
SamaritanCloud: Secure and Scalable Infrastructure
for enabling Location-based Services

Abhishek Samanta Fangfei Zhou Ravi Sundaram
Northeastern University

Boston, MA 02115
Email: {samanta, youyou, koods}@ccs.neu.edu

Abstract—With the maturation of online social networks
(OSNs), people have begun to form online communities and look
for assistance at a particular place and time from people they
only know virtually. However, seeking for such help on existing
OSN infrastructures has some disadvantages including loss of
privacy (in terms of both location as well as the nature of the
help sought) and high response times. In this paper we propose
SamaritanCloud, a scalable infrastructure that enables a group of
mobile and geographically-dispersed personal computing devices
to form a cloud for the purpose of privately sharing relevant
locality-specific information. From a technical standpoint our
main contribution is to show that only additive homorphic en-
cryption is sufficient to compute nearness in a cryptographically
secure and scalable way in a distributed setting. This allows us
to harness the benefit of linear match time while guaranteeing
the locational privacy of the clients. In terms of performance
our system compares favorably with simpler publish/subscribe
schemes that support only equality match. We demonstrate the
practical feasibility of SamaritanCloud with an experimental
evaluation.

Index Terms—location-based service, mobile devices, privacy,
homorphic encryption

I. I NTRODUCTION

A. Motivation

People often have the need for assistance from strangers
in remote locations. Consider the following requests: please
tell the marathon runner with bib #123 I will wait at the
finish line; did I leave my keychain on campus? is there a
brown puppy roaming in the playground? In this paper we
propose, not just a new architecture, but, in fact, a new cloud
based service - SamaritanCloud - the goal is to provide a
way for people to connect with others (possibly strangers)
in a remote location and obtain (physical) help from them.
SamaritanCloud is deployed as cell phone application, users
submit their requests to the cloud which coordinates users’
requests and efficiently find possible candidates to respond
to the request. Such a service will require efficient technical
solutions to problems such as scalability, privacy, reputation
etc to overcome the social barriers of soliciting help from
strangers. We focus primarily on the technical aspects of
scalability and privacy (matching people with strangers ina
secure and private way) so that the need for help and the
ability/desire to assist are disclosed safely.

Since the emergence of online social networks (OSNs),
people have sought help from their social contacts. The most
common method to seek for help on social network sites,

e.g, Facebook, Twitter, or “strangers helping strangers” [1],
is post - an user posts his/her question or request on his/her
social network page or a relative group page and waits for
response, which is very similar to subscribing to an email list
and broadcast questions except exposing more privacy. This
method is simple but suffers from three major drawbacks.

1) High/unpredictable response latency:Popular OSNs,
e.g., Facebook, Twitter own worldwide users, who live in
different locations and have different schedules. A post on
a group page could not reach all the members in a short time
and may be overwhelmed by other posts soon.

2) Limited range of request subjects:Groups on OSNs
are typically centered around interests, occupations, genders,
ages. So, it is hard to elicit response for time-restricted and
location sensitive questions. Most online requests focus on
recommendation, suggestions and people do not make off-line
offer before they build trust on each other.

3) Privacy loss:Users requesting help on OSNs could end
up exposing themselves to a large group, including friends they
know in real life, as well as users, who are not willing/able to
offer help. Unnecessary privacy leak may affect user’s personal
life and should be avoided.

B. Related Work

Geosocial networking [2]–[5] offers location based services
(LBS) to users to interact relative to their locations. LBS
typically is an information or entertainment application that is
dependant on location of user. By these services users are of-
fered possibilities to find other people, machines and location-
sensitive resources. Some applications [6], [7] match users
with locations of interest. These services are used for finding
a physically proximal social contact or for crowd sourcing.
Many of such public LBS provide no privacy while some
offer limited protection on an opt-in or opt-out basis. Here
we briefly categorize the different approaches to providing
privacy, as well as the associated shortcomings.

1) Middleware: Geopriv [8] and LocServ [9] are policy-
based privacy management approaches for secure location
transfer that employ a trustworthy middleware mediating
between location-based applications and location tracking
servers. Geopriv [8] describes an approach to securely transfer-
ring location information and associated privacy data by creat-
ing “location objects” that encapsulate user location dataand
associated privacy requirements. Once “location generator”

2

(e.g. user device) creates an “location object”, it sends itto a
middle server which forwards the object to “location recipient”
based on different kinds of rules. LocServ [9] is a middle-
ware service that lies between location-based applications and
location tracking servers. It offers a general framework of
components that allows users to apply general policies to
control release of their location information. However, the
practicality of such systems have yet to be determined, as the
trustworthiness of middleware is hard to guarantee.

2) Dummies or Anonymity:Instead of sending out the exact
location, a client sends multiple different locations to the
server with only one of them being true [10]. The drawback
of such schemes is that over the long run the server is able to
figure out the client’s location by comparing the intersection
of uploaded locations. Some other schemes [11], [12] separate
location information from other identifying information and
report anonymous locations to the server. However, guaran-
teeing anonymous usage of location-based services requires
that the precise location information transmitted by a client
cannot be easily used to re-identify the subject.

3) Location hiding:Clients define sensitive locations where
they do not want to be tracked, and the location-based appli-
cation stops tracking when the user gets close to those areas
[13].

