropriate input to add1. If it produces #f, x must be

a String by process of elimination, and it is therefore an acceptable input to

string-length. Handling this program means that the type system must take

into account not only the consequences when predicates hold, but also when

they do not.

2.4.1 More Complex Tests

Of course, simple applications of predicates such as (number? x) are not the

only kind of test that Scheme programmers write. For example, it is possible

to use logical connectives to combine the results of predicates:

Example 13. . . (if (or (number? x) (string? x))
(f x) ;; f from example 12
0) . . .

2.4. OCCURRENCE TYPING 11

For the fragment in example 13 to typecheck, the type system must recognize

that the expression (or (number? x) (string? x)) ensures that x has type (
⋃

String Number) in the then branch, the domain of f from above.

For and, there is no such neat connection. In example 14, conclusions

are safely drawn in the then branch, regardless of the types of x and y.

Example 14. . . (if (and (number? x) (string? y))
(+ x (string-length y))
0) . . .

However, similar assumptions cannot be made in the else branch.

Example 15;; x is either a Number or a String
. . . (if (and (number? x) (string? y))

(+ x (string-length y))
(string-length x)) . . .

In example 15, the programmer falsely assumed x to be a String when the

test fails. But the test may produce #f because x is actually a String, in

which case the program would succeed, or because y is not a String, but x

is a number, which would cause (string-length x) to fail. In general, when a

conjunction is false, we do not know which conjunct is false.

2.4.2 Abstraction over Predicates

So far, we have seen how programmers can use predefined predicates. It is

important, however, that programmers can also abstract over existing pred-

icates and create new ones.

Example 16(define strnum?
(λ ([x : Any])

(or (string? x) (number? x))))

Taking our previous example of a test for the type (
⋃

String Number), we

can create the function strnum?, which behaves as a predicate for that type.

This means that the type system must be able to represent the fact that

strnum? is a predicate for this type, so that it can exploit it for conditionals.

12 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

2.4.3 Variables, Predicates and Selectors

An important feature of Scheme that Typed Scheme must also handle is the

ability to use arbitrary non-#f values as true and to use #f as a marker for

missing results, analogous to ML’s NONE.3

Example 17. . . (let ([x (member v l)])
(if x

— compute with x —
(error ’fail))) . . .

Example 17 represents the essence of a common Scheme idiom. The member

procedure yields either the desired result, if v is found in l, or #f, if v is

not found. Therefore, in the then branch we know x is the desired result,

otherwise the else branch is taken.

All of the tests thus far have involved variables such as x and y. It is also

useful to test arbitrary expressions. For example, we can test that the car of

a pair is a Number with the expression (number? (car p)). Integrating this

form of reasoning into the type system requires further modifications, as we

will see.

Example 18. . . (if (number? (car p)) ;; p : (Pair Any Any)
(add1 (car p))
7) . . .

If p has the type (Pair Any Any), then example 18 should produce a num-

ber.4 Of course, simply accommodating repeated applications of car is insuf-

ficient for real programs. Instead, the relevant portions of the type of p must

be refined in the then and else branches of the if. In example 19, we assume

that g has argument type (Pair Number Number):

3Like other dynamically typed languages, Scheme treats all values that are not #f as
true.

4This relies on the recent change to PLT Scheme to make pairs immutable by default.

2.4. OCCURRENCE TYPING 13

Example 19. . . (if (and (number? (car p)) (number? (cdr p)))
(g p)
’nope) . . .

Thus, the test expression must refine the type of p to (Pair Number Num-

ber), which is the expected result of the conjunction of tests on the car and

cdr.

As example 20 shows, programmers can abstract the use of predicates

and selectors together.

Example 20(define carnum?
(λ ([x : (Pair Any Any)]) (number? (car x))))

The carnum? predicate tests if the car of its argument is a Number.

2.4.4 Reasoning Logically

Of course, we do learn something when conjunctions such as those in exam-

ples 14 and 15 are false. When a conjunction is false, we know that one of

the conjuncts is false, and thus when all but one are true, the remaining one

must be false. In Scheme form, this reasoning principle is found quite often

in nested conditionals.

Example 21. . . (cond [(and (number? x) (string? y)) — 1 —]
[(number? x) — 2 —]
[else — 3 —]) . . .

This program represents a common idiom.5 In clause 1, we obviously know

that x is a Number and y is a String. In clause 2, x is again a Number. But

we also know that y cannot be a String. To make sense of the type discipline

employed in such programs, the Typed Scheme type system must be able to

follow this reasoning.

5The introductory textbook How to Design Programs [Felleisen, Findler, Flatt, and Krish-
namurthi 2001] devotes an entire section to this idiom.

14 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

2.4.5 Putting it all Together

Finally, we can combine all of these features into a single example that

demonstrates all aspects of occurrence typing.

Example 22(λ ([input : (
⋃

Number String)] [extra : (Pair Any Any)])
(cond

[(and (number? input) (number? (car extra)))
(+ input (car extra))]

[(number? (car extra))
(+ (string→number input) (car extra))]

[else 0]))

2.5 Variable-arity Functions

PLT Scheme allows programmers to define functions that do not take a fixed

number of arguments. Some functions can accept any one of a set of num-

bers of arguments, or a variable number. To accommodate these program-

ming patterns, Typed Scheme supports a variety of forms of variable-arity

function definitions.

2.5.1 Uniform Variable-Arity Functions

Uniform variable-arity functions are those that expect their rest parameter

to be a homogeneous list. Consider the following three examples of type

signatures:

(: + (Integer∗ → Integer))
(: string-append (String∗ → String))
(: list (∀ (α) (α∗ → (Listof α))))

The syntax Type∗ indicates that 0 or more arguments of type Type are re-

quired.

Here is a definition of variable-arity + in Typed Scheme:

2.5. VARIABLE-ARITY FUNCTIONS 15

Example 23(: + (Integer∗ → Integer))

;; assumes binary-+, a binary addition operator
(define (+ . xs)

(if (null? xs) 0 (binary-+ (car xs) (apply + (cdr xs)))))

2.5.2 Non-uniform Variable-Arity

While assuming that rest parameters are homogeneous lists of values makes

typechecking simple, not all variable-arity functions allow this assumption.

Typechecking heterogeneous rest parameters requires analyzing other rela-

tionships between types. For example, the length of the list assigned to the

rest parameter may be connected to the types of other parameters or the

returned value.

For example, Scheme’s map function maps an n-ary function over n lists,

unlike its counterparts in ML or Haskell. When map receives a function f and

n lists, it expects f to accept n arguments. Also, the type of the kth function

parameter must match the element type of the kth list.

The following example is taken from the PLT Scheme code base:

Example 24;; implements a wrapper that prints f ’s arguments
(: verbose (∀ (β α . . .) ((α . . . → β)→ (α . . . → β))))
(define (verbose f)

(if quiet? f (λ a (printf "xform-cpp: ˜a\n" a) (apply f a))))

The intent of the programmer is clear—the result of applying verbose to a

function f should have the same type as f for any function type. Typed

Scheme represents this by allowing verbose to be instantiated with a sequence

of type arguments, one for each of the arguments to f .

Below are the types for some additional example functions:

Example 25;; map is the standard Scheme map
(: map

(∀ (γ α β . . .)
((α β . . . → γ) (Listof α) (Listof β) . . . → (Listof γ))))

16 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

Example 26;; map-with-funcs takes any number of functions,
;; and then an appropriate set of arguments, and then produces
;; the results of applying all the functions to the arguments
(: map-with-funcs

(∀ (β α . . .) ((α . . . → β)∗ → (α . . . → (Listof β)))))

When a variable-arity polymorphic type is instantiated, the dotted se-

quence is replaced with the provided sequence of type arguments. For map-

with-funcs, this works as follows:

(inst map-with-funcs Number Integer Boolean String)

results in a value with the type:

((Integer Boolean String→ Number)∗ →
(Integer Boolean String→ (Listof Number)))

Typed Scheme also provides local inference of the appropriate type argu-

ments for dotted polymorphic functions, so explicit type instantiation is

rarely needed [Strickland, Tobin-Hochstadt, and Felleisen 2008].

A more substantial definition of a variable-arity function is fold-left.

Example 27(: fold-left
(∀ (γ α β . . .) ((γ α β . . . → γ) γ (Listof α) (Listof β) . . . → γ)))

(define (fold-left f c as . bss)
(if (or (null? as) (ormap null? bss))

c
(apply fold-left (apply f c (car as) (map car bss)) (cdr as)

(map cdr bss))))

Its type shows that it accepts at least three arguments: a function f ;

an initial element c; and at least one list as. Optionally, fold-left consumes

additional lists, received as rest argument bss, which is a sequence of lists.

For this combination to work out, f must consume as many arguments as

there are lists plus one; in addition, the types of these lists must match the

types of f ’s parameters because each list item becomes an argument.

2.6. REFINEMENT TYPES 17

2.6 Refinement Types

Refinement types, introduced originally by Freeman and Pfenning [1991],

are types which describe subsets of conventional types. For example, the

type of even integers is a refinement of the type of integers. In Typed

Scheme, we can describe a set of values with a simple Scheme predicate.

The fundamental idea is that a boolean-valued function, such as even?,

can be treated as defining a type, which is a subtype of the input type of

even?. This type has no constructors, but it is trivial to determine if a value

is a member by using the predicate even?. For example, consider the just-

even function, which produces solely even numbers, and the halve function,

which consumes only even numbers.

Example 28(: just-even (Number→ (Refinement even?)))
(define (just-even n)

(if (even? n) n (error ’not-even)))

(: halve ((Refinement even?)→ Number))
(define (halve n) (/ n 2))

This technique harnesses occurrence typing to work with arbitrary pred-

icates, and not just those that correspond to Scheme data types.

2.7 How to Check the Examples

This section describes in more detail how Typed Scheme’s type system han-

dles some of the examples of chapter 2 in order to motivate and explain the

basic ideas of the formal systems described in the subsequent chapters.

2.7.1 Simple Examples

In examples 1 and 2, typechecking is straightforward. Structures, as in ex-

ample 3, require only slightly more effort—Typed Scheme must understand

18 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

the relationships between the types of the fields and the type of the construc-

tor, here make-person, in order to check the application of the constructor.

To facilitate easier programming, type arguments to polymorphic func-

tions are automatically synthesized where possible. Argument type synthe-

sis uses the local type inference algorithm of Pierce and Turner [2000]. It

greatly facilitates the use of polymorphic functions and makes conversions

from Scheme to Typed Scheme convenient, while dealing with the subtyping

present in the rest of the type system in an elegant manner. Furthermore,

it ensures that type inference errors are always locally confined, rendering

them reasonably comprehensible to programmers.

2.7.2 Typed/Untyped Integration

The fundamental solution for sound integration between typed and untyped

code is runtime contracts [Findler and Felleisen 2002]. In example 5, a

contract checking that x is a number is automatically added to module m1,

and used to protect m1 against any malicious use of x by untyped code. A

similar contract is automatically generated for example 6, checking that m1,

the untyped module in this example, actually produces a number.

For higher-order types, higher-order contracts are generated. Here, pro-

tection in both directions is vital, as in examples 7 and 8.

In chapter 5, I describe these ideas formally, and prove that only un-

typed modules can receive blame for violating the automatically-generated

contracts.

2.7.3 Occurrence Typing

For occurrence typing, we begin by returning to example 11:

(if (number? x) (add1 x) 0) ;; x : Any

In this example, we must propagate information from the test, (number?

x), to the then branch. Therefore, in addition to determining that the test

2.7. HOW TO CHECK THE EXAMPLES 19

has the type Boolean, the typechecker also proves the proposition that “if

the test evaluates to #t, then x is a number”. We write the second part of

this proposition as Numberx, and call it a filter (in the formal system, we

abbreviate Number as Number). We can combine this information with the

original type of x (Any), to get a new environment for checking the then

branch where x has type Number. This new environment is used to check

the then branch.

The type system must compute this proposition (and thus the new type

environment) from the expression (number? x). First, we need information

in the type of number? that it is a predicate for the Number type. Second, we

need information from the operand x, that testing it produces information

about the variable x.

We accomplish our first goal with latent information on the function type

of the number? procedure. Such latent information describes not only what

sorts of values it accepts and produces, but also what filter it produces when

applied. We take this notion of latent information from work on effect sys-

tems by Lucassen and Gifford [1988] and say that number? has a latent filter.

We accomplish the second by adding a piece of information to the type

and the propositions, describing which bit of the environment is accessed by

a given expression. We refer to this information as the object of an expres-

sion, in this case x.

Given these two pieces of information—the latent filter from number?

and the object from x—we obtain the filter Numberx as desired. This, in

turn, is enough to typecheck the rest of the if expression.

2.7.3.1 Handling Complex Tests

In example 12, we have

(if (number? x) (add1 x) (string-length x))

20 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

where x has the type (
⋃

String Number). To typecheck the else branch, we

also need the information that x is not a Number so that we can deduce that

it is a String.

To accomplish this, the type checker must propagate the proposition “x

is some element of its original type, but not a Number” from the test ex-

pression to the else branch. This proposition is written Numberx, and it is

straightforward to compute it from the latent filter of the operator and the

object of the operand from the test.

With more complex tests, we must combine the filters of different subex-

pressions. If (or (number? x) (string? x)) is true, then the value of x must

be a member of the type (
⋃

Number String), and if it is false then x cannot

be either of the constituent types (Number or String). Using our nota-

tion, these can be expressed with the pair of filters (
⋃

Number String)x and

(
⋃

Number String)x, which apply in the then and else branches, respectively.

For all of the examples we have seen so far, the filters for the then and

else branches had a simple relationship. This is not always the case, however.

Consider (and (number? x) (string? y)). If this expression evaluates to #t,

then x must be a Number and y a String. We represent this new information

with two filters that apply to the then branch, Numberx and Stringy. If the

test evaluates to #f, we do not know which of the two individual tests fails,

so we can’t create a new type environment for the else branch. Therefore,

no filters apply to the else branch. This is why the first example using and

(example 14) is safe, but the second (example 15) is not; the type of x

cannot be refined appropriately.

2.7.3.2 Abstracting over Predicates

The next challenge is how to include filter information in function types for

user-defined predicates (see example 16):

(λ ([x : Any]) (or (string? x) (number? x)))

2.7. HOW TO CHECK THE EXAMPLES 21

We must first abstract the filter away from the choice of parameter, in this

case x. Also, the resulting filter is not immediately available after evaluat-

ing the entire expression, because the evaluation of a λ-expression obviously

provides no information before it is applied. Therefore, the information in

the filter, once abstracted, forms the latent filter of the function. This func-

tion has the latent filter (
⋃

String Number) when the result of applying the

function is true, and (
⋃

String Number) when it is false, which are abstrac-

tions of the original filters for this disjunction. These latent filters implicitly

refer to whatever the actual argument to the function might be.

Latent filters are also the underlying mechanism for specifying the types

of built-in predicates such as string? and number?. Examples of such latent

filters are shown in figure 6.7 on page 70.

2.7.4 Variables, Predicates and Selectors

Scheme programmers often use predicates on selector expressions such as

(car p). Our type system represents such expressions as complex objects.

For example, (number? (car p)) involves a predicate with a latent filter ap-

plied to an expression whose object indicates that it accesses the car field

of p. We write this object as car(p). Thus, the entire expression has filter

Numbercar(p) (for the then branch) and Numbercar(p) (for the else branch).

It is also important to abstract over selector expressions. Therefore, in

addition to having latent filters, function types also have latent objects, spec-

ifying their access pattern on their arguments. So, just as the abstraction of

the filter Numberx is the latent filter Number, the abstraction of the object

car(p) is the latent object car. We refer to a sequence of selectors (here car)

as a path.

Of course, a filter involving a non-trivial object can also be abstracted

into a latent filter, turning Numbercar(p) into Numbercar. In all of these

cases, the key element of abstraction is removing the parameter.

22 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

Finally, the Scheme’s notion of truth can also be expressed using the

language of filters. When an expression such as x is used as a test, in the

then branch x cannot be #f, and in the else branch it must be #f. This can be

expressed with the filter #fx for the then branch and #fx for the else branch.

2.7.5 Reasoning Logically

Let us now revisit our assumptions concerning expressions such as (and

(number? x) (string? y)). If this expression evaluates to #f, we do know

something about the values of x and y. In particular, if we think of the filter

for the original expression as Numberx ∧Stringy, then its negation is, by

simple classical logic, Numberx ⊃ ¬Stringy. We can reinterpret ¬Stringy

as Stringy, giving us Numberx ⊃ Stringy, meaning that if x is a number, y

cannot be a string. If we take this proposition to be a filter, then it can be one

of the propositions that we learn upon evaluation of the original expression,

in the case that it evaluates to #f. If we were to further learn Numberx,

as we might from a test like (number? x), we would also learn that Stringy.

This allows the type system to reason in the same way that the programmer

does and to keep track of (some of) the myriad facts available for deducing

the partial correctness of a program fragment.

2.7.5.1 The Form of the Type System

Our examples suggest that four elements are central to the operation of the

Typed Scheme type system:

• Typechecking an expression computes two sets of filters, which are

propositions that hold when the expression evaluates to true or false,

respectively.

• Typechecking an expression also determines an object of inquiry, de-

scribing the particular piece of the environment pointed to by that

2.7. HOW TO CHECK THE EXAMPLES 23

expression. This piece of the environment may also be a portion of a

larger data structure, accessed via a path.

• Filters can be combined via logical connectives to form more complex

filters.

• Latent filters and objects abstract over a function’s parameters. They

are included in function types.

In chapters 6 and 7, I translate these ideas into a calculus, λTS , and its

type system.

2.7.6 Variable-arity Polymorphism

To typecheck variable-arity functions, we consider uniform variable-arity

functions separately from non-uniform variable-arity.

2.7.6.1 Uniform Variable-arity

The syntax Type∗ for the type of rest parameters alludes to the Kleene star

for regular expressions. It signals that in addition to the other arguments,

the function takes an arbitrary number of arguments of the given base type.

The form Type∗ is dubbed a starred pre-type, because it is not a full-fledged

type and may appear only as the last element of a function’s domain.

Returning to example 23, typing this definition is straightforward. The

type assigned to the rest parameter of starred pre-type τ ∗ in the body of the

function is (Listof τ), a pre-existing type in Typed Scheme.

2.7.6.2 Non-uniform Variable-arity

In contrast, consider the types of map and map-with-funcs from examples 25

and 26. Our first key innovation is the possibility to attach . . . to the last

type variable in the binding position of a ∀ type constructor. Such type

24 CHAPTER 2. TYPED SCHEME THROUGH EXAMPLES

variables are dubbed dotted type variables. Dotted type variables signal that

this polymorphic type can be instantiated with an arbitrary number of types.

Next, the body of ∀ types with dotted type variables may contain ex-

pressions of the form τ . . .α for some type τ and a dotted type variable α.

These are dotted pre-types; they classify non-uniform rest parameters just

like starred pre-types classify uniform rest parameters. A dotted pre-type

has two parts: the base τ and the bound α. Only dotted type variables can

be used as the bound of a dotted pre-type. Since ∀-types are nestable and

thus multiple dotted type variables may be in scope, dotted pre-types must

specify the bound.

Finally, in example 27, we have a substantial definition of a variable-arity

polymorphic function. Its type shows that it accepts at least three arguments:

a function f ; an initial element c; and at least one list as. fold-left also con-

sumes additional lists, represented by the sequence bss, which may be empty

when no additional lists are provided. For this combination to work out, f

must consume as many arguments as the total number of lists provided;

in addition, the types of these lists must match the types of f ’s parameters

because each list item becomes an argument.

Beyond this, the example illustrates that the rest parameter is treated as if

it were a place-holder for a plain list parameter. In this particular case, bss is

thrice subjected to map-style processing. In general, variable-arity functions

should be free to process their rest parameters with existing list-processing

functions.

The challenge is to assign types to such expressions. List-processing func-

tions expect lists, but the rest parameter has a dotted pre-type. Moreover,

the result of list-processing a rest parameter may flow again into a rest-

argument position. While the first obstacle is simple to overcome with a

conversion from dotted pre-types to list types, the second one is onerous.

Since list-processing functions do not return dotted pre-types but list types,

we cannot possibly expect that such list types come with enough information

2.7. HOW TO CHECK THE EXAMPLES 25

for an automatic conversion.

Thus we use special type rules for the list processing of rest parame-

ters with map, andmap, and ormap. Consider map, which returns a list of

the same length as the given one and whose component types are in a pre-

dictable order. If xs is classified by the dotted pre-type τ . . .α, and f has type

(τ → σ), we classify (map f xs) with the dotted pre-type σ . . .α. Thus, in the

definition of fold-left (map car bss) is classified as the dotted pre-type β . . .β

because car is instantiated at ((Listof β) → β) and bss is classified as the

dotted pre-type (Listof β) . . .β.

One way to use such processed rest parameters is in conjunction with

apply. Specifically, if apply is passed a variable-arity function f , then its final

argument l, which must be a list, must match up with the rest parameter of f .

If the function is a uniform variable-arity procedure and the final argument

is a list, typing the use of apply is straightforward. If it is a non-uniform

variable-arity function, the number and types of parameters must match the

elements and types of l.

Here is an illustrative example from the definition of fold-left:

(apply f c (car as) (map car bss))

By the type of fold-left, f has type (γ α β . . .β → γ). The types of c and (car

as) match the types of the initial parameters to f . Since the map application

has dotted pre-type (Listof β) . . .β and since the rest parameter position of f

is bounded by β, we are guaranteed that the length of the list produced by

(map car bss) matches f ’s expectations about its rest argument. In short, we

use the type system to show that we cannot have an arity mismatch, even in

the case of apply.

In chapter 9, I describe how to make these ideas precise, and prove that

such arity mismatches are statically rejected.6

6Of course, not all dynamic errors raised by variable-arity functions are statically
detected—when map is applied to lists of varying length, the error is only reported dy-
namically.

CHAPTER 3

Design Choices

In this chapter, I describe several key design decisions and their rationale.

3.1 Reject Ill-typed Programs

Most previous approaches to static checking for untyped languages have not

rejected programs. Instead, they validated all programs, and either issued

warnings or added new runtime checks to programs that could not be proved

safe. In contrast, Typed Scheme issues an error at compile-time for programs

that do not typecheck.

This simplifies the design and implementation of Typed Scheme in a

number of ways. First, Typed Scheme does not have to transform the pro-

gram to insert dynamic checks. Second, it allows the Typed Scheme type

system to be more expressive than the dynamic checks that can be easily

implemented with the PLT Scheme contract system. For example, dynamic

checks for types with filters is an open problem. Third, it makes the pro-

gramming model much simpler for users, by comparison to systems which

automatically insert dynamic checks. Almost all users of Typed Scheme have

used typed languages before, and thus no explanation is required, and the

program’s behavior doesn’t change based on the types. Fourth, and most

importantly, all the errors detected by the type system are reported, mean-

ing that the the programmer can rely on types in the program for reasoning

27

28 CHAPTER 3. DESIGN CHOICES

about the program. Even in sound external tools, the program can still be

run when ill-typed, whereas Typed Scheme statically rejects such programs

as a part of the PLT Scheme execution process.

3.2 Explicit Typing

With few exceptions, every bound variable in Typed Scheme must be anno-

tated with its type. This makes programming more inconvenient by com-

parison either to idiomatic untyped Scheme programming, or to other typed

functional languages, especially when anonymous functions are used. But it

avoids several problematic aspects of type inference.

First, complete inference for the Typed Scheme type system is very com-

plex, since it combines polymorphism and subtyping. Second, type inference

is well-known to cause hard-to-decipher type errors with non-local behav-

ior. Third, experience with systems that performed complete type inference

for untyped Scheme code suggested that such systems are extremely brittle,

with minor code changes radically changing the inference results. Fourth,

type inference allows programmers to omit type annotations in many cases

where the type would serve as valuable statically-checked documentation.

Instead, Typed Scheme provides local type inference in certain cases: for

type arguments to polymorphic functions, for non-recursive local bindings,

and for some λ-bound variables. This local inference removes much of the

most significant burden from the programmer, while simplifying the imple-

mentation and preserving valuable checked documentation.

3.3 Module-level Granularity

When using Typed Scheme, a module must be either wholly typed, or wholly

untyped. In contrast, many other approaches to “gradual typing” have al-

lowed mixing typed and untyped code at the expression level.

3.4. PRE-EXPANDING MACROS 29

Both approaches obviously have the same expressiveness, since any piece

of code can be factored out into its own module. However, the module-by-

module approach has several advantages. First, modules are a natural level

to think about the organization of code. Second, since the contracts gen-

erated at typed/untyped boundaries have runtime cost, module level gran-

ularity makes reasoning about the performance impact of typed/untyped

boundaries easier. Third, the PLT module system allows individual modules

to specify their language, making the module level the most natural granu-

larity for integration with the rest of PLT.

3.4 Pre-expanding Macros

In Typed Scheme, all macros in the source program are expanded before

typechecking.1 This has several vital advantages. First, since untyped Scheme

code may use arbitrary macros, which do not come pre-equipped with type

rules, this allows Typed Scheme to handle the full range of existing pro-

grams. Second, it allows the implementation to deal with just the few core

forms of PLT Scheme.

Since almost all control structures in PLT Scheme are defined in terms of

if, occurrence typing works for them without additional modification. For

example, the match library provides a sophisticated pattern matcher, which

compiles to plain PLT Scheme. Typed Scheme works properly for almost

all uses of match, without any special implementation effort. Since PLT

programmers use thousands of different macros, this is the only way to make

the implementation manageable, as well as adaptable to new macros.

However, some macros introduce invariants that must be understood

by the type system for proper typechecking. These must be handled spe-

cially. For example, the define-struct macro must communicate with the

typechecker to introduce new types, and thus Typed Scheme introduces the
1This is also the approach taken by the ACL2 theorem prover [Kaufmann, Moore, and

Manolios 2000].

30 CHAPTER 3. DESIGN CHOICES

new define-struct:. This means that further complex macros of this sort re-

quire special handling, preventing their use in Typed Scheme currently. The

problem of sound and simple macro-extensibility of typed languages is still

open.

3.5 No New Idioms

For Typed Scheme, I took the idioms and styles of PLT Scheme program-

mers as they exist. The addition of a type system allows for many new

styles of programming, and a type system designer is always tempted to add

these. I have attempted to resist this temptation, and only add features to

typecheck PLT Scheme programs that already exist.2 This has provided a

rigorous bound on what features to add to Typed Scheme, and on what the

goals of the Typed Scheme project are. As Typed Scheme becomes more

widely used, and is used as the initial language for programs, this decision

may need to be revisited.

2Refinement types are somewhat of an exception to this rule.

CHAPTER 4

Prior Work

The design of Typed Scheme builds on extensive prior work. This chapter

surveys the most important strands. The first section discusses the exten-

sive history of static checking for untyped languages, in particular LISP and

Scheme. While Typed Scheme differs significantly from all of these prior

efforts, their design choices and experience informed the choices made in

creating Typed Scheme. The second section reviews prior work on design-

ing multi-language systems, especially those that use contracts at the bound-

aries. The third section describes previous solutions to the problem of type-

checking a language with macros, as it has been explored both in the context

of static checkers and soft typing. The final section covers two key innova-

tive technologies that Typed Scheme builds on–runtime software contracts

and module systems.

