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ABSTRACT

We present a framework for non-asymptotic analysis of real-world
wireless networks that captures protocol overhead, congestion bot-
tlenecks, traffic heterogeneity and other real-world concerns. The
framework introduces the definition of symptotic 1 scalability, and a
metric called change impact value (CIV) for comparing the impact
of underlying system parameters on network scalability. A key idea
is to divide analysis into generic and specific parts connected via a
signature – a set of governing parameters of a network scenario –
such that analyzing a new network scenario reduces mainly to iden-
tifying its signature.

Using this framework, we present approximate scalability expres-
sions for line, mesh and clique topologies using TDMA and 802.11,
for unicast and broadcast traffic. We compare the analysis with dis-
crete event simulations and show that the model provides sufficiently
accurate estimates of scalability. Based on the symptotic expres-
sions, we study the change impact value of underlying parameters
on network scalability. We show how impact analysis can be used
to tune network features to meet a scaling requirement, and deter-
mine the regimes in which reducing routing overhead impacts per-
formance.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscellaneous

Keywords

Scalability, Performance Analysis, Non-Asymptotic.

1. INTRODUCTION
Consider the following problem: a multi-hop wireless network

running OLSR [2] routing over 802.11 radios needs to be deployed
in a roughly regular structure (Manhattan grid). Each node needs

1The word “symptotic” is not part of the English lexicon. Our in-
spiration comes from the commentary of Euclid’s Elements by Pro-
clus [1] “.. some are asymptotic, namely, those which however far
extended never meet, and others that do intersect are symptotic..”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’12, October 2012, Paphos, Cyprus.
Copyright 2012 ACM 978-1-4503-1621-7/12/10 ...$15.00.

a VoIP stream to another node (say randomly chosen) and is active
20% of the time. Roughly how many nodes N can one deploy?

Such a question, with straightforward variations, may arise in a
deploying a wireless network in diverse situations: deploying in-
stant infrastructure after a disaster, a community mesh network in a
rural area, a military infrastructure-less network, a sensor network,
etc. Often, the answer does not need to be precise, but quick, and for
a wide range of parameter combinations. Currently the only reason-
able way available to answer such questions is to construct a simu-
lation model and iterate over different values of N to find the upper
bound. Not only does this take a prohibitively long time when N
is large, but also requires re-running over again to answer follow up
questions: what if we used a faster radio, or used different proto-
cols in place of OLSR and 802.11, or a different encoding for VoIP
is used? What if it is a different topology or a different traffic pat-
tern? Last, but not least, simulations do not provide insight into the
relationships between parameters.

Analytical modeling appears a natural fit. However, much of the
analytical research thus far has been along asymptotic lines (e.g [3,
4, 5, 6]). While these have provided tremendous insight in the lim-
iting case, asymptotic scalability has limited applicability to finite
real-world networks. A network may be asymptotically unscalable,
yet scale comfortably to the requisite number of nodes in a given de-
ployment. Further, such work does not consider control protocols,
bottleneck phenomena, and the multiplicity of traffic types that are
an inherent part of real-world systems.

In this paper, we present symptotics – a framework for approxi-
mate non-asymptotic scalability analysis of wireless networks. Un-
like asymptotic analysis that typically characterizes a network in bi-
nary terms (does it scale or not), symptotics seeks to provide a quali-
fied answer (how many nodes does it scale to) by way of closed-form
expressions. The framework defines the concept of symptotic scal-

ability, and accommodates real-world concerns including protocol
overhead effects, congestion bottlenecks and a multiple traffic types
such as unicast and broadcast. It provides a unified approach to an-
alytically modeling a suite of network scenarios without re-working
the analysis for each, and a systematic way of determining the im-
pact of changing a scenario parameter on performance.

