
Theoretical Framework for Eliminating Redundancy in Workflows

Dhrubajyoti Saha
dhrsaha1@in.ibm.com
IBM India, Bangalore

Abhishek Samanta
absamant@in.ibm.com
IBM India, Bangalore

Smruti R. Sarangi
srsarangi@in.ibm.com
IBM India, Bangalore

Abstract

In this paper we look at combining and compressing
a set of workflows, such that computation can be mini-
mized. In this context, we look at two novel theoretical prob-
lems with applications in workflow systems and services re-
search, which are duals of each other. The first problem
looks at merging the maximum number of vertices in two
DAGs (directed acyclic graphs) without creating a cycle.
We prove that the dual of this problem is the problem of
maximizing the length of the LCS (longest common subse-
quence) between all pairs of topological orderings of the
two DAGs. This formulation generalizes to a new defini-
tion of LCS between complex structures like workflows or
XML documents, which we call M-LCS. Subsequently, we
present a taxonomy of the different kinds of problems in this
set, and find the M-LCS solution for a tree and a chain with
a dynamic programming algorithm. Along with this theo-
retical formulation, we implement the algorithms in C++
and run it on representative workflows. We evaluate the
performance of the M-LCS algorithm on a set of random
workflows and observe that it is substantially better than
traditional AI based approaches.

1 Introduction
Workflow systems [9, 14] have been in use in different

branches of engineering, science, and services. Recently,

they have become very important in grid and cloud com-

puting scenarios. We look at a set of workflows, especially

for parameter sweep applications and try to compress them

by eliminating redundancy. We look at the problem from a

theoretical angle in this paper, and conclude with practical

implementations of the theoretical results. We focus on the

simpler problem of trying to compress two workflows. We

will extend this result in future papers.

To summarize, the aim of the paper is as follows.

Take two workflows expressed as DAGs (directed acyclic

graphs), and produce another structure, which has the

same information as both the original workflows, but has

a smaller size. There are two variables here. The first is

the topology of the final data structure, and the nature of

the information that we are trying to preserve. We observe

(described in detail in Section 2.1) that it is better if the fi-

nal graph is a DAG. The reason for this is that it is much

simpler to visualize, prove correctness properties, and work

with other standards. For the second problem, we can have

a couple of measures. If two nodes take the same input and

produce the same output, then they can be merged to one

node. If two nodes take different inputs, but do the same

computation, then also they can be merged in a different

sense. We can logically merge them, which basically means

that the scheduler can co-locate them on the same comput-

ing node, to maximize temporal locality. We don’t put any

strict restrictions on this, as our approach is more theoret-

ical. We assume that every vertex has a label. If two ver-

tices have the same label, they can potentially be merged.

The problem reduces to that of finding maximal common

regions in two DAGs.

This problem of finding matching regions in two acyclic

structures has been studied for a long time in different con-

texts. The LCS (longest common subsequence) problem

is a classic problem in computer science [7]. It finds the

longest matching subsequence in two sequences and has

been solved with a dynamic programming algorithm [7].

For example, if sequence 1 is “ABCBAD”, and sequence 2

is “CBDE”, the longest common subsequence between the

two sequences is “CBD”. Please note that the LCS need not

be contiguous.

There is a need for generalizing it to higher dimensional

structures. Proteins have a secondary and tertiary structure

that is modeled by trees [4]. This problem requires the

largest subtree between two trees. RNAs have secondary

and tertiary structures that require common regions between

two directed acyclic graphs [3, 13]. Sadly other than the ba-

sic LCS problem and variants of it like TreeLCS [15], other

problems have either not deserved enough attention or have

been proven to be NP-Complete. For example, a recent pa-

per [1] generalizes LCS to matrices and forests, and proves

both the problems to be NP Complete.

There is one similarity in the definition of LCS for higher

dimensional structures in all the previous works [1, 15].

Their variant of LCS is the dual of the minimum edit dis-

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.19

41

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.19

41

tance problem, which can be stated as follows. Edit distance

is the minimum number of node deletions, modifications,

and substitutions to make two structures isomorphic. For

example the tree edit distance/LCS problem is defined as:

Definition TreeLCS : The LCS of two rooted and labelled

trees is the largest forest that can be obtained by deleting

nodes.