4.1 Static Checking for Scheme and LISP

The history of programming languages knows many attempts to add or

to use type information in conjunction with untyped languages. In 1976,

Cartwright [1976] proposed a type system to simplify the operation and

use of Boyer-Moore-style theorem provers [Boyer and Moore 1997]. Since

then, the designers of Common Lisp [Steele Jr. 1990] as well as many other

languages have included type declarations in such languages, often to help

31

32 CHAPTER 4. PRIOR WORK

compilers, sometimes to assist programmers. From the late 1980s until re-

cently, people have studied soft typing [Cartwright and Fagan 1991; Aiken,

Wimmers, and Lakshman 1994; Wright and Cartwright 1997; Henglein and

Rehof 1995; Flanagan and Felleisen 1999; Meunier, Findler, and Felleisen

2006], a form of type inference to assist programmers debug their programs

statically. This work has mainly been in the context of Scheme but has also

been applied to Python [Salib 2004] and Erlang [Marlow and Wadler 1997].

This section surveys this body of work, starting with previous static type

systems for Scheme and LISP.

4.1.1 Static Type Systems

Many researchers have developed systems that brought together both static

type systems and LISP or Scheme programming, usually to make it easier to

reason about programs. In 1976, Cartwright presented TYPED LISP [1976].

However, in his paper (section 5) he describes having to abandon the pol-

icy of rejecting type-incorrect programs because the types of variables in

conditionals had overly broad types, which is precisely the issue that Typed

Scheme and occurrence typing address. TYPED LISP also did not consider

the problem of interoperation with untyped code.

Wand’s Semantic Prototyping System (or SPS) [Wand 1984] included a

type system for Scheme programs, designed for implementing denotational

models of languages. The type system did not include any features for han-

dling typical Scheme idioms, nor for interoperating soundly with untyped

code.

Haynes [Haynes 1995] designed a type system called Infer based on

row types for Scheme. His system did not accommodate Scheme program-

ming idioms in the way that Typed Scheme does, and aimed for complete

type inference for all programs, a non-goal of the Typed Scheme project.

However, his system does support restricted forms of variable-arity poly-

4.1. STATIC CHECKING FOR SCHEME AND LISP 33

morphism [Dzeng and Haynes 1994]. This system is discussed in detail in

section 12.6.

McDermott [2004] developed Nisp, an unsound type system for Common

LISP. It allows the description and checking of many types similar to those

in Typed Scheme, but does not provide checking for typical LISP idioms. It

also does not provide sound interaction with untyped code.

Leavens [Leavens, Clifton, and Dorn 2005] designed an ML-like type

system for Scheme, but made no attempt to accommodate Scheme idioms,

or to integrate with untyped code.

The Bigloo Scheme compiler [Serrano and Weis 1995] provides a simple

type system for Scheme, primarily for the purpose of optimization. This

system does not have safe interoperation with untyped code, nor does it

accommodate Scheme idioms.

The Strongtalk system [Bracha and Griswold 1993] includes a sophisti-

cated typechecker for Smalltalk programs, designed by analysis of existing

Smalltalk idioms. The system was therefore able to accomodate large bodies

of existing Smalltalk code, including portions of the then-standard library.

However, Strongtalk did not attempt to check the behavior of still-untyped

portions of a program.

4.1.2 Soft Typing

The goal of the soft typing research agenda is to provide an optional type

checker for programs in untyped languages. One key premise is that pro-

grammers shouldn’t have to write down any type definitions or type decla-

rations. Soft typing should work via type inference only. Another premise is

that soft type systems should never prevent programmers from running any

program. If the type checker encounters an ill-typed program, it should in-

sert run-time checks that restore typability and ensure that the invariants of

the type system are not violated. Naturally, a soft type system should mini-

34 CHAPTER 4. PRIOR WORK

mize these insertions of run-time checks. Furthermore, since these insertions

represent potential failures of type invariants, a good soft type system must

allow programmers to inspect the sites of these run-time checks to determine

whether they represent genuine errors or weaknesses of the type system.

Such soft typing systems are complex and brittle, however. On one hand,

these systems may infer extremely large types for seemingly simple expres-

sions, greatly confusing the programmer, either the original or the mainte-

nance programmer who has taken on old code. On the other hand, a small

syntactic change to a program without semantic consequences can intro-

duce vast changes into the types of both nearby and remote expressions. Ex-

periments with undergraduates—representative of average programmers—

suggest that only the very best understood the tools well enough to make

sense of the inferred types and to exploit them for the assigned tasks. For

the others, these tools turned into time sinks with little benefit.

Roughly speaking, soft typing systems fall into one of two classes, de-

pending on the kind of underlying inference system. The first soft type

systems [Cartwright and Fagan 1991; Wright and Cartwright 1997; Hen-

glein and Rehof 1995; Henglein 1994; Aiken and Murphy 1991] used infer-

ence engines based on Hindley-Milner though with extensible record types.

These systems are able to type many actual Scheme programs, including

those using outlandish-looking recursive datatypes. Unfortunately, these sys-

tems severely suffer from the general Hindley-Milner error-recovery prob-

lem. That is, when the type system signals a type error, it is extremely

difficult—often impossible—to decipher its meaning and to fix it.

In response to this error-recovery problem, others built inference systems

based on Shivers’s control-flow analyses [1991] and Aiken’s and Heintze’s

set-based analyses [Aiken et al. 1994; Heintze 1994]. Roughly speaking,

these soft typing systems introduce sets-of-values constraints for variables

and values and propagate them via a generalized transitive-closure propa-

gation [Aiken et al. 1994; Flanagan and Felleisen 1999]. In this world, it is

4.2. INTERLANGUAGE INTEROPERABILITY 35

easy to communicate to a programmer how a value might flow into a par-

ticular operation and violate a type invariant, thus eliminating one of the

major problems of Hindley-Milner based soft typing [Flanagan, Flatt, Krish-

namurthi, Weirich, and Felleisen 1996].

My experience and evaluation, as well as that of other users of soft typ-

ing systems, suggest that Typed Scheme works well compared to soft typing.

First, programmers can easily convert entire modules with just a few type

declarations and annotations to function headers. Second, assigning explicit

types and rejecting programs actually pinpoints errors better than soft typ-

ing systems, where programmers must always keep in mind that the type

inference system is conservative. Third, soft typing systems do not support

type abstractions well. Starting from an explicit, static type system for an

untyped language should help introduce these features and deploy them as

needed.

The prior soft typing research inspired this work on occurrence typing.

These systems employed simplistic if-splitting rules that performed a case

analysis for types based on the syntactic predicates in the test expression.

This idea was derived from Cartwright [1976]’s typecase construct (also

see below) and—due to its usefulness—inspired the generalization to occur-

rence typing. The major advantage of soft typing over an explicitly typed

Scheme is that it does not require any assistance from the programmer. In

the future, I hope to borrow techniques from soft typing for automating

some of the conversion process from untyped modules to typed modules.

4.2 Interlanguage Interoperability

Smooth operation between typed and untyped code is essential to Typed

Scheme. The design of this interoperation relies heavily on prior work on

language interoperation. Gray, Findler, and Flatt [2005] developed Profes-

sorJ, which combines PLT Scheme and Java. Their interoperability strat-

36 CHAPTER 4. PRIOR WORK

egy relies on custom mirrors, generated specifically for each class, which

dynamically check the invariants of methods. They also extend each lan-

guage with the features of the other, using the Java-like class system of PLT

Scheme [Flatt, Findler, and Felleisen 2006], and adding first-class functions

to their implementation of Java. Their system also automatically generates

contracts as part of the mirrors for each class.

Matthews and Findler [2009] consider interlanguage interoperability be-

tween a typed and untyped lambda calculus, and demonstrate the such in-

teroperability corresponds to contracts, although their work does not gener-

ate contracts. They claim, but do not prove, that only untyped portions of

the program can be blamed. However, their system has only two parties.

4.3 Implementing Types in Scheme

The implementation of typecheckers for Scheme poses several challenges.

First, the typechecker must somehow cope with user-written macros. Sec-

ond, the typechecker must accommodate pre-existing code in a sound man-

ner, preferably without requiring changes to the untyped Scheme implemen-

tation. Third, several systems, like Typed Scheme, have implemented the

type system via the underlying macro system.

The SPS system mentioned above used macros to implement the type-

checker, although without hygiene. Typed Scheme scales up the approach of

SPS to a modern macro and module system, enabling the seamless integra-

tion between typed and untyped code.

Flanagan’s static analyzer for DrScheme [Flanagan et al. 1996] analyzed

expanded programs and used syntax source information to display the anal-

ysis results in the program editor. The analyzer included a macro protocol

that let programmers annotate their programs with hints for the analyzer.

The Ziggurat project [Fisher and Shivers 2008] has investigated alternate

approaches to static analysis and other program observations in the presence

4.4. CONTRACTS AND MODULES 37

of macros. Analyses in Ziggurat are implemented as methods on expression

nodes, and derived expression forms (that is, macros) may either override

analysis methods with special behavior or defer to the default analysis of the

macro’s expansion. Ziggurat represents a new approach to defining macro

protocols, and it is as yet unclear how the Ziggurat approach compares with

the mechanisms described here.

4.4 Contracts and Modules

The design and implementation of Typed Scheme builds heavily on prior

work in contracts and module systems.

Runtime software contracts have a long history, but traditionally did

not support two features necessary for the design of Typed Scheme. First,

Scheme, and thus Typed Scheme, makes extensive use of higher-order lan-

guage constructs, which must therefore be accommodated by the contract

system. Second, Typed Scheme isolates typed from untyped code, and thus

needs a mechanism for determining which portion of the program violated

a contract.

These two shortcomings are addressed by Findler’s contract system [Find-

ler and Felleisen 2002], as implemented in PLT Scheme [Flatt and PLT

2009]. This system provides guarantees that ensure that the appropriate

portion of code is blamed for violating a contract, even when the violation is

of a higher-order contract and takes place arbitrarily later in the execution

of the program. Typed Scheme builds directly on this system, automatically

generating contracts from types.

Typed Scheme also relies on a module system that provides strong ab-

straction barriers, in order to prevent unauthorized access by the untyped

code to unprotected portions of the typed program. For Typed Scheme, this

module system is the PLT module system [Flatt 2002; Flatt and PLT 2009].

This system provides strong abstraction barriers for both values and macros.

38 CHAPTER 4. PRIOR WORK

It also allows Typed Scheme to be implemented entirely as a library, using

the techniques described in chapter 10.

CHAPTER 5

Integrating Typed and Untyped Code

This chapter presents a formal account of the integration of typed and un-

typed code in a single program. For simplicity, we consider only a simple

type system and module system. Further, we restrict the language to have

only one typed module.

5.1 Relationship to Typed Scheme

This chapter presents a formalism that admits only simple types. Further,

each module may contain exactly one expression, and other modules are

referred to implicitly. Finally, there may only be one typed module in the

system. This formalism, initially designed and published prior to the im-

plementation of Typed Scheme, is thus inadequate for direct use in Typed

Scheme.

Therefore, in the full Typed Scheme language, several changes are made.

First, a program may consist of an arbitrary combination of arbitrarily many

typed and untyped modules. Second, each module explicitly specifies which

modules it depends upon. Third, and most significantly, the importing typed

module must specify the types to be assigned to any imports from untyped

modules.

The implemented system has a number of advantages. First, the type

specifications for imports provide checked documentation of the expected

39

40 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

behavior of the untyped code. Second, as in the wrapper modules presented

in this chapter, they provide a localized target of blame. Therefore, when

the untyped module fails to live up to the contract assigned to it, instead

of blaming the untyped module, which may not be at fault, the type speci-

fication is blamed instead. Third, it does not require the complex contract

inference process from this chapter for determining the desired type of im-

ported untyped identifiers.

Of course, the crucial result of this chapter, theorem 5.4.10, is still appli-

cable to the resulting system, despite these changes. Developing a formalism

that more accurately captures the design of the Typed Scheme implementa-

tion remains future work.

5.2 An Informal Tour

To make things simple, we assume that a program is a sequence of modules

followed by a “main expression.”

The evaluation of such a program starts with the main expression. Evalu-

ation proceeds as usual in an expression-oriented language. When the evalu-

ation process encounters a reference to a module, it imports the appropriate

expression from there and evaluates it.

To keep things as simple as possible, we work with a typed variant of

the untyped language where all binding positions come with type declara-

tions. In short, we migrate to an explicitly typed language that is otherwise

syntactically and semantically equivalent to the untyped one.

In a program that mixes typed and untyped modules, evaluation pro-

ceeds as before. This implies that the values of the typed language are those

of the untyped language (and vice versa). Figures 5.1, 5.2, 5.3, and 5.4

present the formal syntax and semantics of our model, though this section

liberally adds features to provide intuition; section 5.3 explains these figures

in detail.

5.2. AN INFORMAL TOUR 41

P ::=
−→
M e Programs

M ::= (module f v) Modules
e ::= n | (λx.e) | x | f | (e e) | (if0 e e e) Source Expressions

Figure 5.1: Scripting Language Syntax

P ::=
−→
M e Programs

M ::= Mu |Mt Modules
Mu ::= (module f v) Untyped Modules
Mt ::= (module f t vt) Typed Modules
t ::= int | (t→ t) Types
v ::= n | (λx.e) Untyped Values
vt ::= n | (λx : t.et) Typed Values
e ::= v | x | f | (e e) | (if0 e e e) Untyped Expressions
et ::= vt | x | f | (et et) | (if0 et et et) Typed Expressions

Figure 5.2: Migrated Language Syntax

c ::= int | (c→ c) | (c 99K c) Contracts ⊃ Types
l ::= (λx : t.e)f | (λx.e)f | {(c 99K c)⇐f v} Abstractions
v ::= nf | l Runtime Values
e ::= v | xf | f f | (e e)f | (if0 e e e)f | {c⇐f e} Runtime Expressions
E ::= [] | (E e) | (v E) | (if0 E e e) | {c⇐f E} Contexts

Figure 5.3: Runtime Syntax

Given an untyped modular program, the first step of interlanguage mi-

gration is to turn one module into a typed module. We assume that this

step simply adds types to all binding positions of the module, including the

module exports. While porting to Typed Scheme is not always this easy, the

additional changes sometimes required do not affect the modeling process.

After the chosen module has been rewritten in the typed version of the

language, we need to check the types and infer from them how the typed

module is going to interact with the others, which remain untyped. Consider

the following simple program:

42 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

((λx.ef)
g
vh)i −→ [vh/xg]ef SUBST

((λx : t.ef)
g
vh)i −→ [vh/xg]ef TYPEDSUBST

(ng vh)
f −→ (blame f) APP-ERROR

(if0 0f eg1 e
h
2)i −→ eg1 IF0-TRUE

(if0 vf eg1 e
h
2)i −→ eh2 IF0-FALSE

{int⇐g nf} −→ nf INT-INT

{int⇐g lf} −→ (blame g) INT-LAM

{(c1 → c2)⇐g nf} −→ (blame g) LAM-INT

{(c1 → c2)⇐g lf} −→ LAM-LAM

{(c1 99K c2)⇐g lf}
({(c1 99K c2)⇐g lh} wi)f −→ SPLIT

{c2 ⇐g (lh {c1 ⇐f wi})f}
. . . (module f vf) . . . E[f g] −→ LOOKUP

. . . (module f vf) . . . E[vf]
. . . (module f t vf) . . . E[f g] where g 6= f −→ LOOKUP-TYPE

. . . (module f t vf) . . . E[{t⇐g vf}]
. . . (module f t vf) . . . E[f f] −→ LOOKUP-TYPE-SELF

. . . (module f t vf) . . . E[vf]

[vf/xg]xg = vf

[vf/xg](eh1
1 eh2

2)
i

= ([vf/xg]eh1
1 [vf/xg]eh2

2)i

[vf/xg](if0 eh1
1 eh2

2 eh3
3)

i
= (if0 [vf/xg]eh1

1 [vf/xg]eh2
2 [vf/xg]eh3

3)i

[vf/xg]{t⇐h ei} = {t⇐h [vf/xg]ei}
[vf/xg](λy.eh1)h2 = (λy.[vf/xg]eh1)h2

[vf/xg](λy : t.eh1)h2 = (λy : t.[vf/xg]eh1)h2

Figure 5.4: Reduction Rules

Example 29(module f (int→ int) (λ ([x : int]) (g x)))
(module g 999)
(f 5)

It consists of two modules: the first is presumably a module that has

been rewritten in the typed language, the second one is still in the untyped

language. Also, the first one exports a function from integers to integers; the

second one exports a simple integer.

If we were to evaluate this program as is, it would eventually attempt

to apply 999 to 5 via the application (g x) in the typed module. In other

words, the typed portion of the program would trigger a run-time error,

5.2. AN INFORMAL TOUR 43

which, assuming proper source tracking, would tell the programmer that

the typed module went wrong. We model this source tracking with labels

on each expression in the original program, which indicate the module the

expression comes from.

A different view of the problem is that when one module changes, the

rest of the program has to play by new rules, too. In this case, the very

fact that the export from g, the second module, is used as a function in

the typed module establishes an agreement between the two modules. This

agreement, however, is informal (and unuttered) and is neither checked nor

monitored during run-time. The evaluation therefore results in a run-time

error seemingly due to the typed module.

Thus our first lesson is that informal agreements don’t play well with the

goal of introducing types. To reap the benefits of types, we must not only

have agreements, we must state them and enforce them. This line of reason-

ing naturally suggests the use of behavioral contracts in the spirit of Findler

and Felleisen [2002]. More precisely, we assume that an interlanguage mi-

gration process may add contracts at any point where untyped and typed

modules interact.1

For our running example we would expect that migration changes the

program as follows:

Example 30(module f (int→ int)
(λ ([x : int])

({(integer?→ integer?)⇐g g} x)))
(module g 999)
(f 5)

Put differently, we can infer from the types of the first module that the sec-

ond module must provide a function from integers to integers. In our frame-

work, we express this fact with a contract at the module reference.

1In the implementation of Typed Scheme, these contracts are inserted at the point where
the untyped module is required, as described in chapter 10.5.

44 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

The example has two implications for interlanguage migration and its

formal model. First, the language must also include optional contracts at

module boundaries. Second, a type checker for the typed variant of the lan-

guage must not only enforce the rules of the type system, it must also infer

the contracts that these type annotations imply for the remaining modules.

Unfortunately, there are yet more problems. Consider this second pro-

gram, which applies an (int→ int) function to #f, a boolean.

Example 31(module h (int→ int)
(λ ([y : int])

(let ((g (λ ([x : int]) (+ x 10))))
(+ (g y) (g 10)))))

(h #f)

Since our evaluator ignores types, the boolean value flows into the typed

module without any objections, only to cause havoc there. Again, the typed

module appears to have gone wrong.

In this case, the solution is to interpret the types on the module exports

as contracts so that the evaluator monitors how the other modules use func-

tional exports from the typed module. For flat types such as int, the values

that flow into typed functions are checked immediately; for functional val-

ues, the contracts are distributed over the domain and range of the function

until flat values show up [Findler and Felleisen 2002]. Technically, the types

become contracts on external references to the module h, and are inter-

preted as runtime checks, or casts, which specify the party to be blamed if

they fail. Considering the main expression from example 31, with l as the

body of module h,

(h #f)Main

steps to

({(integer?→ integer?)⇐h lh} #f)Main

which steps to

5.3. THE FORMAL FRAMEWORK 45

{integer?⇐h (lh {integer?⇐Main #f})}

At this point it has become clear that #f is a bad value, and the evaluator can

abort the execution blaming the main expression for supplying bad values

to the typed module.

The rest of the chapter presents a formal model of this migration process.

The focus of our presentation concerns the derivation of contracts via type

checking; the use of these contracts to protect the typed module; and last

but not least a theorem that proves that typed modules can’t go wrong in

this setting.

5.3 The Formal Framework

This section formally describes the interlanguage migration framework.

5.3.1 Syntax

Our scripting language is a simplified version of the language of Meunier

et al. [2006], augmented with types and typed modules. It consists of the

lambda calculus enriched with numeric constants and a conditional, as well

as casts, modules, and contracts. The initial syntax used in the original pro-

gram is specified in figure 5.1. After the migration step, the syntax is more

complicated: see figure 5.2. The runtime system collapses some distinctions

and adds casts, which are specified in figure 5.3.

Modules Our language has a simple first-order module system, in which

each module consists of a name and a value. The module exports its value

via its name. Modules can also be typed. Typed modules have a top-level

type, and contain only typed values, vt in figure 5.2.

Contracts and Casts The contracts allow the base int contract, as well as

function contracts. Function contracts have the Findler–Felleisen semantics

[Findler and Felleisen 2002]. At run-time, contracts turn into checks, which

we express with casts. Syntactically, a cast {c ⇐e m} combines a contract

46 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

with an expression and a label for a module, which it blames for the contract

violation if the check fails.

Casts are not part of the source language, but the state space of the

transformation and runtime system.

Types The types of the typed fragment of the language are just the base

type int and function types. Importantly, every type is syntactically also a

contract.

Expressions The language contains three kinds of expressions: typed, un-

typed, and mixed. Typed expressions occur only in the typed module. Un-

typed expressions occur in all other modules. Mixed expressions can contain

typed and untyped subexpressions and appear only in the main expression

during reduction. The main expression is initially an untyped closed expres-

sion, making it also a mixed expression.

5.3.2 Semantics

For the dynamic semantics, we assume that every expression (including val-

ues) in the original program has been labeled with the name of its original

source module. The syntax of this annotation is given in figure 5.3. Con-

tracts and casts, which do not appear in the original program, do not receive

labels. The main expression is labeled with Main, assumed not to be the

name of any module. This labeling is necessary for appropriate blame as-

signment when a dynamic error occurs. It corresponds to an annotation

pass for source location tracking. For clarity, we omit these labels wherever

they are not needed.

The dynamic semantics is defined in figure 5.4 as a reduction semantics,

and again follows Meunier et al. [2006], with additions for types and typed

modules. Reduction takes place in the context of modules, which are not

altered during reduction. The module context is used only in the LOOKUP

rules. The relation → is the one-step (standard) reduction relation, with

5.3. THE FORMAL FRAMEWORK 47

→∗ as its reflexive, transitive closure, using the set of evaluation contexts

defined in figure 5.3.

Rules that do not refer explicitly to the context are implicitly wrapped in

E[−] on both sides, with the exception of the rules that reduce to (blame f),

which discard the evaluation context. Rules are read in order, from top to

bottom.

The reduction rules fall into the following categories:

• The rules that look up module references all refer explicitly to the mod-

ule context. The LOOKUP rule refers to untyped modules, and simply

substitutes the body of the module for the reference. The LOOKUP-

CONTRACT and LOOKUP-TYPE rules retrieve the appropriate expression

and wrap it in a contract. The contract wrapped around typed module

bodies is necessary so that typed expressions are never used in incor-

rect ways, even when the untyped modules refer to the typed module.

This check is not necessary when the typed module refers to itself, and

is thus omitted in the LOOKUP-TYPE-SELF rule [Findler and Felleisen

2002].

• The rules for the core are straightforward. These include SUBST and

TYPEDSUBST, which perform βv-reduction on untyped and typed ab-

stractions, respectively. IF0-TRUE and IF0-FALSE are also simple.

• APP-ERROR is the one runtime error that does not involve a contract

or a cast. If a number is in the application position of an application,

clearly the invariants of the language have been violated. We blame

the source of the application for this error.

The remaining rules handle contracts and casts.

• INT-INT passes numbers through int contracts unchanged.

48 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

• INT-LAM and LAM-INT represent contract failures and blame the ap-

propriate party, as labeled on the cast. vf in the INT-LAM rule cannot

be an integer, otherwise INT-INT would have applied.

• LAM-LAM blesses an arrow contract applied to an abstraction, turning

it into a blessed arrow contract. In contrast to INT-INT, we must keep

the contract around for later use. The resulting expression, while still

a cast, is also a syntactic value. The value must be an abstraction (or

blessed cast applied to an abstraction), all numbers match the LAM-INT

rule.

• The SPLIT rule breaks a blessed arrow contract into its positive and

negative halves, and places them around the argument and the entire

application. The creation of two new casts, with appropriate blame

assignment, is the key to proper contract checking for higher-order

functions [Findler and Felleisen 2002]. The blame for the negative

position is taken from the label of the application itself, and the blame

for the positive position is taken from the label of the cast.

5.3.3 Adding Type Declarations

The first step in interlanguage migration requires the programmer to change

one module from the untyped language to the typed one. In our system, this

involves adding types to every variable binding and to the module export as

a whole.

Once this module is annotated, the new program is referred to as P a,

where a is the name of the now-typed module.

Since the simply-typed λ-calculus has a straightforward type-soundness

theorem, we might expect a similar one to hold for migrated programs, pro-

vided the type annotations are self-consistent. Sadly, this is not the case.

For example, the typed module named a might refer to some other module,

which could provide an arbitrary value or raise a run-time error. The other

5.3. THE FORMAL FRAMEWORK 49

modules may contain outright errors, such as (3 4), as well as untypeable

expressions such as (λx.(if0 x 1 (λy.y))); we do not rule these out, since the

programmer is only adding types to one module. Furthermore, since we do

not typecheck the other modules, they may use the typed module in ways

that do not accord with its type. Because of these possibilities, the migration

process must protect the typed module from its untyped brethren.

5.3.4 Inferring Contracts from Types

In order to protect the typed module when it refers to untyped ones, we ap-

ply a transformation to the program that expresses the implicit agreements

between the typed and untyped modules as contracts. Our transformation

examines the references to other modules in the typed module and from

these uses guesses contracts that become obligations of those other mod-

ules. For example, in the following program, the context makes it obvious

that g must have type (int→ int):

(module f int (g 5))

The transformation would therefore add a cast using the contract (int→ int)

to the reference to g (no other casts make the module type at int).

The type system in figure 5.5 formalizes this intuition. Its rules define

the judgement

P,Γ ` et : t e′t

which states that given program P in type environment Γ, expression et

has type t and is transformed to expression e′t. The rules are similar to

those of the simply typed λ-calculus, propagating and combining the types

and transformed expressions from their constituents, except for the module

variable reference rules: T-MODVARSELF and T-MODVAR. The former checks

references to the typed module itself. The latter checks a reference to an

untyped module. This module can be given any type consistent with the

50 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

T-VAR

P,Γ ` x : Γ(x) x

T-MODVAR
(module f e) ∈ P

P,Γ ` f : t {t⇐f f}
T-MODVARSELF
(module f t e) ∈ P
P,Γ ` f : t f

T-INT

P,Γ ` n : int n

T-APP
P,Γ ` e1 : (t1 → t2) e′1 P,Γ ` e2 : t1 e′2

P,Γ ` (e1 e2) : t2 (e′1 e
′
2)

T-IF0
P,Γ ` e1 : t1 e′1 P,Γ ` e2 : t2 e′2 P,Γ ` e3 : t2 e′3

P,Γ ` (if0 e1 e2 e3) : t2 (if0 e′1 e
′
2 e
′
3)

T-ABS
P,Γ, x : t ` e : s e′

P,Γ ` (λx : t.e) : (t→ s) (λx : t.e′)

Figure 5.5: Transformation to add Casts

type of the surrounding typed expression, but that type is converted to a

contract and a cast is added to check that the contract is upheld.