Our thesis is that the performance of a network scenario is dom-
inated by a few major factors, and by focusing only on those and
abstracting away all other details, one can gain reasonable accuracy
while avoiding complexity. Specifically, we divide the model into
two parts – a) a generic equation for a class of network scenarios that
captures the performance in terms of a set of major factors termed
the signature of the scenario; b) instantiation of this equation us-
ing the specific signature of the given network scenario to derive a
non-asymptotic (symptotic) closed-form expression for this network
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We term Γj the contention factor for component j. The contention
factor Γj(m) depends on the topology around m, on the medium
access control protocol in use, and the kind of transmission (e.g.
unicast or broadcast), which in turn depends on the traffic type j.
The contention factor is related to the spatial reuse achieved in a
wireless network. The higher the contention factor, the lower is the
spatial reuse.

Thus, from equations 1 and 2, we have

R(m) = W (m)−
∑

j

(1 + Γj(m))Dj(m) (3)

Now consider Dj(m). This is the contribution to m’s demanded
capacity from traffic component j. Suppose that every node sources
on average the same amount of traffic Lj for a given traffic compo-
nent j. The contribution to Dj(m) is the traffic sourced by m plus
the traffic from other sources relayed by m. We call the latter (the
relayed traffic) the transit factor of j, and denote it by Υj . For ex-
ample, in a 5 node line network with each node flooding one packet
each, 4 packets are relayed by the central node, and so its transit fac-
tor is 4. A beacon signal sent periodically by a node has a transit
factor of 0 since it is not relayed. The expected demanded capacity
is then Dj(m) = Lj · (1 + Υj(m)).

Finally, many medium access control schemes (e.g. CSMA/ CA)
have non-trivial inefficiency, that is, the effective rate is lower than
the actual rate. Thus, the actual capacity available for multi-access
communications is a fraction of W . Assuming MAC efficiency is
indepenent of traffic type, and denoting it by η, and based on the
above discussion, we rewrite equation 3 as

R(m) = ηW (m)−
∑

j

(1 + Γj(m))Lj (1 + Υj(m)) (4)

A number of assumptions have been made above, notably a) con-
tention is the only source of “blocked” capacity; b) load in a 2-hop
neighborhood is roughly the same on average; and c) every node
sources the same load. These assumptions allow us to reduce the
complexity of the model without compromising on the key elements
to accuracy – as attested to by our validation results in section 5. Re-
laxing these and other assumptions could make the predictions even
better and is a topic for future work.

Using equation 4, we now consider the definition of symptotic
scalability and the generation of a “master template” for symptotic
analysis.

3.1 Symptotic Scalability
As motivated in section 1, we seek non-asymptotic scalability, that

is, to provide an answer to a question such as “how many nodes will
my network scale to”? We begin by observing that such a ques-
tion only makes sense for expandable network scenarios, that is,
those that have a “scale agnostic” specification. Examples of ex-
pandable network topologies include regular topologies such as line,
ring, mesh etc., as well as irregular stationary topologies based on
some probabilistic model (e.g random unit-disk graphs, scale-free
networks etc.), and mobile scenarios that have an expandable mobil-
ity model (e.g. the random waypoint model).

An arbitrary network with a specific set of nodes and a specific
set of links between them is not expandable because there is no
“rule” to generate higher-sized versions. A similar differentiation
can be made with respect to traffic as well. Thus, the question “how
many nodes will a network scale to” is well formed only for expand-
able networks, and not for arbitrary networks. On the other hand,
note that computing the capacity of a given network is a reasonable
proposition for arbitrary (non-expandable) networks.

We consider the class of expandable networks for which the resid-
ual capacity monotonically decreases as the size N increases. This
class clearly includes regular networks with uniform traffic model.
It also includes irregular expandable networks averaged over multi-
ple instances, although a particular random network of size N may
happen to have a higher residual capacity than a particular random
network of size N − 1. An example of a network scenario not in
this class is when the set of nodes sourcing traffic is constant (say
1). Network scenarios not in this class are arguably asymptotically
scalable and so are not of interest for symptotics.

For such networks, there is a point at which the monotonically
decreasing residual capacity of an expanding network scenario tran-
sitions to negative. This is the maximum number of nodes support-
able, or the “symptotic” scalability.

More precisely, let RN (m) denote the residual capacity of node
m in a network scenario with N nodes.