However, in this paper we are motivated by a different

subset of problems that require a different definition of LCS,

which we call M-LCS. This problem will find the largest

common sub-regions in two DAGs satisfying some further

constraints. We show in Section 3 that the problem of M-

LCS, and merging two DAGs are the duals of each other.

The former is a much more general and powerful frame-

work. It leads to a very simple implementation with very

promising results (see Section 6).

2 M-LCS and Related Problems
2.1 The DAG-Merge Problem

This is the main problem regarding compressing work-

flows that we try to solve in this paper. A distributed job

like a workflow is typically represented as a directed acyclic

graph(see Figure 1(a)). Each vertex is labeled with a num-

ber. If two vertices have the same label, then they run a

similar program possibly with different inputs. We can have

another job with the structure (see Figure 1(b)).

We wish to merge both the jobs into one DAG (Fig-

ure 1(c)). In Figure 1(c), we have merged vertices with the

same labels and taken the union of all the edges. If v1 and

v2 are merged to make vertex v in the final graph, then all

incoming edges to v1 and v2 are incoming edges to v, and

the same holds for outbound edges also. For the vertices

with label 3, we have the incoming edges 2 → 3 and 1 → 3
in the merged DAG, and also the outgoing edges 3 → 4 and

3 → 5. When we merge DAGs, we wish to merge only one

vertex from one DAG with at most one vertex from the other

DAG for the sake of simplicity. Secondly, in Figure 1(c) we

don’t merge the vertices with label 4 because it would lead

to a cycle. If a vertex cannot be merged, then it still needs

to appear in the final graph. For example, vertex 4 cannot

be merged, hence both of its instances appear. One instance

is for the DAG in Figure 1(a) and another instance is for

Figure 1(b). We wish to merge the maximum number of

vertices without creating a cycle.

This problem has interesting applications. A workflow

scheduler can take two DAGs G1 and G2 and merge them

into one DAG Gf in the way we described. If two nodes v1

and v2 are being merged into vf in Gf , then v1 and v2 could

be made to run on the same machine. Since they have the

same label(run the same program/function), they can take

advantage of caching and paging on the machine. We can

thus use this merging scheme for speeding up computation

by making similar jobs run on the same machine. Similar

jobs can constructively interfere and speed each other up.

Finally, we wish to ensure that the final graph is a DAG to

ensure the simplicity of analyses. If Gf had cycles it would

be much more difficult to implement and prove the correct-

ness of distributed algorithms. This problem is applicable

to work-sharing techniques in other areas of service science

like scheduling, databases, and compilers.

2.2 M-LCS

We define the M − LCS problem as follows. Given a

DAG G1, and a DAG G2, consider all the topological order-

ings of G1, and G2. A topological ordering is defined as an

enumeration of all the vertices in a sequence such that there

is no edge from vertex u to v, when u succeeds v in the

sequence. For the DAG in Figure 1(a) 1234 is a valid order-

ing. For the DAG in Figure 1(c), 142345 is a valid ordering.

Please note that this ordering is not unique and the num-

ber of such enumerations is exponential in the worst case.

The M-LCS problem considers all pairs of topological or-

derings between two DAGs, finds the LCS between each

of them, and then reports the LCS that has the maximum

length out of these. The M − LCS solution for Figure 1

is as follows. The maximal LCS corresponds to the topo-

logical orderings: 1234 and 14235 for the two DAGs. The

LCS of these sequences is 123. Please note that Figure 1(c)

merges the nodes 1, 2, and 3. We prove in Section 3 that the

DAG merge problem is a dual of the M − LCS problem.

2.3 Relevance of M-LCS and Dag-Merge
to Other Problems

Both of these problems are different from the traditional

higher dimensional LCS problems. In the traditional ver-

sion, treeLCS always yields a tree or a forest. However,

in our case M-LCS yields a DAG. We can thus define our

version of generalized LCS as the optimal solution of the

M-LCS problem. It has several interesting applications.

1. Solution of the DAG-Merge problem for distributed

workflow scheduling and database query optimization.

2. Nowadays, RNA sequences are typically expressed as

partially ordered graphs [3, 13]. [3] talks about the

problem of finding the longest sequence that satisfies

both the orders. This is an instance of the M-LCS prob-

lem.