4) Location perturbation:These schemes “blur” the exact
location information to a spatial region [14]–[17] or send a
proxy landmark instead [18] and hence, are not suitable for
applications that require accurate locations.
The scheme presented in this paper usesclient-specific, per-
sonalizedandglobal blurs that are random elements in a finite
field to guarantee perfect accuracy and cryptographic security;
more on this in the sections to follow.
To complete our review of related work we briefly survey
the literature on homomorphic encryption. Homomorphic en-
cryption is a type of encryption scheme that provides ability
to perform arithmatic operation on cipher text and get the
encrypted result which is equivalent to the encryption of
the result by applying the same arithmatic operation on the
plaintext. The encryption systems of Goldwasser and Micali
[19], and El Gamal [20] are known to support either addition
or multiplication among encrypted cypher texts, but not both
operation at the same time. In a breakthrough work, Gentry
[21] constructed a fully homomorphic encryption scheme
(FHE) capable of an arbitrary number of addition and mul-
tiplication on encrypted data. Fully homorphic encryption
schemes are very powerful as it computes any function on an
encrypted ciphertext. But, Lauter et al [22] showed that fully
homomorphic encryption schemes till date are very resource
consuming and are impractical to be used for most of practical
purposes.

C. Our Contributions

To overcome the above mentioned drawbacks of LBS and
OSNs, we propose SamaritanCloud, a location-based cyber-
physical network allowing people to reach friends or strangers
in desired locations for help. SamaritanCloud is easily de-

ployed as a location-based cell phone application; the cloud
coordinates client requests and efficiently finds candidates who
are able/willing to offer help, even possibly physical help, in
real-world life-threatening emergencies.

From a technical standpoint our primary contribution is to
show how partially homomorphic encryption can be adapted to
a distributed setting so as to guarantee cryptographic security
without sacrificing efficiency gains. The resulting protocol
finds near-neighbors in constant-time thus providing efficient
and private match of help-seekers and help-givers.

SamaritanCloud preserves efficiency and privacy while cal-
culating near neighbor, by employing different blurring tech-
niques and partially homomorphic encryption.

II. SYSTEM DESIGN

A. System Model

SamaritanCloud consists ofm servers and it servesn
clients. Each client has a mobile device with enough com-
putation power to efficiently encrypt-decrypt using additive
homomorphic functions. Clients are assumed to share a com-
mon key with which they exchange private messages that
are denied to the cloud. Servers are inter-connected with
super-fast network connectors. SamaritanCloud is efficient in
simple arithmatic computations (viz. addition, subtraction) and
also broadcasting to clients. On the other hand, a client can
efficiently talk to SamaritanCloud or a small group of other
clients. SamaritanCloud is used to authenticate clients and
to initiate distributed near-neighbor computation. Once the
querying client knows the set of near neighbors, it sends
the help request to them. Each client is associated with
an username, password and profile. A client uses username
and password for authentication. A profile is a collection of
variables and their respective values (or range of values).
Variables are drawn from a metric space and for the purposes
of this paper are assumed to take real numbers. To obtain bet-
ter scalability, SamaritanCloud delegates all computationally
extensive operations, viz. distance computations, encryption-
decryption process, to the clients.

B. Attack Model

There areu adversaries (unknown to SamaritanCloud)
present in the network. These adversaries form a group and
launch attacks to retrieve profile information of other good
clients. Adversaries follow SamaritanCloud protocol to avoid
detection and also exchange informations among themeselves
to launch an attack. The adversaries try to extract partial or
full profile information from blurred profile data of a client.

C. Definitions and Preliminaries

We present some definitions we will need later on
1) Distance: The distance between two profilesp1, p2,

represented asd-dimensional vectors, is defined as:

‖p1 − p2‖ = (Σi(|pi1 − pi2|)
2)(1/2),

wherepi1 and pi2 are the values of theith dimension ofp1
andp2, respectively.

3

2) Near-neighbor:Given a specific clientcq, a set of clients
C, and a distance valuedist, ci ∈ C, cq 6∈ C, is said to be
a near-neighbor ofcq if the distance betweenpq andpi is at
mostdist, i.e. if

‖pq − pi‖ ≤ dist,

wherepq andpi are profile data ofcq andci, respectively.
3) Blur: Blur is a random number which is used to blur

data. e.g. datap is blurred with a random blurr as follows,

β±

r (p) = (p± r) modP,

wherer ∈ [0, P) andP is a large public prime number.
4) Profile: Profile (pi) of a client ci, is defined as a

collection of informations ofci, viz, x and y coordinates of its
current location, maximum amount of weightci can help with,
area whereci can help etc. A profile of a client is represented
as ad-dimensional vector (ind-dimensional Euclidean space).

5) Tolerance-value:Tolerence value is the maximum dis-
tance between profile of a clientcj and profile requested by
cq, within which cj receives help request fromcq.

TABLE I
TABLE OF NOTATION

Notation Explanation
ci ith client
cq A client which needs help
C Set of clients
pi Profile data ofci, represented asd-dimensional vector
pij ith dimension ofpj
pq Profile data requested bycq , represented as

d-dimensional vector
p
q
i ith dimension ofpq

βr(p) Profile datap blurred withr
ξk(p) Encryption of datap using keyk
ξh
k
(p) Encryption of datap using keyk, using additive

homomorphic encryption
δh
k
(c) Decryption of cipherc using keyk
sk Secret key only known to clients
iT ith entry of a tupleT

The different kinds of communications between the cloud
and a client are classified as follows,

Authentication: A client uses the assigned username and
password to authenticate itself to SamaritanCloud.