Because of the non-determinism of the T-MODVAR rule, these rules do

not naturally map onto a syntax-directed type checker. They do define a

logic program, however, which potentially produces many solutions, each

satisfying the desired type, and including a matching set of inserted contracts

for checking the other modules in the program. For example, consider the

following program:

(module f int (g h))

There are many possible sets of contracts that could be generated by our

system. A simple one requires that h be an int and that g have the contract

(int → int). Of course, there are infinitely many possibilities. While a real

system for migration would use programmer input and static analysis to

choose one solution, our soundness theorem holds for all of them.

5.4. SOUNDNESS 51

5.3.5 Summary of the transformation

The transformation we have just described is MT , for migration transforma-

tion. MT (P) is the set of possible results of transforming P as follows:

1. The programmer chooses one module M = (module a e) named a

from P and adds types to this module, so that it is now a typed module

according to the grammar of figure 5.2, producing the new module

M ′ = (module a t e′).

2. Using the type system described in figure 5.5, transform the body of

M ′ into M ′′. Formally, if P, ∅ ` e′ : a e′′, then M ′′ = (module a t e′′).

Since step 2 in this process is nondeterministic, the set MT (P) may con-

tain many distinct elements. We prove in the next section that every element

Q of this set is sound with respect to the type system and blame assignment.

5.4 Soundness

Before we can prove that our migration transformation is sound, we must

first define what soundness means for a partially typed system. It cannot

mean absence of runtime errors, since not all modules are necessarily typed.

All we can say instead is that the typed modules do not go wrong.

5.4.1 Soundness for Mixed Programs

Soundness for interlanguage migration is a relation between the program

before and after migration. Intuitively, this relation states that the two

programs agree when they both produce values and that the typed mod-

ule never produces a type error at runtime. We say that a program P with

exactly one typed module named a, is partially typed at a, or simply partially

typed when the name of the typed module is not relevant.

Definition 5.4.1 (Soundness). P Da Q, where Q is partially typed at a iff:

52 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

PROGRAMS
M .M ′ e . e′

M e .M ′ e′

MODULES
(module f e) . (module f e)

(module f e) . (module f c e)

e . e′

(module f e) . (module f t e′)

EXPRESSIONS
x . x f . f n . n

e . e′

e . {c⇐f e′}
e1 . e

′
1 e2 . e

′
2

(e1 e2) . (e′1 e
′
2)

e . e′

(λx.e) . (λx.e′)

e . e′

(λx.e) . (λx : t.e′)

e1 . e
′
1 e2 . e

′
2 e3 . e

′
3

(if0 e1 e2 e3) . (if0 e′1 e
′
2 e
′
3)

CONTEXTS
e . e′ ⇒ E[e] . E ′[e′]

E . E ′

Figure 5.6: Similarity

1. If P →∗ v then there exists v′ where Q →∗ v′ with v . v′ or Q →∗

(blame g) with g 6= a.

2. If P →∗ (blame h) then there exists g where Q →∗ (blame g) with

g 6= a.

3. If P reduces forever, then Q reduces forever or there exists g where Q→∗

(blame g) with g 6= a.

This definition relies on the similarity relation v . v′, which states that v′ is

the same as v, with the possible addition of types, contracts, and casts. In

figure 5.6, this relation is defined formally and extended to modules and to

programs. For programs, P.Q states that P andQ are syntactically identical,

ignoring casts, contracts and types.

5.4. SOUNDNESS 53

We say that a system for typed migration is sound if the migrated program

is always in the D relation to the original program. For the MT transforma-

tion, this requires that every element of MT (P) is related to P .

This captures our intuition as to how typed migration should work: that

once we have migrated, we have proven the absence of errors in the typed

module. Further, if we get an answer, it is related to the original answer.

Since our reduction system tracks where errors occur, we are able to express

this statement formally.

5.4.2 Soundness of our system

Proving soundness for our system is a multi-step process. First, we establish

that the system resulting from the transformation agrees with the original

one, when errors are ignored. This is established through a simple simula-

tion relation between programs. Second, we prove that programs in MT (P)

never blame the typed module.

For the first of these steps, we again make use of the similarity prop-

erty mentioned above and defined in figure 5.6. This relation between an

untyped program (respectively, module or expression) and a partially typed

one, states syntactically that the two programs P and Q are similar, written

P . Q, if they are identical ignoring contracts, types and casts.

Similarity satisfies three lemmas:

Lemma 5.4.2. If P . Q and P →∗ w and Q→∗ w′ then w . w′.

Lemma 5.4.3. If P .Q and P reduces forever then Q reduces forever or Q→∗

(blame f) for some f .

Lemma 5.4.4. If P .Q and P →∗ (blame f) for some f thenQ→∗ (blame g)

for some g.

Proof Sketch These three lemmas all follow from similar simulation argu-

ments. If e1 . e2, then there are three possibilities:

54 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

1. e2 = E[{c⇐f v}] Then either e2 → (blame f) or e2 → e′2 where e1 .e′2.

This can be seen by simple inspection of the reduction rules for casts.

2. e2 = E[({(c1 99K c2)⇐f l} w)]. Then e2 → e′2 and e1 . e′2

3. e1 = E[r1] and e2 = E ′[r2] where r1 . r2 and E . E ′. Then r1 → r′1

and r2 → r′2 where r′1 . r
′
2 or r1 → (blame f) and r2 → (blame g).

That the hypothesis holds is true from the definition of similarity and

the grammar for E[]. The fact that the redexes reduce to similar terms

or to errors can be seen from inspection of the reduction rules where

the redex is not a cast or the application of a (blessed arrow) cast to a

value.

Additionally, by the compositionality of similarity, placing similar val-

ues into similar contexts produces similar terms. Therefore, E[r′1] .

E ′[r′2].

Given this, similarity is consistently maintained by reduction, which is all we

need for the three lemmas.

These lemmas are insufficient to establish soundness, since they make no

claim about who is blamed for an error. We therefore introduce the notion

of valid expressions to prove that the typed module is never blamed.

Validity Validity is a property of mixed terms, those that combine code

from both typed and untyped modules (and the original main expression).

Before defining validity, we first present a new type system for mixed terms

which ensures that mixed terms use their typed subcomponents appropri-

ately. This type system has the judgement

P,Γ `V e : t

which states that mixed expression e has type t in program P and environ-

ment Γ. The rules of the type system are given in figure 5.7. Note that

untyped terms are not inspected by this judgement—instead, their casts are

simply trusted.

5.4. SOUNDNESS 55

VT-VAR

P,Γ `V x : Γ(x)

VT-CAST
e closed

P,Γ `V {t⇐f e} : t

VT-BLESSEDCAST

P,Γ `V {(t1 99K t2)⇐f v} : (t1 → t2)
VT-INT

P,Γ `V n : int

VT-APP
P,Γ `V e1 : (t1 → t2) P,Γ `V e2 : t1

P,Γ `V (e1 e2) : t2

VT-IF0
P,Γ `V e1 : t1 P,Γ `V e2 : t2 P,Γ `V e3 : t2

P,Γ `V (if0 e1 e2 e3) : t2

VT-ABS
P,Γ, x : t `V e : s

P,Γ `V (λx : t.e) : (t→ s)

VT-TYPEMOD
(module a t e) ∈ P

P,Γ `V aa : t

Figure 5.7: Consistency Type System

There a several rules to note in the type system. First, the rule VT-CAST

does not ensure that its argument is well-typed. Therefore, it applies even

where the argument is an untyped term, and the cast is protecting the con-

text of the cast from its argument. Second, the VT-BLESSEDCAST rule is

necessary so that blessed casts can appear during reduction, even though

they are not part of the syntax of types. Third, we allow the typed mod-

ule to be used without a cast in rule VT-TYPEMOD. Such module references

are still protected from the untyped world, because they are within a typed

expression.

We now define two important properties of mixed terms.

Definition 5.4.5. A mixed term e is consistent at t in P iff P, ∅ `V e : t, or

simply consistent if there is some t such that P, ∅ `V e : t.

Terms may be consistent even if they do not originate in a typed module,

or even if some of their subterms are not consistent. For example, P, ∅ `V

56 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

{int⇐f (λx.(3 x))} : int for any f (including a), even though the expression

is patently erroneous.

Based on this definition, only some kinds of terms can be consistent:

typed abstractions, numbers, casts and applications of two consistent terms.

Definition 5.4.6. A mixed term ef is originally typed in P a iff f = a.

This definition gives us a handle on those terms that came from the original

typed module. These are the terms that must not trigger errors during the

execution of the program. No guarantees are made about the subterms of

originally typed terms, however, in the case where they have a different

label.

With these definitions, we can define validity, the property that we use

for our central lemma. This property ensures both that numbers are not in

the operator position of a typed application, and that typed terms satisfy any

immediately surrounding casts. Maintenance of these two properties is suf-

ficient to ensure that a is never blamed. The third portion of the definition

states that there is always a syntactic barrier between consistent and incon-

sistent portions of the expression, with the exception of numbers. This is the

mechanism that is central to maintaining the other two during reduction.

Definition 5.4.7. A closed mixed term em is valid in program P where P has

typed module a iff all of the following hold:

1. every originally typed subexpression da ∈ em is either consistent or of the

form ((λx.e) e′)a

2. for every subexpression of the form {t⇐a e}, e is consistent at t.

3. every consistent term d ∈ em is either a number, a cast, or the immediate

subterm of a consistent term or d = em.

Note that since the initial main expression e in a program P is closed, it

is also valid, since it does not contain any originally typed subexpression or

casts.

5.4. SOUNDNESS 57

Lemma 5.4.8. If a mixed term em is valid in program Q ∈ MT (P) (where Q

has typed module a) for some P , and em → e′m then e′m is valid in program Q.

Proof Sketch This proof proceeds by cases on the reduction rule that takes

em to e′m. The important cases are SPLIT, SUBST, TYPEDSUBST and LOOKUP-

TYPED. We show two of these here.

Consider case SPLIT. Then r = ({(c1 99K c2)⇐g v} w)f and r′ = {c2 ⇐g

(v {c1 ⇐f w})f}. We consider the three components of validity in turn.

1. Originally-typed subexpressions of r′ occur only in v and w, or if the

resulting application has label a (that is, that f = a).

If v or w contain originally typed subexpression, these subexpressions

must have been originally typed in r, and so by hypothesis they are

still consistent.

Since v is the argument to a blessed function cast, it must be an ab-

straction, and therefore the application satisfies condition 1 (if f = a).

If the redex is part of a larger originally typed expression, then r must

have been consistent, and must have had type c2. But Q, ∅ `V r′ : c2, so

this property is maintained.

2. Consider first the inner cast. If w is originally typed, then it must

have been consistent (since the only other possibility is not a value).

Therefore, the whole application must have been consistent, and thus

Q, ∅ `V w : c1, which is precisely the desired type.

If g = a, then we must also show that Q, ∅ `V (v {c1 ⇐f w})f : c2. But

then by assumption, Q, ∅ `V v : (c1 → c2) and {c1 ⇐f w} trivially has

type c1.

If r is the argument to a cast, we merely must show that the type is

preserved by reduction. But the original type of r must have been c2,

which is also the type of r′.

58 CHAPTER 5. INTEGRATING TYPED AND UNTYPED CODE

3. Both casts trivially satisfy this case. Thus we have to consider v, w, and

the application. Both the application and w are immediate arguments

to a cast. If v is consistent, then it must be been a typed abstraction,

since it is the argument of a blessed arrow contract, and untyped ab-

stractions are not consistent. If it is a type-annotated abstraction, it

must have label a, as required by the grammar. Thus, by hypothesis,

it must satisfy its cast, and have type (c1 → c2). Therefore, since the

operand is a cast to c2, P,`V (v {c1 ⇐f w}) : c2.

This concludes the case.

Consider case SUBST. Then r = ((λx.e) v) and r′ = [v/x]e. We again

consider the three components of validity. First, note that references to x in

e cannot be either originally typed or part of a consistent expression (without

an intervening cast), since x is bound by an untyped abstraction.

1. First, any originally typed and consistent expressions in v remain so

in r′. This leaves the originally typed expressions in e. Choose one

of these, da. By hypothesis, either P,Γ `V da : t or da = ((λy.e1) e2).

In the former case, x is not in the free variables of da, since it can-

not occur outside of a cast, and VT-CAST requires that the cast ar-

gument be closed. Thus, [v/x]da = da. In the latter case, [v/x]da =

((λy.[v/x]e1) [v/x]e2) which is of the appropriate form.

2. By a similar argument, if e has a subexpression of the form {t ⇐a e′},

then e′ is consistent and [v/x]e′ = e′.

3. First, note that neither v nor e is consistent unless they are numbers

or casts, since they are not immediate subterms of consistent terms.

Thus consistent subterms of v and e that are not numbers or casts

must be proper subterms. The consistent subterms of v are preserved

in r′. Further, since no reference to x in the body of e′ is consistent, the

consistent subterms of of e are maintained.

5.4. SOUNDNESS 59

This concludes the case. The others are proved in a similar way.

Given this lemma, we can now show that blame is never assigned to the

typed module.

Lemma 5.4.9 (MT never blames the typed module). If P a ∈ MT (P), and

P a →∗ (blame g) then g 6= a.

Proof Sketch The only way we could ever reduce to (blame a) is if (n v)a is

the redex or if a cast fails and blames a. However, since the main expression

is originally untyped, and thus valid, and remains valid by lemma 5.4.8, this

is impossible.

We can now conclude the main theorem of this chapter.

Theorem 5.4.10 (Soundness of MT). If P a ∈MT (P) then P Da P a.

Proof Sketch First, note that if P,Γ ` e : t e′ then e . e′. Therefore,

if P a ∈ MT (P), then P . P a. From this, if P →∗ v and P a →∗ v′ then

v . v′. Similarly, if P reduces forever, then P a 6→∗ v for any v. Therefore,

lemma 5.4.9, stating that if an error occurs, the blame is assigned to one of

the untyped modules, suffices for the proof.

CHAPTER 6

Occurrence Typing

Occurrence typing, originally developed by Komondoor et al. [2005], is the

idea of assigning differing types to different occurrences of variables based

on the control flow of the program. In Typed Scheme, we use applications of

type predicates such number? to determine the types of variables, as shown

in chapter 2. This chapter and the next formalize the ideas of occurrence typ-

ing, as well as extensions to paths (section 7.1) and complex logical proposi-

tions (section 7.2), in the calculus λTS . The statement of type soundness and

the necessary lemmas, along with proof sketches, are given in section 7.3.

We begin our presentation of λTS with the base system. The fundamental

judgement of the type system is:

Γ ` e : τ ; φ ; o

It states that in type environment Γ, the expression e has type τ, following

standard practice. Additionally, the judgement describes the filters φ of e,

i.e., the propositions known to be true depending on whether e evaluates to

true or false. Finally, the object o describes the portion of the environment

for which e in an accessor.

61

62 CHAPTER 6. OCCURRENCE TYPING

d, e, . . . ::= x | (e e) | (if e e e) | v Expressions
v ::= c | #t | #f | n | λx : τ.e Values
c ::= add1 | zero? | number?

| boolean? | procedure? | not Primitive Operations
E ::= [] | (E e) | (v E) | (if E e e) Evaluation Contexts

σ, τ ::= > | Number | #t | #f | τ φ−→
O
τ | (⋃ −→τ) Types

ψ ::= τx | τx | ⊥ Filters
ψ ::= τ | τ | ⊥⊥ Latent Filters
φ ::=

−→
ψ |
−→
ψ Filter Sets

φ ::=
−→
ψ |
−→
ψ Latent Filter Sets

o ::= x | ∅ Objects
O ::= • | ∅ Latent Objects

Figure 6.1: Syntax of Terms and Types

6.1 Syntax and Operational Semantics

The syntax and semantics of λTS are standard, except for the types; see fig-

ure 6.1 and figure 6.2. Terms are either boolean constants, numbers, func-

tion constants, variables, λ-abstractions or if expressions. All of these have

the usual operational semantics, which we therefore omit. One distinctive

feature of the operational semantics is that values other than #f are treated

as true.

The distinctive features of λTS are found in the types. A type is either the

top type >, the number type Number, a type representing either of the two

constant booleans, a function type, or a (true) union type.

There are two distinctive aspects of these types. First, separating the

booleans into particular types for true (#t) and false (#f) is necessary since

many common Scheme idioms treat #f specially. The more typical boolean

type is (
⋃

#t #f), which is abbreviated Boolean. Second, function types

come with two annotations: a latent filter set φ and a latent object O.

6.1. SYNTAX AND OPERATIONAL SEMANTICS 63

E-DELTA
δ(c, v) = v′

(c v) ↪→ v′
E-BETA

(λx : τ.eb ea) ↪→ eb[x/ea]

E-IFFALSE

(if #f e2 e3) ↪→ e3

E-IFTRUE
v 6= #f

(if v e2 e3) ↪→ e2

L ↪→ R

E[L]→ E[R]

δ(add1, n) = n + 1

δ(not,#f) = #t
δ(not, v) = #f otherwise

δ(zero?, 0) = #t
δ(zero?, n) = #f otherwise

δ(number?, n) = #t
δ(number?, v) = #f otherwise

δ(boolean?,#t) = #t
δ(boolean?,#f) = #t
δ(boolean?, v) = #f otherwise

δ(procedure?, λx : τ.e) = #t
δ(procedure?, v) = #f otherwise

Figure 6.2: Operational Semantics

6.1.1 Filters, Latent Filters, and Filter Sets

Filters ψ are propositions about types of variables. The filters proved by a

particular expression form part of the type judgement for that expression. A

filter of the form τx states that x has type τ. The filter τx states that x does

not have type τ. The filter ⊥ represents impossibility. Latent filters ψ take

on analogous forms, but without attached variables, and can be thought of

as uninstantiated propositions.

A filter set φ is a pair of sequences of filters, which is written as
−→
ψ+|
−→
ψ−.

The first component,
−→
ψ+, collects the propositions that are true if the expres-

sion evaluates to a true value. The second,
−→
ψ−, collects the propositions that

64 CHAPTER 6. OCCURRENCE TYPING

T-VAR

Γ ` x : Γ(x) ; #fx|#fx ; x
T-CONST

Γ ` c : δτ (c) ; ε|⊥ ; ∅
T-TRUE

Γ ` #t : #t ; ε|⊥ ; ∅
T-FALSE

Γ ` #f : #f ; ⊥|ε ; ∅
T-NUM

Γ ` n : Number ; ε|⊥ ; ∅

T-ABS
Γ, x : σ ` e : τ ; φ ; o
φ = abstractfilter(x, φ)

O =

{
• if o = x
∅ otherwise

Γ ` λx : σ.e : σ
φ−→
O
τ ; ε|⊥ ; ∅

T-APP
Γ ` eop : τop ; φop ; oop

Γ ` ea : τa ; φa ; oa

` τa <: τf ` τop <: τf
φf−→
O
τr

φr = applyfilter(φf , τa, oa)

or =

{
x if O = • and oa = x
∅ otherwise

Γ ` (eop ea) : τr ; φr ; or

T-IF

Γ ` e1 : τ1 ;
−→
ψ+|
−→
ψ− ; o1

Γ +
−→
ψ+ ` e2 : τ2 ; φ2 ; o2

Γ +
−→
ψ− ` e3 : τ3 ; φ3 ; o3

` τ2 <: τ ` τ3 <: τ

φ = combinefilter(
−→
ψ+|
−→
ψ−, φ2, φ3)

Γ ` (if e1 e2 e3) : τ ; φ ; ∅

Figure 6.3: Core Type Rules

S-REFL

` τ <: τ

S-TOP

` τ <: >

S-FUN
` σa <: τa ` τr <: σr

φ′ ⊆ φ O = O′ or O′ = ∅

` τa
φ−→
O
τr <: σa

φ′−→
O′
σr

S-UNIONSUPER
∃i. ` τ <: σi

` τ <: (
⋃ −→iσ)

S-UNIONSUB−−−−−−→
` τi <: σ

` (
⋃ −→τ) <: σ

Figure 6.4: Subtyping

are true when the expression evaluates to false. Latent filter sets φ are the

analogous, a pair of sequences of latent filters. Empty sequences are written

ε. When ⊥ (or the latent form ⊥⊥) is an element of a sequence of filters, we

omit the other elements, since they are irrelevant.

Consider the expression (number? x), a prototypical example of the use

6.1. SYNTAX AND OPERATIONAL SEMANTICS 65

abstractfilter(x,
−→
ψ+|
−→
ψ−) =

−−−−−−−→
abo(x, ψ+)|

−−−−−−−→
abo(x, ψ−)

abo(x,⊥) = ⊥⊥
abo(x, τx) = τ
abo(x, τx) = τ
abo(x, τy) = ε where x 6= y
abo(x, τy) = ε where x 6= y

applyfilter(
−→
ψ+|
−→
ψ−, σ, o) =

−−−−−−−−−→
apo(ψ+, σ, o)|

−−−−−−−−−→
apo(ψ−, σ, o)

apo(⊥⊥, σ, o) = ⊥
apo(τ, σ, o) = ⊥ where ` σ <: τ
apo(τ, σ, o) = ⊥ where no-overlap(σ, τ)
apo(ψ, σ, ∅) = ε
apo(τ, σ, x) = τx
apo(τ, σ, x) = τx

Figure 6.5: Filter Metafunctions

Γ + τx ,
−→
ψ = (Γ, x : update(Γ(x), τ)) +

−→
ψ

Γ + τx ,
−→
ψ = (Γ, x : update(Γ(x), τ)) +

−→
ψ

Γ + ⊥,
−→
ψ = Γ′ where ∀x ∈ dom(Γ).Γ′(x) = ⊥

Γ + ε = Γ

update(τ, υ) = restrict(τ, υ)
update(τ, υ) = remove(τ, υ)

Figure 6.6: Environment Operations

of predicates. It has the filter set Numberx |Numberx, which states that if

it evaluates to #t, then x is a number, otherwise x is not a number. The

function number? has the latent filter Number |Number which states that

when applied to a value, if the result is true the value is a number, and if the

result is false, the value is not a number.

6.1.2 Objects and Latent Objects

The second piece of additional information computed by the type system

is the object. It indicates for which part of the dynamic environment the

expression is an accessor. In our base calculus, the only such expressions we

66 CHAPTER 6. OCCURRENCE TYPING

consider are variable references, which are given the variable itself as the

object. Thus, the expression x has object x. The object ∅ indicates that no

information is available about what is accessed.1

Abstracting from an object results in a latent object, which represents the

piece of the environment accessed when a function is applied. The latent

object • indicates that whatever the object of the argument to the function

is, it is also the object of the result. The function λx : τ.x has the latent

object •. The latent object ∅ indicates the absence of information concerning

the result. The constant function λx : τ.1 has latent object ∅, as does the

function number?, whose full type is

>Number|Number−−−−−−−−−−−−−−→
∅

Boolean

6.2 Typing Rules

The typing rules for the base system of λTS are given in figure 6.3 (the

combfilter metafunction is defined in section 6.4). The simplest rule is T-

NUM, which gives all numbers the type Number. Since numbers are treated

as true by the evaluation rules for if, numbers have the filter set ε|⊥, indicat-

ing that no new information is acquired when the number evaluates to a true

value, and that if it evaluates to a false value, a contradiction is obtained.

The rule for function constants, T-CONST, is similar, but their types are given

by the δτ meta-function, whose definition is given in figure 6.7. The boolean

constants are given singleton types in T-TRUE and T-FALSE, along with filter

sets that reflect that #t is always true, and #f is always false.

The rule for typing variables involves additional aspects of the system.

The type of a variable is looked up in the type environment. The object for a

variable is itself. Finally, the filter for a variable indicates that if x evaluates

to a true value, then x cannot have type #f. Similarly, if x evaluates to #f,

its type should also be #f.
1Objects are made richer in chapter 7.

6.2. TYPING RULES 67

Typechecking an abstraction is straightforward. The body is typechecked

in an appropriately-extended environment, producing a type, filter set, and

object. The type is the result type of the function, the filter set is abstracted

into a latent filter set with the abstractfilter metafunction, defined in fig-

ure 6.5, and the object is abstracted if it is the formal parameter of the

abstraction. The filter set and object of the overall expression is as for any

other true value.

In the application rule, T-APP, all of the elements of the type system

are combined. In addition to the standard checking of the types of the for-

mal and actual argument, information is propagated from the operator’s

latent filter set and object and combined with the object of the operand. The

applyfilter metafunction is (roughly) the inverse operation of abstractfilter,

and explained further in section 6.4. Similarly, the latent object of the oper-

ator is combined with the object of the operand.

Finally, in the T-IF rule, the filter set of the test is divided into its two

components, and the first is used for the then branch, the second for the

else branch. The operation Γ +
−→
ψ , which combines a type environment with

filters to produce a new, refined type environment, is defined in figure 6.6.

This makes use of the metafunctions restrict(τ, σ) and remove(τ, σ), which

intuitively compute τ ∩ σ and τ − σ, respectively. The filter set for the entire

expression is computed from the filter sets of the three components by the

combfilter metafunction, which is the subject of section 6.4.

Subtyping The subtyping relation on types is given in figure 6.4. Most

of the rules are straightforward. All types are subtypes of >, and function

subtyping proceeds as usual, although strengthening of the filter sets is per-

mitted. The rules for unions are simple, and demonstrate that the union of

no types, (
⋃

), is below all other types.

68 CHAPTER 6. OCCURRENCE TYPING

6.3 A Small Example

Returning to example 1, we consider how the type system proves it type

safe. The example is (if (number? x) (add1 x) 0), and the challenge is that

the second occurrence of x must be given type Number. We assume that

the type environment is Γ = x : >. First, we consider the typing of the

application (number? x). The type of x is >, and its object is just x. Second,

the latent filter set of the operand number? is Number |Number, and the

filter set of the application is thus

applyfilter(Number |Number,>, x) = Numberx |Numberx

To typecheck the whole if expression, we take the relevant filter set

and add the first part to the type environment for the then branch, giving

x : > + Numberx = x : Number. This operation makes use of the update

and restrict metafunctions, defined in figures 6.6 and 6.8. This is sufficient to

make (add1 x) typecheck correctly, and of course the else expression type-

checks under any environment. Therefore, the whole expression has type

Number, as desired, with filter set ε|ε and object ∅.

6.4 Manipulating Filters

The metafunctions applyfilter, abstractfilter, and combfilter play a central

role in the functioning of the type system, and their definitions determine its

expressiveness. The definitions of these metafunctions (and the others de-

fined in this chapter) are given in a ordered fashion, i.e., each clause in their

definitions (for example, in figure 6.5) is considered only if the preceding

clauses do not apply.

