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Overview of the 4 Sessions

e Random walks

* Percolation processes

— Branching processes, random graphs, and percolation
phenomena

e Rumors & routes

— Rumor spreading, small-world model, network
navigability

* Distributed algorithms

— Maximal independent set, dominating set, local
balancing algorithms
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Outline

e Basic definitions and notation
* Applications
e Two results:

— Mixing time and convergence of random walks
— Cover time of random walks

* Applications to clustering

* Techniques:
— Probability theory
— Spectral graph theory
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What is a Random Walk?

* Let G be an arbitrary undirected graph
* A walk starts at an arbitrary vertex v,

e At the start of step t, the walker moves from
vV, , to vertex v, chosen uniformly at random
from neighbors of v, in G

* Forallt>0, v,is arandom variable
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Notation

* Let G be an arbitrary undirected graph and A
be its adjacency matrix

— A, is 1 whenever there is an edge (i,j)

* Define the random walk matrix M
— M is A;/degree(i)

* Let x denote the initial probability distribution
(row) vector

e After t steps, the probability distribution
vector equals xM?
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Definitions
e Stationary distribution
— Probability vector it such that M =nt
* Hitting time h;

— Expected time for random walk starting from i to visit
J

e CovertimeC

— Expected time for random walk starting from an
arbitrary vertex to visit all nodes of G

* Mixing time
— Time it takes for the random walk to converge to a
stationary distribution
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Questions of Interest

e Stationary distribution:
— Do they always exist?
— |Is the stationary distribution unique?

— Does a random walk always converge to a stationary
distribution? If it does, what is the mixing time?

* Hitting time:
— For a given graph G and vertices i,j, what is the hitting
time h;
* Cover time:
— For a given graph G, what is its cover time C?
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Applications

* Probabilistic process whose variants capture social and
physical phenomena

— Brownian motion in physics

— Spread of epidemics in contact networks

— Spread of innovation and influence in social networks
— Connections to electrical networks

— Markov chains arise in numerous scenarios

 Pseudo-random number generators

— Random walk in an expander graph is an efficient way to
generate pseudo-random bits from a small random seed

* Usein randomized algorithms

* Google’s PageRank

— PageRank is the probability vector of the stationary distribution
of an appropriately defined random walk
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Stationary Distribution and Mixing Time

* Lemma 1: A stationary distribution always exists
and is unique

* For d-regular undirected graphs G, let A(G)
denote the second largest eigenvalue of M

e Theorem 1: The random walk is within € of the
stationary distribution in

0( In(n/€)
1- A(G)

— For non-regular graphs, replace M by a normalized
version

) steps
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Cover Time

* Matthews Bound:
— Let h, ., be the maximum hitting time

— The cover time is at most h___In(n)

Max

 Exercise: Prove that time for a random walk to
cover every vertex is O(h_... log(n)) whp

MaXx

 Theorem 2: For any m-edge n-vertex
undirected graph G, the cover time is O(mn)

e [Mitzenmacher-Upfal 04]
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Lovasz-Simonovits Theorem

* Lazy random walk:
— With probability 2, walk stays at current node;
— With probability %2, does regular random walk

 Theorem 3: [LS 93] For any initial probability
distribution and every t, we have

I.(x) = min(y/x,~/2m - x)(l _ %2) L X

2m
pt(el) = pt(el) =2 pt(ezm)

k
Define [,(k) = E p,(e;) and extend to interval [0,2m] by linear interpolation
i=1
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Sparsest Cut

* Conductance: @ measures the “expansion” of a

graph = min e(S,V-39)

scv.s=2 min(e(S),e(V = .S))
* Finding the cut (S,V-S) that yields the above
minimum ratio is the sparsest cut problem

* LP rounding: Yields O(log(n))-approximation
[Leighton-Rao 88, Linial-London-Rabinovich 94]

* SDP rounding: Yields O(Vlog(n)) approximation
[Arora-Rao-Vazirani 05]
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Local Clustering

e Suppose you are given a massive graph and want to find a
“good” cluster containing a given vertex v

— Good means low conductance

* Approach: Solve the sparsest cut problem and return the
cluster containing v

— Too expensive

* Local clustering [Spielman-Teng 08, Andersen-Chung-Lang
08]:

— Start a random walk from v, maintaining the probability vector
for each vertex

— Keep zeroing out vertices that have very low probability

— LS Theorem helps in showing that in time nearly proportional to
the size of the cluster, can achieve close to desired conductance
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Take Away Messages

* Random walk and related processes
— Arise in several scenarios
— Are useful primitives for designing fast algorithms

— Yield effective and practical pseudo-random
sources

* Analysis tools for random walks

— Basic probability (Markov’s inequality, Chernoff-
type bounds, Martingales)

— Spectral graph theory
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