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What is a Network?

Ll
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General undirected or directed graph




Classification of Networks

e Synchronous:
- Messages delivered

within one time unit
— Nodes have access to a

common clock

e Asynchronous:

— Message delays are
arbitrary

— No common clock

e Static:

— Nodes never crash

- Edges maintain
operational status forever

e Dynamic:
- Nodes may come and go

- Edges may crash and
recover

Introduction to Dynamic Networks



Dynamic Networks: What?

e Network dynamics:
— The network topology changes over times
- Nodes and/or edges may come and go
— Captures faults and reliability issues

e Input dynamics:
- Load on network changes over time

— Packets to be routed come and go
— Objects in an application are added and deleted
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Dynamic Networks: How?

e Duration:

— Transient: The dynamics occur for a short
period, after which the system is static for an
extended time period

— Continuous: Changes are constantly occurring
and the system has to constantly adapt to
them

e Control:
— Adversarial
— Stochastic
- Game-theoretic

Introduction to Dynamic Networks



Dvynamic Networks are Everywhere

e Internet

- The network, traffic, applications are all
dynamically changing

e | ocal-area networks
- Users, and hence traffic, are dynamic

e Mobile ad hoc wireless networks
- Moving nodes
— Changing environmental conditions
e Communication networks, social networks,

Web, transportation networks, other
infrastructure
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Adversarial Models

e Dynamics are controlled by an adversary

— Adversary decides when and where changes
occur

— Edge crashes and recoveries, node arrivals and
departures

— Packet arrival rates, sources, and destinations

e For meaningful analysis, need to constrain
adversary
— Maintain some level of connectivity
— Keep packet arrivals below a certain rate
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Stochastic Models

e Dynamics are described by a probabilistic
process
— Neighbors of new nodes randomly selected

— Edge failure/recovery events drawn from some
probability distribution

— Packet arrivals and lengths drawn from some
probability distribution

e Process parameters are constrained

— Mean rate of packet arrivals and service time
distribution moments

— Maintain some level of connectivity in network
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Game-Theoretic Models

e Implicit assumptions in previous two
models:

— All network nodes are under one administration
— Dynamics through external influence

e Here, each node is a potentially
independent agent

— Own utility function, and rationally behaved
— Responds to actions of other agents
— Dynamics through their interactions

e Notion of stability:
— Nash equilibrium
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Design & Analysis Considerations

Distributed computing:
— For static networks, can do pre-processing

— For dynamic networks (even with transient dynamics),
need distributed algorithms

Stability:

- Transient dynamics: Self-stabilization

— Continuous dynamics: Resources bounded at all times
- Game-theoretic: Nash equilibrium

Convergence time

Properties of stable states:

- How much resource is consumed?

- How well is the network connected?

- How far is equilibrium from socially optimal?
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Five Illustrative Problem Domains

Spanning trees
- Transient dynamics, self-stabilization

Load balancing

— Continuous dynamics, adversarial input
Packet routing

— Transient & continuous dynamics, adversarial
Queuing systems

— Adversarial input

Network evolution
— Stochastic & game-theoretic
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Spanning Trees

Introduction to Dynamic Networks

13



Spanning Trees

PN

¢ One of the most fundamental network structures

e Often the basis for several distributed system
operations including leader election, clustering,
routing, and multicast

e Variants: any tree, BFS, DFS, minimum spanning
trees
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Spanning Tree in a Static Network

LT

e Assumption: Every node has a unique identifier
e The largest id node will become the root

e Each node v maintains distance d(v) and next-hop h(v) to
largest id node r(v) it is aware of:

— Node v propagates (d(v),r(v)) to neighbors
- If message (d,r) from u with r > r(v), then store (d+1,r,u)
- If message (d,r) from p(v), then store (d+1,r,p(Vv))

Introduction to Dynamic Networks 15



Spanning Tree in a Dynamic Network

|

e Suppose node 8 crashes
e Nodes 2, 4, and 5 detect the crash

e Each separately discards its own triple, but believes it can
reach 8 through one of the other two nodes

— Can result in an infinite loop
e How do we design a self-stabilizing algorithm?
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Exercise

Consider the following spanning tree algorithm in
a synchronous network

Each node v maintains distance d(v) and next-
hop h(v) to largest id node r(v) it is aware of