3. Let us consider M-LCS between a DAG and a chain.

This problem has extensive use in pattern matching,

noise filtering, and XML document retrieval. Let us

consider a sequence of symbols. This can be a set of

RNA base pairs, signal values, or a binary XML docu-

ment stream. There can be some noise in this sequence

in the form of extra symbols. This often happens in ge-

nomics [12] and in XML document transmission [6]. If

4242

1

2 3

1

2 3

4

4

(b)(a)

1

2 3

4

4

(c)

5
5

Figure 1. Merging two DAGs

1

2

1

2

1

2

(a) (b)

1 2

(d)(c) (e)

Figure 2. Example DAGs

Graph1 Graph2 Solution

Chain Chain Traditional LCS

Tree Chain O(n2) (this paper)

Tree Tree ???

Dag Chain ???

Dag Tree ???

Dag Dag ???

Table 1. Taxonomy of M-LCS problems

we want to filter the noise out, then we need to find the

largest subsequence that obeys a certain partial order.

The partial order can be a DAG like that of an XML

schema [6]. We thus have an instance of the M-LCS

problem.

2.4 Taxonomy of Problems

To the best of our knowledge there are no solutions or NP

completeness proofs for the DagMerge and M-LCS prob-

lems in prior work. This is the first work to exclusively

look at them. Table 1 shows the different problems in this

framework in increasing order of perceived difficulty. In

this table we assume that the vertices are unique. If there

are two chains, then it is the traditional LCS problem. We

find an algorithm for the M-LCS solution for a Tree and a

Chain in this paper in Section 4. If the vertices are non-

unique then we don’t have a solution yet. The rest of the

problems are as yet unsolved.

Our set of problems are very different from the tradi-

tional LCS problems for higher dimensional structures [15,

1]. All of them are duals of the edit distance problem and

our problems aren’t. Let us merge the graphs in Figure 2(a)

and 2(b). The optimal solution according to M-LCS is Fig-

ure 2(a). However, the optimal solution in edit-distance

based node deletion is either the graph in Figure 2(d) or

(e). If we allow node relabeling or edge deletion then the

merged Dag of the graphs in (a) and (c), would be either of

the two graphs. However, the solution according to M-LCS

is just a single node (either (d) or (e)). Hence, we see that

these are a totally different class of problems.

3 DAG-Merge is the dual of M-LCS

3.1 Problem Definitions

We start out by defining both the problems formally.

DAG-Merge Problem : Let there be two labeled directed

acyclic graphs, G1 and G2. We need to produce another

DAG Gf = G1 ⊕ G2, where Gf satisfies the following

properties:

Properties of Gf

1. Let us define a one to one, onto function fmap :
V (G1) ∪ V (G2) → V (Gf).

2. Every vertex in G1 and G2 is mapped to exactly one

vertex in Gf with the same label.

3. Every vertex in Gf is mapped to at most one vertex in

G1, and at most one vertex in G2, with the same label.

No vertex in Gf is unmapped.

4. If there is an edge (u, v) in G1 or in G2, then there

is an edge between fmap(u) and fmap(v) in Gf . Gf

doesn’t contain any other extra edges.

The problem is to minimize |V (Gf)|, where Gf is a di-

rected acyclic graph. This basically means that we have to

maximize the number of merged vertices.

M-LCS Problem : Given two DAGs G1, and G2, find the

longest LCS between all pairs of topological orderings.

Definition: Merging two vertices Let there be a vertex

v1 ∈ V (G1) and v2 ∈ V (G2). If we map both the ver-

tices to a vertex v in Gf such that fmap(v1) = v and

fmap(v2) = v, then we merge the two vertices v1 and v2.

Definition: Merged Dag Let us call Gf , which is obtained

by the operation Gf = G1 ⊕G2, a Merged Dag.

Definition: Common Subsequence Graph Let us topo-

logically order the vertices of G1 and G2 (see Figure 3).

Figure 3(a) and Figure 3(b) show two DAGs with labeled

vertices. Figure 3(c) shows the topological order. We note

that the topological order shows the labels of the vertices.

Let us now find a common subsequence. One such com-

mon subsequence is shown in Figure 3(c). Here we merge

three pairs of nodes with the same label. The final graph,

4343

1

2 3

1

2 3

4

4 1
2
3
4

1
4
2
3

1

2 3

4

4

(c)(b)(a) (d)

Figure 3. Common Subsequence Graph

1
2
3
4

1
4
2
3

1 1

3

2

4

2

4

3

(b)(a)

Figure 4. Ladder Graph

Gf , is shown in Figure 3(d). We call such a graph that is

created by merging subsequences in the topological order, a

common subsequence graph.

