
Contextual Equivalence for Probabilistic
Programs with Continuous Random Variables

and Scoring?

Ryan Culpepper and Andrew Cobb

Northeastern University

Abstract. We present a logical relation for proving contextual equiv-
alence in a probabilistic programming language (PPL) with continuous
random variables and with a scoring operation for expressing observa-
tions and soft constraints.
Our PPL model is based on a big-step operational semantics that rep-
resents an idealized sampler with likelihood weighting. The semantics
treats probabilistic non-determinism as a deterministic process guided
by a source of entropy. We derive a measure on result values by aggre-
gating (that is, integrating) the behavior of the operational semantics
over the entropy space. Contextual equivalence is defined in terms of
these measures, taking real events as observable behavior.
We define a logical relation and prove it sound with respect to contextual
equivalence. We demonstrate the utility of the logical relation by using
it to prove several useful examples of equivalences, including the equiva-
lence of a βv-redex and its contractum and a general form of expression
re-ordering. The latter equivalence is sound for the sampling and scoring
effects of probabilistic programming but not for effects like mutation or
control.

1 Introduction

A universal probabilistic programming language (PPL) consists of a general-
purpose language extended with two probabilistic features: the ability to make
non-deterministic (probabilistic) choices and the ability to adjust the likelihood
of the current execution, usually used to model conditioning. Programs that use
these features in a principled way express probabilistic models, and the execution
of such programs corresponds to Bayesian inference.

Universal PPLs include Church [8] and its descendants [13, 22] as well as
other systems and models [18, 16, 10, 2, 20, 3]. In contrast, other PPLs [12, 17,
14, 4] limit programs to more constrained structures that can be translated to
intermediate representations such as Bayes nets or factor graphs.

? This material is based upon work sponsored by the Air Force Research Laboratory
(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Con-
tract No. FA8750-14-C-0002. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

PPLs can also be divided into those that support continuous random choices
and those that support only discrete choices. Most probabilistic programming
systems designed for actual use support continuous random variables, and some
implement inference algorithms specialized for continuous random variables [21,
4]. On the other hand, much of the literature on the semantics of PPLs has
focused on discrete choice—particularly the literature on techniques for proving
program equivalence such as logical relations [1] and bisimulation [19]. The se-
mantics that do address continuous random variables and scoring [20, 3] do not
focus on contextual equivalence.

This paper addresses the issue of contextual equivalence in a PPL with real
arithmetic, continuous random variables, and an explicit scoring operation for
expressing observations and soft constraints. We present a model of such a PPL
with a big-step operational semantics based on an idealized sampler with like-
lihood weighting; the program’s evaluation is guided by a supply of random
numbers from an “entropy space.” Based on the operational semantics we con-
struct a measure on the possible results of the program, and we define contextual
equivalence in terms of these measures. Finally, we construct a binary logical re-
lation, prove it sound with respect to contextual equivalence, and demonstrate
proofs that conversions such as βv and expression reordering respect contextual
equivalence.

Our language and semantics are similar to that of Borgström et al. [3], ex-
cept our language is simply typed and our treatment of entropy involves split-
ting rather than concatenating variable-length sequences. Our entropy structure
reflects the independence of subexpression evaluations and simplifies the decom-
position of value measures into nested integrals.

Compared with semantics for traditional languages, our model of probabilis-
tic programming is further from the world of computable programming languages
so that it can be closer to the world of measures and integration, the foundations
of probability theory. It is “syntactic” rather than “denotational” in the sense
that the notion of “value” includes λ-expressions rather than mathematical func-
tions, but on the other hand these syntactic values can contain arbitrary real
numbers in their bodies, and our semantics defines and manipulates measures
over spaces of such values. We do not address computability in this paper, but
we hope our efforts can be reconciled with previous work on incorporating the
real numbers into programming languages [7, 6, 9].

We have formalized the language and logical relation in Coq, based on a high-
level axiomatization of measures, integration, and entropy. We have formally
proven the soundness of the logical relation as well as some of its applications,
including βv and restricted forms of expression reordering. The formalization
can be found at

https://github.com/cobbal/ppl-ctx-equiv-coq/tree/esop-2017

The rest of this paper is organized as follows: Section 2 introduces proba-
bilistic programming with some example models expressed in our core PPL. Sec-
tion 3 reviews some relevant definitions and facts from measure theory. Section 4
presents our PPL model, including its syntax, operational semantics, measure

semantics, and notion of contextual equivalence. In Section 5 we develop a log-
ical relation and show that it is sound with respect to contextual equivalence.
Section 6 proves several useful equivalences using using the machinery provided
by the logical relation.

2 Probabilistic Programming

In a probabilistic program, random variables are created implicitly as the result
of stochastic effects, and dependence between random variables is determined by
the flow of values from one random variable to another. Random variables need
not correspond to program variables. For example, the following two programs
both represent the sum of two random variables distributed uniformly on the
unit interval:

– let x = sample, y = sample in x + y
– sample + sample

We write sample for the effectful expression that creates a new independent
random variable distributed uniformly on the unit interval [0, 1].

Values distributed according to other real-valued distributions can be ob-
tained from a standard uniform by applying the inverse of the distribution’s
cumulative distribution function (CDF). For example, normalinvcdf(sample) pro-
duces a value from the standard normal distribution, with mean 0 and standard
deviation 1. The familiar parameterized normal can then be defined by scaling
and shifting as follows:

normal m s , m + s ∗ normalinvcdf(sample)

The parameters of a normal random variable can of course depend on other
random variables. For example,

m = normal 0 wide
f = normal m narrow

defines f as a function that returns random points—a fresh one each time it
is called. The points are concentrated narrowly around some common point,
randomly chosen once and shared. (We write f to emphasize that f ignores its
argument.)

The other feature offered by PPLs is some way of expressing conditioning on
observed evidence. We introduce conditioning via a hypothetical observe form.
Consider m from the program above. Our prior belief about m is that it is
somewhere in a wide vicinity of 0. Suppose we amend the program by adding
the following observations, however:

observe 9.3 from f
observe 8.9 from f
observe 9.1 from f

Given those observations, you might suspect that m is in a fairly narrow region
around 9. Bayes’ Law quantifies that belief as the posterior distribution on m,
defined in terms of the prior and the observed evidence.

p(m|data) ∝ p(m) · p(data|m)

That is the essence of Bayesian inference: calculating updated distributions on
“causes” given observed “effects” and a probabilistic model that relates them.

Some PPLs [13, 5, 15] provide an observe-like form to handle conditioning;
they vary in what kinds of expressions can occur in the right-hand side of the
observation. Other PPLs provide a more primitive facility, called factor or score,
which takes a real number and uses it to scale the likelihood of the current values
of all random variables. To represent an observation, one simply calls factor with
p(data|x); of course, if one is observing the result of a computation, one has to
compute the correct probability density. For example, the first observation above
would be translated as

factor (normalpdf((9.3 − m) ÷ narrow) ÷ narrow)

The normalpdf operation computes the probability density function density of a
standard normal, so to calculate the density for a scaled and shifted normal,
we must invert the translation by subtracting the mean and dividing by the
scale (narrow). Then, since probability densities are derivatives, to get the cor-
rect density of normal m narrow we must divide by the (absolute value of) the
derivative of the translation function from the standard normal—that accounts
for the second division by narrow.

