The Cost of Sugar
Ryan Culpepper



Early in 2018...

| was working on the crypto package.

* FFl wrappers for several cryptographic libraries

 common interfaces, convenience functions, etc

And | happened to take a look at the . zo files.



$ find -name '*.zo' | xargs 1ls -1lh

10K ... ./private/nettle/compiled/cipher rkt.zo
5.1K ... ./private/nettle/compiled/digest rkt.zo
10K ... ./private/nettle/compiled/factory rkt.zo
139K ... ./private/nettle/compiled/ffi rkt.zo
2.7K ... ./private/nettle/compiled/kdf rkt.zo

34K ... ./private/nettle/compiled/pkey rkt.zo

25K ... ./private/common/compiled/common_ rkt.zo
31K ... ./private/common/compiled/pk-asnl rkt.zo
48K ... ./private/common/compiled/pk-common rkt.zo

200K ... ./compiled/main rkt.zo



There’s a tool for answering exactly this kind of
question...



The Macro Profiler
est. 2016



$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637

Phase 0
define-cstruct (defined in ffi/unsafe)

total: 19216, mean: 2402

direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)

total: 3522, mean: 104

direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/regprov)

total: 2664, mean: 2664

direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)

total: 2658, mean: 28

direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqgprov)

total: 2656, mean: 2656

direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)

total: 2108, mean: 124

direct: 680, mean: 40, count: 17, stddev: O
define (defined as new-define in racket/private/kw)

total: 1768, mean: 3



$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217

Final code size : 123261

Phase 0
->* (defined in racket/contract/private/arrow-val-first)
total: 60696, mean: 1785
direct: 24746, mean: 728, count: 34, stddev: 541.13
A (defined as new-A in racket/private/kw)
total: 20184, mean: 120
direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
total: 13850, mean: 51
direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
total: 13129, mean: 1313
direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
total: 12880, mean: 56
direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
total: 12788, mean: 149
direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
total: 12303, mean: 1367



Term size
Occurrences
Direct cost

Indirect cost

The Cost of Macros



Term size

The size of a term is the number of atoms and pairs in
it.

(x y 2)
(x . (y . (z . ()))) ; 7 nodes

(x (y) z)
(x . ((y . O) . (z . ()))) ; 9 nodes



Macro occurrence

A macro occurrence refers to a distinct expansion
of a macro.

(define-syntax-rule (with-output-to-string e)
(parameterize ((current-output-port
(open-output-string)))
e
(get-output-string (current-output-port))))

(with-output-to-string

(for ([1i 3]) (printf "hello\n")))
(with-output-to-string

(printf "is there anybody in there?"))

The parent of a macro occurrence is the occurrence
that produced it.

An occurrence with no parent is a surface
occurrence.
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Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

11



Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

(with-output-to-string
(printf "is there anybody in there?"))

=

(parameterize ((current-output-port
(open-output-string)))
(printf "is there anybody in there?")
(get-output-string (current-output-port)))
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Indirect Cost

The indirect cost also includes the direct costs of all
child occurrences.

(with-output-to-string
(for ([1i 3]) (printf "hello\n")))

=
(parameterize ((current-output-port
(open-output-string)))
(for ([1i 3]) (printf "hello\n"))
(get-output-string (current-output-port)))
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Direct vs Indirect Cost

Indirect cost shows what macros contribute most to
compiled size.

Direct cost shows concentrated opportunities for
simplification.
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$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637

Phase 0
define-cstruct (defined in ffi/unsafe)

total: 19216, mean: 2402

direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)

total: 3522, mean: 104

direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/regprov)

total: 2664, mean: 2664

direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)

total: 2658, mean: 28

direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqgprov)

total: 2656, mean: 2656

direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)

total: 2108, mean: 124

direct: 680, mean: 40, count: 17, stddev: O
define (defined as new-define in racket/private/kw)

total: 1768, mean: 3
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$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217

Final code size : 123261

Phase 0
->* (defined in racket/contract/private/arrow-val-first)
total: 60696, mean: 1785
direct: 24746, mean: 728, count: 34, stddev: 541.13
A (defined as new-A in racket/private/kw)
total: 20184, mean: 120
direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
total: 13850, mean: 51
direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
total: 13129, mean: 1313
direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
total: 12880, mean: 56
direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
total: 12788, mean: 149
direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
total: 12303, mean: 1367
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The fix: use helper functions
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Use run-time helper functions

(define-syntax-rule (with-output-to-string expr ...)
(parameterize ((current-output-port (open-output-string)))
expr

(get-output-string (current-output-port))))

=

(define-syntax-rule (with-output-to-string expr ...)
(call-with-output-string (lambda () expr ...)))

; call-with-output-string : (-> Any) -> String
(define (call-with-output-string proc)
(define out (open-output-string))
(parameterize ((current-output-port out)) (proc))
(get-output-string out))

18



Use compile-time helper functions

(define-syntax-rule (define-ffi-definer define-x 1lib)
(define-syntax-rule (define-x name type)
(define name (get-ffi-obj name lib type))))

=

(define-syntax-rule (define-ffi-definer define-x 1lib)
(define-syntax define-x
(make-definer-transformer (quote-syntax 1lib))))

(begin-for-syntax
; make-definer-transformer : Syntax -> Syntax -> Syntax
(define ((make-definer-transformer lib-stx) stx)
(syntax-case stx ()
[ (_ name type)
(with-syntax ([lib lib-stx])
#' (define name (get-ffi-obj name 1lib type)))]1)))
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Data
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The Racket Macro Ecosystem

In the main distribution

« 28685 distinct macros *

* 8137087 macro occurrences

* 1046512 surface macro occurrences
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# Occurrences
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Distribution of macro occurrence counts

Macro

23



# Occurrences

Distribution of macro occurrence counts

10¢

102..

Ll

All occurrences
Surface occurrences

Al

Macro

750

1000

24



What are the most popular macros!?
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Let’s go to the data!
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What do macros look like?
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Output term size (adjusted)
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Output term size (adjusted)
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Output term size (adjusted)

Output term size (adjusted)
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Output term size (adjusted)

syntax from (lib "racket/private/template.rkt") syntax-case** from (lib "racket/private/stxcase.rkt") require from (lib "racket/private/reqprov.rkt")
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Let’s remove common nodes from the counts.
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Produced syntax nodes
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Produced syntax nodes

syntax from (lib "racket/private/template.rkt")
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Produced syntax nodes

I

2000+

1500+

1000+

500+

new-define from (lib "racket/private/kw.rkt")
+ {

+

179214 uses

141216 uses at (7,7)
11783 uses at (11,15)
y=4.69x-28.2

|
o

|
200

Consumed syntax nodes

300

35



Produced syntax nodes
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Produced syntax nodes
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Produced syntax nodes

quasiquote from (lib "racket/private/qq-and-or.rkt")
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Produced syntax nodes

syntax-parameterize from (lib "racket/stxparam.rkt")
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Produced syntax nodes
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Produced syntax nodes
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Produced syntax nodes

->* from (lib "racket/contract/private/arrow-val-first.rkt")
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The End
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