3.2 Proofs

Theorem 3.1 Any common subsequence graph is a merged
DAG.

Proof: Let us consider two DAGs G1, and G2. Let Gf

be any common subsequence graph composed out of G1,

and G2. It satisfies all the properties of Gf defined in Sec-

tion 3.1 by construction. We need to prove that it is acyclic.

Let us assume to the contrary that Gf has a cycle. Let

it have the nodes v1...vn. Let us create a ladder shaped

graph(Figure 4(b)) as follows. Let us consider Figure 4(a)

where both the graphs are arranged in topological order.

Let us draw each of the graphs in a linear fashion verti-

cally arranged in topological order. Further let us add a pair

of directed edges between two vertices that are a part of the

common subsequence, and will be merged with each other.

Let us draw them at the same level. We note that if there is

an edge from vertex u to v, and they are part of the same

graph, then one needs to be below the other. Secondly, if

vertices u, and v are merged with each other, then they need

to be at the same level.

Now, let us consider any traversal of vertices in Gf . If

we are going from vertex u to v. Then v should be below

u in a ladder graph. This is because there must be an edge

from u to v in either G1 or G2. In either case, we will

only descend in the ladder graph. Extending the idea, we

observe that any sequence of traversals will only make us

descend the ladder graph. Sometimes if a vertex is mapped,

we might have to take a horizontal edge and move to the

other graph. However, this does not change the level.

Hence, vn needs to be below v1 in the ladder graph.

Since vn will have an edge to v1 if a cycle exists in Gf ,

v1 should be below vn. There is a contradiction. Hence, a

cycle cannot exist, and the premise of the theorem is proved.

Lemma 3.1 Let us consider a subsequence U = u1...un,
where ui ∈ V (G), 1 ≤ i ≤ n, and is topologically ordered
in a directed acyclic graph G. There must be a topological
ordering of G, which has u1...un as a subsequence.

Proof : Let v ∈ (V (G) − U). Let us try to place v in the

sequence u1...un such that the final sequence is topologi-

cally ordered. We will always find such a slot. If there is no

such slot then it means that there is a cycle in the union of

U and v. This is not the case.

Let us remove v from V (G) − U , and proceed likewise

removing a vertex from the set at each step and inserting

it into the topological sequence consisting of u1...un and

all previously inserted vertices. The same argument holds,

and we will always find a slot in this sequence to insert the

new vertex. Proceeding in this manner we will have a topo-

logically ordered sequence at the end consisting of all the

vertices in V (G). We note that u1...un is a subsequence of

this sequence.

Theorem 3.2 Any merged DAG is a common subsequence
graph.

Proof : Let us consider a merged DAG, Gf = G1⊕G2. We

need to prove that a common subsequence exists between

4444

any two topological sorts of G1, and G2, such that Gf is a

common subsequence DAG.

Let us topologically sort Gf . Let us name all the

merged vertices as v1...vn in topological order. We note

that ∀i, j, j > i there is no path from vj to vi. Now, each

vertex in this set corresponds to a vertex in G1 and a vertex

in G2. These vertex sets need to be topologically ordered.

Let us assume that this is not the case. Without any loss

of generality let us assume that G1 breaks this order. Let

v1...vn correspond to u1...un in G1. There has to be a path

from uj to ui where j > i to break the topological order-

ing. In Gf , there has to be a path from vj to vi also since

we don’t delete any edges in Gf . Hence, we prove by con-

tradiction, that the corresponding vertex sets u1...un need

to be topologically ordered.

Now, by Lemma 3.1 there exists a topological ordering

of G1, which has u1...un as a subsequence. The same holds

for G2. Hence, we have topological orderings for G1 and

G2, which have v1...vn as a common subsequence. Thus

Gf is a common subsequence graph.

Theorem 3.3 DAG-Merge is the dual of M-LCS

Proof : Let us consider DAG Gfmin = G1 ⊕ G2, which

minimizes |V (Gf)|. According to Theorem 3.2, Gfmin is

a common subsequence graph. If it does not correspond to

the longest common subsequence(LCS), let G′
fmin be the

common subsequence graph corresponding to the LCS. By

Theorem 3.1, G′
fmin is a merged DAG, which will have

strictly lesser merged vertices than Gfmin. This is a contra-

diction. Hence, Gfmin must be created out of the LCS.

