The Cost of Sugar
Ryan Culpepper

Early in 2018...

| was working on the crypto package.

* FFl wrappers for several cryptographic libraries

 common interfaces, convenience functions, etc

And | happened to take a look at the . zo files.

$ find -name '*.zo' | xargs 1ls -1lh

10K/private/nettle/compiled/cipher rkt.zo
5.1K/private/nettle/compiled/digest rkt.zo
10K/private/nettle/compiled/factory rkt.zo
139K/private/nettle/compiled/ffi rkt.zo
2.7K/private/nettle/compiled/kdf rkt.zo

34K/private/nettle/compiled/pkey rkt.zo

25K/private/common/compiled/common_ rkt.zo
31K/private/common/compiled/pk-asnl rkt.zo
48K/private/common/compiled/pk-common rkt.zo

200K/compiled/main rkt.zo

There’s a tool for answering exactly this kind of
question...

The Macro Profiler
est. 2016

$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637

Phase 0
define-cstruct (defined in ffi/unsafe)

total: 19216, mean: 2402

direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)

total: 3522, mean: 104

direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/regprov)

total: 2664, mean: 2664

direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)

total: 2658, mean: 28

direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqgprov)

total: 2656, mean: 2656

direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)

total: 2108, mean: 124

direct: 680, mean: 40, count: 17, stddev: O
define (defined as new-define in racket/private/kw)

total: 1768, mean: 3

$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217

Final code size : 123261

Phase 0
->* (defined in racket/contract/private/arrow-val-first)
total: 60696, mean: 1785
direct: 24746, mean: 728, count: 34, stddev: 541.13
A (defined as new-A in racket/private/kw)
total: 20184, mean: 120
direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
total: 13850, mean: 51
direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
total: 13129, mean: 1313
direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
total: 12880, mean: 56
direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
total: 12788, mean: 149
direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
total: 12303, mean: 1367

Term size
Occurrences
Direct cost

Indirect cost

The Cost of Macros

Term size

The size of a term is the number of atoms and pairs in
it.

(x y 2)
(x . (y . (z . ()))) ; 7 nodes

(x (y) z)
(x . ((y . O) . (z . ()))) ; 9 nodes

Macro occurrence

A macro occurrence refers to a distinct expansion
of a macro.

(define-syntax-rule (with-output-to-string e)
(parameterize ((current-output-port
(open-output-string)))
e
(get-output-string (current-output-port))))

(with-output-to-string

(for ([1i 3]) (printf "hello\n")))
(with-output-to-string

(printf "is there anybody in there?"))

The parent of a macro occurrence is the occurrence
that produced it.

An occurrence with no parent is a surface
occurrence.

10

Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

11

Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

(with-output-to-string
(printf "is there anybody in there?"))

=

(parameterize ((current-output-port
(open-output-string)))
(printf "is there anybody in there?")
(get-output-string (current-output-port)))

12

Indirect Cost

The indirect cost also includes the direct costs of all
child occurrences.

(with-output-to-string
(for ([1i 3]) (printf "hello\n")))

=
(parameterize ((current-output-port
(open-output-string)))
(for ([1i 3]) (printf "hello\n"))
(get-output-string (current-output-port)))

13

Direct vs Indirect Cost

Indirect cost shows what macros contribute most to
compiled size.

Direct cost shows concentrated opportunities for
simplification.

14

$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637

Phase 0
define-cstruct (defined in ffi/unsafe)

total: 19216, mean: 2402

direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)

total: 3522, mean: 104

direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/regprov)

total: 2664, mean: 2664

direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)

total: 2658, mean: 28

direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqgprov)

total: 2656, mean: 2656

direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)

total: 2108, mean: 124

direct: 680, mean: 40, count: 17, stddev: O
define (defined as new-define in racket/private/kw)

total: 1768, mean: 3

15

$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217

Final code size : 123261

Phase 0
->* (defined in racket/contract/private/arrow-val-first)
total: 60696, mean: 1785
direct: 24746, mean: 728, count: 34, stddev: 541.13
A (defined as new-A in racket/private/kw)
total: 20184, mean: 120
direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
total: 13850, mean: 51
direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
total: 13129, mean: 1313
direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
total: 12880, mean: 56
direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
total: 12788, mean: 149
direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
total: 12303, mean: 1367

16

The fix: use helper functions

17

Use run-time helper functions

(define-syntax-rule (with-output-to-string expr ...)
(parameterize ((current-output-port (open-output-string)))
expr

(get-output-string (current-output-port))))

=

(define-syntax-rule (with-output-to-string expr ...)
(call-with-output-string (lambda () expr ...)))