DEFINITION 3.1. The symptotic scalability of a network scenario

is the number of nodes X such that for all N ≤ X , and for all m,

RN (m) ≥ 0, and for all N > X , there exists a node mb such that

RN (mb) < 0.

We call mb a bottleneck node. Note that a network scenario may
have multiple bottlenecks, that is, nodes with equally lowest residual
capacity, in which case mb is any one of them.

Setting R(mb) = 0 per definition 3.1, and dropping the reference
to mb with the notion that hereinafter it is implicit, we have from
equation 4

ηW =
∑

j

(1 + Γj)Lj · (1 + Υj) (5)

where η is the efficiency, W is the available capacity (radio rate),
Γj is the contention factor for traffic type j, Lj is the average offered
(sourced) load (in bps) per node for type j, and Υj is the transit factor
for traffic j.

Equation 5 may be considered the basic “master template” that we
further instantiate on a per-scenario basis. This requires us to further
expand the above parameters to generate the expression character-
izing the performance for that system. Specifically, the contention
factor Γjand the transit factor Υjfor each j play a critical role in
the performance, and will be referred to as the signature of the sys-
tem. To estimate the performance of a given system, one simply
has to identify the signature and plug it into the master template.
For asymptotically unscalable2 networks, the transit and/or the con-
tention factors are a function of N and hence equation 5 is of the
form ηW = f(N,Lj), which can then be solved for N . In section
4, we give several detailed examples of how to identify the signature
of a network scenario and instantiate and solve the master template.

In contrast to previous works (e.g. those mentioned in section 2),
equation 5 can capture a multiplicity of traffic types that a typical
real-world system has. For instance, consider a network in which
each node generates VoIP as well as web-browsing traffic, each with
a different source rate and destination distribution, and additionally
a network-wide “situational awareness” broadcast traffic. Each of
these can be modeled with a separate signature (Γj , Υj). Further,
control traffic is accommodated simply as yet another traffic type.

2The typical multi-hop wireless network is asymptotically unscal-
able [3]. While our framework can accommodate asymptotically
scalable networks as well, these are largely uninteresting from a
symptotic viewpoint as the scalability is infinite nodes.
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4. SYMPTOTIC ANALYSIS OF NETWORK

SCENARIOS
We consider 12 network scenarios generated from all possible

combinations of the following: three topologies – line, degree-4
mesh (Manhattan grid) and clique (complete graph); two traffic types
– unicast and flooding (network-wide broadcast); and two MAC pro-
tocols – TDMA (Time Division Multiple Access) and IEEE 802.11

DCF.
In all cases, we only have one type of data traffic and two types of

control traffic – routing advertizements and beacons (“Hello” broad-
casts). In other words, with reference to equation 5, j = 3. Thus, for
the purposes of this section, the specific master equation we consider
is

ηW = (1 + Γd)Ld(1 + Υd) + (1 + Γl)Ll(1 + Υl) +

(1 + Γh)Lh(1 + Υh) (6)

where Γd, Γland Γhdenote the contention factors for data, OLSR
link-state updates (LSUs) and OLSR Hellos respectively, Υd, Υl,
and Υhdenote the transit factors for data, LSUs and Hellos respec-
tively, and Ld, Ll and Lh denote the offered load per node for each
traffic type respectively.

The loads Ld, Ll and Lh are calculated based on the sourced
packets per second (pps) for each of data (λd), LSU frequency (λl)
and Hello frequency (λh) respectively, the payload sizes, and the
network and MAC layer headers. The header lengths and variables
we use for the rest of this section are summarized in Table 1. To
avoid too many leading or trailing zeros, all rates are in units of kbps
(103 bits/sec).

For network-wide broadcast (flooded) packets such as OLSR link
state advertizements and flooded data, we assume a single broadcast
transmission at the link layer by each node3.

The symptotic scalability expressions for the 12 scenario combi-
nations are summarized in Table 2 (for TDMA-based scenarios), and
Table 3 (for 802.11 based scenarios). In each table, the first column
indicates the specific scenario, the next six columns are the signa-
ture for the scenario and the last column is the scalability expression
derived by substituting the signature into the master template (eq 6)
and solving symbolically for N using the Sage mathematical and
symbol manipulation software [18]. Note that the transit factors are
identical because the MAC protocol does not affect how many paths
go through a node.

