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What’s Not Covered?

• Frequency (channel) assignment
– Arises in cellular networks
– Modeled as coloring problems

• Ad Hoc Network Security
– Challenges due to the low-power, wireless, and

distributed characteristics
– Authentication, key sharing,…
– Anonymous routing

• Smart antenna:
– Beam-forming (directional) antenna
– MIMO systems

• Many physical layer issues
• …
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Medium Access Control
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Medium Access Control Protocols

• Schedule-based: Establish transmission
schedules statically or dynamically
– TDMA: Assign channel to station for a fixed

amount of time
– FDMA: Assign a certain frequency to each

station
– CDMA: Encode the individual transmissions

over the entire spectrum

• Contention-based:
– Let the stations contend for the channel
– Random access protocols
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Contention Resolution Protocols

• CSMA (Carrier-sense multiple access)
– Ethernet
– Aloha

• MACA [Kar90] (Multiple access collision avoidance)
• MACAW [BDSZ94]
• CSMA/CA and IEEE 802.11
• Other protocols:

– Bluetooth
– Later, MAC protocols for sensor networks



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 8

Ingredients of MAC Protocols

• Carrier sense (CS)
– Hardware capable of sensing whether  transmission

taking place in vicinity

• Collision detection (CD)
– Hardware capable of detecting collisions

• Collision avoidance (CA)
– Protocol for avoiding collisions

• Acknowledgments
– When collision detection not possible, link-layer

mechanism for identifying failed transmissions

• Backoff mechanism
– Method for estimating contention and deferring

transmissions
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Carrier Sense Multiple Access

• Every station senses the carrier before
transmitting

• If channel appears free
– Transmit (with a certain probability)

• Otherwise, wait for some time and try
again

• Different CSMA protocols:
– Sending probabilities
– Retransmission mechanisms
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Slotted Aloha

• Proposed for packet radio environments where
every node can hear every other node

• Assume collision detection
• Stations transmit at the beginning of a slot
• If collision occurs, then each station waits a

random number of slots and retries
– Random wait time chosen has a geometric

distribution
– Independent of the number of retransmissions

• Analysis in standard texts on networking
theory [BG92]
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Ethernet

• CSMA with collision detection (CSMA/CD)
• If the adaptor has a frame and the line is idle:

transmit
• Otherwise wait until idle line then transmit

• If a collision occurs:
– Binary exponential backoff: wait for a random

number ∈ [0, 2i-1] of slots before transmitting
– After ten collisions the randomization interval is

frozen to max 1023
– After 16 collisions the controller throws away the

frame
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CSMA for Multihop Networks

• In CSMA, sender decides to transmit
based on carrier strength in its vicinity

• Collisions occur at the receiver
• Carrier strengths at sender and receiver

may be different:

A B C

Hidden Terminal
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CSMA for Multihop Networks

• In CSMA, sender decides to transmit
based on carrier strength in its vicinity

• Collisions occur at the receiver
• Carrier strengths at sender and receiver

may be different:

A B C

Exposed Terminal

D
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Multiple Access Collision Avoidance

• No carrier sense
• Collision avoidance using RTS/CTS handshake

– Sender sends Request-to-Send (RTS)
• Contains length of transmission

– If receiver hears RTS and not currently deferring,
sends Clear-to-Send (CTS)

• Also contains length of transmission
– On receiving CTS, sender starts DATA transmission

• Any station overhearing an RTS defers until a
CTS would have finished

• Any station overhearing a CTS defers until the
expected length of the DATA packet
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MACA in Action

• If C also transmits RTS, collision at B

A B C
RTS
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MACA in Action

• C knows the expected DATA length
from CTS

A B C
CTS

Defers until DATA
completion
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MACA in Action

• Avoids the hidden terminal problem

A B C
DATA



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 18

MACA in Action

• CTS packets have fixed size

A B C D
RTS

Defers until CTS
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MACA in Action

• C does not hear a CTS

A B C D
CTS
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MACA in Action

• C is free to send to D; no exposed
terminal

A B C D
DATA
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MACA in Action

• Is C really free to send to D?