• abstractfilter, the simplest, maps a variable x and a filter set to a latent

filter set. In the case of a filter referring to x, it removes the variable,

producing a latent filter. When it encounters a filter that refers to a

variable distinct from x, that filter is discarded.

6.4. MANIPULATING FILTERS 69

• applyfilter is an inverse to abstractfilter. Given a latent filter set (from

a function operator) and a type and an object, it combines them to

produce a filter set. In most cases, this simply replaces the variable

removed by abstractfilter with the new variable. In cases where the

combination of the type and latent filter are impossible, ⊥ is pro-

duced. For example, the expression (number? 3) has filter set ε|⊥

because applyfilter(Number |Number,Number, ∅) produces ⊥ (since

` Number <: Number). Note that the no-overlap(τ, σ) metafunction

determines if there are any values that have both type τ and σ.

• combfilter allows for reasoning about the behavior of complex if ex-

pressions. The simplest definition for it is

combinefilter(φ1, φ2, φ3) = ε|ε

With this definition, nothing is known about the result of evaluating

a conditional expression. However, more sophisticated definitions can

significantly increase the expressiveness of the system. For example, (if

#f e2 e3) is equivalent to e3. The following rules capture this intuition:

combinefilter(ε|⊥, φ2, φ3) = φ2

combinefilter(⊥|ε, φ2, φ3) = φ3

Since the compilation of many conditional and boolean operations in

Scheme generate instances of if, combfilter benefits from additional

extensions. For example, (and e1 e2) expands to (if e1 e2 #f). As seen

previously, if an and expression produces a true value, then the filter

sets of both subexpressions should be combined, but if #f is produced,

then nothing is learned. This is captured as follows:

combinefilter(
−→
ψ1+ |
−→
ψ1− ,
−→
ψ2+|
−→
ψ2− ,⊥|ε) =

−→
ψ1+ ,
−→
ψ2+|ε

As seen in example 13, uses of or can be combined into filters that

describe union types. Here is an appropriate rule:

70 CHAPTER 6. OCCURRENCE TYPING

δτ (number?) = >Number|Number−−−−−−−−−−−−−−→
∅

Boolean

δτ (procedure?) = >
⊥
ε|ε−→
∅
>|⊥

ε|ε−→
∅
>

−−−−−−−−−→
∅

Boolean

δτ (boolean?) = > Boolean|Boolean−−−−−−−−−−−−−−→
∅

Boolean

δτ (add1) = Number
ε|ε−→
∅

Number

δτ (not) = > ε|ε−→
∅

Boolean

δτ (zero?) = Number
ε|ε−→
∅

Boolean

Figure 6.7: Constant Typing

restrict(τ, σ) = ⊥ if no-overlap(τ, σ)

restrict((
⋃ −→τ), σ) = (

⋃ −−−−−−−−→
restrict(τ, σ))

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ

remove((
⋃ −→τ), σ) = (

⋃ −−−−−−−−−→
remove(τ, σ))

remove(τ, σ) = τ otherwise

no-overlap(Number,Boolean) = true

no-overlap(Number, τ φ−→
O
σ) = true

no-overlap(Boolean, τ φ−→
O
σ) = true

no-overlap((
⋃ −→τ), σ) =

∧−−−−−−−−−−−→
no-overlap(τ, σ)

no-overlap(τ, σ) = true if no-overlap(σ, τ)
no-overlap(τ, σ) = false otherwise

Figure 6.8: Type Operations

combinefilter(τx |τx , ε|⊥, σx|σx) = (
⋃
τ σ)x|(

⋃
τ σ)x

Additional rules are possible to handle or in greater generality, as well

as other patterns of if usage.

CHAPTER 7

Extensions to Occurrence Typing

Having described the basics of occurrence typing and the λTS calculus, in this

chapter we extend the calculus with paths into compound data structures as

well as complex logical propositions.

7.1 Adding Paths

The base λTS calculus deals with predicates applied to variables. To accom-

modate compound data structures, however, the base system is insufficient.

For example, (number? (car x)) has only a trivial filter set in our base system,

because the object for (car x) cannot be a variable, so it must be ∅. In this

section, we extend the system to overcome this limitation.

The key concept that allows us to typecheck this is the path.1 A path is

simply a sequence of data structure selectors. For example, the expression

(cdr (cdr (car x))) follows the path cdr, cdr, car from x.

7.1.1 Extending the Language

To model paths and data structure access in λTS , we extend the language

in several ways. Figures 7.1 and figure 7.2 specifies the extended grammar

and operation semantics. The extensions to the expression grammar are
1The term is due to Cartwright et al. [Cartwright, Hood, and Matthews 1981] in dis-

tantly related work.

71

72 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

e ::= . . . | (cons e e) Expressions
v ::= . . . | (cons v v) Values
c ::= . . . | cons? | car | cdr Primitive Operations
E ::= . . . | (cons E e) | (cons v E) Evaluation Contexts

σ, τ ::= . . . | 〈τ, τ〉 Types
ψ ::= τπ(x) | τπ(x) | ⊥ Filters
ψ ::= τπ | τπ | ⊥⊥ Latent Filters
o ::= π(x) | ∅ Objects
O ::= π | ∅ Latent Objects
π ::= −→pe Paths
pe ::= car | cdr Path Elements

Figure 7.1: Grammar Extensions for Paths

δ(cons?, (cons v1 v2)) = #t
δ(cons?, v) = #f otherwise

δ(car, (cons v1 v2)) = v1

δ(cdr, (cons v1 v2)) = v2

Figure 7.2: Operational Semantics for Pairs

minor: a (cons e e) form is added, and a pair of values is itself a value. The

accessors are car and cdr, and there is a predicate, cons?, for pairs. Similarly,

a pair type is added, written 〈−,−〉. The operational semantics merely adds

additional evaluation contexts and δ rules.

The more significant changes concern filters and objects. A filter with a

path τπ(x) means that the portion of x selected by path π has type τ. Similarly,

a latent filter includes a path, so that the function

(λ ([x : (Pair Any Any)]) (number? (car x)))

has the latent filter set Numbercar |Numbercar.

Objects also include paths, which describe which portion of the environ-

ment is accessed. Latent objects are merely paths, with the singleton latent

object • now representing the empty path.

7.1. ADDING PATHS 73

T-ABS
Γ, x : σ ` e : τ ; φ ; o
φ = abstractfilter(x, φ)

O =

{
π if o = π(x)
∅ otherwise

Γ ` λx : σ.e : σ
φ−→
O
τ ; ε|⊥ ; ∅

T-APP
Γ ` eop : τop ; φop ; oop

Γ ` ea : τa ; φa ; oa

` τa <: τf ` τop <: τf
φf−→
O
τr

φr = applyfilter(φf , τa, oa)

or =

{
π′(π(x)) if O = π′ and oa = π(x)
∅ otherwise

Γ ` (eop ea) : τr ; φr ; or

S-PAIR
` τ1 <: τ2 ` σ1 <: σ2

` 〈τ1, σ1〉 <: 〈τ2, σ2〉

Figure 7.3: Modified Type Rules for Paths

7.1.2 Extending the Type Rules

Adding paths to the system requires a change to all those parts of the type

system that manipulate filters and objects. In particular, the T-ABS and T-APP

rules change to compute objects with paths. For revised rules, see figure 7.3.

We also need new rules for typechecking the use of cons, car and cdr, which

are presented in figure 7.4, along with the subtyping rule for pair types. 2

The rule for cons is straightforward—it produces a pair type, and, like

all other non-#f values, pairs are always true. T-CAR and T-CDR are similar

to T-APP. Note that the expression (car x) has the filter set #fcar(x)|#fcar(x),

since if it evaluates to #f, the car field of x must have type #f.

Metafunctions In addition to the new typing rules, several of the meta-

functions must also be revised:

2With a polymorphic type system, these could be simply treated as function applications
by the type system.

74 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

T-CONS
Γ ` e1 : τ1 ; φ1 ; o1

Γ ` e2 : τ2 ; φ2 ; o2

Γ ` (cons e1 e2) : 〈τ1, τ2〉 ; ε|⊥ ; ∅

T-CAR
Γ ` e : 〈τ1, τ2〉 ; φ ; o

φr = applyfilter(#fcar|#fcar, 〈τ1, τ2〉, o)

or =

{
car(π(x)) if o = π(x)
∅ otherwise

Γ ` (car e) : τ1 ; φr ; or

T-CDR
Γ ` e : 〈τ1, τ2〉 ; φ ; o

φr = applyfilter(#fcdr|#fcdr, 〈τ1, τ2〉, o)

or =

{
cdr(π(x)) if o = π(x)
∅ otherwise

Γ ` (cdr e) : τ2 ; φr ; or

Figure 7.4: New Type Rules for Pairs

• Paths in filters and latent filters are propagated in abstractfilter and

the environment update operation (Γ +
−→
ψ).

• update follows the path to update the relevant type.

• applyfilter composes the path of the object and of the filter.

The new definitions are in figure 7.5.

7.1.3 An Example

We can now return to example 18 from section 2 and see how the extended

type system typechecks it correctly:

(if (number? (car p))
(add1 (car p))
7)

We begin with the type environment Γ = p : 〈>,>〉. Considering the test

expression first, the expression p has object p. Thus (car p) has the object

7.2. USING LOGIC 75

abstractfilter(x,
−→
ψ+|
−→
ψ−) =

−−−−−−−→
abo(x, ψ+)|

−−−−−−−→
abo(x, ψ−)

abo(x,⊥) = ⊥⊥
abo(x, τπ(x)) = τπ()

abo(x, τπ(x)) = τπ()

abo(x, τπ(y)) = ε where x 6= y
abo(x, τπ(y)) = ε where x 6= y

applyfilter(
−→
ψ+|
−→
ψ−, σ, o) =

−−−−−−−−−→
apo(ψ+, σ, o)|

−−−−−−−−−→
apo(ψ−, σ, o)

apo(⊥⊥, σ, o) = ⊥
apo(τε, σ, o) = ⊥ where ` σ <: τ
apo(τε, σ, o) = ⊥ where no-overlap(σ, τ)
apo(ψ, σ, ∅) = ε
apo(τπ′ , σ, π(x)) = τπ′(π(x))

apo(τπ′ , σ, π(x)) = τπ′(π(x))

Γ + τπ(x),
−→
ψ = (Γ, x : update(Γ(x), τπ)) +

−→
ψ

Γ + τπ(x),
−→
ψ = (Γ, x : update(Γ(x), τπ)) +

−→
ψ

Γ + ⊥,
−→
ψ = Γ′ where ∀x ∈ dom(Γ).Γ′(x) = ⊥

Γ + ε = Γ

update(〈τ, σ〉, υπ::car) = 〈update(τ, υπ), σ〉
update(〈τ, σ〉, υπ::car) = 〈update(τ, υπ), σ〉
update(〈τ, σ〉, υπ::cdr) = 〈τ,update(σ, υπ)〉
update(〈τ, σ〉, υπ::cdr) = 〈τ,update(σ, υπ)〉
update(τ, υε) = restrict(τ, υ)
update(τ, υε) = remove(τ, υ)

Figure 7.5: New Metafunctions for Paths

car(p) and type >. When combined with the latent filter set of number?, this

results in the filter set Numbercar(p) |Numbercar(p) for the test expression.

The type environment for the then branch is therefore Γ + Numbercar(p),

which is p : update(〈>,>〉,Numbercar). This gives us the desired environ-

ment p : 〈Number,>〉 to bless the then branch.

7.2 Using Logic

The second addition enables the type system to reason logically about pred-

icates. Let us return to example 21. At the point where the second (number?

76 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

ψ ::= . . . |
−→
ψ ⊃ ψ Filters

ψ ::= . . . |
−→
ψ ⊃ ψ Latent Filters

Figure 7.6: Grammar Extension for Logical Reasoning

x) test is performed, the type system must prove that if this expression eval-

uates to true, y cannot be a string. We represent this knowledge with a new

kind of filter, Numberx ⊃ Stringy. This filter should be read as an implica-

tion, that if x is a number, y is not a string. The extension to the grammar of

filters and latent filters is shown in figure 7.6.

Such filters are not immediately applicable to modify the type environ-

ment, so they must be kept around until the implication can be discharged.

To accomplish this, we extend the type judgement with a proposition envi-

ronment ∆, which is a set of filters (ψ). The new judgement has the form

∆,Γ ` e : τ ; φ ; o

For almost all of the typing rules, this new environment is passed through

unchanged. The only exception is the T-IF rule, whose redefinition is pro-

vided in figure 7.7. There are two important changes. First, the two halves

of the filter set of the test,
−→
ψ+ and

−→
ψ−, are added to the proposition en-

vironment for the then and else branches, respectively. Second, these new

extended environments are used to derive new propositions,
−→
ψ′+ and

−→
ψ′−,

according to the ∆ ` ψ relation, defined in figure 7.8. These new sets of

propositions are also used in the typechecking of the then and else branches,

respectively.

Our proof system for deriving new propositions is quite simple. The

first rule is environment lookup, and the second is just modus ponens. This

straightforward system, however, is sufficient for handling all the Scheme

idioms described in this thesis. Of course, extending both the grammar of

filter propositions and the set of proof rules would add even greater expres-

sivity, which we leave to future work in the event that we discover idioms

7.2. USING LOGIC 77

T-IF

∆,Γ ` e1 : τ1 ;
−→
ψ+|
−→
ψ− ; o1

∆ ∪
−→
ψ+ `

−→
ψ′+ ∆ ∪

−→
ψ− `

−→
ψ′−

∆ ∪
−→
ψ+,Γ +

−→
ψ′+ ` e2 : τ2 ; φ2 ; o2

∆ ∪
−→
ψ−,Γ +

−→
ψ′− ` e3 : τ3 ; φ3 ; o3

` τ2 <: τ ` τ3 <: τ

φ = combinefilter(
−→
ψ+|
−→
ψ−, φ2, φ3)

∆,Γ ` (if e1 e2 e3) : τ ; φ ; ∅

Figure 7.7: If Rule with Logical Environment

L-ENV
ψ ∈ ∆

∆ ` ψ

L-MP
∆ `
−→
ψ ∆ `

−→
ψ ⊃

−→
ψ′

∆ `
−→
ψ′

Figure 7.8: Filter Derivation

that need it.

7.2.1 Generating Implications

We have seen how filters using implication are used, but not where they are

generated. Since we want to use these filters to express the semantics of

complex if expressions, the point in the system to extend is the combfilter

metafunction:

combinefilter((
−→
ψ1+|
−→
ψ1−), (

−→
ψ2+|
−→
ψ2−),⊥|ε) =

−→
ψ1+ ,
−→
ψ2+|(

−→
ψ1+ ⊃

−→
ψ2−), (

−→
ψ2+ ⊃

−→
ψ1−)

This pattern corresponds to the encoding of and using conditionals. In par-

ticular, (and A B) is encoded as (if A B #f). Therefore, the combfilter rule

considers cases where the third argument corresponds to false. Thus, in-

stead of having no information if an and expression is false, we now have

two implications:
−→
ψ1+ ⊃

−→
ψ2− and

−→
ψ2+ ⊃

−→
ψ1−.

Of course, other minor changes are required in the other metafunctions

to abstract and apply filters with implication. We omit the laborious details.

78 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

(if (if (number? input) (number? (car extra)) #f)
(+ input (car extra))
(if (number? (car extra))

(+ (string→number input) (car extra))
0))

Figure 7.9: Expansion of Example 22

7.2.2 A Logical Example

We now turn again to example 22. The expansion into the core forms of

λTS is given in figure 7.9. The full type derivation is given in figure 7.10.

Here the filter set for the first test expression, expanded into an if expression

in figure 7.9, in the cond is

Numberinput ,Numbercar(extra) |

(Numbercar(extra) ⊃ Numberinput ,Numberinput ⊃ Numbercar(extra))

abbreviated as ∆1|∆2. The first half is added to the environment for the first

expression, and the second half to the environment for the remainder. Then

the filter set for the second test expression is

Numbercar(extra) |Numbercar(extra)

Therefore, following the T-IF and L-MP rules, the type system can derive

Numberinput from ∆2 and ∆3, and therefore input: String. The type system

can thus prove that input must be a string in the right hand side of the second

clause, meaning that the call to string→number is safe.

7.3 Proving Soundness

Next we turn our attention to the type soundness of λTS . Two issues deserve

consideration.

7.3. PROVING SOUNDNESS 79

ε ;Γ0 ` (if (if (number? input) . . .) . . .) : Number ; ε|ε; ∅

• ε ;Γ0 ` (if (number? input) . . .) : Boolean ; ∆1|∆2 ; ∅

• ε ;Γ0 ` (number? input) : Boolean ; Numberinput |Numberinput ; ∅
• . . .

• Numberinput ;Γ0` (number? (car extra)) : Boolean;∆3|∆4; ∅
• . . .

• Numberinput ;Γ0` #f : #f;⊥|ε; ∅
• . . .

• ∆1;input : N, extra : (Pair N A) ` (+ input (car extra)) : N ; ε|ε; ∅

• . . .

• ∆2; Γ0 ` (if (number? (car extra)) . . .) : N ; ε|ε; ∅

• ∆2;Γ0` (number? (car extra)) : Boolean; ∆3|∆4; ∅
• . . .

• ∆2,∆3,Numberinput ; Γ2 ` (+ (string→number input) (car extra))
: Number; ε|ε; ∅
• . . .

• ∆2,∆4; Γ0 ` 0 : Number; ε|⊥; ∅

where

Γ0 = input : (
⋃

S N), extra : (Pair A A)
Γ1 = input : S, extra : (Pair N A)

∆1 = Numberinput ,Numbercar(extra)

∆2 = Numbercar(extra) ⊃ Numberinput ,
Numberinput ⊃ Numbercar(extra)

∆3 = Numbercar(extra)

∆4 = Numbercar(extra)

Figure 7.10: Abbreviated Type Derivation for Expanded Example 22

80 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

T-IFTRUE
∆,Γ ` e1 : τ1 ; ε|⊥ ; o1

∆,Γ ` e2 : τ2 ; φ2 ; o2

` τ2 <: τ
φ = combinefilter(ε|⊥, φ2, ε|ε)
∆,Γ ` (if e1 e2 e3) : τ ; φ ; ∅

T-IFFALSE
∆,Γ ` e1 : τ1 ; ⊥|ε ; o1

∆,Γ ` e3 : τ3 ; φ3 ; o3

` τ3 <: τ
φ = combinefilter(⊥|ε, ε|ε, φ3)

∆,Γ ` (if e1 e2 e3) : τ ; φ ; ∅

Figure 7.11: Auxiliary Type Rules for Subject Reduction Proof

7.3.1 Typing Intermediate Steps

The system as described does not obey the usual subject reduction property.3

For example, the following program

((λ ([x : Any])
(if (number? x)

(add1 x)
0))

#f)

reduces in one step to

(if (number? #f)
(add1 #f)
0)

which does not typecheck under the typing rules for λTS , since add1 requires

a numeric argument. Of course, this untypeable code is never executed, so

the program is actually safe. To solve this problem, we add two new typing

rules; see figure 7.11.

Since there is no overlap between Number and #f, we have that

∆,Γ ` (number? #f) : Boolean ; ⊥|ε ; ∅

Therefore T-IFFALSE applies to our problematic example, allowing the type

system to ignore the troublesome then branch. With these additional rules,

we can proceed to proving the usual subject reduction theorem.

3This problem, with the same solution, is also described in the original paper on Typed
Scheme [Tobin-Hochstadt and Felleisen 2008].

7.3. PROVING SOUNDNESS 81

Of course, the original system is still sound. We can also prove that these

rules are unnecessary. Any program which typechecks without the new rules

also typechecks with them. Therefore, the system without the new rules is

sound, since by the soundness theorem for the extended system, no runtime

errors are possible.

Further, the existence of the T-IFTRUE and T-IFFALSE rules demonstrate

that Typed Scheme can, in many instances, detect dead code in the program.

In many cases, this code is the result of macro expansion, but in the case

where user-written code is provably unreachable, Typed Scheme issues a

warning.

To distinguish uses of these two rules, we will write the judgement

∆,Γ `o e : τ ; ψ+|ψ− ; o

with the use of `o to indicate that the rules T-IFFALSE and T-IFTRUE were

not used in the derivation.4

7.3.2 Relating Substitutions and Filters

As usual, proving subject reduction for λTS requires a lemma showing that

substitution preserves types. However, this is non-trivial for λTS , since the

filter set may change in significant ways due to a substitution. Consider the

example from section 7.3.1. The filter set for (number? x) where x has type

> is Numberx |Numberx. If we apply the substitution [0/x], the resulting

expression has filter set ε|⊥. If we instead apply the substitution [#f /x],

we get the filter set ⊥|ε. These resulting filter sets do not have a simple

relationship either to each other or to the original filter set. Therefore, we

must have a way of incorporating the substitution into the relation between

filters as well.

To describe this relation, first we define a “more specific than” relation on

sequences of filters, Γ `
−→
ψ1 <

−→
ψ2 (with

−→
ψ1 more specific), ; see figure 7.12.

4o is a mnemonic for “original”.

82 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

∀x ∈ dom(Γ) ` (Γ +
−→
ψ′)(x) <: (Γ +

−→
ψ)(x)

Γ `
−→
ψ <

−→
ψ′

x : τ |= ⊥
` τ ′@π <: τ

x : τ ′ |= τπ(x)

` τ ′@π 6<: τ

x : τ ′ |= τπ(x)

x 6= y

x : τ ′ |= τπ(y)

x 6= y

x : τ ′ |= τπ(y)

x : τ |= ψ or x : τ ′ 6|= ψ′

x : τ ′ |= ψ′ ⊃ ψ

Figure 7.12: Relations on Filters

This relation captures the intuition that a sequence of filters is more specific

if it allows more terms to be typed in a given environment.

Second, we define a “models” relation that relates pairs of variables and

types to filters. A variable with a type models a filter if it agrees with the

types specified by the filter for the relevant variables. Thus x : Number |=

Numberx, x : #f 6|= Numberx, and x : #f |= Numberx. Using this relation,

we can see that if we substitute a value v of type τ for a variable x in expres-

sion e, one half of the filter set of the result is modeled by x : τ, and one is

not. Furthermore, the filter set of the resulting term is more specific in the

environment without x.

Equipped with this additional machinery, we can state the central lemma

about substitution for the subject reduction proof.

Lemma 7.3.1. If ∆,Γ, x : σ ` e : τ ;
−→
ψ+|
−→
ψ− ; o

and ` v : σ′ ; φ0 ; o0

and ` σ′ <: σ

Then ∆,Γ ` e[v/x] : τ ′ ;
−→
ψ′+|
−→
ψ′− ; o′

and ` τ ′ <: τ

and x : σ′ |=
−→
ψ+ ⇒ Γ `

−→
ψ′+ <

−→
ψ+

and x : σ′ |=
−→
ψ− ⇒ Γ `

−→
ψ′− <

−→
ψ−

and x : σ′ 6|=
−→
ψ+ ⇒

−→
ψ′+ = ⊥

and x : σ′ 6|=
−→
ψ− ⇒

−→
ψ′− = ⊥

7.3. PROVING SOUNDNESS 83

and either o = π(x) ∧ o′ = ∅ or o = o′

Proof Sketch This lemma is proved by induction on the original type deriva-

tion.

The interesting cases are for the rules for if. In this case, we consider the

four implications regarding whether the actual type of the value v (σ′) makes

the predicate true or false, or whether the result is still indeterminate. If the

test implies that the then branch is never reached after the substitution, then

the resulting filter will be ⊥, and T-IFFALSE can be used to type the result.

Otherwise, the resulting filters are at least as strong, and the previous proof

of the type of the then branch will still work. The case for the else branch is

symmetric.

Given this lemma, we can prove the usual subject reduction and progress

theorems in the style of Wright and Felleisen [1994], and then prove the

irrelevance of the additional type rules.

Lemma 7.3.2 (Preservation). If ` e : t ;
−→
ψ+|
−→
ψ− ; ∅ and e is closed and e→ e′,

then ` e′ : t′ ;
−→
ψ′+|
−→
ψ′− ; ∅ where ` t′ <: t and `

−→
ψ′+ <

−→
ψ+ and `

−→
ψ′− <

−→
ψ− and

e′ is closed.

Note that we need not consider open terms for the purpose of proving

soundness. Further, only open terms may have filters which reference vari-

able, or objects. Therefore,
−→
ψ+|
−→
ψ− is either ε|ε, ε|⊥ or ⊥|ε

Proof Sketch The proof is by cases on the reduction rule used to derive

e ↪→ e′. In almost all of the cases, the proof is trivial. The most interesting

case is for the rule E-BETA, where lemma 7.3.1 is used. For the rules E-

IFTRUE and E-IFFALSE, note that every value either has filter ε|⊥ or ⊥|ε. For

rule E-DELTA, we simply need to consider cases on which constant is the

operand.

Lemma 7.3.3 (Progress). If ` e : t ;
−→
ψ+|
−→
ψ− ; ∅ and e is closed then e→ e′ or

e is a value.

84 CHAPTER 7. EXTENSIONS TO OCCURRENCE TYPING

Proof Sketch By straightforward induction on the derivation of

` e : t ;
−→
ψ+|
−→
ψ− ; ∅.

Lemma 7.3.4 (Soundness). If ` e : t ;
−→
ψ+|
−→
ψ− ; ∅ and e is closed then there is

some v such that e→∗ v and ` v :t′ ;
−→
ψ′+|
−→
ψ′− ; ∅ where ` t′ <: t and `

−→
ψ′+ <

−→
ψ+

and `
−→
ψ′− <

−→
ψ− or for all e′ where e →∗ e′, there exists e′′ such that e′ → e′′.

Proof Sketch By the Wright-Felleisen method.

Given this theorem, we can conclude soundness for the original system

at base types (it is stated here for number for conciseness). Note that this is

not true for higher types. For example, this program:

((λ: ([x : Any])
(λ: ([y : Number])

(if (number? x)
(add1 x)
0)))

#t)

is typable in the original system, but it reduces to a value in one step that is

typable only in the extended system.

Theorem 7.3.5 (Soundness for the original system).

If `o e : Number ;
−→
ψ+|
−→
ψ− ; ∅ and e is closed, then there is some v such that

e→∗ v and `o v : Number ; ε|⊥ ; ∅ or for all e′ where e →∗ e′, there exists e′′

such that e′ → e′′.

Proof Sketch First, it is obvious that if `o e : Number ;
−→
ψ+|
−→
ψ− ; ∅, then

` e : Number ;
−→
ψ+|
−→
ψ− ; ∅. Therefore, from lemma 7.3.4 we have that e→∗ v

where ` v : t′ ; ε|⊥ ; ∅ and ` t′ <: Number, unless e reduces infinitely.

Any value whose type is a subtype of Number must be a number, thus v is a

number. Therefore, `o v : Number ; ε|⊥ ; ∅, by rule T-NUM.

CHAPTER 8

Refinement Types

Refinement types are a powerful facility for expressing constraints on exist-

ing types, often beyond what the type checker can statically verify. In Typed

Scheme, occurrence typing gives us a simple way to add refinement types

without involving theorem proving or complex set constraints.