Deriving the signature consists of first identifying the bottleneck
node, if relevant, and then analyzing the contention and transit fac-
tors. Below, we illustrate the derivation of the first two rows in Ta-
ble 2 (namely, TDMA Line network flooding and unicast). For lack
of space, we are unable to describe the other derivations, but the
complete details can be found in [19].

4.1 Example: Line network running TDMA
We consider a spatial-reuse TDMA model with node schedul-

ing, also referred to a broadcast scheduling [21] and used in oper-
ational systems, for example [22]. That is, time is slotted and slots
are grouped into repeating frames. Every node is assigned a slot
in a frame in which it is allowed to transmit and its neighbors re-
ceive. Thus, nodes that are neighbors or share a common neighbor
should be assigned different slots. The goal of a TDMA protocol
is to perform conflict-free assignment using the least possible num-
ber of slots. Our model captures the control overhead for doing so

3An alternate model/assumption would be multiple unicast trans-
missions at the link layer, and can also be easily analyzed with our
framework if necessary.

OLSR 802.11 Variables

LSU : 52 bytes RTS : 20 bytes Data pps: λd

Hello : 48 bytes CTS : 14 bytes LSU pps: λl

Net Hdr: 20 bytes ACK : 28 bytes Hello pps: λh

MAC Hdr: 28 bytes Datarate: W

Efficiency: η

Datasize: B

Table 1: Protocol header sizes from [2, 20] and notation for free

variables used in analysis.

by means of an additional “control slot” which we assume is large
enough to hold any necessary messages for managing the slot as-
signment process.

A line network can be node scheduled using 3 slots, for example,
using slot numbers 1, 2, and 3 repeating from left to right on the line.
Thus, a typical node has to defer for nodes transmitting in other slots
than its own and the control slot, and thus the contention factor is 3
for both link-layer unicast and broadcast. Since all traffic uses one
of these modes, all of the contention factors are 3.

Consider the transit factor (TF). For broadcast flows (flooding), all
nodes except the one at the ends have equal load. For unicast flows
the node at the center (two nodes if N is even) is the bottleneck.
Without loss of generality, assume N is odd and take the center node
(say b) as the node of interest for all cases.

The TF of Hello’s Υhis clearly zero as it is single hop. The TF
for LSUs Υlis N − 1 since every other node’s LSU is transmitted
by this node. Similarly, for flooded data, Υd= N − 1. For the TF
of unicast data, we need to compute the expected number of paths
that go through b. The probability that a given node routes through
b is the probability that the destination lies on the “other side” of

b, that is, p(B) =
(N−1)/2

N−2
. Thus, the expected number of paths is

p(B) · (N − 1) as shown.
We now perform the next step in the symptotics approach, namely

to substitute the values from the first two rows of Table 2, along with
the constants from Table 1 into equation 6. For flooding (row 1), we
get

4

125
(B + 48)Nλd +

64

25
Nλl +

304

125
λh = Wη (7)

Solving for N , we get the symptotic scalability of a line network
running TDMA, OLSR, with network-wide broadcast traffic as

N =
125Wη − 304λh

4 (Bλd + 48λd + 80λl)
(8)

Similarly, for unicast traffic (row 2), the equation is

2

125
(N + 1)(B + 48)λd +

64

25
Nλl +

304

125
λh = Wη (9)

Solving for N, the symptotic scalability of a line network running
TDMA, OLSR, with random unicast traffic is

N =
125Wη − 2Bλd − 96λd − 304λh

2 (Bλd + 48λd + 160λl)
(10)

The above illustrates the approach and steps involved in deriving
the expression within our framework for the simple example of a
line. The derivations for other rows in the two tables are similar to
the above in spirit, although the computation of transit factor can get
a bit involved for more complicated networks. Unfortunately, due
to lack of space we are not able to describe those derivations. We
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Contention Factor Transit Factor Scalability Expression
Γd Γl Γh Υd Υl Υh N =

