The Randomization Repertoire

Rajmohan Rajaraman Northeastern University, Boston

May 2012

Randomization in Network Optimization

- Very important toolkit:
 - Often simple routines yielding the best known approximations to hard optimization problems
 - Often efficient in practice
- However, no separation known between randomization and determinism
 - Quite likely that "P = RP"
 - Most randomized algorithms have been derandomized
- In distributed computing environments, randomization can provably help

Outline

- Basic tools from probability theory
 - Chernoff-type bounds
- Randomized rounding
 - Set cover
 - Unsplittable multi-commodity flow
- Dependent rounding
 - Multi-path multi-commodity flow
- Randomization in distributed computing
 - Maximal independent set

Basic Probability

- Linearity of expectation: For any random variables X_1 , X_2 , ..., X_n , we have
 - $E[\Sigma_i X_i] = \Sigma_i E[X_{i}]$
- Markov's inequality: For any random variable X
 - $-\Pr[X \ge c] \le E[X]/c$
- Union bound: For any sequence of events E₁,
 E₂, ..., E_n, we have
 - $-\Pr[U_i E_i] \leq \Sigma_i \Pr[E_i]$

Basic Probability: Large Deviations

• Chebyshev inequality: For any random variable X with mean μ and standard deviation σ

$$\Pr[|X - \mu| \ge c] \le \frac{\sigma^2}{c^2}$$

- Applies to any random variable
- Can be used to effectively bound large deviation for sum of pairwise independent random variables

Chernoff Bound

- Let X₁, X₂, ..., X_n be n independent random variables in {0,1}
- For any nonnegative δ

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$

• For any δ in [0,1]

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}$$

Chernoff Bound Extensions

- Chernoff-Hoeffding bounds
 - For real-valued variables
- Bounds extend to negatively correlated variables
- Partial and almost independence [Schmidt-Siegel-Srinivasan 95,...]
 - k-wise and almost k-wise independence
- Azuma's inequality for martingales
- [Alon-Spencer 91, Motwani-Raghavan, Mitzenmacher-Upfal 04]
- Matrix Chernoff bounds for random matrices [Ahlswede-Winter 02, Rudelson-Vershynin 07, Tropp 11]

Randomized Rounding

- Write integer program for optimization problem
- Relax integrality constraint: often from {0,1} to [0,1]
- View relaxed variables as probabilities
- Round the variables to {0,1} according to corresponding probability
 - In most basic form, do this independently for each variable
 - Many rounding algorithms are much more sophisticated
 - Formulating the appropriate math program is also often a major contribution
- [Raghavan-Thompson 87]
 Chennai Network Optimization Workshop The Randomization Repertoire

Randomized Rounding Algorithms

- Multi-commodity flow [Raghavan-Thompson 87]
- MAXSAT [Goemans-Williamson 94]
- Group Steiner tree [Garg-Konjevod-Ravi 98]
- MAXCUT [Goemans-Williamson 95]

Set Cover

• Given a universe $U = \{e_1, e_2, ..., e_n\}$ of elements, a collection of m subsets of U, and a cost c(S) for each subset S, determine the minimum-cost collection of subsets that covers U

$$\min \sum_{S} c(S)x(S)$$

$$\sum_{S:e \in S} x(S) \ge 1 \quad \text{for all e}$$

$$x(S) \in \{0,1\} \quad \text{for all S}$$

Set Cover LP Relaxation

Given a universe U = {e₁,e₂,...,e_n} of elements, a collection of m subsets of U, and a cost c(S) for each subset S, determine the minimum-cost collection of subsets that covers U

$$\min \sum_{S} c(S)x(S)$$

$$\sum_{S:e \in S} x(S) \ge 1 \quad \text{for all e}$$

$$x(S) \in [0,1] \quad \text{for all S}$$

Randomized Rounding for Set Cover

- Let OPT be the value of the LP
 - Optimal set cover cost ≥ OPT
- ROUND: Select each S with probability x(S)
- Claim: Expected cost of solution is OPT
 - Linearity of expectation
- Claim: Pr[element f is covered] ≥ 1-1/e
- Repeat ROUND Θ(log(n)) times
 - With probability at least 1-1/n, cost is O(OPT log(n)) and every element is covered
- [Vazirani 03]

Unsplittable Multi-commodity Flow

• Given:

- Directed graph G = (V,E) with capacity nonnegative capacity c(f) for each edge f
- Demand pairs (s_i,t_i) with demand d_i
- Goal: Choose one path for each pair so as to minimize relative congestion

$$\max_{f \in E} \frac{\text{Total demand routed on } f}{c(f)}$$

- Basic randomized rounding achieves nearoptimal approximation
- [Raghavan-Thompson 87]

Multi-path Multi-commodity Flow

- Same setup as the original multi-commodity flow problem, except
 - Instead of 1 path, need r_i paths for ith pair
- Basic randomized rounding does not ensure the above constraint
- Can refine it to achieve a reasonably good approximation
- Dependent rounding achieves near-optimal result [Gandhi-Khuller-Parthasarthy-Srinivasan 05]

Randomization in Distributed Computing

- A number of distributed computing tasks need "local algorithms" to compute globally good solutions
 - Maximal independent set
 - Minimum dominating set
- Easy best-possible greedy algorithms
 - Inherently sequential
 - Place an ordering on the nodes
- How to compute in a distributed setting?
 - At the cost of a small factor, can work with an approximate order
 - Challenge: Break symmetry among competing nodes [Luby 86]