In each step, node v propagates (d(v),r(v)) to
neighbors

On receipt of a message:

- If message (d,r) from u with r > r(v), then store
(d+1,r,u)

- If message (d,r) from p(v), then store (d+1,r,p(Vv))

Show that there exists a scenario in which a node
fails, after which the algorithm never stabilizes
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Self-Stabilization

Introduced by Dijkstra [Dij74]
— Motivated by fault-tolerance issues [Sch93]
— Hundreds of studies since early 90s

A system S is self-stabilizing with respect to
predicate P
— Once P is established, P remains true under no dynamics

— From an arbitrary state, S reaches a state satisfying P
within finite number of steps

Applies to transient dynamics

Super-stabilization notion introduced for
continuous dynamics [DH97]
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Self-Stabilizing ST Algorithms

e Dozens of self-stabilizing algorithms for finding
spanning trees under various models [Gar03]
- Uniform vs non-uniform networks
— Fixed root vs non-fixed root
— Known bound on the number of nodes
- Network remains connected

e Basic idea:
— Some variant of distance vector approach to build a BFS
- Symmetry-breaking
e Use distinguished root or distinct ids
— Cycle-breaking
e Use known upper bound on number of nodes
e Local detection paradigm
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Self-Stabilizing Spanning Tree

LT

e Suppose upper bound N known on number of nodes [AGSO0]

e Each node v maintains distance d(v) and parent h(v) to
largest id node r(v) it is aware of:

— Node v propagates (d(v),r(v)) to neighbors
- If message (d,r) from u with r > r(v), then store (d+1,r,u)
- If message (d,r) from p(v), then store (d+1,r,p(Vv))

e If d(v) exceeds N, then store (0,v,v): breaks cycles
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Self-Stabilizing Spanning Tree

e Suppose upper bound N not known [AKY9O0]
e Maintain triple (d(v),r(v),p(v)) as before
- If v > r(u) of all of its neighbors, then store
(0,v,Vv)
- If message (d,r) received from u with r > r(v),
then v “joins” this tree

e Sends a join request to the root r
e On receiving a grant, v stores (d+1,r,u)

— Other local consistency checks to ensure that
cycles and fake root identifiers are eventually
detected and removed
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Spanning Trees: Summary

Model:

— Transient adversarial network dynamics

Algorithmic techniques:

- Symmetry-breaking through ids and/or a distinguished
root

— Cycle-breaking through sequence numbers or local
detection

Analysis techniques:
— Self-stabilization paradigm

Other network structures:
— Hierarchical clustering
— Spanners (related to metric embeddings)
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Load Balancing
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Load Balancing

Each node v has w(v) tokens
Goal: To balance the tokens among the nodes
Imbalance: max, , [w(u) - Wyl

In each step, each node can send at most one
token to each of its neighbors
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Load Balancing

In a truly balanced configuration, we have |w(u) - w(v)| £ 1
Our goal is to achieve fast approximate balancing
Preprocessing step in a parallel computation

Related to routing and counting networks [PU89, AHS91 |
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Local Balancing

e Each node compares its
number of tokens with its
neighbors

e In each step, for each
edge (u,v): I
- If w(u) > w(v) + 2d, then u
sends a token to v
- Here, d is maximum degree
of the network .

e Purely local operation
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Convergence to Stable State

e How long does it take local balancing to
converge?

e What does it mean to converge?
— Imbalance is “constant” and remains so

e What do we mean by “how long”?
— The number of time steps it takes to achieve
the above imbalance

— Clearly depends on the topology of the network
and the imbalance of the original token

distribution
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Expansion of a Network

e Edge expansion a:

— Minimum, over all sets S of size
< n/2, of the term

IE(S)I/IS]
e Lower bound on convergence
time:
(W(S) - [S]|-W,g)/E(S)
= (W(S)/IS| - wyyg)/ @

Expansion = 12/6 =2
Wayg = 3
Lower bound = (29 - 18)/12
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Properties of Local Balancing

e For any network G with expansion o, any
token distribution with imbalance A converges
to a distribution with imbalance O(d:-log(n)/ )
in O(A/ o) steps [AAMRS3, GLM+99]

e Analysis technique:
— Associate a potential with every node v, which is a
function of the w(v)
e Example: (w(v) - avg)?, cw(v)-avg
e Potential of balanced configuration is small