; call-with-output-string : (-> Any) -> String
(define (call-with-output-string proc)
(define out (open-output-string))
(parameterize ((current-output-port out)) (proc))
(get-output-string out))

18

Use compile-time helper functions

(define-syntax-rule (define-ffi-definer define-x 1lib)
(define-syntax-rule (define-x name type)
(define name (get-ffi-obj name lib type))))

=

(define-syntax-rule (define-ffi-definer define-x 1lib)
(define-syntax define-x
(make-definer-transformer (quote-syntax 1lib))))

(begin-for-syntax
; make-definer-transformer : Syntax -> Syntax -> Syntax
(define ((make-definer-transformer lib-stx) stx)
(syntax-case stx ()
[(_ name type)
(with-syntax ([lib lib-stx])
#' (define name (get-ffi-obj name 1lib type)))]1)))

19

Data

20

The Racket Macro Ecosystem

In the main distribution

« 28685 distinct macros *

* 8137087 macro occurrences

* 1046512 surface macro occurrences

22

Occurrences

10°

Distribution of macro occurrence counts

Macro

23

Occurrences

Distribution of macro occurrence counts

10¢

102..

Ll

All occurrences
Surface occurrences

Al

Macro

750

1000

24

What are the most popular macros!?

25

Let’s go to the data!

26

What do macros look like?

27

Output term size (adjusted)

new-app from (lib "racket/private/kw.rkt")
} ‘ ' | | | ' | ' . 1} '
144233 uses o
1144579 uses at (7,7) o
| 24634 uses at (9,9) []
13305 uses at (11,11) O
15000~ 10951 uses at (13,13) @
7641 uses at (5,5)
. 7606 uses at (15,15) O
y=1x+0.16 _—

+

+ {
0 5000 10000

Input term size

+

28

Output term size (adjusted)

[
800726094 uses

3601 uses at (5,5)
3196 uses at (9,9)
2069 uses at (19,19)

71932 uses at (15,21)
1894 uses at (17,23)
1693 uses at (25,31)
y=1.02x+2.57

and from (lib "racket/private/qq-and-or.rkt")

I

0000

600+

}
200

+

}

}
400

Input term size

+

600

29

Output term size (adjusted)

Output term size (adjusted)

new-app from (lib "racket/private/kw.rkt") let from (lib "racket/private/qq-and-or.rkt") do-wrapping-module-begin from (lib "syntax/wrap-modbeg.rkt")
+ + + + & } + - t + + + . } . . v v } + + } } + I - | + + N

I . . .
1141674 uses o 214301 uses o

3129726 uses

t
- 5x105
. 688289 uses at (7,7) . | y=1x+2.08 _— 1 x 23394 uses at (11,9) []
3x10°T 365520 uses at (9,9) o T 17506 uses at (19,17) @
297102 uses at (13,13) @ 1 1 y=1x+0.47 _
285663 uses at (5,5) [] 1
275586 uses at (11,11) 150000
157475 uses at (15,15) 1
T y=1x+0.4 _— 4x10°—
2x105+ % 18
3 2 3100
2 . 2 3x105+
g 1x10- 3
@ @
N ! 1N
@ @
8 8
E E
£ LB
= 5 2x10°+
o o
1x10°+ 4
50000+ T
1x10°—
. n . n . ¥ v N . . 1 . N 4 b 4 . . + + . . + + 1 - | R t .
0 1x10° 2x10% 3x10° 0 50000 1x10° 150000 0 1x10% 2x10° 3x10° 4x10°
Input term size Input term size Input term size
define from (lib "racket/private/define.rkt") syntax from (lib "racket/private/template.rkt") new-define from (lib "racket/private/kw.rkt")
| t t + + + [} + t + + + v + y | t t + + +
187015 uses o 185740 uses o 179214 uses o
26702 uses at (11,13) @ 137317 uses at (5,5) @ 26489 uses at (11,11) @
22052 uses at (7,9) . 22582 uses at (5,11) . 20715 uses at (7,7) []
1250007 13943 yses at (13,15) @ T y=3.16x-8.04 — 1250007 13481 yses at (13,13) @
y=1x+2.04 _ 1 9175 uses at (9,9) []
y=1x+3.66 E—
1x10°— T 1x105+
=l T
2 2
@ @
e e
t:1 t:1
75000+ +3 S 75000+
N N
@ I
E E
8 8
8 8
- 45
ES ES
2 2
50000+ 1° © 50000+
25000+ T 25000+
+ | + + + 0 + U + U + + -+ + | + + +
0 25000 50000 75000 1x10° 125000 0 1000 2000 3000 0 25000 50000 75000 1x10° 125000