The key idea is that every predicate defines a set, which is the values

for which that predicate returns #t. We then consider that set as a type—

the refinement type corresponding to that predicate. This chapter formalizes

this idea, restricted to just the predicates even? and odd?. The second portion

of this chapter presents an extended example, using refinement types to

check that form input is safe for use in SQL statements.

8.1 Formalizing Refinements

To add refinement types to the λTS calculus, we extend the grammar with

the new type constructor (R c τ), which is the refinement defined by the

built-in function c, which has argument type τ. We restrict refinements to

built-in functions so that any refinement type that can be given to an expres-

sion can also be given to the value the expression reduces to. We then add

two new built-in functions, even?, with type

(Number
(R even? Number)→ Boolean)

85

86 CHAPTER 8. REFINEMENT TYPES

and odd?, with type

(Number
(R odd? Number)→ Boolean)

and the obvious semantics.

The subtyping rules for refinements require an additional refinement en-

vironment Σ, which specifies those built-ins that may be used as refinements.

Extending the existing subtyping rules with this environment is straightfor-

ward, giving a new judgement of the form Σ `r τ1 <: τ2, with the subscript r

distinguishing this judgement from the earlier subtyping judgement. As an

example, the extended version of the S-REFL rule is

Σ `r τ <: τ

The new rule for refinement types is

c ∈ Σ δτ (c) = τ1
φ−→
O
τ2 Σ `r τ1 <: τ

Σ `r (R c τ1) <: τ

This rule states that a refinement of type τ1 is a subtype of any type that τ1

is a subtype of. As expected, this means that Σ `r (R c τ) <: τ.

The addition of the Σ environment to the subtyping judgement requires

a similar addition to the typing judgement, which now has the form

Σ,∆,Γ `r e : τ;φ; o

This subtyping rule, along with the constants even? and odd?, are suf-

ficient to write useful examples. For example, the following function con-

sumes an even-consuming function and a number, and uses the function if

and only if the number is even.

Example 32(λ ([f : ((R even? Number)→ Number)] [n : Number])
(if (even? n) (f n) n))

No additional type rules are necessary for this extension. Additionally,

any expression of type (R c τ) can be used as if it has type τ, meaning that

standard arithmetic operations still work on even and odd numbers.

8.2. SOUNDNESS 87

8.2 Soundness

Proving soundness for the extended system with refinements raises the in-

teresting question of what additional errors are prevented by the refinement

type extension. The answer is none; no additional behavior is ruled out. This

is unsurprising, of course, since the soundness theorem from section 7.3 does

not allow the possibility of any errors. But even if errors were added to the

operational semantics, such as division by zero, none of these errors would

be prevented by the refinement type system. Instead, refinement types allow

the specification and enforcement of types that do not necessarily have any

correspondence to the operational semantics of the language.

We therefore adopt a different proof strategy. Specifically, we erase the

refinement types and are left with a typeable term, which reduces appro-

priately. Given a type in the extended language, we can compute a type

without refinement types, simply by erasing all occurrences of (R c τ) to τ.

The proof of soundness has been done for an earlier formulation of oc-

currence typing, and is presented elsewhere [Tobin-Hochstadt and Felleisen

2009].

8.3 An Extended Example

To demonstrate the utility of refinement types as provided by Typed Scheme,

we present an extended example, tackling the problem of form validation.

One important problem in form validation is avoiding SQL injection attacks,

where a piece of user input is allowed to contain an SQL statement, and

passed directly to the database. A simple is example is the query

(string-append "SELECT ∗ FROM users WHERE name = ’" user-name "’;")

If user-name is taken directly from user input, then it might contain the

string "a’ or ’t’=’t", resulting in an query that returns the entire contents of

the users table. More damaging queries can be constructed, with data loss

88 CHAPTER 8. REFINEMENT TYPES

a significant possibility [Munroe 2007].

One common solution for avoiding this problem is sanitizing user input

with escape characters. Unfortunately, sanitized input, like unsanitized in-

put, is simply a string. Therefore, we use refinement types to statically verify

that only validated input is passed through to the database. This requires

two key pieces: the predicate, and the final consumer.

The predicate is a Typed Scheme function that determines if a string is

acceptable as input to the database:

(: sql-safe? (String→ Boolean))
(define (sql-safe? s) omitted)

No special type system machinery is required to write and use such a

predicate. One more step is needed, however, to turn this predicate into a

refinement type:

(declare-refinement sql-safe?)

This declaration puts the function sql-safe? into the refinement environment

Σ in the formalization of refinement types, with the addition that it changes

the type of sql-safe? to be a predicate for (Refinement sql-safe? String).

With this refinement type, we can specify the desired type of our query

function:

(: query ((Refinement sql-safe? String)→ (Listof Result)))
(define (query user-name)

(run-query
(string-append
"SELECT ∗ FROM users WHERE name = ’" user-name "’;")))

Since (Refinement sql-safe? String) is a subtype of String, user-name can be

used directly as an argument to string-append.

We can also write a sanitize function that performs the necessary es-

caping, and use the sql-safe? function and refinement types for static and

dynamic verification:

8.3. AN EXTENDED EXAMPLE 89

(: sanitize (String→ (Refinement sql-safe? String)))
(define (sanitize s)

(define s∗ (string-map escape-char s))
(if (sql-safe? s∗)

s∗
(error "escape failed")))

The only function that is added to the trusted computing base is the defini-

tion of sql-safe?, which can be provided by the database vendor. Everything

else is up to the programmer.

Alternative Solutions Another solution to this problem, common in other

languages, would have sanitize be defined in a different module, with SQL-

SafeString as an opaque exported type. Unfortunately, this requires using an

accessor whenever a SQLSafeString is used in a context that expects a string

(such as string-append). The use of our style of refinement types avoids both

the dynamic cost of wrapping in a new type, as well as the programmer

burden of managing these wrappers and their corresponding accessors.

CHAPTER 9

Variable-Arity Polymorphism1

In section 2.7.6, we saw the basics of typing variable-arity polymorphism.

The key ingredients are

• Distinguishing uniform from non-uniform variable-arity functions.

• Dotted type variables and dotted pre-types.

• Special handling of map on terms with dotted pre-types.

• Handling of apply.

This chapter synthesizes those insights into a formal calculus whose type

system is able to statically reject programs that misapply both uniform and

non-uniform variable-arity functions.

The development of our formal model starts from the syntax of a multi-

arity version of System F [Girard 1971], enriched with variable-arity func-

tions. A technical report [Strickland et al. 2008] contains the full set of type

rules as well as a semantics and soundness theorem for this model.

9.1 Syntax

We extend System F with multiple-arity functions at both the type and term

level, lists, as well as functions that accept rest arguments. The use of
1This is joint work with T. Stephen Strickland [Strickland et al. 2009].

91

92 CHAPTER 9. VARIABLE-ARITY POLYMORPHISM

p ::= = | plus | minus | mult | car | cdr | null?
v ::= n | b | p | nullτ | (consτ v v) | (λ (

−−−→
[x : τ]) e) | (Λ (−→α) e)

| (Λ (−→α α ...) e) | (λ (
−−−→
[x : τ] . [x : τ∗]) e) | (λ (

−−−→
[x : τ] . [x : τ ...α]) e)

e ::= v | x | (e −→e) | (if e e e) | (consτ e e) | errorL
| (@ e −→τ) | (@ e −→τ τ ...α) | (apply e −→e e)
| (map e e) | (ormap e e) | (andmap e e)

τ ::= Integer | Boolean | α | (Listof τ) | (−→τ → τ)
| (−→τ τ∗ → τ) | (−→τ τ ...α → τ) | (∀ (−→α) τ) | (∀ (−→α α ...) τ)

Figure 9.1: Syntax

multiple-arity functions establishes the proper problem context. Lists and

rest-argument functions suffice to explain how both kinds of variable-arity

functions interact.

The grammar in figure 9.1 specifies the abstract syntax. We use a syntax

close to that of Typed Scheme, including the use of @ to denote type applica-

tion. The use of the vector notation −→e denotes a (possibly empty) sequence

of forms (in this case, expressions). In the form −→nek , n indicates the length

of the sequence, and the term eki is the ith element. The subforms of two

sequences of the same length have the same subscript, so −→nek and −→nτk are

identically-sized sequences of expressions and types, respectively, whereas
−→mej is unrelated. If all vectors are the same size the sizes are dropped, but

the subscripts remain. Otherwise the addition of starred pre-types, dotted

type variables, dotted pre-types, and special forms is needed to operate on

non-uniform rest arguments.

A starred pre-type, which has the form τ ∗ (by analogy to the Kleene star),

is used in the types of uniform variable-arity functions whose rest parameter

contains values of type τ. It appears only as the last element in the domain

of a function type or as the type of a uniform rest argument.

A dotted type variable, which has the form α ..., serves as a placeholder

in a type abstraction. Its presence signals that the type abstraction can be

applied to an arbitrary number of types. A dotted type variable can appear

9.2. TYPE SYSTEM 93

only as the last element in the list of parameters to a type abstraction. We call

type abstractions that include dotted type variables dotted type abstractions.

A dotted pre-type, which has the form τ ...α, is a type that is parameterized

over a dotted type variable. When a type instantiation associates the dotted

type variable α ... with a sequence −→nτ of types, the dotted pre-type τ ...α is

replaced by n copies of τ, where α in the ith copy of τ is replaced with τi.

In the syntax, dotted pre-types can appear only in the rightmost position of

a function type, as the type of a non-uniform rest argument, or as the last

argument to @.

In this model the special forms ormap, andmap, and map are restricted to

applications involving non-uniform rest arguments, and apply is restricted

to applications involving rest arguments. In Typed Scheme, of course, the

map, ormap, andmap and apply functions work on list types in their most

general form.

9.2 Type System

The type system is an extension of the type system of System F to handle the

new linguistic constructs. We start with the changes to the environments

and judgments, plus the major changes to the type validity relation. Next

we present relations used for dotted types and expressions that have dotted

pre-types instead of types. Then we discuss the changes to the standard

typing relation, and finally we discuss the metafunctions used to define the

new typing judgments.

The environments and judgments used in our type system are similar to

those used for System F except as follows:

• The type variable environment (∆) includes both dotted and non-

dotted type variables.

• There is a new class of environments (Σ), which map non-uniform rest

94 CHAPTER 9. VARIABLE-ARITY POLYMORPHISM

TE-DVAR
α ... ∈ ∆

∆ ` α ...

TE-DFUN
∆ . τr ...α−−−−→

∆ ` τj ∆ ` τ
∆ ` (−→τj τr ...α → τ)

TE-DALL
∆ ∪ {−→αj , β ...} ` τ
∆ ` (∀ (−→αj β ...) τ)

TDE-PRETYPE
∆ ` α ...

∆ ∪ {α} ` τ
∆ . τ ...α

Figure 9.2: Type Validity rules

parameters to dotted pre-types.

• There is also an additional validity relation ∆ . τ ...α for dotted pre-

types.

• The use of Σ makes typing relation Γ,∆,Σ ` e : τ a five-place relation.

• There is an additional typing relation Γ,∆,Σ ` e . τ ...α for assigning

dotted pre-types to expressions.

The type validity relation checks the validity of two forms—types and

dotted type variables. The additional rules for establishing type validity of

non-uniform variable-arity types are provided in figure 9.2, along with an

additional relation which checks the validity of dotted pre-types.

When validating a dotted pre-type τ ...α, the bound α is checked to make

sure that it is indeed a valid dotted type variable. Then τ is checked in an

environment where the bound is allowed to appear free. It is possible for a

dotted pre-type to be nested somewhere within a dotted pre-type over the

same bound:

Example 33(: f (∀ (α . . .)
((α . . .α → α) . . .α → (α . . .α → (Listof Integer)))))

(define ((count . fs) . args)
(map (λ: ([x : Any]) (if x 1 0))

(map (λ: ([f : (α . . .α → α)]) (apply f args))
fs)))

9.2. TYPE SYSTEM 95

TD-VAR
Σ(x) = τ ...α

Γ,∆,Σ ` x . τ ...α

TD-MAP
Γ,∆,Σ ` er . τr ...α

Γ,∆ ∪ {α},Σ ` ef : (τr → τ)

Γ,∆,Σ ` (map ef er) . τ ...α

Figure 9.3: Typing Rules for Pre-types

To illustrate how such a type might be used, we instantiate this sample

type with the sequence of types Integer Boolean:

((Integer Boolean→ Integer) (Integer Boolean→ Boolean)
→ (Integer Boolean→ (Listof Integer)))

There are two functions in the domain of the type, each of which corre-

sponds to an element in our sequence. All functions have the same domain—

the sequence of types; the ith function returns the ith type in the sequence.

The rules in figure 9.3 are the typing rules for the two forms of expres-

sions that have dotted pre-types. The TD-VAR rule just checks for the vari-

able in Σ. The TD-MAP rule assigns a type to a function position. Since the

function needs to operate on each element of the sequence represented by

er, not on the sequence as a whole, the domain of the function’s type is the

base τr instead of the dotted type τr ...α. This type may include free refer-

ences to the bound α, however. Therefore, we must check the function in an

environment extended with α as a regular type variable.

As expected, most of the typing rules are simple additions of multiple-

arity type and term abstractions and lists to System F. For uniform variable-

arity functions, the introduction rule treats the rest parameter as a variable

whose type is a list of the appropriate type. There is only one elimination

rule, which deals with the special form apply ; other eliminations such as

direct application to arguments are handled via the coercion rules.

The type rules in figure 9.4 concern non-uniform variable-arity functions.

These functions also have one introduction and one elimination rule. The

rule T-ORMAP and its absent counterpart T-ANDMAP are similar to that of

TD-MAP in that the dotted pre-type bound of the second argument is al-

96 CHAPTER 9. VARIABLE-ARITY POLYMORPHISM

T-DABS−−−−→
∆ ` τk ∆ . τr ...α Γ[−−−−−→xk 7→ τk],∆,Σ[xr 7→ τr ...α] ` e : τ

Γ,∆,Σ ` (λ (
−−−−→
[xk : τk] .[xr : τr ...α]) e) : (−→τk τr ...α → τ)

T-DAPPLY
Γ,∆,Σ ` ef : (−→τk τr ...α → τ)

−−−−−−−−−−−→
Γ,∆,Σ ` ek : τk Γ,∆,Σ ` er . τr ...α

Γ,∆,Σ ` (apply ef
−→ek er) : τ

T-ORMAP
Γ,∆,Σ ` er . τr ...α

Γ,∆ ∪ {α},Σ ` ef : (τr → Boolean)

Γ,∆,Σ ` (ormap ef er) : Boolean

T-DTABS
Γ,∆ ∪ {−→αk, β ...},Σ ` e : τ

Γ,∆,Σ ` (Λ (−→αk β ...) e) : (∀ (−→αk β ...) τ)

T-DTAPP−−−−→n
∆ ` τj

−−−−→m
∆ ` τk

−→m
βk fresh Γ,∆,Σ ` e : (∀ (−→nαj β ...) τ)

Γ,∆,Σ ` (@ e −→nτj
−→mτk) : tdτ(τ[−−−−−→nαj 7→ τj], β,

−→m
βk)[

−−−−−→m
βk 7→ τk]

T-DTAPPDOTS−−−−→
∆ ` τk ∆ . τr ...β Γ,∆,Σ ` e : (∀ (−→αk αr ...) τ)

Γ,∆,Σ ` (@ e −→τk τr ...β) : sd(τ[−−−−−→αk 7→ τk], αr, τr, β)

Figure 9.4: Selected Type Rules

lowed free in the type of the first argument. In contrast to uniform variable-

arity functions, non-uniform variable-arity functions must be applied with

the apply function in this calculus.

While T-DTABS, the introduction rule for dotted type abstractions, fol-

lows straightforwardly from the rule for normal type abstractions, the elim-

ination rules are different. There are two elimination rules: T-DTAPP and

T-DTAPPDOTS. The former handles type application of a dotted type ab-

straction where the dotted type variable corresponds to a sequence of types,

and the latter deals with the case when the dotted type variable corresponds

to a dotted pre-type.

9.2. TYPE SYSTEM 97

sd(αr, αr, τr, β) = τr
sd(α, αr, τr, β) = α where α 6= αr
sd((−→τj τ ′r ...αr → τ), αr, τr, β) =

(
−−−−−−−−−−→
sd(τj, αr, τr, β) sd(τ ′r, αr, τr, β) ...β → sd(τ, αr, τr, β))

sd((−→τj τ ′r ...α → τ), αr, τr, β) =

(
−−−−−−−−−−→
sd(τj, αr, τr, β) sd(τ ′r, αr, τr, β) ...α → sd(τ, αr, τr, β)) where α 6= αr

sd((∀ (−→αj α ...) τ), αr, τr, β) = (∀ (−→αj α ...) sd(τ, αr, τr, β))

tdτ((−→nτj τr ...β → τ), β,
−→m
βk) =

(
−−−−−−−−−→n

tdτ(τj, β,
−→m
βk)

−−−−−−−−−−−−−−−−→m

tdτ(τr, β,
−→m
βk)[β 7→ βk] → tdτ(τ, β,

−→m
βk))

tdτ((−→nτj τr ...α → τ), β,
−→m
βk) =

(
−−−−−−−−−→n

tdτ(τj, β,
−→m
βk) tdτ(τr, β,

−→m
βk) ...α → tdτ(τ, β,

−→m
βk)) where α 6= β

Figure 9.5: Subst-dots and trans-dots

The T-DTAPPDOTS rule is more straightforward, as it is just a substitu-

tion rule. Replacing a dotted type variable with a dotted pre-type is more

involved than normal type substitution, however, because we need to re-

place the dotted type variable where it appears as a dotted pre-type bound.

The metafunction sd performs this substitution. Selected cases of the defi-

nition of sd appear in figure 9.5; the remaining clauses perform structural

traversals.

The T-DTAPP rule must first expand out dotted pre-types that use the

dotted type variable before performing the appropriate substitutions. To do

this, it uses the metafunction tdτ on a sequence of fresh type variables of the

appropriate length to expand dotted pre-types that appear in the body of the

abstraction’s type into a sequence of copies of their base types. These copies

are first expanded with tdτ and then in each copy the free occurrences of the

bound are replaced with the corresponding fresh type variable. Normal sub-

stitution is performed on the result of tdτ, mapping each fresh type variable

to its corresponding type argument. The interesting cases of the definition

of tdτ also appear in figure 9.5.

CHAPTER 10

Implementation1

Most aspects of the implementation of Typed Scheme are standard fare for

typed programming languages. However, there is one key novelty: the im-

plementation is done entirely in terms of PLT Scheme macros. This imple-

mentation choice provides the following advantages:

• Running the program runs the typechecker—there is no separate checker

to run, as there is with many static checkers for Scheme.

• By expanding into untyped PLT Scheme code, integration with untyped

code is seamless and requires no translation.

• The typechecker integrates relatively smoothly with the rest of the

macro and module system.

• The typechecker can take advantage of existing PLT Scheme infrastruc-

ture.

Implementing a typechecker as a macro provides its own challenges. In

particular, the system must deal with the existence of other macros, with

cross-module interaction, and it must be able to communicate information

about the source program to the typechecker, even though the expander is

oblivious to the type system.
1This is joint work with Ryan Culpepper and Matthew Flatt [Culpepper et al. 2007].

99

100 CHAPTER 10. IMPLEMENTATION

The macro and module system in PLT Scheme is uniquely well-suited

for the implementation of Typed Scheme. It contains a multitude of small

and large features, whose development has been guided by the goal of sup-

porting research on and development of new languages. Even though they

may be of marginal use individually, together they form a comprehensive

language implementation framework.

This chapter first introduces the relevant prerequisites of the PLT Scheme

macro system (section 10.1), its integration with the module system (sec-

tion 10.2), as well as how different macros can communicate with each other

(section 10.3); Typed Scheme’s implementation uses all of these tools. The

implementation is first described relative to a single module (section 10.4),

and then for the multi-module case (section 10.5).

10.1 Macros

PLT Scheme’s macro system is based on the hygienic [Clinger and Rees 1991;

Kohlbecker, Friedman, Felleisen, and Duba 1986] syntax-case system [Dyb-

vig, Hieb, and Bruggeman 1993], named after the syntactic form it provides

for destructuring the syntax of macro occurrences. A distinguishing aspect

of this system is its use of a syntax object system, a rich datatype for repre-

senting program fragments.

The syntax-case system includes procedural macros, which have two

major advantages over the more widely known pattern-rewriting macros:

• Procedural macros can perform computation at compile time.

• Procedural macros allow the programmer to detect and report syntax

errors. Macro writers can enforce constraints on legal syntax (e.g., that

a given list of identifiers must not contain duplicates); detect when

those constraints are violated; and report errors in an appropriate,

context-specific fashion.

10.1. MACROS 101

(define-syntax (define-getter+setter stx)
;; symbol-append : symbol ...→ symbol
(define (symbol-append . syms)

(string->symbol (apply string-append (map symbol->string syms))))
(syntax-case stx ()

[(define-getter+setter name init-value)
;; constraint checking:
(unless (identifier? #’name)

(raise-syntax-error ’define-get+set "expected identifier" #’name))
;; transformation:
(with-syntax

([getter (datum->syntax
#’name
(symbol-append ’get- (syntax->datum #’name)))]

[setter (datum->syntax
#’name
(symbol-append ’set- (syntax->datum #’name) ’!))])

#’(define-values (getter setter)
(let ([name init-value])

(values (λ () name)
(λ (new-value) (set! name new-value))))))]))

Figure 10.1: A syntax-case macro

The macro definition in Figure 10.1 demonstrates the major capabilities

of syntax-case macros. Its purpose is to create procedures that access and

update a shared, hidden variable. For example, a programmer can write

(define-getter+setter balance) to create definitions for get-balance and set-

balance!.

The macro defines a procedural abstraction (symbol-append) to help con-

struct names. Within the syntax-case clause, the macro checks that the

given name is an identifier (a syntax object containing a symbol); otherwise,

it raises an error. Then it uses the macro system’s datum->syntax procedure

together with its own symbol-append abstraction to construct the names of

the getter and setter procedures. This macro breaks hygiene, because the

hygiene principle states that introduced names only capture references to

the same name that are introduced by the same macro transformation.

102 CHAPTER 10. IMPLEMENTATION

10.2 Modules, or You Want it When, Again?

The PLT Scheme module system [Flatt 2002] allows programmers to group

definitions, use imports and exports to control the scope of names, and spec-

ify the dependencies between modules. The presence of macros complicates

the notion of dependence between modules.

In the presence of procedural macros, a compiler must execute parts of a

program in order to deal with the remainder of the program. This blurs the

line between compilation and execution. In particular, an interpreter may

draw the line in a different place than the compiler, requiring programmers

to debug their compiled program after they have already debugged their

interpreted program. To eliminate this potential for inconsistency, the PLT

Scheme module system require explicit module dependencies and, based on

these, provides uniform behavior in both interactive and batch-compilation

mode.

10.2.1 Split environments

Syntactically, a module declaration contains a module reference specifying

the language that the module is written in, the module’s name, and a se-

quence of definitions and expressions. In our examples, the module’s name

is left implicit, and provided in a comment. In the PLT Scheme implementa-

tion, the name is taken from the filename.

#lang initial-language ;; module-name
module-contents · · ·

Denotationally, a module consists of two code parts (plus a dependency

specification): a compile-time component and a run-time component. The

compile-time part consists of the syntax definitions. The run-time part con-

sists of ordinary definitions and expressions.

The compiler keeps separate environments for the compile-time expres-

sions and run-time expressions. If a module defines a procedure as a run-

10.2. MODULES, OR YOU WANT IT WHEN, AGAIN? 103

#lang scheme ;; macro-util
(provide check-for-duplicate-identifier)
(define (check-for-duplicate-identifier ids) omitted)

#lang scheme ;; rec
(require (for-syntax macro-util))
(define-syntax (recur stx)

(syntax-case stx ()
[(recur name ([var init] . . .) . body)
(begin

(check-for-duplicate-identifier #’(var . . .))
#’(letrec ([name (λ (var . . .) . body)])

(name init . . .)))]))
(define (build-list n f)

(recur loop ([i 0])
(if (< i n)

(cons (f i) (loop (+ i 1)))
null)))

Figure 10.2: Four kinds of references

time value, a macro transformer in the same module cannot use that proce-

dure; the binding is unavailable in the compile-time phase. The macro can,

of course, expand into code that refers to the procedure. Likewise, a binding

in the compile-time phase cannot be used in the run-time phase. This phase

separation permits the compiler to compile a module without also executing

its entire contents.2

The two environments yield two kinds of module dependencies and thus

two distinct module import forms. The plain require form imports bindings

into the environment for run-time expressions, and the for-syntax variant

imports bindings into the environment for compile-time expressions.

Macros bridge the gap between the two phases. The implementation of

a macro is a compile-time expression, but the macro definition extends the

environment for run-time expressions. To understand this idea, it is impor-

2The same name may have (possibly distinct) meanings in both phases simultaneously.
For example, modules written in the scheme language automatically import all primitive
bindings into both phases.

104 CHAPTER 10. IMPLEMENTATION

tant to distinguish between the notions of macro versus value bindings from

the notions of environments for compile-time versus run-time expressions.

The modules in Figure 10.2 illustrate the four different possibilities. In

the context of the rec module, check-for-duplicate-identifier is a value binding

in the compile-time environment; thus, it is available for use in the body

of the recur macro definition. Even though check-duplicate-identifier is a

“compile-time procedure,” it is not a macro. In fact, it cannot be used in

run-time expressions at all. In contrast, recur is a macro binding in the

run-time environment. It is bound to a compile-time value, but the binding

is available to run-time expressions such as the definition of build-list. The

occurrence of syntax-case refers to a macro binding in the compile-time

environment. Finally, the definition of build-list creates a value binding in

the run-time environment.

Compilation of a module involves executing its dependencies3 and ex-

panding uses of macros in the module’s body. The dependencies include the

compile-time part of the module’s initial language module, the compile-time

part of every module imported with require, and both compile-time and

run-time parts of every module imported with for-syntax inside require.

The rules for compilation (and also for invoking a module’s compile time

part) are as follows:

• For every require import, including the initial language module, in-

voke that module’s compile-time part in the same phase.

• For every for-syntax import, invoke that module’s compile-time and

run-time parts in the next higher phase.

If a module is imported twice, once with plain require and once with for-

syntax, the two corresponding invocations of the module are separate. They

do not share mutable state. The module system uses phase numbers to dis-

3If the module depends on modules that are not already compiled, they are automati-
cally compiled when the dependency is detected.

10.2. MODULES, OR YOU WANT IT WHEN, AGAIN? 105

tinguish the different instances. Finally, a module is invoked only once per

phase, per compilation. Multiple modules that depend on a single module

in the same phase share a single invocation of that module and its state.

10.2.2 Compilation independence

True separate compilation is impossible in a module system that supports

the import and export of macros. Instead, the module system has a principle

of compilation independence:

Compiling a module depends only on the compiled forms of the

modules that it (transitively) requires.