- Argue that in every step, the potential decreases by
a desired amount (or fraction)

— Potential decrease rate yields the convergence time
e There exist distributions with imbalance A that
would take Q(A/ o) steps
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Exercise

e For any graph G with edge expansion «,

show that there is an initial distribution
with imbalance A such that the time taken

to reduce the imbalance by even half is
Q(A/ a) steps
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Local Balancing in Dynamic Networks

e The “purely local” nature of the algorithm useful
for dynamic networks

e Challenge:

- May not “know” the correct load on neighbors since
links are going up and down

o Key ideas:
— Maintain an estimate of the neighbors’ load, and
update it whenever the link is live
— Be more conservative in sending tokens
e Result:
- Essentially same as for static networks, with a slightly

higher final imbalance, under the assumption that the

the set of live edges form a network with edge
expansion a at each step
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Adversarial Load Balancing

Dynamic load [MR02] —

— Adversary inserts and/or
deletes tokens

In each step:

— Balancing

— Token insertion/deletion
For any set S, let d,(S) be

the change in number of
tokens at step t

Adversary is constrained in
how much imbalance can
be increased in a step

Local balancing is stable

against rate 1 adversaries  d(S) — (avg,,, —avg)|S| <1 - e(S)
[AKKO2]
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Stochastic Adversarial Input
Studied under a different model [AKUOS5]

— Any number of tokens can be exchanged per step, with
one neighbor

Local balancing in this model [GM96]

- Select a random matching

- Perform balancing across the edges in matching
Load consumed by nodes

— One token per step

Load placed by adversary under statistical
constraints

— Expected injected load within window of w steps is at
most rnw

— The pth moment of total injected load is bounded, p > 2
Local balancing is stable if r < 1
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Load Balancing: Summary

e Algorithmic technique:
— Local balancing

e Design technique:

— Obtain a purely distributed solution for static
network, emphasizing local operations

- Extend it to dynamic networks by maintaining
estimates

e Analysis technique:
— Potential function method
— Martingales
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Packet Routing

Introduction to Dynamic Networks

35



The Packet Routing Problem

e Given a network and a set of packets with source-
destination pairs

— Path selection: Select paths between sources and
respective destinations

- Packet forwarding: Forward the packets to the destinations
along selected paths

e Dynamics:
- Network: edges and their capacities
— Input: Packet arrival rates and locations

e Interconnection networks [Lei91], Internet [Hui95],
local-area networks, ad hoc networks [Per0O0]
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Packet Routing: Performance

Static packet set:

— Congestion of selected paths: Number of paths that
intersect at an edge/node

— Dilation: Length of longest path

Dynamic packet set:

— Throughput: Rate at which packets can be delivered to
their destination

— Delay: Average time difference between packet release
at source and its arrival at destination

Dynamic network:
— Communication overhead due to a topology change
— In highly dynamic networks, eventual delivery?

Compact routing:
— Sizes of routing tables
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Routing Algorithms Classification

e Global: e Static:
— All nodes have complete - Routes change rarely
topology information over time

e Decentralized: e Dynamic:
— Topology changes

— Nodes know information frequently requiring

about neighboring nodes dynamic route updates
and links

e Proactive:

— Nodes constantly react to topology changes always
maintaining routes of desired quality

e Reactive:
— Nodes select routes on demand

Introduction to Dynamic Networks
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Link State Routing

Each node periodically
broadcasts state of its links
to the network

Each node has current state
of the network

Computes shortest paths to
every node

— Dijkstra’s algorithm

Stores next hop for each
destination
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Link State Routing, contd

When link state changes, the
broadcasts propagate
change to entire network A

Each node recomputes
shortest paths

High communication
complexity @
Not effective for highly
dynamic networks

Used in intra-domain routing
- OSPF
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Distance Vector Routing

e Distributed version of
Bellman-Ford’s algorith

e Each node maintains a
distance vector

m

Al4 E
BI5SE

— Exchanges with neighbors

— Maintains shortest path
distance and next hop
e Basic version not self-
stabilizing
- Use bound on number of
nodes or path length
— Poisoned reverse

® [Bl6G
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Distance Vector Routing

e Basis for two routing
protocols for mobile ad
hoc wireless networks

e DSDV: proactive,
attempts to maintain
routes

e AODV: reactive, computes
routes on-demand using
distance vectors [PBRS9]