ProfileUpdate: The client-side application periodically
sends update messages to the cloud to update profile data.

HelpRequest:When a client looks for help, he/she sends a
request to the cloud, which initiates distributed near-neighbor
computation.

Notification: Once the requesting client finds a set of
clients suitable for servicing a request, it forwards the request
encrypted with shared key (sk) to the set.

Follow-up: SamaritanCloud provides a simple client evalu-
ation scheme by sending follow-up notification to the candi-
dates who committed to offer help. We leave a more complete
evaluation/reputation scheme as future work.

Our scheme builds on prior work on confidential pub-
lish/subscribe schemes. In the subsections to follow we briefly
summarize these techniques.

0Texts after right arrowheads (⊲) in pseudocodes are comments

1: procedure MATCH PUB SUB(ξξk(pq)(r))
2: Sc ← φ

3: for all ci ∈ C do
4: ξk(pi)← fetch encrypted profile(ci)
5: ⊲ Encrypted profile ofci
6: if ξξk(pi)(r) = ξξk(pq)(r) then
7: Sc ← Sc ∪ ci
8: end if
9: end for

10: Send2Client(cq, Sc) ⊲ SendsSc to cq

11: return
12: end procedure

Fig. 1. Procedure invoked by the cloud after receiving a request to determine
set of clients whose profile match requested profile.

1: procedure REQUEST PUB SUB(pq)
2: r ← fetch rand cloud()
3: ⊲ Fetches random number from cloud to encrypt clients

data.
4: Send2Cloud(r, ξξk(pq)(r))
5: ⊲ Sends arguments to cloud
6: return
7: end procedure

Fig. 2. Procedure invoked by a client to request for help

D. A confidential publish/subscribe scheme and its issues

In the content-based publish/subscribe model the interests of
subscribers are stored in a forwarding server which matches
and routes relevant notifications to interested subscribers [23].
Procedures in Figs. 1, 2 and 3 are the basic primitives shown
in [23].
Observe that, in the above scheme, the server can match
profiles across clients and across time so long as the random
number used by the querying client is same as the random
number used by the server. But, for the security of the scheme,
it is necessary to change the random number often. But
this change incurs large overhead on the system. The extra
overhead is explained with the following scenario.
A client cq wants to send a request to the cloud. So, it invokes
procedure REQUESTPUB SUB, Fig.2. But, aftercq fetches
the random number (line2 Fig.2), cloud updates it. Whencq

sends the pair of random number and the encrypted value
(line4 Fig.2) back to the cloud, it is rejected as the random
number in cloud is changed. To avoid such scenarios cloud has
to keep extra bookkeeping to make sure that, all the request-
processes are completed before the random number is changed.

1: procedure PROFILEUPDATE PUB SUB(pi)
2: Send2Cloud(ξk(pi)) ⊲ Sends argument to cloud
3: ⊲ k is the encryption key, shared among all clients
4: return
5: end procedure

Fig. 3. Procedure invoked by a client to update its profile to cloud

4

For a large system this incurs large overhead.
Also, the request process in publish/subscribe is very resource
consuming as clients have to perform two encryptions before
sending a request to the cloud.
More importantly, the above scheme, without fully-homorphic
crypto-system only computes equality match and not the close-
ness of two attributes. But, Lauter et al [22], have shown that
fully-homorphic encryptions are highly resource consuming
and are not practical in real life scenario.
Therefore, the above publish/subscribe algorithm is inadequate
for our purposes.

E. SamaritanCloud

In this section we propose the protocol of SamaritanCloud.
Then we prove the correctness of our protocol. At the end we
discuss about the security offered by SamaritanCloud.
Before delving into technical details, we first present short
intuitive description of our protocol.

At the startup time, SamaritanCloud generates client specific
blur for each client and a global blur, which are kept secret
from clients.

When profile of a client changes, it blurs the changed
profile with a random personalized blur and sends it to
SamaritanCloud along with encrypted blur. Since, the profile
data is blurred with a random blur and the random blur
is encrypted, no profile information leaks from the blurred
profile. SamaritanCloud reblurs the already blurred profilewith
client-specific and global blur of the client and distributes
amongk least loaded clients.

When a client wants help, he/she blurs its own profile with
a personalized blur and sends to SamaritanCloud which in
turn reblurs the already blurred profile and broadcasts to all
clients. Along with these reblurred profiles, SamaritanCloud
also broadcasts addition of client specific and encrypted per-
sonalized blurs. With these informations, a client computes
the set of near-neighbors of requesting client. SamaritanCloud
uses both client specific blur and global blur, because without
these blurs under certain attack scenarios, an attacker can
deterministically compute profile information of a requesting
client.

1) Protocol: SamaritanCloud uses additive homomorphic
crypto system to compute distance between profiles of two
clients. It works in 3 phases as follows,

Initialization: In this phase, Fig.5, SamaritanCloud assignes
client-specific blur to all the clients. A client-specific blur csri
is assigned to a clientci. SamaritanCloud also generates a
global blur rg. Both client-specific and global blur are kept
secret from clients. These are used by SamaritanCloud to blur
client profiles.