Let us consider a common subsequence graph created

out of the LCS of all combinations of topological orderings.

Let it be GLCS . By Theorem 3.1, it is a merged DAG. We

can prove that |V (GLCS)| = |V (Gfmin)| by contradiction

using a logic similar to the former case.

4 M-LCS Between a Tree and a Chain

In this section, we outline an algorithm to find the M-

LCS solution between a Tree and a Chain (sequence of ver-

tices) with unique vertices. Let us consider a tree T and a

chain C, with m and n vertices respectively. Let the ver-

tices in the Tree be arranged in topological order starting

with the root. Equation 1 shows the dynamic programming

formulation.

Let LCS(T(i), C(j)) be the LCS between the subtree

rooted at T [i] and C[j...n]. Let left(T (i)) be the left child

of T (i), and right(T (i)) be the right subchild. We have:

Since the vertices are unique, the subsequences in each

subchild of any node in the tree are disjoint. Hence, the

LCS is the sum of the LCS for each subchild. The rest of

the proof is on the same lines as that of the classic LCS

algorithm [7]. This algorithm has O(mn) time complexity.

5 Evaluation Setup

Given a set of workflows, we wish to evaluate the degree

of compression that can be achieved by combining work-

flows. Secondly, we wish to find the quality of the output

and time taken. We thus require a random workflow gener-

ator, and an algorithm to combine workflows based on the

results presented in Section 3.

5.1 Random Workflow Generator

We studied scientific workflows from several sources

(major corporation and academic papers). We focussed

mainly on parameter sweep applications, which were very

common applications. We observed that most workflows

have a similar structure. Most of the nodes have a de-

gree less than 10. Secondly vertices are connected to other

vertices, which are not very far away. Based on this, we

constructed a random workflow generator. This generator

creates workflows with nodes that have a bounded degree.

Given this constraint, the number of outbound edges fol-

lows a normal distribution. Secondly, vertices are connected

to other vertices within a certain window. This basically

means that we avoid vertices that are connected to vertices

that are far away in a planar embedding of the workflow.

Based on observations, we set the size of the window to

three times the degree. We compared the statistical proper-

ties of the DAGs generated to that of a representative set of

workflow DAGs. They matched within a 10% interval.

5.2 Implementation of Algorithms

We look at two kinds of algorithms. We first try to solve

the DAG merge algorithm using an AI based Simulated An-

nealing approach. Secondly, we try to solve it using our

M-LCS formulation. We coded both the algorithms in C++.

They were compiled with -O3 optimization and run on a

dual core Intel system running at 2.2 GHz. For every run,

we ran it 10 times, removed the outliers, and took an average

of the rest of the numbers, for our runtime measurements.

6 Evaluation

6.1 Overview

We evaluate both of our algorithms. We first evaluate our

DAG-Merge algorithm. This takes two random workflows,

and tries to combine them. We use a simulated annealing

based approach to avoid local maxima. The algorithm is

as follows. We randomly merge vertices, till there are no

free vertices left. This represents a local maxima. After

that we unmerge a random number of vertices. We con-

tinue the same process again. However, we found that this

4545

LCS(T (i), C(j)) =

(
T (i) = C(j) LCS(left(T (i)), C(j + 1)) + LCS(right(T (i)), C(j + 1)) + 1

T (i) �= C(j) max(LCS(T (i), C(j + 1)), (LCS(left(T (i)), C(j)) + LCS(right(T (i)), C(j))))
(1)

approach was also not sufficient. At some point, we un-

merge all the vertices and start from scratch. We continue

this process for several hundred iterations, and report the

best solution. The asymptotic time complexity per iteration

is roughly O(h(V + E)). Here h is the number of matched

vertices. For matching each vertex, we need to check if

there is a cycle by doing depth first search. Hence, we need

to multiply h by the asymptotic time complexity of doing

a depth first search, which is θ(V + E). There are also

other operations like finding the next free pair of vertices to

merge. However, we assume that these have O(1) complex-

ity by implementing proper hash structures.

We secondly, evaluate the M-LCS algorithm. This al-

gorithm is much simpler to evaluate with much less code.

We construct a random topological ordering of DAG1 and

DAG2. We subsequently, find the longest common subse-

quence between these two orderings. Assuming that both

the DAGs have the same number of nodes, the complexity

of LCS is O(V 2).