4E

A
B

S5E

4D

A
B

6 G

3C

6G
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Link Reversal Routing

Aimed at dynamic networks in
which finding a single path is a
challenge [GB81]

Focus on a destination D

Idea: Impose direction on links
so that all paths lead to D

Each node has a height
- Height of D = 0

— Links are directed from high to
low

D is a sink

By definition, we have a
directed cyclic graph
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Setting Node Heights

If destination D is the only
sink, then all directed
paths lead to D

If another node is a sink,

then it reverses all links:

— Set its height to 1 more than
the max neighbor height

Repeat until D is only sink

A potential function
argument shows that this
procedure is self-
stabilizing
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Exercise

e For tree networks, show that the link
reversal algorithm self-stabilizes from an
arbitrary state

Introduction to Dynamic Networks
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Issues with Link Reversal

A local disruption could cause global change in
the network

— The scheme we studied is referred to as full link
reversal

— Partial link reversal
When the network is partitioned, the

component without sink has continual
reversals

— Proposed protocol for ad hoc networks (TORA)
attempts to avoid these [PC97]

Need to maintain orientations of each edge for
each destination

Proactive: May incur significant overhead for
highly dynamic networks
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Routing in Highly Dynamic Networks

e Highly dynamic network:
- The network may not even
be connected at any point
of time
e Problem: Want to route a
message from source to
sink with small overhead

e Challenges:
— Cannot maintain any paths

— May not even be able to
find paths on demand

— May still be possible to
route!
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End-to-End Communication

e Consider basic case of one source-destination pair

e Need redundancy since packet sent in wrong
direction may get stuck in disconnected portion!

e Slide protocol (local balancing) [AMS89, AGR92]

— Each node has an ordered queue of at most n slots for
each incoming link (same for source)

— Packet moved from slot i at node v to slot j at the (v,u)-
queue of node u only if j < i

— All packets absorbed at destination
— Total number of packets in system at most C = O(nm)
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End-to-End Communication

End-to-end communication using slide

For each data item:

— Sender sends 2C+1 copies of item (new token added only if
queue is not full)

— Receiver waits for 2C+1 copies and outputs majority
Safety: The receiver output is always prefix of sender input

Liveness: If the sender and the receiver are eventually
connected:

— The sender will eventially input a new data item
— The receiver eventually outputs the data item

Strong guarantees considering weak connectivity
Overhead can be reduced using coding e.g. [Rab89]
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Routing Through Local Balancing

Multi-commodity flow [AL94 ]

Queue for each flow’s packets at
head and tail of each edge

In each step:
- New packets arrive at sources
— Packet(s) transmitted along each h
edge using local balancing
— Packets absorbed at destinations

— Queues balanced at each node

Local balancing through potentials | ¢, (q) = exp(eq/(8Ld,)

- Packets sent along edge to maximize |1 = longest path length

potential drop, subject to capacity

d,= demand for flow k

Queues balanced at each node by
simply distributing packets evenly
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Routing Through Local Balancing

Edge capacities can be dynamically
and adversarially changing

If there exists a feasible flow that
can route d, flow for all k:

— This routing algorithm will route (1-
eps) d, for all k h
Crux of the argument:
— Destination is a sink and the source

is constantly injecting new flow

— Gradient in the direction of the sink
= exp(eq/(8Ld
— As long as feasible flow paths exist, cpk(q) p( q ( k)

there are paths with potential drop L = longest path length
Follow-up work has looked at packet d,= demand for flow k

delays and multicast problems
[ABBSO01, JRS03]
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Packet Routing: Summary

e Models:
- Transient and continuous dynamics
— Adversarial

e Algorithmic techniques:
— Distance vector
- Link reversal
— Local balancing

e Analysis techniques:
— Potential function
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Queuing Systems
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Packet Routing: Queuing

We now consider the

second aspect of routing:

queuing

Edges have finite capacity

When multiple packets

need to use an edge, they

get queued in a buffer

Packets forwarded or
dropped according to
some order

-D
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Packet Queuing Problems

In what order should the packets be forwarded?
— First in first out (FIFO or FCFS)

— Farthest to go (FTG), nearest to go (NTG)