ProfileUpdate: This phase, Fig.4, is invoked by a clientci
when its profile datapi is changed.
In this phase,ci updates SamaritanCloud with blurred profile
data. SamaritanCloud broadcasts blurredpi among set of
clientsC. The data transfer is thus composed of two subphases
as follows,

�

�
�

�
�

����
� �� �� �

��
� � � �

� �

���
�
� 	� � �

���
� �� � �

�
�

�����

�
�

�
�	

�
�

�����

Fig. 4. ProfileUpdate process in SamaritanCloud system

1: procedure INITIALIZE

2: rg ← get rand() ⊲ Global blur
3: Store(rg)
4: csri ← get rand(), ∀ci ∈ C ⊲ Client-specific blur
5: Store(ci, csri), ∀ci ∈ C

6: ⊲ Stores client-specific blur with corresponding client
7: return
8: end procedure

Fig. 5. Procedure invoked at start of SamaritanCloud system

a) Update: In Update phase, Fig.6,ci blurs its profile
datapi by blurring each dimension seperately as follows,

β−

ri(pji) = (pji − ri) mod P, ∀j ∈ [1, d] (1)

β−

ri(pi) = (β−

ri(p1i), β
−

ri(p2i), ..., β
−

ri(pdi))

where,pji is jth dimension ofpi, andri is the personalized
blur used byci.
ci also encrypts its personalized blur, using the additive-
homomorphic encryption ξhsk(ri), and sends the pair
(ξhsk(ri), β

−
ri(pi)) to the cloud.

b) Redistribution: SamaritanCloud invokes this phase,
Fig.7, when it receives an update request from a clientci.
Client-specific blurcsri, and the global blurrg are used to blur
already blurred profile ofci. We call this process reblurring.

prblurji = (β−

ri(pji)−
cs ri + rg) mod P, ∀j ∈ [1, d]

= (pji − ri −
cs ri + rg) mod P (2)

prbluri = (prblur1i , prblur2i , ..., prblurdi)

SamaritanCloud distributes reblurred profile values computed
in equation (2) along with the address ofci amongk least-
loaded clients and saves the encrypted blurξhsk(ri).

HelpRequest: When a client (cq) is in need of help, it
invokes HelpRequest phase Fig.10. In this phase,cq sends

5

1: procedure UPDATE(pi)
2: r ← get rand() ⊲ Personalized random blur
3: (p1i, ..., pji, ..., pdi)← pi
4: β−

r (pji)← (pji − r) mod P, ∀j ∈ [1, d]
5: β−

r (pi)← (β−
r (p1i), ..., β

−
r (pji), ..., β

−
r (pdi))

6: ξhsk(r)← (r · sk) mod P

7: Send2Cloud(ξhsk(r), β
−
r (pi))

8: ⊲ Sends the pair to SamaritanCloud
9: return

10: end procedure

Fig. 6. Procedure invoked by a client to update its blurred profile to
SamaritanCloud

blurred requested-profile along with a tolerance value to
SamaritanCloud. On reception of a request, SamaritanCloud
broadcasts the blurred requested-profile to all clients and
delegates the near-neighbor computation to clients. Clients
compute distance between the requested profile and saved
blurred-profiles and send back the result directly tocq. Thus,
this phase is composed of 3 subphases as follows,

c) Request:The requesting clientcq blurs the requested-
profile pq with a randomly generated personalized blur (rq),
Fig.8, by blurring each dimension ofpq seperately.

β+
rq (p

q
i) = (pqi + rq) mod P, ∀i ∈ [1, d] (3)

β+
rq (p

q) = (β+
rq (p

q
1), β

+
rq (p

q
2), ..., β

+
rq (p

q
d))

cq encrypts its personalized blur and tolerance value (tol) and
sends the tuple(ξhsk(r

q), ξhsk(tol), β
+
rq (p

q)) to SamaritanCloud.
d) Redistribution:SamaritanCloud invokes this phase on

reception of a request fromcq.

1: procedure REDIST UP((ξhsk(ri), β
−
r (pi)))

2: csri ← fetch cs blur(ci)
3: ⊲ Fetches client-specific blur forci
4: rg ← fetch global blur() ⊲ Fetches global blur
5: (β−

r (pji), ..., β
−
r (pji)), ..., β

−
r (pdi))← β−

r (pi))
6: prblurji ← (β−

r (pi)−
csri + rg) mod P, ∀j ∈ [1, d]

7: prbluri ← (prblur1i , ..., prblurji , ..., prblurdi)
8: Ct ← get random clients(t)
9: ⊲ Randomly selectes set oft clients

10: Send2ClientsCt
(ci, p

rblur
i)

11: ⊲ Sends pair of arguments toCt

12: Store(ci, ξhsk(ri))
13: ⊲ Stores encrypted personalized blur
14: return
15: end procedure

Fig. 7. Procedure invoked by SamaritanCloud to redistributereblurred profile
of ci

Without loss of generality, let us assume that a clientci has
blurred profile information oft other clientscj , ∀j ∈ [1, t].
SamaritanCloud builds a set (S

q
i) of t 6-tuples (T q

j) and sends
it to ci, Fig.9.
1st and 2nd entries of T q

j are the address ofcq and cj ,

1: procedure REQUEST(pq)
2: rq ← get rand()
3: ⊲ Randomly generates personalized blur
4: (pq1, ..., p

q
j , ..., p

q
d)← pq

5: β+
rq (p

q
j)← (pqj + rq) mod P, ∀j ∈ [1, d]

6: β+
rq (p

q)← (β+
rq (p

q
1), ..., β

+
rq (p

q
j), ..., β

+
rq (p

q
d))

7: ξhsk(r
q)← (rq · sk) mod P

8: ξhsk(tol)← (tol · sk) mod P

9: ⊲ Encrypts tolerance value
10: Send2Cloud(ξhsk(r

q), ξhsk(tol), β
+
rq (p

q))
11: ⊲ Sends arguments to SamaritanCloud
12: return
13: end procedure

Fig. 8. Procedure invoked by a requesting client to compute set of near-
neighbors

respectively.