3 Measures and Integration

This section reviews some basic definitions, theorems, and notations from mea-
sure theory. We assume that the reader is familiar with the basic notions of mea-
sure theory, including measurable spaces, σ-algebras, measures, and Lebesgue
integration—that is, the notion of integrating a function with respect to a mea-
sure, not necessarily the Lebesgue measure on R.

We write R≥0 for the non-negative reals—that is, [0,∞)—and R+ for the
non-negative reals extended with infinity—that is, [0,∞].

A measure µ : ΣX → R+ on the measurable space (X,ΣX) is finite if µ(X)
is finite. It is σ-finite if X is the union of countably many Xi and µ(Xi) is finite
for each Xi.

We write
∫
A
f(x) µ(dx) for the integral of the measurable function f : X → R

on the region A ⊆ X with respect to the measure µ : ΣX → R+ . We occasionally
abbreviate this to

∫
A
f dµ if omitting the variable of integration is convenient.

We omit the region of integration A when it is the whole space X.
We rely on the following lemmas concerning the equality of integrals. Tonelli’s

theorem allows changing the order of integration of non-negative functions. Since
all of our integrands are non-negative, it suits our needs better than Fubini’s
theorem. In particular, Tonelli’s theorem holds even when the functions can
attain infinite values as well as when the integrals are infinite.

Lemma 1 (Tonelli). If (X,ΣX) and (Y,ΣY) are measurable spaces and µX
and µY are σ-finite measures on X and Y , respectively, and f : X ×Y → R+ is
measurable, then∫

X

(∫
Y

f(x, y) µY (dy)

)
µX(dx) =

∫
Y

(∫
X

f(x, y) µX(dx)

)
µY (dy)

The other main lemma we rely on equates two integrals when the functions
and measures may not be the same but are nonetheless related. In particular,
there must be a relation such that the measures agree on related sets and the
functions have related pre-images—that is, the relation specifies a “coarser”
structure on which the measures and functions agree. This lemma is essential
for showing the observable equivalence of measures derived from syntactically
different expressions.

Lemma 2 (Coarsening). Let (X,ΣX) be a measurable space, M ⊆ (ΣX×ΣX)
be a binary relation on measurable sets, µ1, µ2 : ΣX → R+ be measures on X,
and f1, f2 : X → R+ be measurable functions on X. If the measures agree on
M -related sets and if the functions have M -related pre-images—that is,

– ∀(A1, A2) ∈M, µ1(A1) = µ2(A2)
– ∀B ∈ ΣR, (f−11 (B), f−12 (B)) ∈M

then their corresponding integrals are equal:∫
f1 dµ1 =

∫
f2 dµ2

Proof. Together the two conditions imply that

∀B ∈ ΣR, µ1(f−11 (B)) = µ2(f−12 (B))

We apply this equality after rewriting the integrals using the “layer cake” per-
spective to make the pre-images explicit [11].∫

f1 dµ1 =

∫ ∞
0

µ1(f−11 ([t,∞])) dt

=

∫ ∞
0

µ2(f−12 ([t,∞])) dt

=

∫
f2 dµ2

ut
Even though in the proof we immediately dispense with the intermediate

relation M , we find it useful in the applications of the lemma to identify the
relationship that justifies the agreement of the functions and measures.

A useful special case of Lemma 2 is when the measures are the same and the
relation is equality of measure.

Lemma 3. Let f, g : X → R+ and let µX be a measure on X. If ∀B ∈
ΣR, µX(f−1(B)) = µX(g−1(B)), then

∫
f dµ =

∫
g dµ.

Proof. Special case of Lemma 2. ut

e ::= r | x | λx : τ. e | e e | opn(e1, · · · , en) | sample | factor e
v ::= r | x | λx : τ. e
r ∈ R

op1 ::= log | exp | normalpdf | normalinvcdf | · · ·
op2 ::= + | − | ∗ | ÷ | · · ·

τ ::= R | τ → τ

Fig. 1. Syntax

Γ ` r : R
Γ (x) = τ

Γ ` x : τ

Γ [x 7→ τ ′] ` e : τ

Γ ` (λx : τ ′. e) : τ ′ → τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

opn : (τ1, · · · , τn)→ τ Γ ` ei : τi

Γ ` opn(e1, · · · , en) : τ Γ ` sample : R
Γ ` e : R

Γ ` factor e : R

log, exp,normalpdf,normalinvcdf : (R)→ R
+,−, ∗,÷ : (R,R)→ R

Fig. 2. Type Rules

4 Syntax and Semantics

This section presents the syntax and semantics of a language for probabilistic
programming, based on a functional core extended with real arithmetic and
stochastic effects.

We define the semantics of this language in two stages. We first define a big-
step evaluation relation based on an idealized sampler with likelihood weighting;
the evaluation rules consult an “entropy source” which determines the random
behavior of a program. From this sampling semantics we then construct an
aggregate view of the program as a measure on syntactic values. Contextual
equivalence is defined in terms of these value measures.

4.1 Syntax

Figure 1 presents the syntax of our core probabilistic programming language.
The language consists of a simply-typed lambda calculus extended with real
arithmetic and two effects: a sample form for random behavior and a factor
form for expressing observations and soft constraints. Figure 2 gives the type
rules for the language.

The sample form returns a real number uniformly distributed between 0
and 1. We assume inverse-CDF and PDF operations—used to produce samples
and score observations, respectively—for every primitive real-valued distribution

of interest. Recall from Section 2 that sampling a normal random variable is
accomplished as follows:

normal m s , m + s ∗ normalinvcdf(sample)

and observing a normal random variable is expressed thus:

factor (normalpdf((data − m) ÷ s) ÷ s)

A note on notation: We drop the type annotations on bound variables when
they are obvious from the context, and we use syntactic sugar for local bindings
and sequencing; for example, we write

let x = sample in factor 1 ÷ x ; x

instead of

(λ x : R. ((λ : R. x) (factor 1 ÷ X))) sample

4.2 Evaluation Relation

If we interpret evaluation as idealized importance sampling, the evaluation rela-
tion tells us how to produce a single sample given the initial state of the random
number generator. Evaluation is defined via the judgment

σ ` e ⇓ v, w

where σ ∈ S is an entropy source, e is the expression to evaluate, v is the resulting
value, and w ∈ R≥0 is the likelihood weight.

The σ argument acts as the source of randomness—evaluation is a deter-
ministic function of e and σ. Rather than threading σ through evaluation like
a store, rules with multiple sub-derivations split the entropy. The indexed fam-
ily of functions πi : S → S splits the entropy source into independent pieces
and πU : S → [0, 1] extracts a real number on the unit interval. We discuss the
structure of the entropy space further in Section 4.3.

