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Randomization in Network Optimization

* Very important toolkit:

— Often simple routines yielding the best known
approximations to hard optimization problems

— Often efficient in practice

* However, no separation known between
randomization and determinism

— Quite likely that “P = RP”

— Most randomized algorithms have been
derandomized

* |n distributed computing environments,
randomization can provably help
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Outline

e Basic tools from probability theory
— Chernoff-type bounds

 Randomized rounding
— Set cover
— Unsplittable multi-commodity flow

* Dependent rounding
— Multi-path multi-commodity flow

 Randomization in distributed computing
— Maximal independent set
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Basic Probability

* Linearity of expectation: For any random
variables X,, X, ..., X, we have

—E[2, X] =2, E[Xi]

 Markov’s inequality: For any random variable X
— Pr[X > c] £ E[X]/c

* Union bound: For any sequence of events E,,
E,, ..., E,, we have
— Pr[U, E]] < %, Pr[E]]
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Basic Probability: Large Deviations

* Chebyshev inequality: For any random variable

X with mean u and standard deviation o

0,2

2
C

* Applies to any random variable

Pr[‘X — ,u‘ >l =

* Can be used to effectively bound large

deviation for sum of pairwise independent
random variables
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Chernoff Bound

* Let X, X,, ..., X, be nindependent random
variables in {0,1}

* For any nonnegative 6

5 u
Pr[X=(1+0)ul =< c
r[X =z (1+0)uj ((1+5)“5)
* Forany 6in|[0,1]

Pr{|X — p|= dul < D¢
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Chernoff Bound Extensions

Chernoff-Hoeffding bounds

— For real-valued variables
Bounds extend to negatively correlated variables

Partial and almost independence [Schmidt-Siegel-
Srinivasan 95,...]

— k-wise and almost k-wise independence
Azuma’s inequality for martingales

[Alon-Spencer 91, Motwani-Raghavan, Mitzenmacher-Upfal
04]

Matrix Chernoff bounds for random matrices [Ahlswede-
Winter 02, Rudelson-Vershynin 07, Tropp 11]
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Randomized Rounding

* Write integer program for optimization problem

* Relax integrality constraint: often from {0,1} to
[0,1]

* View relaxed variables as probabilities
 Round the variables to {0,1} according to

corresponding probability

— In most basic form, do this independently for each
variable

— Many rounding algorithms are much more
sophisticated

— Formulating the appropriate math program is also
often a major contribution

* [Raghavan-Thompson 87]
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Randomized Rounding Algorithms

* Multi-commodity flow [Raghavan-Thompson
87]

e MAXSAT [Goemans-Williamson 94]
* Group Steiner tree [Garg-Konjevod-Ravi 98]
e MAXCUT [Goemans-Williamson 95]
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Set Cover

* Given a universe U ={e,e,,...,e, } of elements,
a collection of m subsets of U, and a cost c(S)
for each subset S, determine the minimum-
cost collection of subsets that covers U

minEc(S)x(S)

S

E x(S)=1 for all e

S:.eES
x($)e{0,1} forall S

Chennai Network Optimization Workshop The Randomization Repertoire



Set Cover LP Relaxation

* Given a universe U ={e,e,,...,e, } of elements,
a collection of m subsets of U, and a cost c(S)
for each subset S, determine the minimum-
cost collection of subsets that covers U

minEc(S)x(S)

S

E x(S)=1 for all e

S:.eES
x($)e[0,1] forall S
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Randomized Rounding for Set Cover

* Let OPT be the value of the LP
— Optimal set cover cost > OPT

* ROUND: Select each S with probability x(S)
* Claim: Expected cost of solution is OPT

— Linearity of expectation
e Claim: Pr[element fis covered] = 1-1/e

 Repeat ROUND O(log(n)) times

— With probability at least 1-1/n, cost is O(OPT log(n))
and every element is covered

e [Vazirani 03]
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Unsplittable Multi-commodity Flow

e (Given:

— Directed graph G = (V,E) with capacity nonnegative
capacity c(f) for each edge f

— Demand pairs (s, t;) with demand d.

e Goal: Choose one path for each pair so as to
minimize relative congestion

Total demand routed on f
max

JEE c(f)
* Basic randomized rounding achieves near-
optimal approximation

 [Raghavan-Thompson 87]
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Multi-path Multi-commodity Flow

* Same setup as the original multi-commodity flow
problem, except

— Instead of 1 path, need r, paths for ith pair

e Basic randomized rounding does not ensure the
above constraint

* Canrefine it to achieve a reasonably good
approximation

 Dependent rounding achieves near-optimal result
[Gandhi-Khuller-Parthasarthy-Srinivasan 05]
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Randomization in Distributed
Computing

A number of distributed computing tasks need “local
algorithms” to compute globally good solutions
— Maximal independent set

— Minimum dominating set
* Easy best-possible greedy algorithms
— Inherently sequential
— Place an ordering on the nodes
* How to compute in a distributed setting?

— At the cost of a small factor, can work with an
approximate order

— Challenge: Break symmetry among competing nodes [Luby
86]
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