1T
q
j = cq

2T
q
j = cj

3rd entry is built by reblurring the blurred profile ofcq, with
the clients-specific blur assigned tocq and the global blur, as
follows.

3T
q
lj = (β+

rq (p
q
l) +

csrq + rg) mod P, ∀j ∈ [1, t]

= (pql + rq + csrq + rg) mod P, (4)

where3T
q
lj is lth dimension of3rd entry ofT q

j , csrq is client
specific blur ofcq andrg is the global blur.
SamaritanCloud adds encrypted personalized random blur of
cq andcj to build 4th entry of the tuple. This is where we use
additive homorphic nature of encryption scheme.

4T
q
j = (ξhsk(r

q) + ξhsk(rj)) mod P (5)

5th entry is built by adding the client specific blur ofcq andcj .
Since, both the client-specific blurs are not known to clients,
the individual value of eithercsrq or csrj is not leaked by this
entry.

5T
q
j = (csrq + csrj) mod P (6)

6th entry is the encrypted tolerance value sent bycq. This
tolerance value is used in the near-neighbor computation.

6T
q
j = ξhsk(tol) (7)

e) Distance-Computation:In this phase, Fig.11, clients
compute distance between the blurred requested-profile and
saved blurred profile data of other clients.
Let us assume that after redistribution phase, a clientci
receives a setSq

i . Let us also assume thatci has blurred profile
informations oft clients, cj , ∀j ∈ [1, t]. Let T i

j ∈ S
q
i be the

tuple corresponding tocj and prblurj be the reblurred profile
of cj .
Since,ci has the shared secretsk, it decrypts the encrypted

6

1: procedure REDIST REQ((ξhsk(r
q), ξhsk(tol), β

+
rq (p

q)))
2: for all ci ∈ C do
3: rg ← fetch global blur()
4: ⊲ Fetches global blur
5: csrq ← fetch cs blur(cq)
6: ⊲ Fetches client-specific blur forci
7: prblurj ← (β+

rq (p
q
j)+

csrq + rg) mod P, ∀j ∈ [1, d]

8: prblur ← (prblur1 , ..., prblurj , ..., prblurd)
9: Ci ← fetch clients in(ci)

10: ⊲ Set of clients whose blurred profile is stored byci
11: S

q
i ← φ

12: for all cj ∈ Ci do
13: 1T

q
j ← cq

14: 2T
q
j ← cj

15: 3T
q
j ← prblur

16: ξhsk(rj)← fetch encrypted blur(cj)
17: ⊲ Encrypted personalized blur ofcj
18: 4T

q
j ← (ξhsk(r

q) + ξhsk(rj)) mod P

19: csrj ← fetch cs blur(cj)
20: ⊲ Client specific blur ofcj
21: 5T

q
j ← (csrq + csrj) mod P

22: 6T
q
j ← ξhsk(tol)

23: T
q
j ← (1T q

j ,
2T

q
j ,

3T
q
j ,

4T
q
j ,

5T
q
j ,

6T
q
j)

24: S
q
i ← Si ∪ T

q
j

25: end for
26: Send2Client(ci, S

q
i) ⊲ SendsSq

i to client ci
27: return
28: end for
29: end procedure

Fig. 9. Procedure invoked by SamaritanCloud to delegate nearness compu-
tation to clients

blur and tolerance value inT i
j . ci sends clients whose reblurred

profile satisfies the following condition tocq.

(

d∑

l=1

(3T i
lj − prblurj − δhsk(

4T i
lj)−

5 T i
lj)

2)1/2 < δhsk(
6T i

lj), (8)

whereδhsk(·) decrypts given cipher data using keysk.
2) Correctness:After stating the newly proposed scheme,

here we prove that, the scheme calculates distance correctly
between requested profile datacq and blurred profile of a
candidate clientcj . The fact that blurring according to our
proposed scheme preserves distance is captured by the fol-
lowing lemma.