Line Flooding 3 3 3 N-1 N-1 0 125Wη−304λh

4 (Bλd+48λd+80λl)

Line Unicast 3 3 3
(N−1)2

2(N−2)
N-1 0 125Wη−2Bλd−96λd−304λh

2 (Bλd+48λd+160λl)

Mesh Flooding 5 5 5 N-1 N-1 0 125Wη−456λh

6 (Bλd+48λd+80λl)

Mesh Unicast 5 5 5 0.4(1 + 2
√

N
)(N

3

4 + 4N
1

4 ) N-1 0 SEE CAPTION

Clique Flooding N-1 N-1 N-1 0 0 0 125Wη
Bλd+48λd+76λh+80λl

Clique Unicast N-1 N-1 N-1 0 0 0 125Wη
Bλd+48λd+76λh+80λl

Table 2: Signature set and symptotic scalability expressions for regular networks using TDMA (see below and [19] for details). The scalability for

mesh unicast is N =
(3Bλd−

√

P+Q
√

3+144λd)
2

230400λ2

l

where P = 3B2λ2
d +20000Wηλl − 3840 (12λd + 19λh)λl and Q = 96

(

3λ2
d − 10λdλl

)

B+

6912λ2
d

Contention Factor Transit Factor Scalability Expression
Γd Γl Γh Υd Υl Υh N =

Line Flooding 2 2 2 N-1 N-1 0 125Wη−228λh

3 (Bλd+96λd+80λl)

Line Unicast 3 2 2
(N−1)2

2(N−2)
N-1 0 2Bλd+125Wη−192λd−228λh

2 (Bλd+96λd+120λl)

Mesh Flooding 4 4 4 N-1 N-1 0 25Wη−76λh

Bλd+96λd+80λl

Mesh Unicast 7 4 4 0.4(1 + 2
√

N
)(N

3

4 + 4N
1

4 ) N-1 0 SEE CAPTION

Clique Flooding N-1 N-1 N-1 0 0 0 87.41
(

Wη
Bλd+96λd+76λh+80λl

)0.92

Clique Unicast N-1 N-1 N-1 0 0 0 87.41
(

Wη
Bλd+96λd+76λh+80λl

)0.92

Table 3: Signature set and symptotic scalability expression for regular networks using 802.11 (see [19] for details). The scalability expression for

mesh unicast is N =
(Bλd+96λd−

√

P+Q)2

10000λ2

l

where P = B2λ2
d +3125Wηλl − 100 (192λd + 95λh)λl and Q = 8

(

24λ2
d − 25λdλl

)

B+9216λ2
d

refer the interested reader to [19] where the derivation is described
in detail.

5. VALIDATION
In this section we present results of ns-2 simulations of some of

the scenarios analyzed in section 4. We instantiate the correspond-
ing symptotic expressions given there and compare them with simu-
lation results for the same set of parameter values (refer Table 1).

The TDMA protocol is an extension of the TDMA model avail-
able in the ns-2 distribution. Specifically, we have extended it to
a spatial reuse TDMA, that is, one that allows multiple nodes to
transmit in the same slot. We then implemented a 3-slot assignment
for line networks and a 5-slot assignment for mesh networks as de-
scribed in section 4.1. The TDMA in ns-2 already models a control
slot, which we have retained.

For 802.11, we have used the ns-2 model from an overhaul that
significantly improves on the original model [23]. The key features
include cumulative SINR computation, preamble and PLCP header
processing and capture, and frame body capture. The MAC accu-
rately models the basic IEEE 802.11 CSMA/CA mechanism, as re-
quired for credible simulation studies. The model implements mod-
els of four modulation schemes – BPSK, QPSK, 16-QAM, 64-QAM
– with 1/2 coding rate for the first three and 3/4 for 64-QAM to pro-
vide four data rates: 6 Mbps, 12 Mbps, 24 Mbps, and 54 Mbps.