The result of evaluation is a closed value: either a real number or a closed
λ-expression. Let [[τ]] be the set of all closed values of type τ . We consider [[τ]]
a measurable space with a σ-algebra Σ[[τ]]. See the comments on measurability
at the end of this section. Note that the σ-algebras for function types are de-
fined on syntactic values, not for mathematical functions, so we avoid the issues
concerning measurable function spaces [20].

The evaluation rules for the language’s functional fragment are unsurprising.
For simple expressions, the entropy is ignored and the likelihood weight is 1.
For compound expressions, the entropy is split and sent to sub-expression eval-
uations, and the resulting weights are multiplied together. We assume a partial
function δ that interprets the primitive operations.1 For example, δ(+, 1, 2) = 3
and δ(÷, 4, 0) is undefined.

1 No relation to the Dirac measure, also often written δ.

Const

σ ` r ⇓ r, 1

Lam

σ ` λx. e ⇓ λx. e, 1

App
π1(σ) ` e1 ⇓ λx. eb, w1 π2(σ) ` e2 ⇓ v2, w2 π3(σ) ` eb [x 7→ v2] ⇓ v, w3

σ ` e1 e2 ⇓ v, w1 · w2 · w3

Primop

πi(σ) ` ei ⇓ vi, wi v = δ(opn, v1, · · · , vn) w =
∏n

i=1
wi

σ ` opn(e1, · · · , en) ⇓ v, w

Sample
r = πU (σ)

σ ` sample ⇓ r, 1

Factor
σ ` e ⇓ r, w r > 0

σ ` factor e ⇓ r, r · w

Fig. 3. Evaluation Rules

The rule for sample extracts a real number uniformly distributed on the unit
interval [0, 1]. The factor form evaluates its subexpression and interprets it as a
likelihood weight to be factored into the weight of the current execution—but
only if it is positive.

There are two ways evaluation can fail:

– the argument to factor is zero or negative
– the δ function is undefined for an operation with a particular set of argu-

ments, such as for 1 ÷ 0 or log(−5)

The semantics does not distinguish these situations; in both cases, no evaluation
derivation tree exists for that particular combination of σ and e.

4.3 Entropy Space

The evaluation relation of Section 4.2 represents evaluation of a probabilistic
program as a deterministic partial function of points in an entropy space S. To
capture the meaning of a program, we must consider the aggregate behavior
over the entire entropy space. That requires integration, which in turn requires
a measurable space (ΣS) and a base measure on entropy (µS : ΣS → R+).

The entropy space must support our formulation of evaluation, which roughly
corresponds to the following transformation:

x1 ∼ D1

...
xn ∼ Dn

⇒

σ ∼ µS
x1 = invcdfD1

(π1(σ))
...

xn = invcdfDn(πn(σ))

The entropy space and its associated functions are ours to choose, provided
they satisfy the following criteria:

– It must be a probability space. That is, µS(S) = 1.
– It must be able to represent common real-valued random variables. It is suf-

ficient to support a standard uniform—that is, a random variable uniformly
distributed on the interval [0, 1]. Other distributions can be represented via
the inverse-CDF transformation.

– It must support multiple independent random variables. That is, the entropy
space must be isomorphic—in a measure-preserving way—to products of
itself: S ∼= S2 ∼= Sn (n ≥ 1).

The following specification formalizes these criteria.

Definition 4 (Entropy). (S, ΣS) is a measurable space with measure µS : ΣS →
R+ and functions

πU : S→ [0, 1]

πL, πR : S→ S

such that the following integral equations hold:

– µS(S) = 1, and thus for all k ∈ R+,
∫
k µS(dσ) = k,

– for all measurable functions f : [0, 1]→ R+,∫
f(πU (σ)) µS(dσ) =

∫
[0,1]

f(x) λ(dx)

where λ is the Lebesgue measure, and
– for all measurable functions g : S× S→ R+,∫

g(πL(σ), πR(σ)) µS(dσ) =

∫∫
g(σ1, σ2) µS(dσ1) µS(dσ2)

That is, πU interprets the entropy as a standard uniform random variable,
and πL and πR split the entropy into a pair of independent parts and return the
first or second part, respectively. We generalize from two-way splits to indexed
splits via the following family of functions:

Definition 5 (πi) Let πi : S→ S be the family of functions defined thus:

π1(σ) = πL(σ)

πn+1(σ) = πn(πR(σ))

Definition 5 is “wasteful”—for any n ∈ N, using only π1(σ) through πn(σ)
discards part of the entropy—but that does not cause problems, because the
wasted entropy is independent and thus integrates away. Thus the a generalized
entropy-splitting identity holds for measurable f : Sn → R+:∫

f(π1(σ), · · · , πn(σ)) µS(dσ) =

∫
· · ·
∫
f(σ1, · · · , σn) µS(dσ1) · · ·µS(dσn)

Our preferred concrete representation of S is the countable product of unit in-
tervals, [0, 1]ω, sometimes called the Hilbert cube. The πL, πR, and πU functions
are defined as follows:

πL(〈u0, u1, u2, u3, . . . 〉) = 〈u0, u2, . . . 〉
πR(〈u0, u1, u2, u3, . . . 〉) = 〈u1, u3, . . . 〉
πU (〈u0, u1, u2, u3, . . . 〉) = u0

The σ-algebra ΣS is the Borel algebra of the product topology (cf Tychonoff’s
Theorem). The basis of the product topology is the set of products of intervals,
only finitely many of which are not the whole unit interval U = [0, 1]:{(

k∏
i=1

(ai, bi)

)
× Uω | 0 ≤ ai ≤ bi ≤ 1, k ∈ N

}

We define the measure µS on a basis element as follows:

µS

((
k∏
i=1

(ai, bi)

)
× Uω

)
=

k∏
i=1

(bi − ai)

That uniquely determines the measure µS : ΣS → R+ by the Carathéodory
extension theorem.

Another representation of entropy is the Borel space on [0, 1] with (restricted)
Lebesgue measure and bit-splitting πL and πR. In fact, both of these represen-
tations are examples of standard atomless probability spaces, and all such spaces
are isomorphic (modulo null sets). In the rest of the paper, we rely only on the
guarantees of Definition 4, not on the precise representation of S.

4.4 Measure Semantics

We represent the aggregate behavior of a closed expression as a measure, ob-
tained by integrating the behavior of the evaluation relation over the entropy
space. If ` e : τ then µe : Σ[[τ]] → R+ is the value measure of e, defined as
follows:

Definition 6 (Value Measure)

µe(V) =

∫
evalin(e, V, σ) µS(dσ)

evalin(e, V, σ) = IV (ev(e, σ)) · ew(e, σ)

ev(e, σ) =

{
v if σ ` e ⇓ v, w
⊥ otherwise

ew(e, σ) =

{
w if σ ` e ⇓ v, w
0 otherwise

The evaluation relation σ ` e ⇓ v, w is a partial function of (σ, e)—non-
deterministic behavior is represented as deterministic dependence on the entropy
σ. From this partial function we define a total evaluation function ev(e, σ) and a
total weighting function ew(e, σ). The evalin(e, V, σ) function takes a measurable
outcome set of interest and checks whether the result of evaluation falls within
that set. If so, it produces the weight of the evaluation; otherwise, it produces
0. We write IX for the indicator function for X, which returns 1 if its argument
is in X and 0 otherwise.