Lemma 1. Given, T q
j is the tuple corresponding tocj and

prblurj is the blurred profile ofcj

(

d∑

i=1

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

2)1/2 = ‖pq − pj‖

Proof: As described in ProfileUpdate protocol, blurred
profile stored on SamaritanCloud is calculated using equation
(2).

prblurij = (pij − rj −
csrj + rg) mod P (9)

�
� �����

�

�
�

���
� �� �� ����

� ���	 �

����

�
�

��
�

� �
�

�

����	
����������������
����������������	
���

�
�

����
� ��
� �

��
�
 � �

� �

�
�
�
�

�	
��

��
� � ��

Fig. 10. Request process in SamaritanCloud system

Since,ξhsk(·) is an additive homorphic encryption, from equa-
tion (5),

4T
q
j = (ξhsk(r

q) + ξhsk(rj)) mod P

= ξhsk(r
q + rj) mod P

So,

δhsk(
4T

q
j) = δhsk(ξ

h
sk(r

q + rj) mod P)

= (rq + rj) mod P (10)

So, combining equations (4), (6), (9), and (10),

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

= ((pqi + rq + csrq + rg) mod P−

(pij − rj −
csrj + rg) mod P−

(rq + rj) mod P − (csrq + csrj) mod P)

= (pqi − pij) mod P

Thus, according to the definition,

(
d∑

i=1

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

2)1/2

= (

d∑

i=1

((pqi − pij)
2)1/2) mod P

= ‖pq − pj‖

3) Security: A client ci has access to reblurred profile data
of set of othert clients cj , j ∈ [1, t]. The clientci does not
know profile data of any ofcj clients, as all the profile data
are blurred with random blurs unknown toci. Attacks on

7

1: procedure DISTANCE COMP(S)
2: Sc = φ ⊲ Set of clients matching requested profile
3: for all T ∈ S do
4: (cq, cj ,

3T
q
j ,

4T
q
j ,

5T
q
j ,

6T
q
j)← T

5: prblurj ← fetch blur profile(cj)
6: ⊲ Blurred profile ofcj
7: ‖pq − pj‖ ←

8: (
∑d

i=1(
3T

q
j −p

rblur
j −δhsk(

4T
q
j)−

5T
q
j)

2)1/2

9: ⊲ Distance between profiles ofcq andcj
10: if ‖pq − pi‖ < δhsk(

6T
q
j) then

11: ξhsk(cj)← (cj · sk) modP

12: Sc ← Sc ∪ ξhsk(cj)
13: end if
14: Send2Client(cq, Sc)
15: ⊲ Sends the set of near-neighbors tocq

16: end for
17: return
18: end procedure

Fig. 11. Procedure invoked by clients to compute near-neighbor of requested
profile

SamaritanCloud are averted by the use of different types of
blurs. Here we state the effect of different blurs on the security
of the overall SamaritanCloud system,

a) Personalized blur: Personalized blur is a random
number used by every client to blur their original profile
information. Since, this blur is randomly selected by clients,
SamaritanCloud cannot gain knowledge from blurred profile
about the profile data of a client.

b) Client-specific and global blur:Both client-specific
and global blurs are randomly generated by SamaritanCloud.
These blurs are used by the cloud to reblur profile of a client.
Clients do not have access to these blurs. Global blur along
with client-specific blur are used to protect profile data from
distributed attacks by a group of adversaries.

We measure security of the proposed protocol with follow-
ing metric,
Probability of Information Leak per Comparison (PILC):
PILC is defined as the probability of an advesary successfully
computing the profile data of a client by single comparison
between reblurred profile of the client and that of an adversary.

Now, we state different kinds of possible attacks as follows,
External attack: In external attack, attackers know pro-

tocol of SamaritanCloud, but do not know the shared secret
key(sk).
Every profile data is blurred with above mentioned blurs.
Since, blurs are random numbers, it is impossible for external
attackers, without the knowledge of blurs used, to extract
profile information from the blurred profile data. Also, clients
send personalized blurs to SamaritanCloud encrypted with a
shared key. The shared key is known only to clients. Thus,
blurred profile together with encrypted blurs avert external
attacks.

Internal attack: For internal attack, the assumptions are
much more strict than external attack. Here, attackers know

both the protocol and the shared secret key(sk).
According to our proposed system, a client has access to
reblurred profile oft other clients. Since, for internal attacks,
attackers behave as clients, an adversaryai has access to
blurred profile data oft other clientsci, i ∈ [1, t]. Some of
theset clients are adversaries. There are two types of internal
attacks as follows,

• Active attack: An adversary sends a help request to
SamaritanCloud. The intention of the help request is
to assist other advesaries to compute random blurs and
thereby assisting them to successfully retrieve profile
information of a good client. We know that, an adversary
ai has profile information of a clientci blurred with
personalized blur, client-specific blur ofci and the global
blur, equation (2).
When SamaritanCloud receives the fake help request, it
broadcasts following three informations to all clients,

– reblurred requested-profile data of the querying ad-
versary (aq) to all other clients. Thus an adversary
(ai) receives requested profile blurred with personal-
ized blur, client-specific blur of the querying adver-
sary and the global blurrg, equation (4). Assuming
aq informs ai about personalized blur (rq), and re-
quested profile (pq), ai computes(csrq+rg) mod P

successfully. Profile data of a clientci is blurred with
its own client-specific (csri) and the global blur. So,
ai can successfully compute blurred profile(pji−ri)
mod P of a client ci, if csrq = csri, equation
(2). Since, all the blurs are selected randomly from
[0, P),

Pr[ai knows (pji − ri) mod P] =
1

P

– the addition of client-specific blur ofaq and ci as
in equation (6). Since, both the blurs are random
numbers unknown to clients, this addition does not
reveal individual value of each blur.