A B C D
DATA RTS
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MACA in Action

• In fact, C increases its backoff counter!

A B C D
DATA CTS
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The CSMA/CA Approach
• Add carrier sense; C will sense B’s

transmission and refrain from sending RTS

A B C D
DATA
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False Blocking
• F sends RTS to E; D sends RTS to C
• E is falsely blocked [Bha98, RCS03]

A

B C DDATA E
RTS

RTS

F
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False Blocking

   Show that false blocking may lead to temporary
deadlocks

RTS

RTS
RTS

DATA
ACK
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Alternative Approach: MACAW

• [BDSZ94]
• No carrier sense, no collision detection
• Collision avoidance:

– Sender sends RTS
– Receiver sends CTS
– Sender sends DS
– Sender sends DATA
– Receiver sends ACK
– Stations hearing DS defer until end of data transmission

• Backoff mechanism:
– Exponential backoff with significant changes for

improving fairness and throughput
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The IEEE 802.11 Protocol

• Two medium access schemes
• Point Coordination Function (PCF)

– Centralized
– For infrastructure mode

• Distributed Coordination Function (DCF)
– For ad hoc mode
– CSMA/CA
– Exponential backoff
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CSMA/CA with Exponential Backoff
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Performance Analysis of 802.11

• Markov chain models for DCF
• Throughput:

– Saturation throughput: maximum load that
the system can carry in stable conditions

• Fairness:
– Long-term fairness
– Short-term fairness

• Focus on collision avoidance and
backoff algorithms
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Analysis of Saturation Throughput

• Model assumptions [Bia00]:
– No hidden terminal: all users can hear one

another
– No packet capture: all receive powers are

identical
– Saturation conditions: queue of each station

is always nonempty

• Parameters:
– Packet lengths (headers, control and data)
– Times: slots, timeouts, interframe space
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A Stochastic Model for Backoff

• Let      denote the backoff time counter for a
given node at slot
– Slot: constant time period    if the channel is idle,

and the packet transmission period, otherwise
– Note that   is not the same as system time

• The variable      is non-Markovian
– Its transitions from a given value depend on the

number of retransmissions

0 1 2 3 4 5

busy medium
DIFS
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A Stochastic Model for Backoff

• Let       denote the backoff stage at slot
– In the set            , where     is the maximum

number of backoffs

• Is               Markovian?
• Unfortunately, no!

– The transition probabilities are determined by
collision probabilities

– The collision probability may in turn depend on the
number of retransmissions suffered

• Independence Assumption:
– Collision probability is constant and independent of

number of retransmissions
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Markov Chain Model

Bianchi 00
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Steady State Analysis

• Two probabilities:
– Transmission probability
– Collision probability

• Analyzing the Markov chain yields an
equation for    in terms of

• However, we also have

• Solve for    and

τ
p

τ p
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Saturation Throughput Calculation

• Probability of at least one transmission

• Probability of a successful slot

• Throughput: (packet length   )
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Analysis vs. Simulations

Bianchi 00
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Fairness Analysis

• How is the throughput distributed
among the users?

• Long-term:
– Steady-state share of the throughput

• Short-term:
– Sliding window measurements
– Renewal reward theory based on Markov

chain modeling
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Long-Term Fairness

• Basic binary exponential backoff:
– Steady-state throughput equal for all nodes
– However, constant probability (> 0) that

one node will capture the channel

    Consider two nodes running CSMA with basic exponential
backoff on a shared slotted channel.  Assume that both
nodes have an infinite set of packets to send.  Prove that
there is a constant (> 0) probability that one node will
have O(1) throughput, while the other will be unable to
send even a single packet.
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Long-Term Fairness