The physical layer propagation model is the two-ray ground model
that is part of the WirelessPHYExt protocol for both TDMA and
802.11. The physical layer settings gives a transmission range of
450m. To create a line topology, we place nodes separated by a dis-
tance of slightly less than 450m such that only adjacent nodes are
within range. Similarly, for a mesh, only nodes adjacent in 4 di-
rections are within range. A clique is formed by ensuring that all

nodes are within 450m of each other. The simulation duration is 30
seconds, sufficient for static networks.

We have studied the symptotic scalability Nmax as a function of
pps λdfor each of the 12 network scenarios described in section 4.
Per definition 3.1, at N > Nmax the residual capacity of at least
one node is less than zero. At this point, the input rate on the node’s
transmit queue is more than the output, and the queue becomes un-
stable (that is, starts growing continuously). The ns-2 simulation
system has a finite queue length – therefore, queue instability is de-
tected as packets being dropped due to queue being full. In our sim-
ulations, the queue length is 50 packets, and we deem the network
saturated if there are non-trivial queue drops, in particular, if there
are 50 or more packets dropped.

Thus, we run simulations with increasing size Ni till we encounter
two consecutive Ni and Ni+1 such that there are no queue drops in
Ni and there are non-trivial (> 50) queue drops in Ni+1. We then
measure the symptotic scalability as the average of Ni and Ni+1.
For example, if there are no queue drops for N=40, and non-trivial
drops for N=50, the symptotic scalability is N=45. For the line and
clique networks, the increment was 10 nodes and for a mesh, the
side was incremented by 1 (i.e., the sizes were 16, 25, 36, 49 and so
on).

We have considered alternate measures such as a sudden drop in
throughput or increase in delay. The former is fairly unreliable es-
pecially for 802.11 networks where collisons cause loss. The latter
correlates well with the queue drop measurement, but harder to ob-
jectively measure, and hence we have used queue drops as an indi-
cation of saturation.

Figures 2, 3, 4, and 5 compare the symptotic scalability predicted
by our model with simulation results. Since the simulations take a
long time to run for larger sizes, we picked the radio rate and packets
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Figure 2: TDMA, Line, Unicast, with 18 Mbps radio
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Figure 3: TDMA, Mesh, Unicast, 6 Mbps radio

per second such that the y-axis maximum is not prohibitively large.
Further, due to space constraints, we have only shown a subset of
the plots, picking a subset such that each topology, MAC and traffic
type is represented at least once.

Our results show that despite its simplicity and abstraction of de-
tails, the scalability predicted by our model matches that predicted
by simulations fairly well, and adequately for practical purposes of
estimating the rough order of magnitude as motivated in section 1.

The slight discrepancy between the analysis and simulation is due
to several factors. First, the analysis is approximate by design, and
in particular due to simplifications made in the course of the deriva-
tions (e.g. assuming N − 1 ≅ N ), the accuracy is lower for smaller
N . On the other hand, we cannot compare with high N because sim-
ulations cannot scale to large sizes. Second, for unicast mesh results,
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Figure 4: 802.11, Line, Flooding, 24 Mbps radio
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Figure 5: 802.11, Clique, Unicast, 6 Mbps radio

we have assumed that OLSR picks randomly from amongst shortest
paths, which may not be the case. Third, for CSMA results, the ran-
dom processes are only captured in the aggregate. Finally, due to
simulation running time constraints, the node step size granularity
is high. In particular, in Figure 3 the derivation for mesh unicast in
Appendix A is really valid only for large N and therefore we see
higher discrepancy at lower N .

The simulation results attest to the fact that the approach taken
and approximations and assumptions made do not excessively com-
promise accuracy. The differences seen are within reason, and the
slopes parallel for the most part. Our simulation study gives us con-
fidence that our model, despite its simplicity, is adequate for rough
order of magnitude scalability predictions. In the next section, with
a validated model in hand, we turn our attention to impact analysis.

6. IMPACT ANALYSIS
In this section, we introduce a methodology for analyzing the im-

pact of parameters such as routing overhead, radio rate, and offered
load on scalability, and illustrate how it can be used to drive design
choices to meet a scaling requirement. We then study how the im-
pact changes with nominal values of network parameters.

6.1 Change Impact Value
In section 4, we derived several expressions of the form N =

f(X) where X= (x1, x2, . . . , xn) is the parameter vector on which
N depends (see for example equation 8 in section 4).