Based on the asymptotic complexity, it is not very clear

which algorithm is faster. We leave that to our Monte Carlo

simulations.

6.2 Results

6.2.1 Vertices Merged vs Number of Iterations

Our first experiment is to find the number of iterations it

takes for each algorithm to converge. We consider two ran-

dom DAGs with 40 vertices. The nodes are randomly la-

belled following the constraints described in Section 5, with

each vertex having a unique label in a DAG. We limit the

number of outbound edges to 2 in Figure 5, 5 in Figure 6,

and 10 in Figure 7.

We observe two interesting features. The solution con-

verges by roughly 20 iterations. We were not able to signifi-

cantly improve the quality of the solution after 20 iterations.

The second thing is that for smaller degrees, DAG-Merge is

much better than M-LCS. After the maximum degree ex-

ceeds 3 or 4, M-LCS is a much better solution. We observe

that for larger degrees, there are more edges, and the graph

is more connected. Probably, DAG-Merge gets stuck in lo-

cal minima. M-LCS does not suffer from this problem. Ev-

ery iteration takes it to different corners of the parameter

space, thus yielding a better solution.

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120 140 160 180 200

#v
er

tic
es

 m
er

ge
d

#iterations

dag-merge
m-lcs

Figure 5. matched vertices vs iterations for
maximum degree 2

6.2.2 Vertices Merged vs Maximum Degree

Since we know that about 20 iterations are sufficient, we

now look at varying the degree. Figure 8 shows the results.

We see that only when the degree is 2, DAG-Merge is better

than M-LCS. After that, M-LCS is consistently and signifi-

cantly better than DAG-Merge. We purposely don’t collect

data for the case when the degree is 1, because such kind of

workflows are not found in practice.

6.2.3 Vertices Merged vs Number of Labels

Now, keeping the degree fixed, and the number of iterations

fixed, let us try to modify the number of labels. We observed

in our empirical analyses that typically 2,3, and sometimes

more nodes, can have the same label. For this experiment,

we keep the degree fixed at 5, and change the number of

labels that can be assigned. We observe in Figure 9 that

if the number of labels is less, then more vertices can be

matched. As we increase the number of labels, the number

of matched vertices tends to decrease. In Figure 9 we show

the results for different values of maximum degrees. The

results are inconclusive.

6.2.4 Percentage of Nodes Merged vs Number of Nodes

In this experiment, we keep the maximum degree fixed at 5,

and change the number of nodes. The number of labels is

equal to the number of nodes divided by 3. Figure 10 shows

the results. It is easy to conclude that DAG-Merge does

not perform very well. However, we observe that uptil 100

4646

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140 160 180 200

#v
er

tic
es

 m
er

ge
d

#iterations

dag-merge
m-lcs

Figure 6. matched vertices vs iterations for
maximum degree 5

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140 160 180 200

#v
er

tic
es

 m
er

ge
d

#iterations

dag-merge
m-lcs

Figure 7. matched vertices vs iterations for
maximum degree 10

nodes, we are able to merge around 30% of the nodes. This

is a sizeable compression. Less than 50 nodes, we are able

to compress about 50% of the nodes, which is even better.

Between 100 to 500, the percentage decreases from 30 to

about 11.

6.2.5 Time Taken

Lastly, we evaluate a very important criterion namely the

wall clock time for the M-LCS algorithm. Figure 11 plots

the time taken in milliseconds vs the number of nodes. Un-

doubtedly, M-LCS takes more time than DAG-Merge. It

also scales super linearly. However, the overhead is still

around half a second for 500 nodes, which is a very big

number for a practical workflow.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

#v
er

tic
es

 m
er

ge
d

maximum degree

dag-merge
m-lcs

Figure 8. Varying the maximum degree of a
vertex

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 5 10 15 20 25 30 35 40

#v
er

tic
es

 m
er

ge
d

#labels

3
5
7

10

Figure 9. Varying the number of labels

7 Related Work

To the best of our knowledge this is the first work that ex-

plicitly looks at the problem of combining two workflows.

The M-LCS and Dag-Merge problems are also novel.

[5] talks about grid scheduling algorithms using peer to

peer systems as the framework. They define a task group

as a set of tasks that use the same files. They are scheduled

on the same set of machines to maximize temporal locality.

