Rumors and Routes

Rajmohan Rajaraman Northeastern University, Boston

May 2012

Outline

- Rumor spreading
 - Bounds on cover time
- Small-world networks
 - Low-degree low-diameter models
 - Decentralized search or network navigability

Rumor Spreading

- Information dissemination in a network
- Push paradigm:
 - Every node that has the rumor forwards it to a random neighbor
 - Theorem: Push completes in O(n log(n)) steps whp
- Pull paradigm:
 - Every node that does not have the rumor currently queries a random neighbor
- Push-pull paradigm

Push-Pull Rumor Spreading

Conductance of a graph

$$\phi = \min_{S \subset V, S \neq \emptyset} \frac{e(S, V - S)}{\min(e(S), e(V - S))}$$

- Theorem [Giakkoupis 11]: The push-pull process completes in O(log(n)/Φ) steps with high probability
 - Weaker bounds given earlier by [Chierichetti-Lattanzi-Panconesi 09, 10]

Small-World Networks

- Six degrees of separation:
 - Diameter of "real" even very large networks appears to be small
 - How do we model them?
- G(n,p) graphs, with $p = \Omega(\log(n)/n)$:
 - Diameter O(log(n))
 - Average degree $\Omega(\log(n))$
- Random 3-regular graphs are expanders
- Small-world graphs:
 - Model with constant degree, locality, and low diameter

Models with Low Diameter

- [Watts-Strogatz 00]
 - Consider a grid over n nodes
 - Underlying low-degree graph capturing locality
 - For each node, add a long-range edge
 - To a neighbor chosen uniformly at random
- Theorem [Flaxman-Frieze 04]: If we add a random "1-out" edge for each node in any connected graph G, we obtain an expander whp.

Decentralized Search

- Myopic shortest paths:
 - If long-range takes you closer to destination, use long-range path
 - Otherwise follow along shortest path in short-range subgraph
- Exercise: Though the Watts-Strogatz model yields lowdiameter, myopic navigation takes long paths
- Alternative model [Kleinberg 00]: Suppose long range edge from u to v with probability proportional to $1/d(u,v)^{\alpha}$, where d(u,v) is short-range distance
 - Theorem: If $\alpha = 2$, then myopic navigation completes in $O(\log^2 n)$ steps

Take Away Messages

- Combination of local strategies can yield exponential improvement
- A single random edge per node can yield an expander
- Small diameter may not imply navigability
 - Appropriate long-range contact distributions lead to good navigability
- Techniques:
 - Random graph models
 - Martingales and large deviations
 - Emphasis on local algorithms for search