Integrating evalin(e, V, σ) over the entire entropy space yields the value mea-
sure µe. Strictly speaking, the definition above defines µe as a measure on [[τ]]⊥,
but since ev(e, σ) = ⊥ only when ew(e, σ) = 0, µe never assigns any weight to
⊥ and thus we can consider it a measure on [[τ]].

The following theorem shows that the value measure is an adequate repre-
sentation of the behavior of a program.

Theorem 7. Let f : [[τ]]→ R+ be measurable, and let ` e : τ . Then∫
f(v) µe(dv) =

∫
f(ev(e, σ)) · ew(e, σ) µS(dσ)

Proof. First consider the case where f is an indicator function IX :∫
f(v) µe(dv) =

∫
IX(v) µe(dv) (f = IX)

= µe(X) (integral of indicator function)

=

∫
IX(ev(e, σ)) · ew(e, σ) µS(dσ) (Definition 6)

=

∫
f(ev(e, σ)) · ew(e, σ) µS(dσ) (f = IX)

The equality extends to simple functions—linear combinations of characteristic
functions—by the linearity of integration and to measurable functions as the
suprema of sets of simple functions. ut

Measurability For the integral defining µe(V) to be well-defined, evalin(e, V, σ)
must be measurable when considered as a function of σ. Furthermore, in later
proofs we will need the ev(·, ·) and ew(·, ·) functions to be measurable with
respect to the product space on their arguments. More precisely, if we consider
a type-indexed family of functions

evτ : Expr[[τ]]× S→ [[τ]]

then we need each evτ to be measurable in Σ[[τ]] with respect to the product
measurable space ΣExpr[[τ]] × ΣS, and likewise for ewτ . Note that the space of
values [[τ]] is a subset of the expressions Expr[[τ]], so we can take Σ[[τ]] to be
ΣExpr[[τ]] restricted to the values. But we must still define ΣExpr[[τ]] and show the
functions are measurable.

We do not present a direct proof of measurability in this paper. Instead,
we rely again on Borgström et al. [3]: we treat their language, for which they
have proven measurability, as a meta-language. Interpreters for the ev and ew
functions of our language can be written as terms in this meta-language, and
thus their measurability result can be carried over to our language. We take
S = [0, 1] and extend the meta-language with the measurable functions πL, πR,
and πU . The definition of ΣExpr[[τ]] is induced by the encoding function that
represents our object terms as values in their meta-language and the structure
of their measurable space of expressions.

4.5 Digression: Interpretation of Probabilistic Programs

In general, the goal of a probabilistic programming language is to interpret
programs as probability distributions.

If a program’s value measure is finite and non-zero, then it can be normal-
ized to yield a probability distribution. The following examples explore different
classes of such programs:

– Continuous measures: sample, normalinvcdf(sample), etc.
– Discrete measures: if sample < 0.2 then 1 else 0
– Sub-probability measures:

let x = normalinvcdf(sample) in if x < 0 then factor 0 else x

– Mixtures of discrete and continuous: for example,

let x = sample in if x < 0.5 then 0 else x

has a point mass at 0 and is continuous on (0.5, 1).

Our language, however, includes programs that have no interpretation as
distributions:

– Zero measure: factor 0
– Infinite (but σ-finite) measures. For example,

let x = sample in factor (1 ÷ x) ; x

has infinite measure because
∫ 1

0
1
x dx is infinite. But the measure is σ-finite

because each interval [1n , 1] has finite measure and the union of all such
intervals covers (0, 1], the support of the measure.

– Non-σ-finite measures. For example,

let x = sample in factor (1 ÷ x) ; 0

has µ(0) = ∞. (We conjecture that all value measures definable in this
language are either σ-finite or have a point with infinite weight.)

Zero measures indicate unsatisfiable constraints; more precisely, the set of
successful evaluations may not be empty, merely measure zero.

C ::= [] | λx : τ. C | C e | e C | op(e, · · · , C, e, · · ·) | factor C

[] : ∅
C : Γ

(λx : τ. C) : Γ [x 7→ τ]

C : Γ

C e : Γ

C : Γ

e C : Γ

C : Γ

op(e, · · · , C, e, · · ·) : Γ

C : Γ

factor C : Γ

Fig. 4. Contexts

Infinite value measures arise only from the use of factor; the value measure
of a program that does not contain factor is always a sub-probability measure.
It may not be a probability measure—recall that 1 ÷ 0 and factor 0 both cause
execution to fail. We could eliminate infinite-measure programs by sacrificing
expressiveness. For example, if the valid arguments to factor were restricted to
the range (0, 1], as in Börgstrom et al. [3], only sub-probability measures would
be expressible. But there are good reasons to allow factor with numbers greater
than 1, such as representing the observation of a normal random variable with
a small variance—perhaps a variance computed from another random variable.
There is no simple syntactic rule that excludes the infinite-measure programs
above without also excluding some useful applications of factor.

Note that the theorems in this paper apply to all programs, regardless of
whether they can be interpreted as probability distributions. In particular, we
apply Lemma 1 (Tonelli) only to integrals over µS, which is finite.

4.6 Contextual Equivalence

Two expressions are contextually equivalent (=ctx) if for all closing program
contexts C their observable aggregate behavior is the same. We take programs
to be real-valued closed expressions; their observable behavior consists of their
value measures (ΣR → R+).

Figure 4 defines contexts and their relationship with type environments. The
relation C : Γ means that C provides bindings satisfying Γ to the expression
placed in its hole.

Definition 8 (Contextual equivalence) If Γ ` e1 : τ and Γ ` e2 : τ , then
e1 and e2 are contextually equivalent (e1 =Γ

ctx e2) if and only if for all contexts
C such that C : Γ and ` C[e1] : R and ` C[e2] : R and for all measurable sets
A ∈ ΣR,

µC[e1](A) = µC[e2](A)

Instances of contextual equivalence are difficult to prove directly because of
the quantification over all syntactic contexts.

