
The Cost of Sugar
Ryan Culpepper

1

Early in 2018...

I was working on the crypto package.

• FFI wrappers for several cryptographic libraries

• common interfaces, convenience functions, etc

And I happened to take a look at the .zo fles.

2

$ find -name '*.zo' | xargs ls -lh

... 10K/private/nettle/compiled/cipher_rkt.zo

... 5.1K/private/nettle/compiled/digest_rkt.zo

... 10K/private/nettle/compiled/factory_rkt.zo

... 139K/private/nettle/compiled/ffi_rkt.zo

... 2.7K/private/nettle/compiled/kdf_rkt.zo

... 34K/private/nettle/compiled/pkey_rkt.zo

... 25K/private/common/compiled/common_rkt.zo

... 31K/private/common/compiled/pk-asn1_rkt.zo

... 48K/private/common/compiled/pk-common_rkt.zo

... 200K/compiled/main_rkt.zo

3

There’s a tool for answering exactly this kind of
question...

4

The Macro Profler

est. 2016

5

$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637
==
Phase 0
define-cstruct (defined in ffi/unsafe)
 total: 19216, mean: 2402
 direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)
 total: 3522, mean: 104
 direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/reqprov)
 total: 2664, mean: 2664
 direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)
 total: 2658, mean: 28
 direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqprov)
 total: 2656, mean: 2656
 direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)
 total: 2108, mean: 124
 direct: 680, mean: 40, count: 17, stddev: 0
define (defined as new-define in racket/private/kw)
 total: 1768, mean: 3
...

6

$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217
Final code size : 123261
==
Phase 0
->* (defined in racket/contract/private/arrow-val-first)
 total: 60696, mean: 1785
 direct: 24746, mean: 728, count: 34, stddev: 541.13
λ (defined as new-λ in racket/private/kw)
 total: 20184, mean: 120
 direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
 total: 13850, mean: 51
 direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
 total: 13129, mean: 1313
 direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
 total: 12880, mean: 56
 direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
 total: 12788, mean: 149
 direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
 total: 12303, mean: 1367
...

7

The Cost of Macros

Term size

Occurrences

Direct cost

Indirect cost

8

Term size

The size of a term is the number of atoms and pairs in
it.

(x y z)
(x . (y . (z . ()))) ; 7 nodes

(x (y) z)
(x . ((y . ()) . (z . ()))) ; 9 nodes

9

Macro occurrence

A macro occurrence refers to a distinct expansion
of a macro.

(define-syntax-rule (with-output-to-string e)
 (parameterize ((current-output-port

(open-output-string)))
 e
 (get-output-string (current-output-port))))

(with-output-to-string
 (for ([i 3]) (printf "hello\n")))
(with-output-to-string
 (printf "is there anybody in there?"))

The parent of a macro occurrence is the occurrence
that produced it.

An occurrence with no parent is a surface
occurrence.

1�

Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

11

Direct Cost

The direct cost of a macro occurrence is the
difference between the input term size and the output
term size. *

* local-expand complicates everything.

(with-output-to-string
 (printf "is there anybody in there?"))

⇒
(parameterize ((current-output-port

(open-output-string)))
 (printf "is there anybody in there?")
 (get-output-string (current-output-port)))

12

Indirect Cost

The indirect cost also includes the direct costs of all
child occurrences.

(with-output-to-string
 (for ([i 3]) (printf "hello\n")))

⇒
(parameterize ((current-output-port

(open-output-string)))
 (for ([i 3]) (printf "hello\n"))
 (get-output-string (current-output-port)))

13

Direct vs Indirect Cost

Indirect cost shows what macros contribute most to
compiled size.

Direct cost shows concentrated opportunities for
simplifcation.

14

$ raco macro-profile crypto/private/nettle/ffi
profiling (lib "crypto/private/nettle/ffi.rkt")
Initial code size: 6189
Final code size : 47637
==
Phase 0
define-cstruct (defined in ffi/unsafe)
 total: 19216, mean: 2402
 direct: 15048, mean: 1881, count: 8, stddev: 459.96
define-cpointer-type (defined in ffi/unsafe)
 total: 3522, mean: 104
 direct: 972, mean: 29, count: 34, stddev: 21.52
provide (defined in racket/private/reqprov)
 total: 2664, mean: 2664
 direct: 8, mean: 8, count: 1, stddev: 0
_fun (defined in ffi/unsafe)
 total: 2658, mean: 28
 direct: 2380, mean: 25, count: 96, stddev: 19.72
provide-trampoline (defined in racket/private/reqprov)
 total: 2656, mean: 2656
 direct: 2656, mean: 2656, count: 1, stddev: 0
define-cpointer-pred (defined in ffi/unsafe)
 total: 2108, mean: 124
 direct: 680, mean: 40, count: 17, stddev: 0
define (defined as new-define in racket/private/kw)
 total: 1768, mean: 3
...

15

$ raco macro-profile crypto/main
profiling (lib "crypto/main.rkt")
Initial code size: 6217
Final code size : 123261
==
Phase 0
->* (defined in racket/contract/private/arrow-val-first)
 total: 60696, mean: 1785
 direct: 24746, mean: 728, count: 34, stddev: 541.13
λ (defined as new-λ in racket/private/kw)
 total: 20184, mean: 120
 direct: 10584, mean: 63, count: 168, stddev: 113.98
define (defined as new-define in racket/private/kw)
 total: 13850, mean: 51
 direct: 8112, mean: 30, count: 269, stddev: 91.26
provide (defined in racket/private/reqprov)
 total: 13129, mean: 1313
 direct: 188, mean: 19, count: 10, stddev: 0.6
bad-number-of-results (defined in racket/contract/private/arrow-common)
 total: 12880, mean: 56
 direct: 11500, mean: 50, count: 230, stddev: 50
send (defined in racket/private/class-internal)
 total: 12788, mean: 149
 direct: 11402, mean: 133, count: 86, stddev: 12.97
handle-contract-out (defined in racket/contract/private/out)
 total: 12303, mean: 1367
...

16

The fx: use helper functions

17

Use run-time helper functions

(define-syntax-rule (with-output-to-string expr ...)
 (parameterize ((current-output-port (open-output-string)))

 expr ...
 (get-output-string (current-output-port))))

⇒
(define-syntax-rule (with-output-to-string expr ...)
 (call-with-output-string (lambda () expr ...)))

; call-with-output-string : (-> Any) -> String
(define (call-with-output-string proc)
 (define out (open-output-string))
 (parameterize ((current-output-port out)) (proc))
 (get-output-string out))

18

Use compile-time helper functions

(define-syntax-rule (define-ffi-definer define-x lib)
 (define-syntax-rule (define-x name type)

 (define name (get-ffi-obj name lib type))))

⇒
(define-syntax-rule (define-ffi-definer define-x lib)

(define-syntax define-x
 (make-definer-transformer (quote-syntax lib))))

(begin-for-syntax
 ; make-definer-transformer : Syntax -> Syntax -> Syntax
 (define ((make-definer-transformer lib-stx) stx)

 (syntax-case stx ()
 [(_ name type)

(with-syntax ([lib lib-stx])
 #'(define name (get-ffi-obj name lib type)))])))

19

Data

2�

21

The Racket Macro Ecosystem

In the main distribution

• 28685 distinct macros *
• 8137087 macro occurrences

• 1046512 surface macro occurrences

22

23

24

What are the most popular macros?

25

Let’s go to the data!

26

What do macros look like?

27

28

29

3�

31

Let’s remove common nodes from the counts.

32

33

34

35

36

37

38

39

4�

41

42

The End

43