— Longest in system (LIS), shortest in system (SIS)

Which packets to drop?
— Tail drop
— Random early detection (RED)

Major considerations:
- Buffer sizes

— Packet delays

— Throughput

Our focus: forwarding
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Dynamic Packet Arrival

e Dynamic packet arrivals in static networks
— Packet arrivals: when, where, and how?
— Service times: how long to process?

e Stochastic model:
— Packet arrival is a stochastic process
— Probability distribution on service time
— Sources, destinations, and paths implicitly constrained by
certain load conditions
e Adversarial model:

- Deterministic: Adversary decides packet arrivals,
sources, destinations, paths, subject to deterministic
load constraints

— Stochastic: Load constraints are stochastic
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(Stochastic) Queuing Theory

e Rich history [Wal88, Ber92]

Single queue, multiple parallel queues very well-
understood

e Networks of queues

Hard to analyze owing to dependencies that arise
downstream, even for independent packet arrivals

Kleinrock independence assumption
Fluid model abstractions

e Multiclass queuing networks:

Multiple classes of packets

Packet arrivals by time-invariant independent processes
Service times within a class are indistinguishable
Possible priorities among classes
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Load Conditions & Stability

Stability:
— Finite upper bound on queues & delays

Load constraint:

— The rate at which packets need to traverse an edge
should not exceed its capacity

Load conditions are not sufficient to guarantee
stability of a greedy queuing policy [LK91, RS92]
— FIFO can be unstable for arbitrarily small load [Bra94]

— Different service distributions for different classes

For independent and time-invariant packet arrival
distributions, with class-independent service
times [DM95, RS92, BraS6]

— FIFO is stable as long as basic load constraint holds
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Adversarial Queuing Theory

Directed network

Packets, released at source,
travel along specified paths,
absorbed at destination

In each step, at most one
packet sent along each edge
Adversary injects requests:
— A request is a packet and a
specified path

Queuing policy decides which
packet sent at each step along
each edge

[BKR+96, BKR+01]
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Load Constraints

e Let N(T,e) be number of paths e
injected during interval T that O Q
traverse e

e (w,r)-adversary: 4 paths using e

- For any interval T of w consecutive .
time steps, for every edge e: / injected at t

N(T,e) <w-r
— Rate of adversary is r

e (w,r) stochastic adversary:

- For any interval [t+1..t+w], for
every edge e:

E[N(T,e)|H,] =w-r

Area<w-r
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Stability in DAGS

Theorem: For any dag, any greedy
policy is stable against any rate-1
adversary

A.(e) = # packets in network at
time t that will eventually use e

Q.(e) = queue size for e at time t
Proof: time-invariant upper bound
on A.(e)

Large queue: Q.. (e) =2 w = A(e) < A._,(e)

Small queue: Q.. (e) < w = A._,(e) S w + 3, A_,(e)
Ale) = 2w + 3 A, ()
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Extension to Stochastic Adversaries

e Theorem: In DAGSs, any greedy policy is stable
against any stochastic 1-¢ rate adversary, for any

e>0
e Cannot claim a hard upper bound on A.(e)

e Define a potential ¢, that is an upper bound on
the number of packets in system

e Show that if the potential is larger than a
specified constant, then there is an expected
decrease in the next step

e Invoke results from martingale theory to argue
that E[¢,] is bounded by a constant
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FIFO is Unstable [A+ 96]

at AtogotoC
Next s steps:

- rs packets for loop @
— rs packets for B-C — .
Next rs steps:

~ r2s packets from B to A A
- r2s packets for B-C A
Next r2s steps:
- 3s packets for C-A - v n

L N
Now: s+1 packets waiting D C
at C going to A )

N
FIFO does not use edges —
most effectively .

Initially: s packets waiting I
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Stability in General Networks

LIS and SIS are universally stable against rate <1
adversaries [AAF+96]

Furthest-To-Go and Nearest-To-Origin are stable
even against rate 1 adversaries [Gam99]

Bounds on queue size:
— Mostly exponential in the length of the shortest path

- For DAGSs, Longest-In-System (LIS) has poly-sized
queues

Bounds on packet delays:
— A variant of LIS has poly-sized packet delays
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Exercise

e Are the following two equivalent? Is one
stronger than the other?