Definition 9 (≈)

Γ ` e1 ≈ e2 : τ ⇐⇒ ∀(γ1, γ2) ∈ G[[Γ]], (e1 · γ1, e2 · γ2) ∈ E [[τ]]

(r1, r2) ∈ V[[R]] ⇐⇒ r1 = r2

(λx. e1, λx. e2) ∈ V[[τ1 → τ2]] ⇐⇒ ∀(v1, v2) ∈ V[[τ1]], (e1 [x 7→ v1] , e2 [x 7→ v2]) ∈ E [[τ2]]

(γ1, γ2) ∈ G[[Γ]] ⇐⇒ γ1 |= Γ ∧ γ2 |= Γ ∧ ∀x ∈ dom(Γ), (γ1(x), γ2(x)) ∈ V[[Γ (x)]]

(e1, e2) ∈ E [[τ]] ⇐⇒ ∀(A1, A2) ∈ A[[τ]], µe1(A1) = µe2(A2)

(A1, A2) ∈ A[[τ]] ⇐⇒ A1, A2 ∈ Σ[[τ]] ∧ ∀(v1, v2) ∈ V[[τ]], (v1 ∈ A1 ⇐⇒ v2 ∈ A2)

Fig. 5. Logical relation and auxiliary relations

5 A Logical Relation for Contextual Equivalence

In this section we develop a logical relation for proving expressions contextually
equivalent. Membership in the logical relation implies contextual equivalence
but is easier to prove directly. We prove soundness via compatibility lemmas,
one for each kind of compound expression. The fundamental property (a form of
reflexivity) enables simplifications to the logical relation that we take advantage
of in Section 6 when applying the relation to particular equivalences.

Figure 5 defines the relation

Γ ` e1 ≈ e2 : τ

and its auxiliary relations (Definition 9). In a deterministic language, we would
construct the relation so that two expressions are related if they produce related
values when evaluated with related substitutions. In our probabilistic language,
two expressions are related if they have related value measures when evaluated
with related substitutions. (The notation e·γ indicates the substitution γ applied
to the expression e.)

The ≈ relation depends on the following auxiliary relations:

– V[[τ]] relates closed values of type τ . Real values are related if they are identi-
cal, and functions are related if they take related inputs to related evaluation
configurations (E [[τ]]).

– G[[Γ]] relates substitutions. Variables are mapped to related values.
– E [[τ]] relates closed expressions. Expressions are related if their value mea-

sures agree on measurable sets related by A[[τ]].
– A[[τ]] relates measurable sets of values.

When comparing value measures, we must not demand complete equality of
the measures; instead, we only require that they agree on V[[τ]]-closed measurable

value sets. To see why, consider the expressions λx. x+ 2 and λx. x+ 1 + 1. As
values, they are related by V[[R → R]]. As expressions, we want them to be
related by E [[R→ R]], but their value measures are not identical; they are Dirac
measures on different—but related—syntactic values. In particular:

– µλx. x+2({λx. x+ 2}) = 1, but
– µλx. x+1+1({λx. x+ 2}) = 0

The solution is to compare measures only on related measurable sets. For every
value in the set given to the first measure, we must include every related value
in the set given to the second measure (and vice versa). This relaxation on mea-
sure equivalence preserves the spirit of “related computations produce related
results.”

Lemma 10 (Symmetry and transitivity). V[[τ]], G[[Γ]], E [[τ]], A[[τ]], and ≈
are symmetric and transitive.

Proof. The symmetry and transitivity of ≈ and G follow from that of E and V.
We prove symmetry and transitivity of V[[τ]], E [[τ]], and A[[τ]] simultaneously

by induction on τ . For a given τ , the properties of E [[τ]] and A[[τ]] follow from
V[[τ]]. The R case is trivial. Transitivity for V[[τ ′ → τ]] is subtle; given (v1, v3) ∈
V[[τ ′]], we must find a v2 such that (v1, v2) ∈ V[[τ ′]] and (v2, v3) ∈ V[[τ ′]] in order
to use transitivity of E [[τ]] (induction hypothesis). But we can use symmetry and
transitivity of V[[τ ′]] (also induction hypotheses) to show (v1, v1) ∈ V[[τ ′]], so v1
is a suitable value for v2. ut

The reflexivity of V, E , G, and ≈ is harder to prove. In fact, it is a corollary
of the fundamental property of the logical relation (Theorem 15).

5.1 Compatibility Lemmas

The compatibility lemmas show that expression pairs built from related compo-
nents are themselves related. Equivalently, they allow the substitution of related
expressions in single-frame contexts. Given the compatibility lemmas, sound-
ness with respect to contextual equivalence with arbitrary contexts is a short
inductive hop away.

Lemma 11 (Lambda Compatibility).

Γ, x : τ ′ ` e1 ≈ e2 : τ

Γ ` (λx : τ ′. e1) ≈ (λx : τ ′. e2) : τ ′ → τ

Proof. Let (γ1, γ2) ∈ G[[Γ]]. We must prove that λx. ei ·γi are in E [[τ ′ → τ]]—that
is, the corresponding value measures µλx. ei·γi agree on all (A1, A2) ∈ A[[τ ′ → τ]].

The value measure µλx. ei·γi is concentrated at λx. ei · γi with weight 1, so
the measures are related if those closures are related in V[[τ ′ → τ]]. That in turn
requires that (ei ·γi) [x 7→ vi] be related in E [[τ]] for (v1, v2) ∈ V[[τ ′]]. That follows
from Γ, x : τ ′ ` e1 ≈ e2 : τ , instantiated at [γi, x 7→ vi]. ut

Lemma 12 (App Compatibility).

Γ ` e1 ≈ e2 : τ ′ → τ Γ ` e′1 ≈ e′2 : τ ′

Γ ` e1 e′1 ≈ e2 e′2 : τ

Proof. By the premises, the µei·γi measures agree on A[[τ ′ → τ]], and the µe′i·γi
measures agree on A[[τ ′]]. Our strategy is to use Lemma 2 (Coarsening) to rewrite
the integrals after unpacking the the definition of the value measures and the
App rule. The applyin function defined as follows

applyin(λx. e, v′, A, σ) = evalin(e [x 7→ v′] , A, σ)

is useful for expressing the unfolding of the App rule.
Let (γ1, γ2) ∈ G[[Γ]]. We must prove the expressions (ei e

′
i) · γi are in E [[τ]].

After unfolding E and introducing (A1, A2) ∈ A[[τ]], we must show the cor-
responding value measures agree:

µ(e1 e′1)·γ1(A1) = µ(e2 e′2)·γ2(A2)

We rewrite each side as follows:

µ(ei e′i)·γi(Ai)

=

∫
evalin((ei e

′
i) · γi, Ai, σ) µS(dσ) (by Definition 6)

=

∫
applyin(ev(ei · γi, π1(σ)), ev(e′i · γi, π2(σ)), Ai, π3(σ))

· ew(ei · γi, π1(σ)) · ew(e′i · γi, π2(σ)) µS(dσ)

(by App)

=

∫∫∫
applyin(ev(ei · γi, σ1), ev(e′i · γi, σ2), Ai, σ3)

· ew(ei · γi, σ1) · ew(e′i · γi, σ2) µS(dσ3) µS(dσ2) µS(dσ1)

(by Proposition 4)

=

∫∫∫
applyin(v, v′, Ai, σ3) µS(dσ3) µe′i·γi(dv

′) µei·γi(dv) (by Theorem 7)

After rewriting both sides, we have the goal∫∫∫
applyin(v, v′, A1, σ) µS(dσ) µe′1·γ1(dv′) µe1·γ1(dv)

=

∫∫∫
applyin(v, v′, A2, σ) µS(dσ) µe′2·γ2(dv′) µe2·γ2(dv)

We show this equality via Lemma 2 (Coarsening) using the binary relation
A[[τ ′ → τ]]. By the induction hypothesis we have that µe1·γ1 , µe2·γ2 agree on
sets in A[[τ ′ → τ]]. That leaves one other premise to discharge: the functions

must have related pre-images. Let B ∈ ΣR. We must show the pre-images are
related by A[[τ ′ → τ]], where each pre-image is(

v 7→
∫∫

applyin(v, v′, Ai, σ) µS(dσ) µe′i·γi(dv
′)

)−1
(B)

To show that the function pre-images are in A[[τ ′ → τ]], we show something
stronger: for related values the function values are the same.