– encrypted value of the addition of the personalized
blur of aq andci as shown in equation (5).ai knows
the personlaized blur ofaq, as all the advesaries
share information. Thus,ai computesri mod P

successfully.
Thus,

PILC =
1

P
(11)

• Passive Attack:An adversary (ai) can launch a passive
attack if it has access to reblurred profile of another ad-
versaryaj , equation (2). Let us assume thatai knows the
reblurred profile of a clientci. Since, all adversaries share
informations,ai knows the blurred profile ofaj . If client-
specific blur ofaj is same as that ofci, ai can compute
blurred profile ofci ((pji − ri) mod P), equation (2).
Since, reblurred profile of a client is randomly distributed
amongt clients with least number of reblurred profile of

8

other clients,

Pr[ai has reblurred profile of aj]

= 1− (1−
u− 1

n
)t

≈
(u− 1) · loglogn

n · logk
, [Since, t =

loglogn

logk
[24]]

Since, personalized and client-specific blurs are randomly
selected from[0, P),

Pr[aj knows client specific blur of ci] =
1

P

Pr[ai knows personalized blur of ci] =
1

P

So,

PILC =
(u− 1) · loglogn

n · logk
· (

1

P
)2 (12)

Since,P is chosen to be a large prime number, probability of
a successful attack is small both in active (equation (11)) and
passive (equation (12)) internal attacks.

III. E XPERIMENTAL EVALUATION

A. Implementation

The implementation of SamaritanCloud includes two parts
— client side application and the cloud. We implemented the
client side application with a prototype mobile application
running on iOS 5.0, allowing users to,

• log in or register with unique username and password.
• choose time interval to update profile; by setting a fixed

update time interval, exact profile change time is not
exposed to the cloud.

• input request location (either latitude and longitude coor-
dinates or zipcode) and request content.

• get notification when the client is close to a requested
location; respond with willingness to offer help.

• get notification if anyone offers help to the client’s
request.

• get follow-up questionnaire of (1) “did you offer the help
that you committed to?” if the client was a candidate, (2)
“was the request resolved?” if the client was the requester.

We implemented the server using the Python Twisted library.
The major concerns of SamaritanCloud performance are client
application battery consumption and server scalability. We
examine those two concerns with experimental results.

B. Mobile application

We first examine SamaritanCloud on mobile devices. Our
application registers itself as a background VoIP service
allowing it to maintain a persistent connection with the
server, periodically fetch location information, even if the
application is running in background. Our application utilizes
Core Location Frameworkto get physical location. Location
coordinates can be obtained through standard location ser-
vice, and significant-change location service. With standard
location service, location data is gathered with either cell
triangulation, Wi-Fi hotspots or GPS satellites, depending on

required accuracy. As our application periodically updates
location to the server, it saves battery life by enabling the
standard location service as per the interval defined by clients.
With significant-change location service, a location update is
triggered by the OS only if a device moves from one cell tower
to another, thus providing only coarse location update. There is
an accuracy-power tradeoff – GPS location update is accurate
but power inefficient while significant-change location service
is less accurate and low on power usage. To test the worst
possible impact of our application on battery life, we run the
applications always in foreground with intensive update (once
per minute) via both 3G and WiFi. In each update, the mobile
application fetches location coordinates(lat, lon), computes
((lat+ r) mod P, (lon+ r) mod P) (P is a prime with 64
bits, r is randomly chosen between [0, P)), sends the result
together withξhsk(r) to the server. The encryption function
used is as follows,

ξhsk(r) = (r · sk) mod P (13)

where, sk is a 512bit key. The results in Table II show
that the impact on battery life is acceptable (in real world
deployment the application would run in background with
infrequent location updates).

TABLE II
IMPACT OF SAMARITAN CLOUD IOS APPLICATION ON BATTERY LIFE.

standard standard significant-change
network (GPS) (WiFi/cellular) location service

3G 10h 12h 8mins 12h 10mins
WiFi 11h 14mins 16h 14mins 16h

1) Key distrubution: Each client-side application is pro-
vided with a long term 1024bit secret key (lk). This key is
used to encrypt the secret keysk, equation (13). The shared
secret key,sk, is changed every one hour. At the start of each
hour, SamaritanCloud randomly selects a client. The selected
client, randomly generates the shared secret key, encryptsit
with lk as follows, and sends it to SamaritanCloud

ξlk(sk) = (sk · lk) mod P

SamaritanCloud broadcasts the encrypted shared secret, toall
clients.

C. Server scalability

For server side performance we are primarily interested in
understanding the rate ofrequeststhat a single server can
handle, as this serves as the dominating factor controllingthe
number of online users that the server can support.
In ProfileUpdate phase, a client sends its blurred profile
and SamaritanCloud distributes the blurred profile among
t clients having least number of profiles of other clients.
Since, SamaritanCloud can distribute in parallel, the runtime
of ProfileUpdate is O(1).
In HelpRequest phase, the requesting client sends blurred
requested profile along with encrypted tolerance value to the
cloud. SamaritanCloud broadcasts these informations among
all available clients. Clients compute the distance between

9

requested profile and other stored profile data. Broadcast
to clients takeO(1) time. Time taken to compute distance
between a pair isO(d), because a profile hasd dimensions.
Since, each client hask number of profile data of other clients,
it takesO(d · k) time for a client to determine set of near-
neighbors. Since, blurred profile data of a client is distributed
amongt clients having least number of profile data of other
clients,k = loglogn

logt [24].
For experimental purpose we consider plain-text mode, where

ProfileUpdate HelpRequest

O(1) O(d ·

loglogn

logt
)