— A finite bound on queue sizes
— A finite bound on delay of each packet
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Queuing Theory: Summary

Focus on input dynamics in static networks
Both stochastic and adversarial models
Primary concern: stability

— Finite bound on queue sizes

— Finite bound on packet delays

Algorithmic techniques: simple greedy policies

Analysis techniques:

— Potential functions

— Markov chains and Markov decision processes
- Martingales

Introduction to Dynamic Networks

66



Network Evolution
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How do Networks Evolve?

e Internet

- New random graph models

— Developed to support observed properties
e Peer-to-peer networks

— Specific structures for connectivity properties
— Chord [SMK+01], CAN [RFH+01], Oceanstore

[KBC+00], D2B [FGO03], [PRUO1], [LNBKO02], ...

e Ad hoc networks

— Connectivity & capacity [GKO0O...]
— Mobility models [BMJ+98, YLNO3, LNRO4]
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Internet Graph Models

e Internet measurements [FFF99, TGJ+02,

INE

- Degrees follow heavy-tailed distribution at the
AS and router levels

- Frequency of nodes with degree d is
proportional to 1/df, 2 < f < 3
e Models motivated by these observations
- Preferential attachment model [BAS9]
— Power law graph model [ACLOO]
— Bicriteria optimization model [FKP0O2]
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Preferential Attachment

Evolutionary model [BA9S9]

Initial graph is a clique of size
d+1

- d is degree-related parameter
In step t, a new node arrives
New node selects d neighbors

Probability that node j is
neighbor is proportional to its
current degree

Achieves power law degree
distribution
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Power Law Random Graphs

Structural model [ACLOO]

Generate a graph with a specified degree
sequence (dy,...,d,)

- Sampled from a power law degree distribution
Construct d; mini-vertices for each ]
Construct a random perfect matching

Graph obtained by adding an edge for every edge
between mini-vertices

Adapting for Internet:
- Prune 1- and 2-degree vertices repeatedly
— Reattach them using random matchings
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Bicriteria Optimization

Evolutionary model

Tree generation with power law
degrees [FKP02]

All nodes in unit square

When node j arrives, it attaches
to node k that minimizes: O
a - dy + h,
If 4 < a < o(Vn):
— Degrees distributed as power

law for some 8, dependent on «

Can be generalized, but no .
provable results known h,: measure of centrality

of k 1n tree
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Connectivity & Capacity Properties

Congestion in certain uniform multicommodity flow
problems:

— Suppose each pair of nodes is a source-destination pair for a
unit flow

— What will be the congestion on the most congested edge of
the graph, assuming uniform capacities

— Comparison with expander graphs, which would tend to have
the least congestion

e For power law graphs with constant average degree,
congestion is O(n log?n) with high probability [GMS03]

- Q(n) is a lower bound

e For preferential attachment model, congestion is O(n log n)
with high probability [MPS03]

e Analysis by proving a lower bound on conductance, and
hence expansion of the network
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Network Creation Game

View Internet as the product
of the interaction of many
economic agents

Agents are nodes and their
strategy choices create the
network

Strategy s; of node j:

— Edges to a subset of the nodes
Cost ¢, for node j:

- ar|s5| + 2y dgs)(3ik)

— Hardware cost plus quality of
service costs

3o+ sum of distances to
all nodes
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Network Creation Game

In the game, each node selects the
best response to other nodes’
strategies

Nash equilibrium s:

- For all j, ¢,(s) = ¢(s’) for all s” that
differ from s only in the jth
component

Price of anarchy [KP99]:

- Maximum, over all Nash equilibria, of
the ratio of total cost in equilibrium to
smallest total cost

Bound, as a function of a [AEEDO6]:
- 0O(1) for a = O(¥n) or Q(n log n)
— Worst-case ratio O(n1/3)
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Other Network Games

e Variants of network creation games
— Weighted version [AEEDO6]
— Cost and benefit tradeoff [BGOO]

e Cost sharing in network design [JVO1,
ADKO04, GST04]

e Congestion games [RTO0, Rou02]
— Each source-destination pair selects a path

— Delay on edge is a function of the number of
flows that use the edge
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Network Evolution: Summary

e Models:
— Stochastic
— Game-theoretic
e Analysis techniques:
— Graph properties, e.g., expansion, conductance
— Probabilistic techniques
— Techniques borrowed from random graphs
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