Let (v1, v2) ∈ V[[τ ′ → τ]]. We will show that∫∫
applyin(v1, v

′, A1, σ) µS(dσ) µe′1·γi(dv
′)

=

∫∫
applyin(v2, v

′, A2, σ) µS(dσ) µe′2·γi(dv
′)

We show this by again applying Lemma 2 (Coarsening), this time with the
relation A[[τ ′]]. Again, the induction hypothesis tells us that the measures µe′i·γi
agree on sets in A[[τ ′]]. We follow the same strategy for showing the function
pre-images related. Let (v′1, v

′
2) ∈ V[[τ ′]]. We must show∫

applyin(v1, v
′
1, A1, σ) µS(dσ) =

∫
applyin(v2, v

′
2, A2, σ) µS(dσ)

Since v1, v2 : τ ′ → τ , they must be abstractions. Let v1 = λx : τ ′. e′′1 and likewise
for v2. Then the goal reduces to∫

evalin(e′′1 [x 7→ v′1] , A1, σ) µS(dσ) =

∫
evalin(e′′2 [x 7→ v′2] , A2, σ) µS(dσ)

That is, by the definition of value measure, the following:

µe′′1 [x 7→v′1]
(A1) = µe′′2 [x 7→v′2]

(A2)

That follows from (v1, v2) ∈ V[[τ ′ → τ]] and the definitions of V and E . ut

Lemma 13 (Op Compatibility).

Γ ` ei ≈ e′i : τi opn : (τ1, · · · , τn)→ τ

Γ ` opn(e1, · · · , en) ≈ opn(e′1, · · · , e′n) : τ

Proof. Similar to but simpler than Lemma 12. Since all operations take real-
valued arguments, this proof does not rely on Lemma 2. We rely on the fact that
δ, the function that interprets primitive operations, takes related arguments to
related results, which holds trivially because reals are related only when they
are identical. ut

Lemma 14 (Factor Compatibility).

Γ ` e ≈ e′ : R
Γ ` factor e ≈ factor e′ : R

Proof. Similar to Lemma 13. ut

5.2 Fundamental Property

Theorem 15 (Fundamental Property). If Γ ` e : τ then Γ ` e ≈ e : τ .

Proof. By induction on Γ ` e : τ .

– Case x. Let (γ1, γ2) ∈ G[[Γ]]. We must prove the value measures µx·γi agree
on related (A1, A2) ∈ A[[τ]]. The measures are concentrated on γi(x) with
weight 1, so they agree if those values are related by V[[τ]], which they do
because the substitutions are related by G[[Γ]].

– Case r. The value measures are identical Dirac measures concentrated at r.
– Case sample. The value measures are identical.
– Case λx : τ1. e2. By Lemma 11.
– Case e e′. By Lemma 12.
– Case opn(e1, · · · , en). By Lemma 13.
– Case factor e. By Lemma 14.

ut

Corollary 16 (Reflexivity). V[[τ]], G[[Γ]], and E [[τ]] are reflexive.

One consequence of the fundamental property is that the A[[τ]], a binary re-
lation on measurable sets, is the least reflexive relation on measurable sets closed
under the V[[τ]] relation. We define A′[[τ]] as the collection of V[[τ]]-closed mea-
surable sets. To show two expressions related by E [[τ]] it is sufficient to compare
their corresponding measures applied to sets in A′[[τ]].

Definition 17.

A ∈ A′[[τ]] ⇐⇒ A ∈ Σ[[τ]] ∧ ∀(v1, v2) ∈ V[[τ]], (v1 ∈ A ⇐⇒ v2 ∈ A)

Lemma 18. If (A1, A2) ∈ A[[τ]] then A1 = A2, and if A ∈ A′[[τ]] then (A,A) ∈
A[[τ]].

Proof. By reflexivity of V. ut

Corollary 19.

(e1, e2) ∈ E [[τ]] ⇐⇒ ∀A ∈ A′[[τ]], µe1(A) = µe2(A)

Another consequence of the fundamental property is that to prove two ex-
pressions related by ≈ it suffices to show that they are E [[τ]]-related when paired
with the same arbitrary substitution.

Lemma 20 (Same Substitution Suffices). If Γ ` e1 : τ and Γ ` e2 : τ , and
if (e1 · γ, e2 · γ) ∈ E [[τ]] for all γ |= Γ , then Γ ` e1 ≈ e2 : τ .

Proof. Let (γ1, γ2) ∈ G[[Γ]]; we must show (e1 · γ1, e2 · γ2) ∈ E [[τ]]. The premise
gives us (e1 · γ1, e2 · γ1) ∈ E [[τ]], and we have (e2 · γ1, e2 · γ2) ∈ E [[τ]] from the
fundamental property (Theorem 15) for e2. Finally, transitivity (Lemma 10)
yields (e1 · γ1, e2 · γ2) ∈ E [[τ]]. ut

Together, Lemmas 19 and 20 simplify the task of proving instances of ≈ via
arguments about the shape of big-step evaluations and entropy pre-images, as
we will see in Section 6.

5.3 Soundness

The logical relation is sound with respect to contextual equivalence.

Theorem 21 (Soundness). If Γ ` e1 ≈ e2 : τ , then e1 =Γ
ctx e2.

Proof. First show ` C[e1] ≈ C[e2] : R by induction on C, using the compatibility
lemmas (11–14). Then unfold the definitions of ≈ and E [[R]] to get the equivalence
of the measures. ut

In the next section, we demonstrate the utility of the logical relation by
proving a few example equivalences.

6 Proving Equivalences

Having shown that≈ is sound with respect to =ctx, we can now prove instances of
contextual equivalence by proving instances of the ≈ relation in lieu of thinking
about arbitrary real-typed syntactic contexts.

Specific equivalence proofs fall into two classes, which we characterize as
structural and deep based on the kind of reasoning involved. Structural equiva-
lences include βv and commutativity of expressions. In a structural equivalence,
the same evaluations happen, just in different regions of the entropy space be-
cause the access patterns have been shuffled around. Deep equivalences include
conjugacy relationships and other facts about probability distributions; they in-
volve interactions between intermediate measures and mathematical operations.
Deep equivalences are a lightweight form of denotational reasoning restricted to
the ground type R.