Let V be the nominal instantiation of X , with (x1 = v1, x2 =
v2, . . . , xn = vn). Let Vxj=k represent that parameter xj is instan-
tiated with value k in V

DEFINITION 6.1. The Change Impact Value CIV (xj , α) =
f(Vxj=α·vj

)

f(V )
.

In other words, CIV (xj , α) is the factor change in scalability
between using a particular (nominal) value for xj and using α times
that value.

For example, in the expression N = W − C, where V = (W =
100, C = 10), CIV (W, 2) denotes the impact of doubling W on N
and is the ratio between 2W−C and W−C for nominal parameters
V and is 190/90 = 2.11.

The CIV depends upon the choice of α for the particular parame-
ter. Increasing a parameter may increase or decrease the scalability.
A parameter whose increase increases the scalability is called pos-

itively aligned and one that decreases the scalability is called neg-

atively aligned. To compare the impact uniformly, we shall choose
αp > 1 for positively aligned parameters and 1/αp for negatively

36



aligned parameters. In particular, for the remainder of this section,
we will use α = 2 for W , and α = 0.5 for λl. For brevity, we shall
often use “impact” to refer to the CIV.

A natural question is: isn’t this equivalent to simply taking the
differential coefficient and evaluating/instantiating it? To see why
this won’t serve our needs, consider two expressions y = 1 + x,
and y = 1000 + x, and the nominal value of x is 10. In both cases,
dy/dx is 1, but the impact of doubling x is much lower for the second
equation (CIV=1.01) than the first (CIV=1.91), since the nominal
value of the constant is much bigger in the second. The magnitude
of nominal values play a crucial role in impact, and our approach is
tailored to accommodate that in the simplest possible manner.

6.2 Using CIV for Network Design
We begin by illustrating how impact analysis can be used to tune

a system’s features to meet a scalability requirement. Consider the
following example scenario: A mesh network has to be deployed in
a very remote area to provide VoIP phones, mostly for a community
of about 2000 houses to talk amongst themselves. The going-in ar-
chitecture is to use OLSR over 802.11b radios (max rate 11 Mbps),
a G.711 VoIP codec (174 kbps duplex, 132 pps, 160 byte packets
including network- layer headers) [24]. For lack of any other infor-
mation, traffic is assumed to be random unicast, and we assume a
conservative active time of 20%.

Plugging these parameters into the symptotic equation in Table 3
for 802.11-based mesh unicast (row 4), the scalability turns out to
be only 116 nodes. To increase the scalability, we can either go to
higher rate radios, a more efficient codec, or reduce routing over-
head via a better routing protocol. We apply impact analysis from
section 6.1, and compute the CIVs. Using α = 2 for radio rate (W )
and α = 0.5 for source packets-per-second (λd) and routing over-
head pps (λl)), we have the CIVs as: 4

CIV(W ) = 2.965; CIV(λd) = 2.811; CIV(λl) = 1.020

Thus, radio rate W and source rate λdare about equally domi-
nant, providing approximately a 3x increase in scalability. However,
source rate is more easily changed by using a better codec for very
little tradeoff in clarity. Suppose we pick the G.723 codec (33 kbps
duplex, 66 pps, 64 byte packets) instead with everything else re-
maining the same. This is factor of 5 lower in load and therefore we
should expect it to scale much more than 2.811*116 = 326 nodes.
Recalculating, the scalability is now 630 nodes, which is a vast im-
provement, but still well below the target 2000. Now, the CIVs are

CIV(W ) = 2.588; CIV(λd) = 2.382; CIV(λl) = 1.000

Notice that depending upon the values of other nominal parame-
ters, the impact of changing a parameter is different. In particular,
the impact of changing W is now non-trivially higher. Given that
we have already reduced λd, we turn to 802.11g radios with a max-
imum rate of 54 Mbps (a factor of 5̃ improvement). With this, the
scalability is about 2507 nodes which meets the requirement. Now
the CIVs are

CIV(W ) = 2.502; CIV(λd) = 2.231; CIV(λl) = 1.014

4Technology choices offer a range of factor-of improvements, and
rather than pick different α’s for each, we have simply picked the
smallest integer factor, namely 2, for simplicity. The relative CIVs
for α = 2 should adequately capture the relative CIVs with other
α’s for our purposes.
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This suggests that if we could further double the radio rate, we
might reach 2.5*2507 = 6250 nodes.