• Basic binary exponential backoff:
– Steady-state throughput equal for all nodes
– However, constant probability (> 0) that

one node will capture the channel

• Bounded binary exponential backoff:
– After a certain number of retransmissions,

backoff stage set to zero and packet retried

• MACAW: All nodes have the same
backoff stage
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Short-Term Fairness

• Since focus on successful transmissions, need
not worry about collision probabilities

• The CSMA/CA and Aloha protocols can both be
captured as Markov chains

• CSMA/CA has higher throughput, low short-
term fairness
– The capture effect results in low fairness

• Slotted Aloha has low throughput, higher
short-term fairness

• [KKB00]
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Backoff in MACAW

• Refinement of exponential backoff to improve
fairness and throughput

• Fairness:
– Nodes contending for the same channel have the

same backoff counter
– Packet header contains value of backoff counter
– Whenever a station hears a packet, it copies the

value into its backoff counter

• Throughput:
– Sharing backoff counter across channels causes false

congestion
– Separate backoff counter for different streams

(destinations)
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Open Problems in Contention
Resolution

• Throughput and fairness analysis for multihop
networks
– Dependencies carry over hops
– In the “single hop” case nodes get synchronized

since every node is listening to the same channel
– Channels that a node can communicate on differ in

the multihop case
– Even the simplest case when only one node cannot

hear all nodes is hard

• Fairness analysis of MACAW
– All nodes contending for a channel use same backoff

number; similar fairness as slotted Aloha?
– Different backoff numbers for different channels



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 43

Transmission and Sensing Ranges

Transmission
range

Sensing/interference range
550m

250m
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Effect on RTS/CTS Mechanism

A B C D

RTS
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Effect on RTS/CTS Mechanism

A B C D

CTS
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Effect on RTS/CTS Mechanism

A B C D

DATA
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Effect on RTS/CTS Mechanism

A B C D

DATA
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Effect on RTS/CTS Mechanism

A B C D

DATA RTS
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Implications of Differing Ranges

• Carrier sense does not completely eliminate
the hidden terminal problem

• The unit disk graph model, by itself, is not a
precise model

• The differing range model itself is also
simplistic
– Radios have power control capabilities
– Whether a transmission is received depends on the

signal-to-interference ratio
– Protocol model for interference [GK00]
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Power Control
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What and Why
• The ability of a mobile wireless station

to control its energy consumption:
– Switching between idle/on/off states
– Controlling transmission power

• Throughput:
– Interference determined by transmission

powers and distances
– Power control may reduce interference

allowing more spatial reuse

• Energy:
– Power control could offer significant energy

savings and enhance network lifetime
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The Attenuation Model

• Path loss:
– Ratio of received power to transmitted

power
– Function of medium properties and

propagation distance

• If      is received power,      is the
transmitted power, and    is distance

• where     ranges from 2 to 4
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Interference Models

• In addition to path loss, bit-error rate of a
received transmission depends on:
– Noise power
– Transmission powers and distances of other

transmitters in the receiver’s vicinity

• Two models:
– Physical model
– Protocol model
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The Physical Model

• Let        denote set of nodes that are
simultaneously transmitting

• Let     be the transmission power of node
• Transmission of     is successfully received by

if:

•    is the min signal-interference ratio (SIR)
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The Protocol Model

• Transmission of     is successfully received by
if for all

• where     is a protocol-specified guard-zone to
prevent interference
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Scenarios for Power Control

• Individual transmissions:
– Each node decides on a power level on the basis

of contention and power levels of neighbors

• Network-wide task:
– Broadcast
– Multicast

• Static:
– Assign fixed (set of) power level(s) to each node
– Topology control
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Review of Proposed Schemes

• Basic power control scheme
• PCM

• POWMAC
•   -PCS

• PCMA
• PCDC

δ

}Energy 

} Throughput and energy 

} Dual channel schemes
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The Basic Power Control Scheme