6.1 Structural Equivalences

The first equivalence we prove is βv, the workhorse of call-by-value functional
programming. Unrestricted β conversions (call-by-name) do not preserve equiv-
alence in this language, of course, because they can duplicate (or eliminate) ef-
fects. But there is another subset of β conversions, which we call βS , that moves
arbitrary effectful expressions around while avoiding duplication. In particular,
βS permits the reordering of expressions in a way that is unsound for languages
with mutation and many other effects but sound for probabilistic programming.

Theorem 22 (βv). If Γ ` (λx. e) v : τ , then Γ ` (λx. e) v ≈ e[x 7→ v] : τ .

We present two proofs of this theorem. The first proof shows a correspondence
between evaluation derivations for the redex and contractum.

Proof (by derivation correspondence). For simplicity we assume that the bound
variables of λx. e are unique and distinct from the domain of Γ ; thus the sub-
stitution e [x 7→ v] does not need to rename variables to avoid capturing free
references in v.

Let γ |= Γ and let A ∈ A′[[τ]]. By Lemmas 19 and 20, it is sufficient to show
that

µ((λx. e) v)·γ(A) = µ(e[x7→v])·γ(A)

that is,∫
evalin(((λx. e) v) · γ,A, σ) µS(dσ) =

∫
evalin((e [x 7→ v]) · γ,A, σ) µS(dσ)

By Lemma 3, it suffices to show that for all W ∈ ΣR, the entropy pre-images
have the same measure. That is,

µS(evalin(((λx. e) v) · γ,A, ·)−1(W)) = µS(evalin((e [x 7→ v]) · γ,A, ·)−1(W))

Every evaluation of ((λx. e) v) · γ has the following form:

π1(σ) ` λx. e · γ ⇓ λx. e · γ, 1

π2(σ) ` v · γ ⇓ v · γ, 1

σ′ ` v · γ ⇓ v · γ, 1
···

π3(σ) ` (e [x 7→ v]) · γ ⇓ vr, w
∆1

σ ` ((λx. e) v) · γ ⇓ vr, w

The application of the λ-expression and the syntactic value argument are both
trivial. The evaluation of the body expression depends on e; it contains zero
or more leaf evaluations of x yielding v · γ. These leaf evaluations ignore their
entropy argument and have weight 1. We refer to the structure of the e evaluation
as ∆1.

Likewise, every evaluation derivation of (e [x 7→ v]) ·γ has the following form:

σ′′ ` v · γ ⇓ v · γ, 1
···

σ ` (e [x 7→ v]) · γ ⇓ vr, w
∆2

∆2 has exactly the same structure as ∆1. Consequently, the two expressions
evaluate the same if ∆1 and ∆2 receive the same entropy. In short:

σ ` ((λx. e) v) · γ ⇓ vr, w ⇐⇒ π3(σ) ` (e [x 7→ v]) · γ ⇓ vr, w

Let S1, S2 ⊆ S be the entropy pre-images of the two expressions:

S1 = evalin(((λx. e) v) · γ,A, ·)−1(W)

S2 = evalin((e [x 7→ v]) · γ,A, ·)−1(W)

We conclude that S1 = π−13 (S2) and thus the pre-images have the same measure.
ut

The second proof rewrites the measure of the redex into that of the contrac-
tum using integral identities.

Proof (by integral rewriting). As in the first proof, let γ |= Γ and A ∈ A′[[τ]]. It
will be sufficient to show that

µ((λx. e) v)·γ(A) = µ(e[x7→v])·γ(A)

Using the same steps as in Lemma 12, we can express the value measure of
an application as an integral by the value measures of its subexpressions.

µ((λx. e) v)·γ(A) =

∫∫∫
applyin(v′, v′′, A, σ) µS(dσ) µv·γ(dv′′) µλx. e·γ(dv′)

Both the subexpressions λx. e · γ and v · γ are values, so their value measures
are Dirac. We complete the proof using the fact that integration by a Dirac
measure is equivalent to substitution.

=

∫∫∫
applyin(v′, v′′, A, σ) µS(dσ) diracv·γ(dv′′) diracλx. e·γ(dv′)

=

∫
applyin(λx. e · γ, v · γ,A, σ) µS(dσ) (integration by Dirac)

=

∫
evalin((e [x 7→ v]) · γ,A, σ) µS(dσ) (definition of applyin)

= µ(e[x 7→v])·γ(A) (definition of µe)

ut

The second equivalence concerns reordering expression evaluations. In prob-
abilistic programming, sample and factor effects can be reordered, as long as
they are not duplicated or eliminated. We define simple contexts, a generaliza-
tion of evaluation contexts, as a class of contexts that an expression may be
moved through without changing the number of times it is evaluated.

Definition 23 (Simple Contexts)

S ::= [] | S e | e S | (λx. S) e | op(e, · · · , S, e, · · ·) | factor S

Note that (λx. S) e can also be written let x = e in S.

Theorem 24 (Substitution into Simple Context). If Γ ` (λx. S[x]) e : τ
and x does not occur free in S, then Γ ` (λx. S[x]) e ≈ S[e] : τ .

Proof. We can prove the following equivalence for a context S1 consisting of a
single frame, such as ([] e). For all λ-values f where Γ ` S1[f e] : τ ,

Γ ` (λx. S1[f x]) e ≈ S1[f e] : τ

The proof is similar to that of Theorem 22, but see also below.

The proof for arbitrary S contexts proceeds by induction on S. The base
case, Γ ` (λx. x) e ≈ e : τ , is easily proven directly. For the inductive case:

Γ ` (λx. S1[S[x]]) e ≈ (λx. S1[(λy. S[y]) x]) e (by Theorem 22)

≈ S1[(λy. S[y]) e] (by single-frame case)

≈ S1[S[e]] (by IH and compatibility of S1)

ut

The βS and βv theorems together show that the following terms are equiva-
lent:

– let x = e1, y = e2 in body

– let y = e2, x = e1 in body

First e2 is lifted to the outside with βS to get let z = e2, x = e1, y = z in body.
Then y is replaced with z in body using βv. Finally, the outer z is renamed back
to y.

This reordering can also be shown directly, and the proof is similar to the
S1 = (λx. []) e case above but simpler to present. It involves a generalization of
Lemma 1 (Tonelli).

We first apply the technique from the the second proof of Theorem 22 to
express substitution as integration by value measures.

µ(λx. (λy. e3) e2) e1(A) =

∫
µ((λy. e3) e2)[x 7→v1](A) µe1(dv1)

=

∫∫
µe3[x7→v1,y 7→v2](A) µe2(dv2) µe1(dv1)

Doing the same to the other side, we now need to show that the order of inte-
gration is interchangable:∫∫

µe3[x 7→v1,y 7→v2](A) µe2(dv2) µe1(dv1) =

∫∫
µe3[y 7→v2,x 7→v1](A) µe1(dv1) µe2(dv2)

Since µe1 and µe2 may not be σ-finite we cannot immediately apply Lemma 1.
Lemma 25 shows exchangability for value measures and completes the proof.