This principle has two consequences:

• The compilation of two modules, neither of which transitively requires

the other, should produce the same two results no matter which is

compiled first, or whether they are compiled in parallel.

• The compilation of a module does not depend on side effects that oc-

curred during the compilation of modules that it transitively requires.

This has important implications for the use of side-effects at compile

time.

The compiler effectively creates a new store for each module that it com-

piles. Each compilation gets a new execution of all supporting module code.

Since the result of the compilation process is nothing but a body of code,

the states of mutable variables and objects created during the compilation

process of any module are discarded at the end.

The pair of modules in figure 10.3 illustrates the interaction between

side-effects and compilation. The first module defines two variables. The

second module accesses the variables at compile time, so it imports the first

module via for-syntax. It defines a remember macro that adds a symbol

to the remembered list and generates code to print out the updated list of

106 CHAPTER 10. IMPLEMENTATION

#lang scheme ;; storage
(define storage ’())
(define (add! x) (set! storage (cons x storage)))
(provide storage add!)

#lang scheme ;; memory
(require (for-syntax storage))
(define-syntax (remember stx)

(syntax-case stx ()
[(remember sym)
(begin (add! (syntax->datum #’sym))

(with-syntax ([syms storage])
#‘(begin (display (quote syms))

(newline))))]))
(remember a)
(remember b)

Figure 10.3: Side Effects and Compilation

remembered symbols. Then it uses the macro twice. At the end of compiling

the memory module, the storage variable has the value (b a). Executing the

memory module prints out the lists (a) and (b a), as expected.

Consider the following addition to the program:

#lang scheme ;; inspect-storage
(require storage)
(require memory)
(display storage) (newline)

When this module is executed, the last line it prints out is (), not (b a),

because the run-time instance of the storage module is distinct from the

compile-time instance. That is, side-effects do not cross phases.

Now consider this further addition to the program:

#lang scheme ;; more
(require memory)
(remember c)

When this module is executed, the last line it prints out is (c), not (c b

a). The reason that the (remember c) in more prints just (c) is that more

was compiled with a fresh instance of storage (initially the empty list), and

10.2. MODULES, OR YOU WANT IT WHEN, AGAIN? 107

compiling storage compiling memory compiling more executing more

storage
phase 0
expand macros,

invoke compile-time

parts

storage
phase 1
invoke compile-time

and run-time parts

memory
phase 0
expand macros,

invoke compile-time

parts

storage
phase 1
invoke compile-time

and run-time parts

memory
phase 0
invoke compile-time

part

more
phase 0
expand macros,

invoke compile-time

parts

storage
phase 1
invoke compile-time

and run-time parts

memory
phase 0
invoke compile-time

and run-time parts

more
phase 0
invoke compile-time

and run-time parts

Figure 10.4: Module invocations for the execution of more

because executing the compile-time part of memory does not change that

value. The variable is updated during macro expansion; the side-effects are

not present in the compiled form of memory:

(compiled-module memory
(require scheme)
(require (for-syntax storage))
(define-syntax (remember stx) omitted)
(begin (display ’(a)) (newline))
(begin (display ’(b a)) (newline)))

Figure 10.4 shows all of the module invocations involved in compiling and

executing the program more. Each box represents a module invocation, and

the text at the bottom of each box indicates what parts of the module are

executed. Each column represents a shared store; effects in one column are

not visible in another column.

The furthest left column simply represents the compilation of storage—

this module has no for-syntax dependencies, and so its compilation triggers

108 CHAPTER 10. IMPLEMENTATION

no computation in other modules. The second column is the compilation of

memory, which requires first running the compile-time portions of the stor-

age module, since memory requires storage for-syntax, then expanding any

macros in the memory module. The first two columns are performed since

storage and memory are both dependencies of more. Third, the more mod-

ule is compiled. This requires running the compile-time portion of mem-

ory (which is required by more) and therefore the compile- and run-time

portions of storage (which is required for-syntax by memory). Finally, the

fourth column is the final runtime, which invokes both the compile- and

run-time portions of more and memory, as well as storage.

10.2.3 Persistent effects

The compilation rules of the module system require the development of a de-

sign pattern for expressing persistent effects. Since compile-time side effects

are transient, only the code in the compiled module is permanent. Thus, the

way to express a persistent effect is to make it part of the module:

#lang scheme ;; memory.v2
(require (for-syntax storage))
(define-syntax (storage-now stx)

(syntax-case stx ()
[(storage-here)
(with-syntax ([syms storage])

#’(quote syms))]))
(define-syntax (remember stx)

(syntax-case stx ()
[(remember sym)
#’(begin (define-syntax (add! (quote sym)))

(display (storage-now))
(newline))]))

(remember a)
(remember b)

The effect of adding new symbols to the storage variable is not executed

within the macro, but the macro expander executes the resulting define-

syntax form when it continues expanding the module body, so the effect

10.2. MODULES, OR YOU WANT IT WHEN, AGAIN? 109

of the first addition to the list still occurs before the second remember is

expanded. This version introduces a helper macro, storage-now, to retrieve

the value of storage after the update.

Since the compile-time part of a compiled module includes all of the

macro definitions, the side-effect is preserved:

(compiled-module memory.v2
(require scheme)
(require (for-syntax storage))
(define-syntax (storage-now stx) omitted)
(define-syntax (remember stx) omitted)
(define-syntax 1 (add! ’a))
(display ’(a)) (newline)
(define-syntax 2 (add! ’b))
(display ’(b a)) (newline))

The calls to add! are executed whenever memory is required for the compi-

lation of another module. Thus they are executed when more.v2 is compiled

(refer back to Figure 10.4), so the storage is already set to (b a) when the

use of remember in more is expanded. Thus, executing the new version of

the program prints (c b a).

As a matter of readability, the begin-for-syntax form accomplishes the

same effect as the awkward use of define-syntax with a throw-away name.

Using begin-for-syntax also explicitly signals the programmer’s intent to

generate an expression that creates a persistent effect.

10.2.4 Local expansion

Some special forms must partially expand their bodies before processing

them. For example, primitive forms such as λ handle internal definitions by

partially expanding each form in the body to detect whether it is a definition

or an expression. The prefix of definitions is collected and transformed into

a letrec expression with the remainder of the original forms in the body.

Macros can perform the same kind of partial expansion via the local-

expand procedure, which applies not just to expressions but to entire mod-

110 CHAPTER 10. IMPLEMENTATION

ules as well.

10.2.5 Compilation-unit hooks

There are two basic compilation scenarios in PLT Scheme. In interactive

mode, the compiler receives expressions from the read-eval-print loop. In

module mode, the compiler processes an entire module at once. For each

mode, the compiler provides a hook so the macro system can be used to

control compilation of that body of code.

Top-level transformers The top-level read-eval-print loop automatically

wraps each interaction with the #%top-interaction macro. By defining a

new version of the #%top-interaction macro, a programmer can customize

the behavior of each interaction.

Module transformers The macro expander processes a module from top

to bottom, partially expanding to uncover definitions, require and require-

for-syntax forms, and provide forms. It executes syntax definitions and mod-

ule import forms as it encounters them. Then it performs another pass, ex-

panding the remaining run-time expressions. The module system provides

a hook, called #%module-begin, that allows language implementations to

override the normal expansion of modules.

The module transformer hook is typically used to constrain the contents

of the module or to automatically import modules into the compile-time

environment. For example, the scheme module transformer inserts calls to

print the values of all top-level expressions in the module.

The module hook technique has been used before in language experi-

mentation. Specifically, Pettyjohn, Clements, Marshall, Krishnamurthi, and

Felleisen [2005] prototyped a language for programming web servlets us-

ing continuations. This prototype was the first evidence that the module

transformer is useful for general-purpose language experimentation.

10.3. MACRO PROTOCOLS 111

10.3 Macro protocols

Some language extensions involve not just a single macro definition, but a

collection of collaborating macros, or one macro whose multiple uses col-

laborate. Those collaborating macros need ways to share information at

expansion time.

For example, any datatype created with define-struct can be recognized

and destructured using match, as follows:

(define-struct posn (x y))

(define (dist-to-origin p)
(match p

[(struct posn (a b))
(sqrt (+ (sqr a) (sqr b)))]))

The define-struct macro gives match access to the names of posn’s predicate

and accessor functions, and match uses those names in the expansion of the

pattern to test the value, extract its contents, and bind the results to the

pattern variables a and b.

PLT Scheme provides three mechanisms for compile-time communication

between macros: static bindings, side-effects, and syntax properties. Each

mechanism fits a particular form of communication.

10.3.1 Static binding

PLT Scheme generalizes define-syntax to bind names to arbitrary compile-

time data. The definition of the posn structure above produces something

similar to the following:

(begin
(define-values (make-posn posn? posn-x posn-y) omitted)
(define-syntax posn

(list #’make-posn
#’posn?
(list #’posn-x #’posn-y))))

112 CHAPTER 10. IMPLEMENTATION

Despite the use of define-syntax, the definition of posn is not a macro, as

its value is not a transformer procedure. The static information it carries

is accessible from other macros (such as match) via the syntax-local-value

procedure.

With static binding, the availability of information is tied to the name

it is bound to. Static binding also relies on the ability to define the name;

it cannot attach information to a name that is already bound. Still, static

binding is the most common mechanism for defining macro protocols in the

PLT Scheme libraries, including protocols for structs and component signa-

tures [Culpepper, Owens, and Flatt 2005].

10.3.2 Side-effects

Side-effects are commonly used to provide implicit channels of communica-

tion between collaborating run-time components. They are just as capable of

providing such channels at compile time for macros, provided the program-

mer recognizes the difference between ephemeral and persistent effects and

uses the appropriate technique.

10.3.3 Syntax properties

Dybvig et al. [1993] define a syntax datatype that extends S-expressions

with hygienic binding information and source location tracking. PLT Scheme

adds syntax properties, key-value pairs of arbitrary associated data, as a way

of attaching information to particular terms. By default, syntax properties

are simply preserved by macros and primitive syntactic forms, so protocols

defined via syntax properties generally do not interfere if they choose dis-

tinct keys. Accessing information contained in syntax properties requires

only access to the term that carries the property and the key to the property.

Syntax properties are available even to observers that cannot access the ex-

pansion environment (necessary to access static bindings and compile-time

10.4. TYPING TERMS 113

variables).

For these reasons, syntax properties are well-suited to conveying infor-

mation from macros to code analyzers that examine programs after they

have been expanded to core Scheme. For example, DrScheme’s Check Syn-

tax tool examines expanded programs to graphically display the program’s

binding structure. This should work even when the reference is no longer

apparent in the residual program, as with the expansion of match, which

uses the information bound to structure name, although the structure name

does not occur in the expansion. The match macro leaves a ’disappeared-

use syntax property on its expansion telling the Check Syntax tool to color

the occurrence of posn as a reference and connect it to the corresponding

definition.

Macros can introduce and examine syntax properties in their arguments

using the syntax-property procedure.

10.4 Typing Terms

The implementation of Typed Scheme illustrates like no other language de-

sign experiment the power of PLT Scheme’s macro system. In this section,

we explain the process for type-checking a single definition or expression,

with a focus on type annotations and the use of type environments. The

following section extends the implementation to handle modules.

Typed Scheme is designed to interoperate with PLT Scheme’s existing

macro and module systems. In particular, typed programs should be able to

use existing macros (provided they produce typecheckable code) and define

and use new macros. Since it is generally impossible to derive type rules for

arbitrary macros, the type-checker must analyze the program after expan-

sion has eliminated all occurrences of macros and reduced the program to

core syntax. This is also the strategy adopted by the ACL2 theorem prover

for Common Lisp [Kaufmann et al. 2000].

114 CHAPTER 10. IMPLEMENTATION

#lang scheme ;; typed-scheme
(provide (rename-out top-interaction #%top-interaction))
(define-syntax (top-interaction stx)

(syntax-case stx ()
[(top-interaction . term)
(let ([expanded-term

(local-expand #’term ’top-level null)])
(type-check-top-level expanded-term)
expanded-term)]))

omitted

Figure 10.5: typed-scheme module

The type-checker hooks into the compilation process as a macro using the

#%top-interaction interface described in section 10.2.5. The type-checking

macro receives the original unexpanded program, and it calls local-expand

to fully expand the program for analysis. The type-checker then either ap-

proves the expanded program or raises an error, aborting compilation. Fig-

ure 10.5 shows the beginning of the typed-scheme language module.

The type-checker has rules for each primitive syntactic form. It knows

how to assign types to Scheme constants. It also knows the types of the

Scheme primitive operators. When it encounters a programmer-introduced

variable, however, it needs to find the type of the variable, and although that

information is present in the original program, type information is not part

of fully expanded, core Scheme code. The rest of this section discusses the

treatment of variable types and the communication between Typed Scheme’s

binding forms and its type-checker across macro expansion.

10.4.1 Variables

Typed Scheme requires type annotations on binding occurrences of many

variables; type-checking depends on that information. Consequently, the

typed binding forms and the type-checker employ a protocol regarding the

communication of variable types.

10.4. TYPING TERMS 115

Type annotations are local to the terms where they appear. They must

be robust in the face of local expansion and re-expansion. Since the type-

checker works on the fully-expanded program, it makes sense to put the type

annotations into the program. At the same time, the result of expansion is

a core Scheme term, and Scheme’s primitive syntactic forms are unaware

of types and do not accept Typed Scheme’s typed binding syntax. Syntax

properties provide an appropriate method for implementing the protocol by

attaching type information to terms.4

The Variable Protocol: Every typed binding form decorates its

declared variables with a type attached to the ’type-label syntax

property of the bound identifiers.

Typed Scheme implements the variable protocol by defining typed bind-

ing forms such as λ: as macros that convert the [variable : type] variable

syntax into primitive binding forms with the types attached to the ’type-label

syntax property of the variable names. Figure 10.6 shows the definition of

typed binding macros. The λ: macro expands into the primitive λ form.

For each formal parameter name, it creates a new syntax object with a ’type-

label property holding the type. Likewise, the define: macro handles typed

definitions. The first clause handles the simple case with just a name being

bound to a value. The second clause handles the function definition syntax

by desugaring it to a define: form with an explicit λ: form. It also synthe-

sizes the function type from the argument types and the result type, adding

it to the expanded definition. The : annotation form, used chapter 2, works

similarly to define:. In this section, we focus on define: for simplicity.

The type-checker, at the other end of the protocol, consumes the syntax

properties produced by the typed binding forms. When the type-checker

encounters a binding form, it scans the bound variables and extracts their

types with the get-id-type procedure:
4Clinger and Hansen [1994] present an alternative method for communicating this

information through phases of a compiler.

116 CHAPTER 10. IMPLEMENTATION

(define-syntax (λ: stx)
(syntax-case stx (:)

[(λ: ([formal : formal-type] . . .) . body)
(with-syntax ([(typed-formal . . .)

(map
(λ (id type)

(syntax-property id ’type-label type))
(syntax->list #’(formal . . .))
(syntax->list #’(formal-type . . .)))])

#’(λ (typed-formal . . .) . body))]))

(define-syntax (define: stx)
(syntax-case stx (:)

[(define: var : type expr)
(identifier? #’var)
(with-syntax ([tvar (syntax-property #’var ’type-label #’type)])

#‘(define #,tvar expr))]
[(define: (f [formal formal-type] . . .) : result-type . body)
#’(define: f : (formal-type . . . → result-type)

(λ: ([formal formal-type] . . .) . body)))])

Figure 10.6: Typed definition and binding forms

;; get-id-type : identifier→ type
(define-for-syntax (get-id-type id)

(let ([type (syntax-property id ’type-label)])
(unless type (raise-missing-type-error id))
type))

The type-checker maintains a two-part type-environment. One part holds

the types of global variables, including variables defined via define: and all

primitive variables. The other part holds the lexical variables, such as those

bound by λ: and other local binding forms. Figure 10.7 shows the out-

line of the environment module. The declare-type! operation updates the

global type environment; extend-env extends the local type environment;

and lookup-env finds the type of an identifier, searching first the local bind-

ings then the global bindings.

The type-checker consumes the information attached to bound variables.

Figure 10.8 lists the code for the type-checker. When the type-checker en-

10.4. TYPING TERMS 117

#lang scheme ;; env
(provide (all-defined-out))

;; An environment is a (list-of binding).

;; A binding is (make-binding identifier type).
(define-struct binding (id type))

;; the-type-env : environment
;; Associates global variables with their types.
;; Initially contains types for the scheme primitives.
(define the-type-env omitted)

;; declare-type : identifier type→ void
;; Add a type association to the global type environment.
(define (declare-type! id type) omitted)

;; empty-env : environment
;; The empty lexical environment.
(define empty-env null)

;; extend-env : environment (list-of binding)→ environment
(define (extend-env env bindings) omitted)

;; lookup-type : lexical-env identifier→ type
;; Searches the lexical environment, then the global environment.
(define (lookup-type env var) omitted)

Figure 10.7: Type Environment

counters a definition, it extracts the type annotations from the bound iden-

tifiers and extends the type environment with the new type association. It

finally checks that the declared type matches the type computed for the

right-hand side expression. When the type-checker encounters an expres-

sion, it switches to expression mode.

The type-check-expr procedure computes the type of the expression. In

the simplest case, variable reference, the type-checker just looks up the type

in the type environment. If the variable is not present, the lookup-env pro-

cedure raises an error. When the type-checker sees a λ form, it gathers

the types of the bound variables and extends the type environment before

118 CHAPTER 10. IMPLEMENTATION

checking the body in the extended environment. It also uses the types of the

formals, in addition to the computed type of the body, to create the type of

the function. Finally, the application case involves finding the type of the

operator, verifying that it is a function type of the right arity, and check-

ing the expected parameter types against the actual parameter types. If the

application is valid, the result is the function’s result type.

10.5 Typing Modules

Type-checking a typed module is more complicated than type-checking an

isolated definition or expression. Module bodies may refer to variables that

are neither primitive nor locally-defined, but imported from other modules.

Furthermore, module exports must be protected from misuse in other mod-

ules, both typed and untyped.

As with a single definition or expression, type-checking a module in-

volves fully expanding the contents of the module and then analyzing the

result. Typed Scheme uses the module transformer hook to type-check the

contents of the module.

The variable protocol handles variables whose definitions or bindings

occur within the body of the module, but typing imported variables requires

additional communication between typed modules. The revised protocol

affects the way a typed module’s exports are compiled.

There are three kinds of module interactions that typed modules can

participate in:

1. A typed module requires an untyped module.

2. A typed module requires another typed module.

3. An untyped module requires a typed module.

The first case simply requires a method of importing untrusted code in such

a way that it cannot break the type system’s invariants, which demands ap-

10.5. TYPING MODULES 119

propriate input from the programmer. The other two cases determine the

behavior of a typed module’s exports. Those two cases essentially demand

different behaviors from a typed module depending on its use context.

This section explains how Typed Scheme interacts with the module sys-

tem. We begin with the simplest case, a typed module importing untyped

code. This case can be explained in terms of just the import statement. Then

we consider the case of a typed module importing another typed module,

and we develop the basic typed-module framework. Finally, we show how

to extend the behavior of exports to support the case of importing a typed

module into an untyped context.

10.5.1 Untyped to Typed

Typed modules cannot use untyped modules without additional protection.5

Instead, typed modules use a special require/typed form to import names

at specific types. The require/typed form wraps the untyped imports with

contracts [Findler and Felleisen 2002] that enforce the supplied types via

runtime checks. It also adds the name to the type environment with the

specified type.

For example, the following use of require/typed imports the find-files

procedure from a standard library module:6

(require/typed scheme/file
[find-files ((Path→ Boolean) Path→ (Listof Path))])

It is equivalent to the following code fragment:

5However, typed modules can safely import untyped macro libraries (such as match) if
the macros do not expand into untyped, non-primitive variables.

6The Path of this library is a filesystem path, not the paths of chapter 7.

120 CHAPTER 10. IMPLEMENTATION

(require (rename-in scheme/file unsafe-find-files find-files))TRUST

(define: find-files : ((Path→ Boolean) Path→ (Listof Path))
(contract (type->contract

((Path→ Boolean) Path→ (Listof Path)))
unsafe-find-files
’find-files
’<typed-scheme>)TRUST)

The TRUST annotation indicates a syntax property that directs the type-

checker to accept the labeled expression as-is. The contract expression

wraps the unsafe version of the find-files procedure with a contract derived

from the given type. The last two arguments indicate the parties involved in

the contract; if something goes wrong, one of the parties is blamed.

The find-files contract checks the procedure’s arguments and result. If the

untyped version of find-files returns a non-path result, the contract catches

it and blames ’find-files before the faulty value can interfere with the typed

program. The first argument contract is itself a higher-order contract, so the

contract system wraps the function passed to find-files with a contract corre-

sponding to the (Path→ Boolean) type. This contract prevents the untyped

find-files from calling the function with faulty arguments; if it does so, the

contract system raises an error and blames ’find-files for the violation. The

second argument contract is a first-order contract. It can only be violated if

typed code supplies an argument of the wrong type, which cannot happen if

the type system is sound. Finally, if find-files were to return something other

than a list of paths, the contract system would stop the program and thus

protect the typed code that expects to process the result.

10.5.2 Typed to Typed

Typed Scheme installs a #%module-begin macro that first performs the nor-

mal module expansion (using local-expand), analyzes the result, and pro-

duces a module body that follows a new module variable protocol, which

provides the type-checker with the types of module variables:

10.5. TYPING MODULES 121

(define-syntax (module-begin stx)
(syntax-case stx ()

[(module-begin form . . .)
(type-check-module-body
(local-expand #’(#%plain-module-begin form . . .)

’module-begin
null))]))

Unlike the type-checking procedure for top-level forms, type-check-module-

body not only type-checks the module body; it also transforms the code to

produce the module body.

When one typed module requires another typed module, type-checking

the first module requires knowing the types associated with the all of the

definitions of the second module. The type-checker needs the types for all

of the definitions, even the unexported ones, because an imported macro

can expand into references to the unexported variables of the module it was

defined in. This requires a new protocol, the module variable protocol.

Let us consider the protocol mechanisms introduced in section 10.3. An

imported identifier does not carry any syntax properties, so syntax properties

alone are insufficient. Static binding provides a partial solution: instead of

directly providing a variable, a typed module could instead provide a macro

that expands into a use of the actual variable. The macro would place a

type annotation on the reference as a syntax property. The problem with the

static binding approach is that it annotates only the references that cross the

public import/export boundary. Variable references introduced by imported

macros, however, do not go through the static binding mechanism; they

refer directly to the module variables. Since Typed Scheme aims to support

macros, static binding is not a viable approach.

That leaves compile-time side effects. We extend the type environment

table to include all known typed-module definitions instead of just primitives

and local definitions. A typed module relies on the global type environment

to contain types for all variables that appear within its body, and it guaran-

tees that its client modules have access to its own type associations.

122 CHAPTER 10. IMPLEMENTATION

The Module Variable Protocol: During the compilation of a

typed module, the global type environment contains bindings

for all definitions in all typed modules transitively required by

the module being compiled.

Since a module’s contributions to the global type environment need to be

present during the compilation of every module that depends on it, we use

the persistent effect pattern described in section 10.2.3. In addition to ver-

ifying the correctness of the module’s contents, the type-check-module-body

procedure also appends compile-time type declarations to the end of the

module. We illustrate the effect of the module transformer on the following

modules:

#lang typed-scheme ;; one
(provide one)
(: one Number)
(define one 1)

#lang typed-scheme ;; plus
(provide plus1)
(: plus1 (Number→ Number))
(define (plus1 n)

(+ n one))

The first module passes the type-checker, which also adds a type declaration

for one to the end of the compiled module:

(compiled-module one
(require typed-scheme)
(provide one)
(define one 1)
(begin-for-syntax

(declare-type! #’one (type Number))))

The reference to declare-type! was inserted by a macro from the typed-scheme

module. Even though one does not import the env module directly, the pro-

cedure is available indirectly through typed-scheme. Since typed-scheme im-

ports env via for-syntax, it is correct to use declare-type! within the compile-

time part of one.

10.5. TYPING MODULES 123

When the compiler encounters the plus module, the module system in-

vokes the compile-time part of typed-scheme, initializing the global type en-

vironment with the primitive bindings only. Then, when the compiler en-

counters the import of one in the module body, it invokes the compile-time

part of the one module, which loads its type declaration for one into the type

environment.

The plus module includes just one new definition, and the module trans-

former adds the corresponding declaration to the module:

(compiled-module plus
(require typed-scheme)
(provide plus)
(define plus (λ (n) (+ n 1)))
(begin-for-syntax

(declare-type! #’plus (type (Number→ Number)))))

The two modules are able to communicate using typed-scheme’s type en-

vironment because the compile-time parts of the one module and the plus

module share a single invocation of typed-scheme and thus a single invoca-

tion of the env module.

Figures 10.9 and 10.11 show the implementation of typed modules and

the module variable protocol.

10.5.3 Typed to Untyped

When a typed module is imported into another typed module, it must pro-

vide its definitions and load the type declarations into the global type envi-

ronment. The type-checker ensures that the exported values are used safely,

so there is no need for run-time checking or wrapping.

In contrast, when a typed module is imported into an untyped module,

it should protect its exports so that the untyped context cannot destroy the

type invariants. As in the “untyped to typed” case, we use contracts to en-

force the type constraints of the definitions. For any defined variable, it is a

simple matter to generate a definition that wraps the variable in the protec-

124 CHAPTER 10. IMPLEMENTATION

tion of the appropriate contract. For example, the plus module above has a

plus1 procedure with type (Number → Number). Given that information,

we can generate defensive-plus1:

(define/contract defensive-plus1
(type->contract (Number→ Number))

plus1)

The define/contract form is like a definition that uses contract explicitly,

except that it automatically computes the blame parties.

A typed module, then, needs to provide one set of definitions to typed

contexts and another set of definitions to untyped contexts. Of course, no

module can actually change the contents of its provide clauses once it is

compiled. Instead, it can provide a set of indirection macros that choose

whether to expand into the trusting or defensive versions of exported names,

assuming the macros can determine whether the importing context is typed

or untyped. PLT Scheme provides rename transformers as a convenient way

of writing such identifier-to-identifier translations.

Continuing the plus module example, the module transformer rewrites

(provide plus1)

into the following indirection definition and renamed-provide clause:

(define-syntax export-plus1
(if omitted ;; Will it be used in a typed context?

(make-rename-transformer #’plus1)
(make-rename-transformer #’defensive-plus1)))

(provide (rename export-plus1 plus1))

The indirection definitions depend on some way of determining whether

the context they are imported into is typed or untyped. The context that

matters is the main module currently being compiled. If the require chain

includes intervening modules, they have already been compiled, and refer-

ences within the compiled modules are already resolved to the right version

of the exports. Thus, the problem boils down to determining whether the

main module currently being compiled is a typed module.

10.5. TYPING MODULES 125

The property that distinguishes a typed module is that it specifies typed-

scheme as its language module, and thus its module body is under the control

of the typed module transformer. Given that, it is critical to understand the

exact order of events in the compilation process:

1. The compiler invokes the initial language module’s compile-time part.7

2. Then, it executes the initial language module’s module transformer on

the body of the module being compiled.