The SMARTS system [8] looks at a single workflow, and

tries to find nodes that do similar computations. They are

scheduled on the same resource to increase temporal local-

ity.

On the theoretical side, LCS(Longest Common Sub-

sequence) is a classic problem described in various text-

books [7]. Different variants of LCS have been studied in

[2]. It proposes different algorithms, which are more effi-

cient than the classic O(mn) time dynamic programming

algorithm in terms of time and space under various con-

4747

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450 500

%
 o

f v
er

tic
es

 m
er

ge
d

#nodes in the DAG

DAG-Merge
M-LCS

Figure 10. Varying the number of nodes

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300 350 400 450 500

tim
e(

m
s)

#nodes in the DAG

DAG-Merge
M-LCS

Figure 11. Time taken (ms)

straints. [10, 11] extend the problem to the LCS of two

strings where each literal can have a set of values. This is

solved by a dynamic programming algorithm.

[15] tries to generalize the problem to find the LCS of

two trees. Here the dual of the LCS is a node deletion based

edit distance metric. A later approach [1] extends the idea

to an LCS of two matrices and an LCS of two forests. It

proves the problem to be NP-Complete in both the cases.

8 Conclusion

In this paper we looked at combining two workflows, and

compressing them by eliminating redundancy. After a pre-

liminary theoretical investigation, we arrive at two problems

namely DAG-Merge, and M-LCS, which were proved to be

duals of each other. The M-LCS problem turned out to very

important in other fields like XML document transmission

and genomics. We subsequently, evaluated practical imple-

mentations of both the algorithms. We observed that DAG-

Merge was suitable for only a very limited set of workflows.

However, M-LCS proved to be a very versatile algorithm. It

was able to compress around 40-50% of the vertices for ran-

dom workflows, which is a very significant reduction in the

size of the workflows.

References

[1] A. Amir, T. Hartman, O. Kapah, B. R. Shalom, and D. Tsur.

Generalized LCS. Theor. Comput. Sci., 409(3):438–449,

2008.
[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest

common subsequence algorithms. In SPIRE ’00: Proceed-
ings of the Seventh International Symposium on String Pro-
cessing Information Retrieval (SPIRE’00), page 39, Wash-

ington, DC, USA, 2000. IEEE Computer Society.
[3] E. Bloomberg. Partial-order alignment of RNA structures.

Master’s thesis, Brown University, 2005.
[4] C. Branden and J. Tooze. Introduction to Protein Structure.

Garland Publishing, New York, 1999.
[5] C. Briquet, X. Dalem, S. Jodogne, and P.-A. de Marneffe.

Scheduling data-intensive bags of tasks in p2p grids with

bittorrent-enabled data distribution. In UPGRADE ’07: Pro-
ceedings of the second workshop on Use of P2P, GRID and
agents for the development of content networks, pages 39–

48, 2007.
[6] H. Chen and P. Mohapatra. A context-aware html/xml docu-

ment transmission process for mobile wireless clients. World
Wide Web, 8(4):439–461, 2005.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. McGraw-Hill, 2003.

[8] S. V. et. al. Smarts: Exploiting temporal locality and paral-

lelism through vertical execution. In ICS.
[9] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview

of workflow management: from process modeling to work-

flow automation infrastructure. Distrib. Parallel Databases,

3(2):119–153, 1995.
[10] D. S. Hirschberg and L. L. Larmore. The set LCS problem.

Algorithmica, 2(1-4):91–95, Nov 1987.
[11] D. S. Hirschberg and L. L. Larmore. The set-set LCS prob-

lem. Algorithmica, 4(1-4):91–95, June 1989.
[12] http://en.wikipedia.org/wiki/Junk DNA. Junk dna. Techni-

cal report, wikipedia, 2008.
[13] C. Lee. Generating consensus sequences from partial or-

der multiple sequence alignment graphs. Bioinformatics,

19(8):999–1008, May 2003.
[14] N. Mandal, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi.

Integrating existing scientific workflow systems: the ke-

pler/pegasus example. In WORKS ’07: Proceedings of the
2nd workshop on Workflows in support of large-scale sci-
ence, pages 21–28, 2007.

[15] S. Mozes, D. Tsur, O. Weimann, and M. Ziv-Ukelson. Fast

algorithms for computing tree LCS. In Proceedings of the
19th annual symposium on Combinatorial Pattern Match-
ing, pages 230–243, 2008.

4848

