Percolation Processes

Rajmohan Rajaraman
Northeastern University, Boston

May 2012
Outline

• Branching processes
 – Idealized model of epidemic spread
• Percolation theory
 – Epidemic spread in an infinite graph
• Erdös-Renyi random graphs
 – Model of random graphs and percolation over a complete graph
• Percolation on finite graphs
 – Epidemic spread in a finite graph
Branching Processes

• Natural probabilistic process studied in mathematics
• Widely used for modeling the spread of diseases, viruses, innovation, etc., in networks
• Basic model:
 – Disease originates at root of an infinite tree
 – Branching factor k: number of children per node
 – Probability p of transmission along each edge
• Question: What is the probability that the disease persists indefinitely?
 • Theorem 1
 – If $pk < 1$, then probability = 0
 – If $pk > 1$, then probability > 0
Percolation Theory

• Infinite graph G
• Bond percolation:
 – Each edge is selected independently with probability p
 – As p increases from 0 to 1, the selected subgraph goes from the empty graph to G
• Question:
 – What is the probability that there is an infinite connected component?
 – Kolmogorov 0-1 law: Always 0 or 1
• What is the critical probability p_c at which we move from no infinite component to infinite component?
Percolation Theory

• **Theorem 2**: For the 2-D infinite grid, $p_c = \frac{1}{2}$
 [Harris 60, Kesten 80]

• Not hard to see that $\frac{1}{3} \leq p_c \leq \frac{2}{3}$
 – The first inequality can be derived from the
 branching process analysis

• [Bollobas-Riordan 06] book

• [Bagchi-Kherani 08] notes
Erdös-Renyi Random Graphs

• Percolation over the complete graph \(K_n \)
• Critical probability and sharp threshold for various phenomena [Erdös-Renyi 59,60]
 – Emergence of giant component
 • \(p = \frac{1}{n} \)
 – Connectivity
 • \(p = \frac{\ln(n)}{n} \)
• Every symmetric monotone graph property has a sharp threshold [Friedgut-Kalai 96]
Percolation on Finite Graphs

• Given arbitrary undirected graph G
 – At what probability will we have at least one connected component of size $\Omega(n)$?

• Given a uniform expanders family G_n with a uniform bound on degrees [Alon-Benjamini-Stacey 04]
 – $\Pr[G_n(p) \text{ contains more than one giant component}]$ tends to 0
 – For high-girth d-regular expanders, critical probability for (unique) giant component is $1/(d-1)$

• Lots of open questions
Network Models and Phenomena

• In study of complex networks and systems, many properties undergo phase transition
 – Corresponds to critical probabilities and sharp thresholds in random graphs and percolation
• ER random graphs provide a useful model for developing analytical tools
• Various other random graph models
 – Specified degree distribution [Bender-Canfield 78]
 – Preferential attachment [Barabasi-Albert 99]
 – Power law graph models [Aiello-Chung-Lu 00]
 – Small-world models [Watts-Strogatz 98, Kleinberg 00]
Take Away Messages

• Spreading of information, diseases, etc. in massive networks well-captured by branching processes
 – Analysis yields useful rule-of-thumb bounds for many applications
• Many such phenomena experience phase transitions
 – Calculate critical probability and establish sharp thresholds
• Random graph models
 – A large collection of models starting from ER
 – Many motivated by real observations
 – Aimed at explaining observed phenomena and predict future properties
 – Certain algorithms may be more efficient on random graphs
• Tools:
 – Basic probability (Chernoff-type bounds)
 – Correlation inequalities to handle dependence among random variables
 – Generating functions and empirical methods to get reasonable estimates