3. As the compiler encounters requires in the module’s body, it invokes

the compile-time parts of the relevant modules.

In particular, the execution of the module transformer precedes the execu-

tion of any of the indirection definitions in compiled typed modules. The

Typed Scheme module transformer can therefore set a flag indicating that

the module being compiled is a typed module, and the indirection definitions

can simply check the value of the flag. Figure 10.10 presents the modified

typed-scheme module.

The type-check module also adds (require context) so that the indirection

definitions it inserts can refer to typed-context?.

The following program illustrate how the flag works. We add an untyped

main module to the one and plus modules from our earlier examples.

#lang typed-scheme ;; one
(provide one)
(: one Number)
(define one 1))

#lang typed-scheme ;; plus
(require one)
(provide plus1)
(: plus1 (Number→ Number))
(define (plus1 x)

(+ x one)))
7Although this invocation occurs prior to any compilation of a typed module, it cannot

be used to determine whether compilation is occurring in a typed context, since the Typed
Scheme module can be required from untyped as well as typed modules.

126 CHAPTER 10. IMPLEMENTATION

#lang scheme ;; main
(require plus)
(display (plus1 41)) (newline)

The compiler processes the typed one module first, creating the context-

dependent indirection definition for the exported variable one. When the

compiler encounters the typed plus module, it first invokes the compile-time

part of typed-scheme. That, in turn, causes the invocation of the context mod-

ule, including a new typed-context? box initialized to false. Executing the

Typed Scheme #%module-begin macro sets the value in the typed-context?

box to true. Subsequently, when the compiler encounters the (require one)

form in the module body, it invokes one’s compile-time part. Since the typed-

context? variable is set to true, the indirections are set to the typed variants,

and the compiler resolves uses of the imported names to the unwrapped

definitions.

The compilation of the main module proceeds differently. When the com-

piler encounters the (require plus) form, it invokes plus’s compile-time part,

which invokes typed-scheme’s compile-time part and invokes context. This

creates a fresh typed-context? box initialized to false, just as before. The

box’s value is never changed to true, however, because Typed Scheme’s

#%module-begin macro is not used in the expansion of the main mod-

ule. Thus when plus’s indirection definitions are executed, they point to the

contract-wrapped variants. Thus the occurrence of plus1 in the main module

is wrapped in code to verify the type of its argument.

10.5. TYPING MODULES 127

;; type-check-top-level : syntax→ void
(define-for-syntax (type-check-top-level form)

(syntax-case form (define)
[(define var expr)
(let∗ ([var-type (get-id-type #’var)])

(declare-type! #’var var-type)
(let ([expr-type (type-check-expr #’expr empty-env)])

(check-type var-type expr-type form)))]
[expr
(type-check-expr #’expr empty-env)]))

;; type-check-expr : syntax lexical-env→ type
(define-for-syntax (type-check-expr expr env)

(syntax-case expr (λ #%app omitted)
[var
(identifier? #’var)
(lookup-type env #’var)]
[(λ (formal . . .) body)
(let∗ ([formal-types

(map get-id-type (syntax->list #’(formal . . .)))]
[formal-bindings
(map make-binding

(syntax->list #’(formal . . .))
formal-types)]

[body-type
(type-check-expr #’body

(extend-env env formal-bindings))])
(make-function-type formal-types body-type))]

[(#%app op arg . . .)
(let ([op-type (type-check-expr #’op env)]

[arg-types
(map (λ (arg) (type-check-expr arg env))

(syntax->list #’(arg . . .)))])
(check-function-type op-type #’op)
(check-types (function-type-params op-type)

op-types
expr)

(function-type-result op-type))]
omitted))

These functions are defined using define-for-syntax, which creates a value binding
in the compile-time environment, so the top-interaction macro can use the proce-
dures.

Figure 10.8: The type-checker

128 CHAPTER 10. IMPLEMENTATION

#lang scheme ;; typed-scheme
(require (for-syntax type-check))
(provide (rename-out module-begin #%module-begin)

(rename-out top-interaction #%top-interaction)
(except-out (all-from-out scheme)

#%module-begin #%top-interaction)
define:
λ:)

(define-syntax (module-begin stx)
(syntax-case stx ()

[(module-begin form . . .)
(type-check-module-body
(local-expand #’(#%plain-module-begin form . . .)

’module-begin
null))]))

(define-syntax top-interaction omitted)
(define-syntax define: omitted)
(define-syntax λ: omitted)

Figure 10.9: The typed-scheme module

#lang scheme ;; context
(provide typed-context?)
;; typed-context? : (box-of boolean)
;; True when the module being compiled is a typed module.
(define typed-context? (box #f))

#lang scheme ;; typed-scheme
omitted

(require (for-syntax context))
(define-syntax (module-begin stx)

(syntax-case stx ()
[(module-begin form . . .)
(begin

(set-box! typed-context #t)
(type-check-module-body
(local-expand #’(#%plain-module-begin form . . .)

’module-begin
null)))]))

omitted

Figure 10.10: Modified typed-scheme module

10.5. TYPING MODULES 129

#lang scheme ;; type-check
(require env)
(provide (all-defined-out))
;; type-check-top-level : syntax→ void
(define (type-check-top-level form) omitted)
;; type-check-module-body : syntax→ syntax
(define (type-check-module-body form)

(syntax-case form ()
[(module-begin top-level-form . . .)
(let ([def-types

(get-definition-types (syntax->list #’(top-level-form . . .)))])
(for ([def def-types])

(declare-type! (binding-id def) (binding-type def)))
(for-each type-check-module-level-form

(syntax->list #’(top-level-form . . .)))
;; Generate declarations to reload types into the
;; global type environment
(with-syntax ([(type-declaration . . .)

(map binding->type-declaration def-types)])
#’(module-begin top-level-form . . . type-declaration . . .)))]))

;; type-check-module-level-form : syntax→ void
(define (type-check-module-level-form form) omitted)
;; type-check-expression : syntax environment→ type
(define (type-check-expression expr env) omitted)
;; get-definition-types : (list-of syntax)→ (list-of binding)
(define (get-definition-types forms)

(if (null? forms)
null
(syntax-case (car forms) (define)

[(define name rhs)
(cons (make-binding #’name (get-id-type #’name))

(get-definition-types (cdr forms)))]
[(get-definition-types (cdr forms))])))

;; get-id-type : identifier→ type
(define (get-id-type id) omitted)
;; binding→type-declaration : binding→ syntax
(define (binding->type-declaration b)

(with-syntax ([id (binding-id b)]
[type-expr (type->type-expression (binding-type b))])

#’(begin-for-syntax (declare-type! #’id type-expr))))
;; type→type-expression : type→ syntax
(define (type->type-expression type) omitted)

Figure 10.11: Type Checker

CHAPTER 11

Evaluation1

Assessing whether Typed Scheme truly provides an easy transition from un-

typed to typed code demands practical experience.2 This chapter presents

the result of porting several scripts, libraries, and complete applications from

PLT Scheme to Typed Scheme. The chosen examples are representative of

working code in that they are created by experienced programmers and they

have been in use for a significant amount of time. Similarly, the process it-

self is representative: for all of the examples, all communication between

the original creator of the program and the “porter” was disallowed.

The first section discusses the selected examples and the particular prob-

lems that they pose. The second section describes the changes that had to be

made for the selected programs to typecheck. Most changes simply added

type annotations. Some required changes to the code to appease the type-

checker, but other changes fixed bugs, or handled errors properly where they

had been ignored. In particular, a description of all the changes made to the

code of the largest example is given in section 11.2.4. The third section

provides a quantitative account of the complexity involved in the porting

process, as well as a subjective account.
1Many of the programs in this chapter were originally ported to Typed Scheme by Ivan

Gazeau.
2For the development of Typed Scheme, several thousand lines of textbook Scheme code

were used as the initial data set for determining what idioms to consider. Since such code
tends to be illustrative of idioms, it is well suited for this purpose but not for evaluation.
Additionally, a system should never be evaluated for performance on its own training data.

131

132 CHAPTER 11. EVALUATION

11.1 Ported Programs

The chosen programs run the gamut from widely distributed libraries to

single-use scripts that rely heavily on PLT Scheme features. Together, they

total over 5000 lines of code. In addition, over 1000 lines of code in the

PLT Scheme standard library is written in Typed Scheme, including wrapper

modules for many libraries that are used in the selected programs.

Squadron Scramble This application, created by Matthias Felleisen, is a

version of the multi-player card game Squadron Scramble [Kaplan 2002],

which resembles Rummy. The original untyped implementation consists of

10 PLT Scheme modules, totaling 2200 lines of implementation code, plus

500 lines of unit tests. The program maintains data about the set of cards in

an external XML file, which it reads on startup.

Scheme Code Metrics This script is designed for applying syntactic met-

rics to collections of PLT Scheme modules and files. It traverses directory

trees, looking for source files, and analyzes the files found to determine the

frequency of various programming constructs. The program does not have

a test suite; it is used by its author on a regular basis. It consists of a single

module of just over 400 lines.

Money Management This program, also developed by Matthias Felleisen,

helps with balancing checkbooks, and has been used for this purpose for the

past decade. It is not released for any other use, nor does it have a test suite.

During its extensive use, the program has seemed bug-free over the past

several years. The program consists of one script and one library module,

totaling just under 400 lines.

Spam Filtering This script is used to analyze the contents of an spam

folder. It has been used only by its creator, and consists of one PLT Scheme

module of 311 lines.

11.2. PROGRAM CHANGES 133

System Administration This library is designed for handling system ad-

ministration tasks, with particular emphasis on those relating to Subversion

repository administration. It consists of 15 modules and one data file, total-

ing more than 1200 lines.

Random Number Generation This is an old version of the PLT Scheme

implementation of the widely-used SRFI 27 library for random number and

bit generation. It has been in wide distribution along with PLT Scheme for

several years. It consists of a single library module of almost 600 lines.

11.2 Program Changes

Porting this wide variety of programs poses a number of common challenges

and brings similar benefits to the programs involved. Most changes are sim-

ply providing types, but some require changes to the code as executed.

11.2.1 Annotations

The vast majority of the changes required are simple type annotations. The

most common is providing the type of a top-level function definition. Often,

this simply involves translating an existing comment to a statically-checked

type annotation. For example, the untyped code:

;; Player Hand→ Void
(define (clean-up player hand)

(set-player-hand! player hand))

becomes

(: clean-up (player Hand→ Void))
(define (clean-up player hand)

(set-player-hand! player hand))

Almost all top-level definitions are annotated in this manner, without requir-

ing changes to the definition of the function.

134 CHAPTER 11. EVALUATION

The other common site of annotations is structure definitions. The fields

of a structure must be annotated with types, so that Typed Scheme can de-

termine the types of the structure functions. For example, the untyped code:

;; Administrator = (make-administrator [Listof IPlayer])
(define-struct administrator (iplayers))

becomes

(define-struct: administrator ([iplayers : (Listof iplayer)])

Again, as the example shows, this is often a translation of a pre-existing

comment.

Two other forms of required annotation are rare. One is the definition of

new type aliases:

(define-type-alias Raw-Group (Pair Symbol (Listof Raw-Student)))

This specifies that the type name Raw-Group is equivalent to a pair of a

symbol and list of Raw-Students. Type aliases are useful for simplifying and

shortening type annotations.

Finally, when an untyped library is used, the type of imported values

must be specified with the require/typed form. For example, this require of

the untyped library srfi/13:

(require srfi/13)

becomes, in the typed version:

(require/typed srfi/13
[string-pad-right (String Number Char→ String)])

The require/typed form explicitly specifies the type of each imported iden-

tifier, allowing Typed Scheme to generate the appropriate contracts as de-

scribed in chapter 5.

In many cases, the PLT Scheme standard library provides a typed ver-

sion of existing libraries.3 In that case, the new require statement would
3These libraries were contributed in part by Yinso Chen, Felix Klock, Ivan Gazeau, and

David van Horn.

11.2. PROGRAM CHANGES 135

be (require typed/srfi/13), and no annotations would be required for the

string-pad-right function.

All four of these annotation forms merely specify the programmers’ un-

derstanding of the type structure of their program, and provide executable

form for documentation that is often already in the source code.

Some other annotations are required. Typed Scheme’s inference for poly-

morphic functions does not handle the case where polymorphic values are

used as the argument to polymorphic functions. In this case, one of the func-

tions must be explicitly instantiated at the appropriate type. In some other

cases, local type inference cannot determine the type of a variable, and it

must be explicitly annotated. Finally, the bound variables of λ-abstractions

used as the argument to polymorphic functions must be explicitly annotated,

since local inference is also unable to determine the desired type. Fortu-

nately, all of these occur rarely in the programs ported—see section 11.3 for

precise measurements.

11.2.2 Improvements

The first improvement concerns simple mistakes, such as passing the wrong

number of arguments to a function. The chosen examples contain only five

such errors, four of which are in example uses of data structures, rather

than in critical code paths. This is not surprising because these programs

had been in significant prior use. In the context of finding simple errors,

type systems are mostly useful during the actual programming process. Such

simple mistakes do turn up in comments, which are not exercised by testing,

and Typed Scheme discovered several instances where the comments about

a procedure disagreed with its implementation.

The second category of problems concerns handling of erroneous input.

This manifests itself in three forms:

• Many scripts, especially those originally intended to be used only once,

136 CHAPTER 11. EVALUATION

are not designed for robustness. Therefore, the possibility of failures

is ignored to simplify the programming task. In PLT Scheme, the sim-

plest case is when a script uses a function that produces #f to indicate

failure, but the script does not deal with such results. For example,

the expression (regexp-match "([ˆ<,]∗)@acm\\.org" s) produces a list

containing the email address in the string s if it succeeds, and #f if it

fails. Many scripts that use such library functions ignore the possibility

of failure.

Our solution is to provide an assert function, which translates #f into

an exception. This allows programmers to compactly state assump-

tions in a type-correct way. For example, the expression

(assert (regexp-match "([ˆ<,]∗)@acm\\.org" s))

always produces a list—or, if the regular expression matching fails,

raises an error. assert has the type

(∀ (X) ((
⋃

X #f)→ X))

• A similar case occurs when a function f uses a function g with a re-

stricted domain. Ideally, f should check the applicability of g and raise

an error if the condition isn’t met. Unfortunately, many scripts ignore

such cases, and thus fail late and in unexpected ways. For example,

the / function requires at least one argument. One function in the

code base applied / to a list of arguments, even when that list might

be empty. To address this, the Typed Scheme versions of our samples

make types as precise as possible for functions such as g and thus force

errors to be discovered as early as possible, with informative error mes-

sages. In the example case, the function was changed to always take a

minimum of one argument.

11.2. PROGRAM CHANGES 137

• The most serious problem is due to input obtained from an exter-

nal source and assumed to be of a certain shape. For example, the

Squadron Scramble game keeps information about the cards of the

game in an external XML file. When the data is read in, it is assumed

to be of the required format, rather than being parsed. The result-

ing data is used directly as input to remainder of the computation,

although the required invariants are not checked. Indeed, the docu-

mentation for the code contains a schema for the XML format, but this

is not integrated into the system.

These assumptions about input can be pervasive in large portions of

code, as in Squadron Scramble. If they are, it can be helpful to factor

out all of the input-handling code into a module that remains untyped,

exporting only functions that produce the relevant results in a type-

correct faction. In simple cases, additional error checking suffices.

Our third category of improvements is due to the elimination of type-

inconsistent assignment statements. For example, one program always cre-

ates a data structure using an init function that constructs the structure with

potentially type-incorrect data and then mutates it to be correct. This pat-

tern has two problems. On one hand, it assumes that all the instances of this

data structure are created using the init function, but this is not guaranteed.

On the other hand, it makes the invariant harder to discover and maintain

by future programmers. In such cases, our Typed Scheme programs forgo

mutation, and ensure that the data structure is always correct by construc-

tion. Another example of this is a list variable that is later initialized by

mutation. In two examples, the initial value was #f, a value which is not

acceptable to the other uses of the variable. The necessary change is simply

to initialize the variable with ’() instead.

138 CHAPTER 11. EVALUATION

11.2.3 Limitations of Typed Scheme

Unfortunately, not all changes that Typed Scheme requires are clear-cut im-

provements to the program. Our experiments have pinpointed three weak-

nesses in our approach. This section discusses a few categories of such prob-

lems and how they affect the porting process.

First, some facts about a program that are obvious to the programmer

can not be proved by typechecker. For example, this cond expression covers

all possibilities (provided that x is an integer), even though Typed Scheme

cannot prove it:

(cond [(= x 0) . . .]
[(< x 0) . . .]
[(> x 0) . . .])

Fortunately, it is easy to rewrite this expression to use else, at which point

Typed Scheme is able to check it correctly.

Another example of this is that sometimes information is known about

the relationship between the types of two variables: if x is #f, then y is not.

While this can be expressed in some cases via the logical system describe in

chapter 7, it is not always possible. In this case, additional dynamic checks

must be added to the program.

Second, Typed Scheme cannot, in general, typecheck macros that gener-

ate hidden recursive code. In most cases, local type inference is sufficient to

infer the types of the generated loop variables. When this is not the case,

however, the programmer must rewrite the code with an explicit loop, which

can then be given an explicit type annotation. This is a rare problem, but it

causes significant difficulty to the porter when it occurs.

Third, some functions are used in special ways in PLT Scheme, such that

the type system handles them specially. An example is the list function,

which generates fixed-length lists when applied to a known set of argu-

ments. When used to generate fixed-length lists in a higher-order context,

Typed Scheme is unable to apply the special type rule. The workaround is to

11.2. PROGRAM CHANGES 139

η-expand the list function for the particular number of arguments, which al-

lows Typed Scheme to apply the type rule for list to the explicit application.

Another example of such a function is the values function.

Fourth, in some cases, occurrence typing does not properly track the uses

of type predicates. For example, the expression (andmap number? xs) should

verify that xs is a list of numbers: However, this is not currently the case for

Typed Scheme. The porting effort found a few of these examples, which I

hope to address in future work.

11.2.4 Changes in Squadron Scramble

The Squadron Scramble game is the largest of our experiments. This section

describes all of the non-annotation changes required for Squadron Scram-

ble to typecheck. A total of twelve changes were required to the code of

the game, some of which fixed bugs, and some of which worked around

limitations of Typed Scheme.

Workarounds By far the most significant change was factoring the XML

reading code into a separate, untyped file, and then using require/typed to

import the relevant values into Typed Scheme with appropriate types. This

involved creating a new file of 30 lines, all taken from one of the existing

files. Two values from the new file were then require/typed back into the

original file.4

In two places, the same datatype was assumed to be covered by two

predicates in the untyped code. However, Typed Scheme could not prove

that these predicates were sufficient to cover the data type—in fact, the

untyped program assumed that all data fit a format that was never checked.

The Typed Scheme code added an additional error case in both places.

In one place, a function produced multiple values of correlated types.

Typed Scheme is not able to keep track of this correlation, necessitating an

4The use of untyped external data sources was the original motivation of ?

140 CHAPTER 11. EVALUATION

additional dynamic check.

As mentioned, Typed Scheme does not yet propagate type information

from the andmap function, which necessitated an additional check in one

place. Similarly, Typed Scheme does not allow the programmer to express

that the user-written set? predicate verifies that the argument is a list when

it is a set. Finally, the expansion of or uses a temporary variable, which does

not fit with the rules for combfilter given in chapter 6. Manually expanding

the (or A B) expression into (if A #t B) is sufficient to work around this

limitation. Each of these occurred precisely once in Squadron Scramble (and

in none of the other experiments).

Bug Fixes In one location, the string→number procedure was used, while

neglecting that the result might be #f if the provided string cannot be parsed

as a number. The assert procedure converts this possibility into an exception,

as described above.

Four similar functions, all used as examples, call a constructor function

with the wrong number of arguments. Fixing these was very simple.

11.3 Statistics and Results

Figure 11.1 presents the quantitative results of our measurement effort.

Each column represents one of the programs described in section 11.1. The

rows quantify the size of the programs, and the effort required to port them

to Typed Scheme:

• LINES: This is the total line count for each program after porting, in-

cluding comments and blank lines.

• INCREASE: This is the percentage increase in number of lines from

the untyped version to the typed version. The Metrics program is an

outlier here—many of its types are quite large and were formatted on

multiple lines.

11.3. STATISTICS AND RESULTS 141

Squad Metrics Acct Spam Sys Rand Total
LINES 2369 511 407 315 1290 618 5510
INCREASE 7% 25% 7% 6% 1% 3% 7%
USEFUL ANN 96 51 25 16 53 26 267
λ: ANN 34 22 2 8 22 0 88
OTHER ANN 12 7 1 1 0 1 22
define-struct: 16 2 0 0 4 1 23
TYPE ALIAS 13 7 0 2 2 3 27
require/typed 3 1 0 0 5 0 9
ANN/100 LINE 7.3 18 6.9 8.6 6.7 5.0 7.9
FIXES 5 3 4 5 8 0 25
FIXES/100 LINE 0.21 0.59 0.98 1.6 0.62 0.0 0.45
PROBLEMS 7 4 3 1 0 1 16
PROB/100 LINE 0.29 0.78 0.73 0.32 0.0 0.16 0.29
DIFFICULTY ?? ? ? ? ?? ? ? ?

Figure 11.1: Statistics

• USEFUL ANN: This the count of annotations of variables that recorded

valuable design information about the program. It includes top-level

functions, local functions, top-level constants in which the untyped

program provided a comment specifying the type, and specifications

of the types of mutable data, such as hash tables.

• λ: ANN This is the count of uses of the λ: form, which annotates the

bound variables of a λ with types. With the exception of a handful of

cases, this is necessary only when an anonymous function is provided

as the argument to a polymorphic function such as map.

• OTHER ANN: This is a count of all other variable annotations and in-

stantiations in the program, which do not appear to record useful de-

sign information.

• define-struct: This is the number of uses of define-struct: in the typed

version of the program. In all cases, this is the same as the number of

define-structs in the original program.

142 CHAPTER 11. EVALUATION

• TYPE ALIAS: This is the number of type aliases defined in the typed

version of the program.

• require/typed: This is the number of identifiers imported with re-

quire/typed, each of which requires a type to be specified.

• ANN/100 LINE: This is the number of annotations, including structs,

aliases, and requires, per 100 lines of the typed version.

• FIXES: This is the number of changes to the program that fixed actual

or potential errors in the original code.

• FIXES/100 LINE: The number of such fixes per 100 lines of the typed

program.

• PROBLEMS: This is the number of changes to the program that are

merely to work around the typechecker. These varied widely in lines

of code: moving XML parsing to a separate file affected close to 100

lines, whereas other changes involved the addition of a single function

call.

• PROB/100 LINE: The number of such workarounds per 100 lines of

the typed program.

• DIFFICULTY: Finally, the last row indicates the subjective difficulty, as

experienced by the programmer(s) doing the port of the program. One

star is easiest, and three represent the most difficult. Here, the Metrics

system is the most difficult, largely due to its complex data structures.

In particular, one type of structure is used for multiple different pur-

poses in the program, which makes it difficult to express its intended

type in Typed Scheme. Some of the complexity of these data structures

is reflected in the significant increase in the size of the program.

In contrast, the programs that were simplest to port have a simple type

structure, mostly dealing with only one type or having no interesting

11.3. STATISTICS AND RESULTS 143

data structures. These distinctions, and not the quantifiable labor ef-

fort, ultimately make the greatest difference in porting effort.

The Squadron Scramble game implementation fell in between. It

does not pose serious conceptual problems, and the code is meticu-

lously commented and maintained. But it is a code artifact of signif-

icant size, and thus has its own idiosyncrasies, such as the use of an

external XML file to store data. Therefore, it required more than a triv-

ial amount of effort to port. Ultimately, the statistical metrics indicate

that Squadron Scramble was representative of the overall sample.

11.3.1 Interpretation

This quantitative measurement provides a guide to the effort required to

port programs written in PLT Scheme to Typed Scheme. It indicates that

the program increases in size by less than a tenth, that annotations are not

overly frequent, and that content changes to the running code are rarely

required.

These numbers can only give a rough guide to the effort of porting pro-

grams to Typed Scheme—the most difficult portion of any programming task

is understanding the nature of the problem and the form of the correct so-

lution. In some cases, the porting programmer must develop a sophisticated

understanding of the workings of the system. No type system can offer guid-

ance on the ultimate nature of this task. But the estimates offered here show

that Typed Scheme requires a reasonably small effort, especially given the

benefits for future program maintenance.

CHAPTER 12

Related Work

Typed Scheme is related to numerous other systems and research programs.

In particular, many researchers have explored connections between typed

and untyped languages, with much recent work under the heading of “grad-

ual typing”. Typed Scheme also uses numerous type system features pio-

neered in other languages. Finally, the particular innovative features of the

type system, such as occurrence typing and variable-arity polymorphism, are

related to other work on similar questions in other languages. This chapter

provides a survey of this extensive literature.

12.1 Gradual Typing

Under the name “gradual typing”, several other researchers have experi-

mented with the integration of typed and untyped code [Siek and Taha

2006; Herman, Tomb, and Flanagan 2008; Wadler and Findler 2009; Ina

and Igarashi 2009; Wrigstad, Nystrom, and Vitek 2009]. This work has been

pursued in two directions. First, theoretical investigations have considered

integration of typed and untyped code at a much finer granularity than we

present, providing soundness theorems that prove that only the untyped

portions of the program can go wrong. This is analogous to earlier work on

Typed Scheme [Tobin-Hochstadt and Felleisen 2006], which provides such a

145

146 CHAPTER 12. RELATED WORK

soundness theorem, given in chapter 5, which I believe scales to full Typed

Scheme and PLT Scheme.

Second, Furr, An, Foster, and Hicks [2009a,b] have implemented a sys-

tem for Ruby which is similar to Typed Scheme. They have also designed a

type system which matches the idioms of the underlying language, and in-

sert dynamic checks at the borders between typed and untyped code. Their

work does not yet have a published soundness theorem, and requires the use

of a new Ruby interpreter, whereas Typed Scheme runs purely as a library

for PLT Scheme.

Bracha [2004] suggests pluggable typing systems, in which a program-

mer can choose from a variety of type systems for each piece of code. Al-

though Typed Scheme requires some annotation, it can be thought of as a

step toward such a pluggable system, in which programmers can choose

between the standard PLT Scheme type system and Typed Scheme on a

module-by-module basis.

12.2 Type System Features

Many of the type system features in Typed Scheme have been extensively

studied. Polymorphism in type systems dates to Reynolds [1983]. Recursive

types are considered by Amadio and Cardelli [1993], and union types by

Pierce [1991], among many others. My use of visible filters and especially

latent filters is inspired by prior work on effect systems [Gifford, Jouvelot,

Lucassen, and Sheldon 1987].