Lemma 25 (µe interchangable). If ` e1 : τ1 and ` e2 : τ2 then for all mea-
surable f : [[τ1]]× [[τ2]]→ R+,∫∫

f(v1, v2) µe2(dv2) µe1(dv1) =

∫∫
f(v1, v2) µe1(dv1) µe2(dv2)

Proof. Since integrals about µe can be expressed in terms of the σ-finite µS, we
can apply Lemma 1 (Tonelli) once we have exposed the underlying measures.∫∫

f(v1, v2) µe2(dv2) µe1(dv1)

=

∫∫
f(ev(v1, σ1), ev(v2, σ2)) · ew(v2, σ2) µS(dσ2) · ew(v1, σ1) µS(dσ1)

(Theorem 7)

=

∫∫
f(ev(v1, σ1), ev(v2, σ2)) · ew(v2, σ2) · ew(v1, σ1) µS(dσ2) µS(dσ1)

(linearity of integration)

=

∫∫
f(ev(v1, σ1), ev(v2, σ2)) · ew(v1, σ1) · ew(v2, σ2) µS(dσ1) µS(dσ2)

(Lemma 1)

=

∫∫
f(v1, v2) µe1(dv1) µe2dv2

ut

6.2 Deep Equivalences

In contrast to structural equivalences such as βv, deep equivalences rely on the
specific computations being performed and mathematical relationships between
them. They generally concern only expressions of ground type (R). Proving them
requires “locally denotational” reasoning about expressions and the real-valued
measures (or measure kernels, when free variables are present) they represent.

For example, the following theorem encodes the fact that the sum of two
normally-distributed random variables is normally distributed.

Theorem 26 (Sum of normals with variable parameters). Let

e1 = normal xm1
xs1 + normal xm2

xs2

e2 = normal (xm1
+ xm2

)
√
x2s1 + x2s2

and let Γ (xm1
) = Γ (xm2

) = Γ (xs1) = Γ (xs2) = R. Then Γ ` e1 ≈ e2 : R.

Proof. Let (γ1, γ2) ∈ G[[Γ]]. Since xm1 , xm2 , xs have ground type, the substitu-
tions agree on their values: let m1 = γ1(xm1

) = γ2(xm1
) and likewise for m2, s1,

and s2.
We must show (e1 · γ1, e2 · γ2) ∈ E [[R]]; that is, µe1·γ1(A) = µe2·γ2(A) for all

A ∈ ΣR. The value measures of the normal expressions are actually the measures
of normally-distributed random variables. This reasoning relies on the meaning
assigned to the normalinvcdf operation as well as + and ∗; recall that

normal m s , m + s ∗ normalinvcdf(sample)

Then we apply the fact from probability that the sum of two normal random
variables is a normal random variable. ut

6.3 Combining Equivalences

The transitivity of the logical relation permits equivalence proofs to be decom-
posed into smaller, simpler steps, using the compatibility lemmas to focus in and
rewrite subexpressions of the main expression of interest.

Theorem 27 (Sum of normals). Let

e1 = normal em1
es1 + normal xm2

es1

e2 = normal (em1
+ em2

)
√
e2s1 + e2s2

and let Γ ` e1 : R and Γ ` e2 : R. Then Γ ` e1 ≈ e2 : R.

Proof. This theorem is just like Theorem 26 except with expressions instead of
variables for the parameters to the normal distributions. We use βS (Theorem 24)
“in reverse” to move the expressions out and replace them with variables, then
we apply the variable case (Theorem 26), then we use βS again to move the
parameter expressions back in. ut

7 Conclusion

We have defined a logical relation to help prove expressions contextually equiva-
lent in a probabilistic programming language with continuous random variables
and a scoring operation. We have proven it sound and demonstrated its useful-
ness with a number of applications to both structural equivalences like βv and
deep equivalences like the sum of normals.

Acknowledgments We thank Amal Ahmed for her guidance on logical rela-
tions, and we thank Theophilos Giannakopoulos, Mitch Wand, and Olin Shivers
for many helpful discussions and suggestions.

Bibliography

[1] Bizjak, A., Birkedal, L.: Step-Indexed Logical Relations for Probability, pp.
279–294. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

[2] Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Gael, J.V.:
Measure transformer semantics for bayesian machine learning. Logical
Methods in Computer Science 9(3) (2013)

[3] Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: Conf. Rec. 21st
ACM International Conference on Functional Programming (Sep 2016)

[4] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt,
M., Brubaker, M.A., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic pro-
gramming language. Journal of Statistical Software (2016)

[5] Culpepper, R.: Gamble. https://github.com/rmculpepper/gamble

(2015)
[6] Edalat, A., Escardó, M.H.: Integration in Real PCF. Inf. Comput. 160(1),

128–166 (Jul 2000)
[7] Escardó, M.H.: PCF extended with real numbers. Theor. Comput. Sci.

162(1), 79–115 (Aug 1996)
[8] Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum,

J.B.: Church: A language for generative models. In: UAI. pp. 220–229 (2008)
[9] Huang, D., Morrisett, G.: An application of computable distributions to the

semantics of probabilistic programming languages. In: ESOP ’16 (2016)
[10] Kiselyov, O., Shan, C.C.: Embedded probabilistic programming. In: Proc.

IFIP TC 2 Working Conference on Domain-Specific Languages. pp. 360–
384. DSL ’09 (2009)

[11] Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14.
American Mathematical Society (1997)

[12] Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Winbugs – a bayesian
modelling framework: Concepts, structure, and extensibility. Statistics and
Computing 10(4), 325–337 (Oct 2000)

[13] Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic
programming platform with programmable inference (Mar 2014), http:

//arxiv.org/abs/1404.0099

[14] Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spen-
gler, A., Bronskill, J.: Infer.NET 2.6 (2014), Microsoft Research Cambridge.
http://research.microsoft.com/infernet

[15] Narayanan, P., Carette, J., Romano, W., Shan, C.c., Zinkov, R.: Probabilis-
tic Inference by Program Transformation in Hakaru (System Description),
pp. 62–79. Springer International Publishing (2016)

[16] Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sam-
pling functions. ACM Trans. Program. Lang. Syst. 31(1), 4:1–4:46 (Dec
2008)

[17] Pfeffer, A.: Figaro: An object-oriented probabilistic programming language.
Tech. rep., Charles River Analytics (2009)

[18] Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of proba-
bility distributions. In: Conf. Rec. 29th ACM Symposium on Principles of
Programming Languages. pp. 154–165 (2002)

[19] Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic
higher-order languages. In: Conf. Rec. 43rd ACM Symposium on Principles
of Programming Languages. pp. 595–607. POPL ’16 (2016)

[20] Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics
for probabilistic programming: higher-order functions, continuous distribu-
tions, and soft constraints. In: Proc. 31st IEEE Symposium on Logic in
Computer Science (2016)

[21] Wingate, D., Goodman, N.D., Stuhlmüller, A., Siskind, J.M.: Nonstandard
interpretations of probabilistic programs for efficient inference. In: Adv. in
Neural Inform. Processing Syst. vol. 24 (2011)

[22] Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to proba-
bilistic programming inference. In: Proc. 17th International Conference on
Artificial Intelligence and Statistics. pp. 1024–1032 (2014)