• The IEEE 802.11 does not employ
power control
– Every transmission is at the maximum

possible power level

• Transmit RTS/CTS at
• In the process, determine minimum

power level    needed to transmit:
– Function of sender-receiver distance

• DATA and ACK are sent at level

maxP

maxP

P
d

P
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Deficiency of the Basic Scheme

A B C D
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Deficiency of the Basic Scheme

A B C D
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Power Control MAC (PCM)

• RTS/CTS at
• For DATA packets:

– Send at the minimum power    needed, as
in the basic scheme

– Periodically send at      , to maintain the
collision avoidance feature of 802.11

• ACK sent at power level
• Throughput comparable to 802.11
• Significant energy savings [JV02]

maxP

P

P

maxP
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POWMAC

• Access window for RTS/CTS exchanges
• Multiple concurrent DATA packet

transmissions following RTS/CTS
• Collision avoidance information

attached in CTS to bound transmission
power of potentially interfering nodes

• Aimed at increasing throughput as well
as reducing energy consumption

• [MK04]
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-PCS

• IEEE 802.11
• Basic power control scheme
•   -PCS:              [JLNR04]

0
max dPP ∝=
αdP ∝

δ

δ

)/( maxmax ddPP

dP

=

∝αδ ≤≤0δ

• Simulations indicate:
–    in the range 2-3 provides best performance
– 30-40% increase in throughput and 3-fold

improvement in energy consumption
– Fair over varying distance ranges

δ

δ
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Dual-Channel Schemes

• Use a separate control channel
• PCMA [MBH01]:

– Receiver sends busy tone pulses advertising
its interference margin

• PCDC [MK03]:
– RTS/CTS on control channel

• Signal strength of busy tones used to
determine transmission power for data
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Open Problems in Power Control

• Develop an analytical model for measuring the
performance of power control protocols
– Model for node locations
– Model for source and destination selections: effect of

transmission distances
– Interaction with routing
– Performance measures: throughput, energy, and

fairness
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Topology Control
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Connectivity

• Given a set of nodes
in the plane

• Goal: Minimize the
maximum power
needed for
connectivity

• Let               denote
the power function

• Induced graph
contains edge        if

€ 

p(u), p(v) ≥ d(u,v)α€ 

p :V →ℜ

€ 

(u,v)
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Connectivity

• To obtain a given
topology   , need

• Goal: Minimize the
maximum edge length

• MST!
– MST also minimizes the

weight of the max-
weight edge

• Find MST    and set

€ 

p(u) = max
(u,v)∈H

d(u,v)α

€ 

T

€ 

p(u) = max
(u,v)∈T

d(u,v)α

€ 

H
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Connectivity: Distributed Heuristics

• Motivated by need to address mobility [RRH00]
• Initially, every node has maximum power
• Nodes continually monitor routing updates to

track connectivity
• Neighbor Reduction Protocol:

– Each node attempts to maintain degree within a
range, close to a desired degree

– Adjusts power depending on current degree
– Magnitude of change dependent on difference

between current and desired degree

• Neighbor Addition Protocol:
– Triggered if node recognizes graph not connected
– Sets power to maximum level
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Connectivity: Total Power Cost

   Given a set of nodes in the plane,
determine an assignment of power levels
that achieves connectivity at minimum
total power cost
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Bounded-Hops Connectivity

• Goal: Minimize the total power cost needed to
obtain a topology that has a diameter of at
most   hops [CPS99, CPS00]

• Assume
• Lower bound:

– If minimum distance is   , then total power cost is at
least

• Upper bound:
– If maximum distance is    , then total power cost is at

most

€ 

Ω(δαn1+1/h )