TABLE III
RUNTIME OF DIFFERENT PHASES OFSAMARITAN CLOUD

no profile information is blurred and all communications are
un-encrypted. We compared latency of a help request in plain-
text mode with that of the proposed protocol.
Latency, Fig.12, is measured starting from the moment the
requester sends out blurred attributes to the time he gets
response from the server. We ran our server implementation
on a machine with 2.5 GHz Intel Core i5 and 4GB memory.
To minimize the affect of Internet speed, we simulated clients
on another machine on the same LAN. The main takeaways

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

La
te

nc
y

(s
)

Number of requests per second

n=10k, d=10
n=20k, d=10
n=30k, d=10

n=10k, d=100
n=20k, d=100
n=30k, d=100

Fig. 12. Matching time measurement: plain-text(red) vs. encrypted mes-
sage(green)

are that using plain-text messages has the benefit of fast
query processing but leaks client privacy to the server; com-
munication with encrypted messages preserves client privacy,
while the query processing is expensive. When using plain-text
messages, query latency nearly remains the same when request
rate increases; server scalability depends on the number oflive
TCP connections (open files) allowed on the machine. In the
normal encrypted mode, for n=20k query processing is not
fast enough when request rate exceeds 200/second. To prevent
congestion each client can send one valid request only every5
minutes. With this request rate, the server can handle 30,000
live clients simultaneously.

IV. CONCLUSION

To the best of our knowledge, SamaritanCloud is the first
of its kind in using location-based social networking system
to enable people tophysicallyhelp each other. In our system,
when an user needs help at a particular location, the request
is sent to the server and the users near the area of interest are
looked up efficiently using distributed additive homomorphic

encryption. To hinder external and internal security attacks
SamaritanCloud uses randomly generated blurs. We have
implemented a SamaritanCloud mobile application for iOS
5.0. The application fetches user’s location with the help of
one of cell triangulation, Wi-Fi hotspot or GPS. Because of
the limited battery-life and processing power of smartphones,
the mobile application allows users to manually select the
frequency of location update and the level of security that
they desire. Our SamaritanCloud system, opens up an entirely
new approach to enable people to benefit from location-based
social networks.

REFERENCES

[1] “Strangers helping strangers,” http://www.facebook.com/SHStrangers.
[2] “Yelp,” http://www.yelp.com/.
[3] “Facebook places,” http://www.facebook.com/facebookplaces.
[4] “Gowalla,” http://gowalla.com/.
[5] “Foursquare,” https://foursquare.com/.
[6] D. Stackpole, “Dynamic geosocial networking,” Patent US

2008/0 140 650 A1, 06 12, 2008.
[7] Q. Huang and Y. Liu, “On geo-social network services,”Geoinformatics,

2009.
[8] A. Cooper and T. Hardie, “Geopriv: creating building blocks for man-

aging location privacy on the internet,”IETF Journal, 2002.
[9] G. Myles, A. Friday, and N. Davies, “Preserving privacy in environments

with location-based applications,”Pervasive Computing, IEEE, 2003.
[10] H. Kido, Y. Yanagisawa, and T. Satoh, “An anonymous communication

technique using dummies for location-based services,” inProceedings
of IEEE International Conference on Pervasive Service, 2005.

[11] A. R. Beresford and F. Stajano, “Location privacy in pervasive comput-
ing,” IEEE Pervasive Computing, 2003.

[12] K. P. Tang, P. Keyani, J. Fogarty, and J. I. Hong, “Putting people in
their place: An anonymous and privacy-sensitive approach tocollecting
sensed data in location-based applications,” inProceedings of the
SIGCHI conference on Human Factors in Computing Systems, 2006.

[13] M. Gruteser and X. Liu, “Protecting privacy in continuous location-
tracking applications,”IEEE security and privacy, 2004.

[14] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,”Pervasive, 2005.

[15] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloacking,” inProceedings of the
International Conference on MobiSys, 2003.

[16] B. Gedik and L. Liu, “A customizable k-anonymity model for protecting
location privacy,” in Proceeding of the International Conference on
Distributed Computing Systems, 2005.

[17] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper:a
privacy-aware location-based database server,”IEEE 23rd International
Conference on Data Engineering, 2007.

[18] J. I. Hong and J. A. Landay, “An architecture for privacy-sensitive
ubiquitous computing,” inProceedings of the International Conference
on Mobile Systems, 2004.

[19] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” inProceedings of
the fourteenth annual ACM symposium on Theory of computing, ser.
STOC ’82. ACM, 1982.

[20] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,”Information Theory, IEEE Transactions on, vol. 31,
no. 4, pp. 469 – 472, jul 1985.

[21] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
ser. STOC ’09. ACM, 2009.

[22] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” inProceedings of the 3rd ACM workshop on
Cloud computing security workshop, ser. CCSW ’11. ACM, 2011.

[23] C. Raiciu and D. S. Rosenblum, “Enabling confidentialityin content-
based publish/subscribe infrastructures,”Securecomm and Workshops,
2006.

[24] R. S. Michael Mitzenmacher, Andrea W. Richa, “The power of two
random choices: A survey of techniques and results,” inHandbook of
Randomized Computing. Kluwer, 2000, pp. 255–312.