Input term size Input term size Input term size

Output term size (adjusted)

syntax from (lib "racket/private/template.rkt") syntax-case** from (lib "racket/private/stxcase.rkt") require from (lib "racket/private/reqprov.rkt")

F + t + + + v t 4 F + > + + + + + + + by [s + + + t + 1 - 1

185740 uses o -/ 70573 uses o 1 1143189 uses o |
137317 uses at (5,5) @ 4932 uses at (43,145) [] ° 30179 uses at (5,5) []
22582 uses at (5,11) [] y=1.19x+136.62 y=6.33x+47.52
y=3.16x-8.04 E— 40000+ T
- 1 20000—
°
o
°
°
°
30000 °
4~ 15000+ 1 T 4

° k=] o

2 2

7 7

2 2

k=l k=l

& |e 1

8 ° 8

@ @

_g 10000~ ‘g 20000 T

& &

= =

o o

o
@©
©
o
8
100005
8
o

U + | + U
0 500 1000 1500 2000
Input term size Input term size Input term size

U + U
0 1000 2000

31

Let’s remove common nodes from the counts.

32

Produced syntax nodes

+ 2945105 uses at (3,3)

400+

200—

. {
3129726 uses

y=2.47x-4.57

new-app from (lib "racket/private/kw.rkt")

t t t
o

25

}
50 75 100
Consumed syntax nodes

t
125

33

Produced syntax nodes

syntax from (lib "racket/private/template.rkt")
| ¢ } + | + |
185740 uses o
7149764 uses at (5,5 @
22582 uses at (5,11) @
| ¥y=5.43x-194 e

} + | + |
0 500 1000 1500

Consumed syntax nodes

2000

34

Produced syntax nodes

I

2000+

1500+

1000+

500+

new-define from (lib "racket/private/kw.rkt")
+ {

+

179214 uses

141216 uses at (7,7)
11783 uses at (11,15)
y=4.69x-28.2

|
o

|
200

Consumed syntax nodes

300

35

Produced syntax nodes

| '

| 158287 uses
137001 uses at (7,7)

£ 12451 uses at (9,9)
y=2.4x-9.32

new-lambda from (lib "racket/private/kw.rkt")
| ' i '
o]

{
100 200
Consumed syntax nodes

300

36

Produced syntax nodes

| +
146454 uses
125645 uses at (7,7)
19590 uses at (1,5)
y=6.08x-31.72

new-A from (lib "racket/private/kw.rkt")
| ' |
(o]

2000+

I ¢ |
100 200

Consumed syntax nodes

}
300

I J
400

37

Produced syntax nodes

quasiquote from (lib "racket/private/qq-and-or.rkt")
[i | } }
1121934 uses o
88383 uses at (5,5) ()
16199 uses at (5,1) O
9256 uses at (14,23) O
2000—y=1.58x-3.71 .

1500+

1000+

500+

0L } | | }
0 250 500 750 1000

Consumed syntax nodes

1250

38

Produced syntax nodes

syntax-parameterize from (lib "racket/stxparam.rkt")
I + | + {
70297 uses o
37561 uses at (13,37) @
14942 uses at (25,85) O
12659 uses at (19,61) O
| y=3.82x-12.77 _

200+

100—

+ l + * +
0 20 40

Consumed syntax nodes

60

}n

39

Produced syntax nodes

I + }
57025 uses
37844 uses at (15,21)
. 5840 uses at (21,35)
5369 uses at (27,49)
y=2.26x-12.72

cond from (lib "racket/private/cond.rkt")
+ } + }
o]
o
@
o

400—

200+

+ } + |
100 150

Consumed syntax nodes

200

40

Produced syntax nodes

for/foldX/derived from (lib "racket/private/for.rkt")
—— ¢ ¢ ' i ' + ' ' } ' ' '
40911 uses o
6779 uses at (25,25) o
5438 uses at (33,35) [)
+ 2381 uses at (61,131) O

y=-0x+71.08
(o]
8
o
300~ ©
(o}
o
° (o]
o]
o]
o]
o]

[o}
(o]
[o}
(o]
) o o
[e]e]
o
[o) O (o]
o 0 00 (o]
oo

0oomo0 C@o o)

R DO o
G?WIB @O a OO0 O OICDO o o
+ + + + 4 + +

0 500 1000

Consumed syntax nodes

41

Produced syntax nodes

->* from (lib "racket/contract/private/arrow-val-first.rkt")
6000+ t v } }
10106 uses o
2704 uses at (15,69) O
1903 uses at (17,77) O
628 uses at (19,85) o
608 uses at (11,65) ®
| y=33.05x-352.91

4000+ o

2000+

t } }
0 25 50 75

Consumed syntax nodes

100

42

The End

43