12.3 Refinement Types

Refinement types are due to Freeman and Pfenning [1991]. Since then,

refinement types have been used in a wide variety of systems [Rondon,

Kawaguci, and Jhala 2008; Wadler and Findler 2009; Flanagan 2006]. Pre-

12.4. TYPES AND LOGIC 147

vious refinement type systems come in two varieties. Freeman and Pfen-

ning’s original system used the underlying language of ML types to specify

subsets of the existing types, such as non-empty lists. Most other systems

have paired predicates in some potentially-restricted language with a base

type, meaning the set of values of that base type accepted by that predi-

cate. Typically, this requires some algorithm for deciding implication be-

tween predicates for subtyping. In some languages, this can be an external

and almost always incomplete theorem prover, as in the Liquid Typing [Ron-

don et al. 2008] and Hybrid Typing [Flanagan 2006] approaches.

The approach taken by Typed Scheme differs from both of these ap-

proaches. First, refinements are not specified using the language of data

constructors but as in-language predicates. This allows any computable set

to be a refinement. Second, no attempt is made to decide implication be-

tween predicates. Two distinct functions might be extensionally equivalent,

but the associated refinement types have no subtyping relationship. This

frees both the programmer and the implementor from the burden of a theo-

rem prover.

12.4 Types and Logic

Considering types as logical propositions has a long history, going back to

Curry and Howard [Curry and Feys 1958; Howard 1980]. In a dependently

typed language such a Coq [Bertot and Castéran 2004] or Agda [Norell

2007], the relationships we describe with filters and objects could be en-

coded in types, since types can contain arbitrary Coq terms, including ones

that reference other variables or the expression itself.

In Typed Scheme, the rule for typechecking if expressions propagates

information known when the test evaluates to true to the then branch, and

information known when the test evaluates to false to the else branch. This

could be expressed with an if combinator of the following Coq type:

148 CHAPTER 12. RELATED WORK

forall Q1 Q2 Q P, (P = true -> Q1) -> (P = false -> Q2)

-> (Q1 -> Q) -> (Q2 -> Q) -> Q

In a language with dependent types, this combinator could be used with de-

cision procedures that supply witnesses, a style already used in Coq. Proce-

dures such as number? would be reinterpreted as such decision procedures.

From this perspective, the Typed Scheme type system carves out a subset

of the logical reasoning process available in programming languages with

such rich type systems. This subset is tailored to the idioms and styles of ex-

isting untyped Scheme code bases, and has allowed Typed Scheme to type-

check a wide variety of existing Scheme code.

12.5 Occurrence Typing

The term “occurrence typing” was coined by Komondoor et al. [2005] in

their work on automatic understanding of legacy COBOL programs. Their

system considers a limited form of occurrence typing, restricted to equal-

ity tests between variables and character constants, which are used as tag

checks in existing COBOL programs. Their system treats such equalities

as propositions, and negates them in the else branch. It does not allow

abstractions over predicates, more general forms of predicates, or tests on

non-variables.

Some features similar to those of occurrence typing have appeared in the

dependent type literature. Cartwright [1976] describes Typed Lisp, which

includes typecase expression that refines the type of a variable in the var-

ious cases; Crary, Weirich, and Morrisett [1998] re-invent this construct in

the context of a typed lambda calculus with intensional polymorphism. The

typecase statement specifies the variable to be refined, and that variable is

typed differently on the right-hand sides of the typecase expression. While

this system is superficially similar to occurrence typing in Typed Scheme,

the use of latent and visible predicates allows us to handle cases other than

12.6. VARIABLE-ARITY POLYMORPHISM 149

simple uses of typecase. This is important in type-checking existing Scheme

code, which is not written with typecase constructs. Intensional polymor-

phism without refinement of the types of variables appears in calculi by

Harper and Morrisett [1995], among others.

12.6 Variable-Arity Polymorphism

Variable-arity functions are nearly ubiquitous in the world of programming

languages, but no typed language supports them in a systematic and princi-

pled manner. Here we survey existing systems as well as several theoretical

efforts.

ANSI C provides “varargs,” but the functions that implement this func-

tionality serve as a thin wrapper around direct access to the stack frame.

Java [Gosling, Joy, Steele Jr., and Bracha 2005] and C# are two statically

typed languages that have only uniform variable-arity functions, since access

occurs via a homogeneous array.

Dzeng and Haynes [1994] come close to our goal of providing a prac-

tical type system for variable-arity functions. As part of the Infer system

for type-checking Scheme [Haynes 1995], they use an encoding of “infini-

tary tuples” as row types for an ML-like type inference system that handles

optional arguments and uniform and non-uniform variable-arity functions.

In comparison to the Typed Scheme approach, Dzeng and Haynes’ system

has several limitations. Most importantly, since their system does not sup-

port first-class polymorphic functions, they are unable to type many of the

definitions of variable-arity functions, such as map or fold. Additionally, their

system requires full type inference to avoid exposing users to the underlying

details of row types, and it is also designed around a Hindley-Milner style

algorithm. This renders it incompatible with the remainder of the design of

Typed Scheme, which is based on a system with subtyping.

Gregor and Järvi [2007] propose an extension for variadic templates to

150 CHAPTER 12. RELATED WORK

C++ for the upcoming C++0x standard. This proposal has been accepted

by the C++ standardization committee. Variadic templates provide a basis

for implementing non-uniform variable-arity functions in templates. Since

the approach is grounded in templates, it is difficult to translate their ap-

proach to other languages without template systems. The template approach

addresses a simpler problem because template expansion is a pre-processing

step and types are only checked after template expansion. It also signif-

icantly complicates the language, since arbitrary computation can be per-

formed during template expansion. Further, the template approach prevents

checking of variadic functions at the definition site, meaning that errors in

the definition are only caught when the function is used.

Tullsen [2000] attempts to bring non-uniform variable-arity functions to

Haskell via the Zip Calculus, a type system with restricted dependent types

and special kinds that serve as tuple dimensions. This work is theoretical and

comes without practical evaluation. The presented limitations of the Zip

Calculus imply that it cannot assign a variable-arity type to the definition

of zipWith (Haskell’s name for Scheme’s map) without further extension,

whereas Typed Scheme can do so.

Similarly, McBride [2002] and Moggi [2000] present restricted forms of

dependent typing in which the number of arguments is passed as a param-

eter to variadic functions. Our system, while not allowing the expression of

every dependently-typable program, is simpler than dependent typing, suf-

fices for most examples we have encountered, and does not require an extra

function parameter.

12.7 Types and Flow Analysis

In addition to the work on soft typing discussed in chapter 4, other flow

analysis research has attempted to solve problems similar to those that oc-

currence typing addresses.

12.7. TYPES AND FLOW ANALYSIS 151

In chapter 9 of his thesis [Shivers 1991], Shivers describes a type recov-

ery analysis that includes refining the type of variables in type tests. How-

ever, this only covered the particular case of tests for integers, and did not

include a general mechanism for handling arbitrary type tests, or abstraction

over such tests.

The conditional types of Aiken et al. [1994] are closely related to oc-

currence typing. Conditional types rely on a ’case’ expression with pat-

terns. These patterns can include nested patterns, allowing inspection of

portions of compound data structures, as in Typed Scheme. However, con-

ditional types do not support abstraction over predicates, e.g., in Typed

Scheme the expression (λ ([x : Any]) (or (number? x) (string? x))) has a

non-trivial latent filter, whereas patterns cannot be abstracted over. Fur-

thermore, conditional typing does not propagate information about possible

values matched in one pattern to subsequent case branches. For example, in

contrast to occurrence typing, conditional typing cannot determine for ‘case

x of cons(true,b) : true , cons(a,b) : false’ that ‘a’ cannot be ‘true’ in the

second branch.

12.7.1 Deriving Propositions

Some flow analysis systems derive formulae that describe the program that

are not simply richer types. For example, Might’s Logic Flow Analysis [Might

2007] derives propositions about the equality of numeric values during the

run of a flow analysis. The overall design of Might’s system is different, since

it involves an external theorem prover in interaction with a flow analysis,

and derives propositions that are radically different from mine. However,

in a type checking setting, we expect that Might’s system would be able to

derive similar theorems to those of λTS .

CHAPTER 13

Conclusion

When scripts grow up, all too often they become unmaintainable. One im-

portant reason for this is that the design information the original program-

mer had is lost, and difficult to recover. For these scripts to become main-

tainable programs, recovering that design information is essential. I have

proposed that modular porting of untyped code to a typed sister language

makes the transition from scripts to programs not only possible, but easy, by

facilitating this recovery process.

13.1 Contributions

To support this thesis, I have developed Typed Scheme, a typed sister lan-

guage of PLT Scheme. Typed Scheme consists of two key pieces: a system for

sound interaction between typed and untyped modules, and a type system

that works with traditional Scheme idioms.

Typed Scheme allows typed and untyped modules to freely interoperate,

with higher-order values able to flow in both directions. It also automati-

cally generates runtime software contracts to enforce the types of the typed

portions of the program and blame the appropriate offending party. This in-

tegration satisfies a soundness theorem that proves that the typed portions

of the program are never blamed, generalizing Milner’s slogan to “well-typed

modules don’t go wrong”.

153

154 CHAPTER 13. CONCLUSION

Typed Scheme includes a novel type system designed to accommodate

typical Scheme programming idioms. This includes the idea of occurrence

typing, which allows type information from tests to be used in the typing of

branches. This formulation of occurrence typing also allows for a lightweight

form of refinement types. The type system also includes a novel system

for handling variable arity functions, even those with complex relationships

among their argument types.

Finally, Typed Scheme is implemented and distributed as a part of PLT

Scheme. The implementation of Typed Scheme uses the PLT Scheme mod-

ule and macro system to implement a sound type system as a library for

an existing untyped language. This implementation has been used to port

thousands of lines of existing code, and it is used in the implementation of

the PLT suite of tools. Experiments with the implementation indicate that

porting existing untyped PLT Scheme code requires few changes to existing

code.

13.2 Future Work

While Typed Scheme is useful today, much more work remains to be done.

13.2.1 Flow Analysis for Porting

Existing flow analyses [Shivers 1991; Flanagan and Felleisen 1999] generate

results that resemble Typed Scheme types. While experience with soft typing

suggests that flow analysis is not appropriate for a type system, it may well

be useful for the process of porting untyped Scheme code to Typed Scheme.

A tool using flow analysis could be run once, generating a preliminary typ-

ing for Typed Scheme. This could alleviate much of the manual burden

of annotating variables, as well as allowing complex and computationally-

expensive algorithms to be used, since they would not be a constant part of

the development process.

13.2. FUTURE WORK 155

13.2.2 Types for Complex Macros

While Typed Scheme’s strategy of examining only post-expansion code per-

forms well in most cases, it fails on the most complex macros. The PLT

Scheme class [Flatt et al. 2006] and unit [Flatt and Felleisen 1998] systems

are implemented entirely with macros—but the expansion of these macros is

insufficient to recover the programming discipline that they enforce. Thus,

typing programs written using these systems must rely on an understanding

of these macros, as well as a type system that handles their unique features.

13.2.3 Beyond Scheme

Scheme is not the only language that can benefit from modular addition of

types. Language such as JavaScript, Python, and Ruby are likely to bene-

fit from the lessons of Typed Scheme. These languages will require their

own type system, as well as affordances for their own peculiar idioms and

features.

Bibliography

Alexander Aiken and Brian R. Murphy. Static type inference in a dynami-

cally typed language. In POPL ’91: Proceedings of the 18th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 279–

290. ACM Press, 1991.

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with

conditional types. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 163–

173. ACM Press, 1994.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM

Transactions on Programming Languages and Systems, 15(4):575–631,

1993.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development, volume XXV of EATCS Texts in Theoretical Computer Science.

Springer-Verlag, 2004.

R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New

York, NY, USA, second edition, 1997.

Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on the Revival

of Dynamic Languages, 2004.

Gilad Bracha and David Griswold. Strongtalk: typechecking Smalltalk in a

production environment. In OOPSLA ’93: Proceedings of the 8th annual

157

158 BIBLIOGRAPHY

ACM SIGPLAN Conference on Object Oriented Programming, Systems, Lan-

guages, and Applications, pages 215–230. ACM Press, 1993.

Robert Cartwright. User-defined data types as an aid to verifying LISP pro-

grams. In International Conference on Automata, Languages and Program-

ming, pages 228–256, 1976.

Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91: Proceedings of

the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, pages 278–292. ACM Press, 1991.

Robert Cartwright, Robert Hood, and Philip Matthews. Paths: an abstract

alternative to pointers. In POPL ’81: Proceedings of the 8th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 14–27.

ACM Press, 1981.

William Clinger and Jonathan Rees. Macros that work. In POPL ’91: Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pages 155–162. ACM Press, 1991.

William D. Clinger and Lars Thomas Hansen. Lambda, the ultimate label, or

a simple optimizing compiler for Scheme. In LFP ’94: Proceedings of the

1994 ACM Conference on LISP and Functional Programming, pages 128–

139. ACM Press, 1994.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymor-

phism in type-erasure semantics. In ICFP ’98: Proceedings of the Third

ACM SIGPLAN International Conference on Functional Programming, pages

301–312. ACM Press, 1998.

Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic abstraction in

component interfaces. In Generative Programming and Component Engi-

neering, volume 3676 of Lecture Notes in Computer Science, pages 373–

388. Springer-Verlag, 2005.

BIBLIOGRAPHY 159

Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Advanced

Macrology and the Implementation of Typed Scheme. In Proceedings of the

2007 Workshop on Scheme and Functional Programming, Université Laval

Technical Report DIUL-RT-0701, pages 1–13, 2007.

Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-

Holland, Amsterdam, 1958.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in

Scheme. Lisp and Symbolic Computation, 5(4):295–326, 1993.

Hsianlin Dzeng and Christopher T. Haynes. Type reconstruction for variable-

arity procedures. In LFP ’94: Proceedings of the 1994 ACM Conference on

LISP and Functional Programming, pages 239–249. ACM Press, 1994.

ECMA. ECMA-262: ECMAScript Language Specification. ECMA (European

Association for Standardizing Information and Communication Systems),

third edition, 1999.

ECMA. ECMAScript Edition 4 group wiki, 2007. http://wiki.ecmascript.

org/.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-

namurthi. How to Design Programs. MIT Press, 2001. http://www.htdp.

org/.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-

tions. In ICFP ’02: Proceedings of the Seventh ACM SIGPLAN International

Conference on Functional Programming, pages 48–59. ACM Press, 2002.

David Fisher and Olin Shivers. Building language towers with Ziggurat.

Journal of Functional Programming, 18(5 & 6):707–780, 2008.

Cormac Flanagan. Hybrid type checking. In Conference Record of POPL ’06:

The 33th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 245–256. ACM Press, 2006.

http://wiki.ecmascript.org/
http://wiki.ecmascript.org/
http://www.htdp.org/
http://www.htdp.org/

160 BIBLIOGRAPHY

Cormac Flanagan and Matthias Felleisen. Componential set-based analy-

sis. ACM Transactions on Programming Languages and Systems, 21(2):

370–416, 1999.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie

Weirich, and Matthias Felleisen. Catching bugs in the web of program

invariants. In PLDI ’96: Proceedings of the ACM SIGPLAN 1996 Conference

on Programming Language Design and Implementation, pages 23–32. ACM

Press, 1996.

Matthew Flatt. Composable and compilable macros: You want it when? In

ICFP ’02: Proceedings of the Seventh ACM SIGPLAN International Conference

on Functional Programming, pages 72–83. ACM Press, 2002.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT lan-

guages. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 Conference on

Programming Language Design and Implementation, pages 236–248. ACM

Press, 1998.

Matthew Flatt and PLT. Reference: PLT Scheme. Reference Manual PLT-

TR2009-reference-v4.2.2, PLT Scheme Inc., 2009. http://download.

plt-scheme.org/doc/4.2.2/pdf/reference.pdf. http://plt-scheme.

org/techreports/.

Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with

classes, mixins, and traits. In Asian Symposium on Programming Languages

and Systems (APLAS) 2006, volume 4279 of Lecture Notes in Computer

Science, pages 270–289. Springer-Verlag, 2006.

Tim Freeman and Frank Pfenning. Refinement types for ML. In PLDI ’91:

Proceedings of the ACM SIGPLAN 1991 Conference on Programming Lan-

guage Design and Implementation, pages 268–277. ACM Press, 1991.

http://download.plt-scheme.org/doc/4.2.2/pdf/reference.pdf
http://download.plt-scheme.org/doc/4.2.2/pdf/reference.pdf
http://plt-scheme.org/techreports/
http://plt-scheme.org/techreports/

BIBLIOGRAPHY 161

Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks.

Static type inference for ruby. In SAC ’09: Proceedings of the 2009 ACM

Symposium on Applied Computing, pages 1859–1866. ACM Press, 2009a.

Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks.

Tests to the left of me, types to the right: how not to get stuck in the

middle of a Ruby execution. In Wrigstad et al. [2009], pages 14–16.

David Gifford, Pierre Jouvelot, John Lucassen, and Mark Sheldon. FX-87

Reference Manual. Technical Report MIT/LCS/TR-407, Massachusetts In-

stitute of Technology, Laboratory for Computer Science, 1987.

J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son

application à l’élimination de coupures dans l’analyse et la théorie des

types. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic

Symposium, pages 63–92. North-Holland Publishing Co., 1971.

James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Lan-

guage Specification. Addison-Welsley, third edition, 2005.

Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained in-

teroperability through mirrors and contracts. In OOPSLA ’05: Proceedings

of the 20th annual ACM SIGPLAN Conference on Object Oriented Program-

ming, Systems, Languages, and Applications, pages 231–245. ACM Press,

2005.

Douglas Gregor and Jaakko Järvi. Variadic templates for C++. In SAC

’07: Proceedings of the 2007 ACM Symposium on Applied Computing, pages

1101–1108. ACM Press, 2007.

Robert Harper and Greg Morrisett. Compiling polymorphism using inten-

sional type analysis. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 130–

141. ACM Press, 1995.

162 BIBLIOGRAPHY

Christopher T. Haynes. Infer: A statically-typed dialect of Scheme. Technical

Report 367, Indiana University, 1995.

Nevin Heintze. Set based analysis of ML programs. In LFP ’94: Proceedings

of the 1994 ACM Conference on LISP and Functional Programming, pages

306–317. ACM Press, 1994.

Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Com-

puter Programming, 22(3):197–230, 1994.

Fritz Henglein and Jakob Rehof. Safe polymorphic type inference fo¡r a

dynamically typed language: translating Scheme to ML. In FPCA ’95:

Proceedings of the Seventh International Conference on Functional Program-

ming Languages and Computer Architecture, pages 192–203. ACM Press,

1995.

David Herman and Cormac Flanagan. Status report: specifying JavaScript

with ML. In ML ’07: Proceedings of the 2007 Workshop on ML, pages 47–

52. ACM Press, 2007.

David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual

typing. In Proceedings of the Eighth Symposium on Trends in Functional

Programming, TFP 2007, pages 1–18, 2008.

William A. Howard. The formulas-as-types notion of construction. In J. P.

Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press,

New York, NY, USA, 1980. Reprint of 1969 article.

Lintaro Ina and Atsushi Igarashi. Gradual typing for Featherweight Java.

Computer Software, 26(2):18–40, 2009.

Stuart Kaplan. Squadron Scramble. US Game Systems, Stamford, CT, 2002.

BIBLIOGRAPHY 163

Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-

Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell,

MA, USA, 2000.

Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F.

Duba. Hygienic macro expansion. In LFP ’86: Proceedings of the 1986 ACM

Conference on LISP and Functional Programming, pages 151–161. ACM

Press, 1986.

Raghavan Komondoor, G. Ramalingam, Satish Chandra, and John Field. De-

pendent types for program understanding. In Tools and Algorithms for

the Construction and Analysis of Systems, volume 3440 of Lecture Notes in

Computer Science, pages 157–173. Springer-Verlag, 2005.

Gary T. Leavens, Curtis Clifton, and Brian Dorn. A Type Notation for Scheme.

Technical Report 05-18a, Iowa State University, 2005.

Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre. Programming PHP.

O’Reilly Media, second edition, 2006.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In

POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 47–57. ACM Press, 1988.

Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In

ICFP ’97: Proceedings of the Second ACM SIGPLAN International Conference

on Functional Programming, pages 136–149. ACM Press, 1997.

Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly Media, 2001.

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-

language programs. ACM Transactions on Programming Languages and

Systems, 31(3):1–44, 2009.

Conor McBride. Faking it: Simulating dependent types in Haskell. Journal

of Functional Programming, 12(5):375–392, 2002.

164 BIBLIOGRAPHY

Drew McDermott. Revised NISP manual. Technical Report YALE/DCS/RR-

642, Yale University, Department of Computer Science, 2004.

Philippe Meunier, Robert Bruce Findler, and Matthias Felleisen. Modular

set-based analysis from contracts. In Conference Record of POPL ’06: The

33th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 218–231. ACM Press, 2006.

Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):40–51,

1992.

Matthew Might. Logic-flow analysis of higher-order programs. In Confer-

ence Record of POPL ’07: The 34th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 185–198. ACM Press, 2007.

Eugenio Moggi. Arity polymorphism and dependent types. In Proceedings of

the International Workshop on Subtyping and Dependent Types in Program-

ming, 2000.

Randal Munroe. Exploits of a mom. http://xkcd.com/327/, 2007.

Ulf Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers University of Technology, 2007.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and

Matthias Felleisen. Continuations from generalized stack inspection. In

ICFP ’05: Proceedings of the Tenth ACM SIGPLAN International Conference

on Functional Programming, pages 216–227. ACM Press, 2005.

Benjamin C. Pierce. Programming with intersection types, union types, and

polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon Uni-

versity, 1991.

http://xkcd.com/327/

BIBLIOGRAPHY 165

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans-

actions on Programming Languages and Systems, 22(1):1–44, 2000.

John C. Reynolds. Types, abstraction, and parametric polymorphism. In

R. E. A. Mason, editor, Information Processing 83, Paris, France, pages 513–

523. Elsevier, 1983.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In PLDI

’08: Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation, pages 159–169. ACM Press, 2008.

Michael Salib. Starkiller: A static type inferencer and compiler for Python.

Master’s thesis, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts, 2004.

Manuel Serrano and Pierre Weis. Bigloo: A portable and optimizing compiler

for strict functional languages. In SAS ’95: Proceedings of the Second Inter-

national Symposium on Static Analysis, pages 366–381. Springer-Verlag,

1995.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming

Lambda. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylva-

nia, 1991.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.

In Seventh Workshop on Scheme and Functional Programming, University of

Chicago Technical Report TR-2006-06, pages 81–92, September 2006.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby

Findler, and Jacob Matthews. Revised6 report on the algorithmic language

Scheme. Journal of Functional Programming, 19(Supplement S1):1–301,

2009.

Guy Lewis Steele Jr. Common Lisp—The Language. Digital Press, Woburn,

MA, second edition, 1990.

166 BIBLIOGRAPHY

T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen.

Variable-Arity Polymorphism. Technical Report NU-CCIS-08-03, North-

eastern University, 2008. http://www.ccs.neu.edu/scheme/pubs/

NU-CCIS-08-03.pdf.

T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. Practi-

cal variable-arity polymorphism. In ESOP ’09: Proceedings of the Eighteenth

European Symposium on Programming, volume 5502 of Lecture Notes in

Computer Science, pages 32–46. Springer-Verlag, 2009.

Gerald J. Sussman and Guy Lewis Steele Jr. Scheme: An interpreter for

extended lambda calculus. Technical Report AIM-349, MIT Artificial Intel-

ligence Laboratory, 1975.

Audrey Tang. Perl 6: reconciling the irreconcilable. In Conference Record

of POPL ’07: The 34th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 1–1. ACM Press, 2007. http://pugscode.

org.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementa-

tion of Typed Scheme. Mansuscript under submission, 2009.

Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from

scripts to programs. In OOPSLA ’06: Companion to the 21st annual ACM

SIGPLAN Conference on Object Oriented Programming, Systems, Languages,

and Applications, pages 964–974. ACM Press, 2006.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementa-

tion of Typed Scheme. In POPL ’08: Proceedings of the 35th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 395–

406. ACM Press, 2008.

Sam Tobin-Hochstadt and Robert Bruce Findler. Cycles without pollution: a

gradual typing poem. In Wrigstad et al. [2009], pages 47–57.

http://www.ccs.neu.edu/scheme/pubs/NU-CCIS-08-03.pdf
http://www.ccs.neu.edu/scheme/pubs/NU-CCIS-08-03.pdf
http://pugscode.org
http://pugscode.org

BIBLIOGRAPHY 167

Mark Tullsen. The zip calculus. In Roland Backhouse and Jose Nuno Oliveira,

editors, Mathematics of Program Construction, volume 1837 of Lecture

Notes in Computer Science, pages 28–44. Springer-Verlag, 2000.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual: (Python

Documentation Manual Part 2). CreateSpace, 2009.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be

blamed. In ESOP ’09: Proceedings of the Eighteenth European Symposium

on Programming, volume 5502 of Lecture Notes in Computer Science, pages

1–16. Springer-Verlag, 2009.

Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O’Reilly & Associates, second edition, 1996.

Mitchell Wand. A semantic prototyping system. In SIGPLAN ’84: Proceedings

of the 1984 SIGPLAN Symposium on Compiler Construction, pages 213–

221. ACM Press, 1984.

Andrew Wright and Matthias Felleisen. A syntactic approach to type sound-

ness. Information & Computation, pages 38–94, 1994. First appeared as

Technical Report TR160, Rice University, 1991.

Andrew K. Wright and Robert Cartwright. A practical soft type system for

Scheme. ACM Transactions on Programming Languages and Systems, 19

(1):87–152, 1997.

Tobias Wrigstad, Nate Nystrom, and Jan Vitek, editors. STOP ’09: Proceed-

ings for the 1st workshop on Script to Program Evolution, New York, NY,

USA, 2009. ACM Press.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	From Scripts to Programs
	Typed Scheme through Examples
	Simple Typed Scheme
	Polymorphism and Local Type Inference
	Integration with Untyped Scheme
	Occurrence Typing
	Variable-arity Functions
	Refinement Types
	How to Check the Examples

	Design Choices
	Reject Ill-typed Programs
	Explicit Typing
	Module-level Granularity
	Pre-expanding Macros
	No New Idioms

	Prior Work
	Static Checking for Scheme and LISP
	Interlanguage Interoperability
	Implementing Types in Scheme
	Contracts and Modules

	Integrating Typed and Untyped Code
	Relationship to Typed Scheme
	An Informal Tour
	The Formal Framework
	Soundness

	Occurrence Typing
	Syntax and Operational Semantics
	Typing Rules
	A Small Example
	Manipulating Filters

	Extensions to Occurrence Typing
	Adding Paths
	Using Logic
	Proving Soundness

	Refinement Types
	Formalizing Refinements
	Soundness
	An Extended Example

	Variable-Arity Polymorphism
	Syntax
	Type System

	Implementation
	Macros
	Modules, or You Want it When, Again?
	Macro protocols
	Typing Terms
	Typing Modules

	Evaluation
	Ported Programs
	Program Changes
	Statistics and Results

	Related Work
	Gradual Typing
	Type System Features
	Refinement Types
	Types and Logic
	Occurrence Typing
	Variable-Arity Polymorphism
	Types and Flow Analysis

	Conclusion
	Contributions
	Future Work

	Bibliography