In all of the above, we notice that the CIV(λl), that is, the impact
of routing load is negligible. While it is not surprising that radio rate
and load are more impactful, we were surprised by the magnitude of
the difference.

Given the amount of work that has gone into innovative tech-
niques for reducing routing overhead in a multi-hop network, it would
be helpful to know in what regimes, if any, routing overhead has a
high impact on scalability. Accordingly, we present a study of the
CIV as a function of various nominal parameters.

Figure 6 shows the CIVs of radio rate, source load and overhead
over a range of traffic loads. For a vast majority of this space, the
impact of doubling radio rate or halving source load is vastly higher
than halving overhead. The gap narrows at very low loads where
reducing overhead becomes about equally important as halving of-
fered load. This is because at low loads, the network scales to larger
sizes in which routing overhead (which grows as O(N) per node)
occupies a larger fraction of the capacity. On the other hand, this
is the regime in which scalability is at its highest, and one may not
need the increase quite as much as at higher loads.

Figure 7 shows that the impact of overhead reduction is much
higher for a regular mesh than for line or clique, and higher when
load balancing is used. This is because the lower the effective load
on the bottleneck, higher is the fraction of LSUs, and consequently
more impactful it is.

We have gained a number of insights from impact analysis. First,
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as we have shown, computing the CIVs can assist in deciding which
of several options provides the designer the most benefit for a given
cost. Second, it appears that for most network scenarios the impact
of radio rate and load on scalability is far higher than that of control
overhead. Further, the absolute value of CIV for typical networks is
close to 1, which means reducing it is largely ineffective for scalabil-
ity5 Third, topologies with more opportunities to spread out traffic
(e.g. mesh with unicast) offer more gain from reducing overhead,
reducing load or increasing radio rate. In particular, load balancing
can significantly amplify the impact of routing protocol efficiency
gains.

In the past, much emphasis has been placed on ideas for reducing
routing overhead. In the big picture, though, improving the radio
rate and codec technologies is much more impactful than overhead
reduction in real-life wireless networks. On the other hand, load bal-
ancing has received scant attention relatively and holds the potential,
in certain network scenarios for better impact.

7. CONCLUDING REMARKS
Considerable effort has been expended over the last couple of

decades in designing wireless networks such as sensor, mesh and ad
hoc networks. However, the deployment of such networks requires
an understanding of their non-asymptotic scalability, and tools for
performance prediction and impact analysis. To build useful tools,
we first need a validated framework that can work for a large num-
ber of potential real-world scenarios in a unified manner. We have
presented such a framework and shown that it can capture a variety
of topologies, protocols and traffic types and congestion phenomena
thereof. We have validated our model’s predictions using simula-
tions. Our novel impact analysis enables designers to pick the most
effective technology features, and has given us insight on which re-
search pursuits might be more impactful.

In ongoing work, we are extending the framework to irregular ex-
pandable network scenarios such as random and mobile networks.
Other future directions include refining the framework by relaxing
some assumptions, and deriving signatures for other topologies (e.g.
hierarchical mesh), other MAC and network protocols (e.g. busy
tone, AODV), and node architectures (e.g. multi-radio cognitive net-
works) and combinations thereof. The rudimentary impact analysis
approach presented here, while useful, ought to be developed into
a more sophisticated impact analysis theory. An implementation of
these models in a publicly available tool for performance prediction
is another fruitful future direction. Finally, we would hope for a
collaborative extension of this framework toward one that is more
powerful, and that includes a growing “library” of signatures and
the associated analyses. The open source Sage environment [18], in
which we have coded all of the framework, and which we shall pub-
lish on the Internet, can facilitate such “crowd sourced” evolution
toward a publicly available tool.
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