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Sparse Approximations of Graphs

 How well can an undirected graph G = (V,E) be
approximated by a sparse graph H?
e Distance-based approximation:
— Distance in H should be at least distance in G
— Stretch = distance in H/distance in G
— Minimize stretch
e Cut-based approximation:
— Capacity of cut in H should be at most capacity in G
— Congestion = capacity in G/capacity in H
— Minimize congestion
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What kind of sparse graphs?

 Minimize number of edges while satisfying a
required stretch or congestion constraint

* Achieve very small stretch or congestion with
O(n) or O(n) edges

* Require that sparse graph H be a tree
* Require that H be a spanning tree of G
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Applications

* Many problems can be solved much better
and/or much faster on sparsifier H

— Many NP-hard optimization problems can be
solved optimally on trees

— The running time of many flow/cut problems
depend significantly on the number of edges
* |f His a good approximation of G, then solution
for H or some refinement is likely a good
solution for G

Chennai Network Optimization Workshop Spanning and Sparsifying



Distance-based Approximations

e Spanners [Peleg-Schaeffer 89]:

— Sparse subgraphs that approximate all pairwise distances
(a,B)-spanner:

— For each pair (u,v), dist,,(u,v) is at most a X dist;(u,v) + B
* Multiplicative spanner: Focus on a

— (1+¢, (log(k)/€)8lk))-spanners exist with O(kn1*1/k) edges
[Elkin-Peleg 04, Thorup-Zwick 06]

e Additive spanner: Focus on 3

— Conjecture: (1,2k-2)-spanners with O(n1*V/k) edges exist
[Woodruff 06, Baswana-Kavitha-Mehlhorn-Pettie 05,...]
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Approximations using Trees

 What can be approximated using the sparsest
graphs?

 Maximum stretch of any deterministic selection
is Q(n)

* Probabilistic approximation:

— There exists a probability distribution of trees such
that the expected stretch for any pair is O(log(n))

— [Bartal 96, 98], ..., [Fakcharoenphol-Rao-Talwar 03]

— O(log(n)) achievable even if tree required to be a
spanning tree [Elkin-Emek-Spielman-Teng 05,
Abraham-Bartal-Neiman 09,...]
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Major Tool in Network Optimization

* When objective function is a linear
combination of distances:

— Can reduce the problem on a general graph to
that of solving on a tree

— Cost of O(log(n)) in approximation
 Metrical Task Systems [Bartal 96]
* Group Steiner Tree [Garg-Konjevod-Ravi 98]
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Cut-Based Approximations

* |s there a tree whose cuts well-approximate the
ones in the graph?

 [Racke 03, 08] showed for two notions of
probabilistic approximation that this is true

* There exists a probability distribution over
capacitated trees such that the expected
congestion of every cut is O(log(n))

* Applications:
— Minimum bisection

— Minimum k-multicut
— Oblivious routing
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Graph Sparsifiers

* |s there a sparse subgraph H of G, with capacities
on edges, such that:

— For every cut, capacity in H is within (1 + €) factor of
the capacity in G

e Graph sparsifiers with O(n) edges exist!
— [Benczur-Karger 02]

— [Spielman-Srivastava 08] provide stronger spectral
sparsifiers

— [Fung-Hariharan-Harvey-Panigrahy 11] provide a
general framework
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Applications of Sparsifiers

e Faster (1 + €)-approximation algorithms for
flow-cut problems

— Maximum flow and minimum cut [Benczur-Karger
02, ..., Madry 10]

— Graph partitioning [Khandekar-Rao-Vazirani 09]

* Improved algorithms for linear system solvers
[Spielman-Teng 04, 08]
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Graph Sparsification via Random
Sampling

 Sample each edge with a certain probability
* Uniform probability will not always work

* Assign weight of selected edge to be the inverse of its
probability
— Ensures that in expectation, we are all set!

* Real challenge:

— How do we guarantee approximation for every one of the
exponential number of cuts?

* Three key components:

— Non-uniform probability chosen captures “importance” of the
cut (several measures have been proposed)

— Distribution of the number of cuts of a particular size [Karger
99]

— Chernoff bounds
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