€ 

O(Dαn1/h )
€ 

δ

€ 

D

€ 

h

€ 

α = 2
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K-Connectivity

• Goal: Minimize the maximum transmission
power to obtain a k-connected topology

• Critical transmission radius
– Smallest radius r such that if every node sets its

range to r then the topology is k-connected

• Critical neighbor number [WY04]
– Smallest number l such that if every node sets its

transmission range to the distance to the lth nearest
neighbor then the topology is k-connected

• Characterization of the critical transmission
radius and critical neighbor number for random
node placements [WY04]
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Energy-Efficient Topologies

• Goal:  Construct a
topology that contains
energy-efficient paths
– For any pair of nodes,

there exists a path
nearly as energy-
efficient as possible

• Constraints:
– Sparseness
– Constant degree
– Distributed construction
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Formalizing Energy-Efficiency

• Given a subgraph    of   , the complete graph
over the   nodes:
– Define energy-stretch of     as the maximum, for all

and    , of the ratio of the least energy path between
and    in     to that in

  

€ 

max
u,v

optimal-energyH (u,v)
optimal-energyG (u,v)

• Variant of distance-stretch

  

€ 

max
u,v

optimal-distanceH (u,v)
optimal-distanceG (u,v)

• Since       , a topology of distance-stretch
also has energy-stretch
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Spanners

• Spanners are topologies with O(1) distance
stretch

• Extensively studied in the graph algorithms
and graph theory literature [Epp96]

• (Distance)-spanners are also energy-spanners
• Spanners for Euclidean space based on

proximity graphs:
– Delaunay triangulation
– The Yao graph
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The Yao Graph

• Each node divides
the space into
sectors of angle

• Fixes an edge with
the nearest neighbor
in each sector.

€ 

≤ 2sin(θ /2)

€ 

≤1

€ 

1

€ 

θ

• Sparse: each node fixes
at most        edges

• Stretch is at most

€ 

2π /θ

€ 

1
1− 2sin(θ /2)
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The Yao Graph

• Each node divides
the space into
sectors of angle

• Fixes an edge with
the nearest neighbor
in each sector.

€ 

θ

• Sparse: each node fixes
at most        edges

• Stretch is at most

• Degree could be
€ 

2π /θ

€ 

1
1− 2sin(θ /2)

€ 

Ω(n)
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Variants of the Yao Graph

• Can derive a constant-degree subgraph by a
phase of edge removal [WLBW00, LHB+01]
– Increases stretch by a constant factor
– Need to process edges in a coordinated order

• Locally computable variant of the Yao graph
[LWWF02, WL02]
1. Each node divides the space into sectors of angle θ.

2. Each node computes a neighbor set which consists
of each nearest neighbor in all its sectors.

3. (u,v) is selected if v is in u’s neighbor set and u is
the nearest among those that selected v in its
neighbor set.
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Local Postprocessing of Yao Graph

1.  Each node divides the space into sectors of angle θ
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2. Each node computes a neighbor set which
consists of each nearest neighbor in all its sectors.

Local Postprocessing of Yao Graph
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2. Each node computes a neighbor set which
consists of each nearest neighbor in all its sectors.

Local Postprocessing of Yao Graph
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3. (u,v) is selected if v is in u’s neighbor set and u is
the nearest among those that selected v into its
nearest neighbor.

Local Postprocessing of Yao Graph
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Local Postprocessing of Yao Graph

3. (u,v) is selected if v is in u’s neighbor set and u is
the nearest among those that selected v into its
nearest neighbor.
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Properties of the Topology
• By definition, constant-degree
• For θ sufficiently small, the topology

has constant energy stretch for
arbitrary point sets [JRS03]
– Challenge: Unlike for the Yao graph, the

min-cost path from u to v may traverse
nodes that are farther from u than v

• Does the algorithm yield a distance-
spanner?
– Can establish claim for specialized node

distributions [JRS03]
– Weak spanner property holds [GLSV02]
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Other Recent Work
• Energy-efficient planar topologies:

– Combination of localized Delaunay
triangulation and Yao structures

– Planar, degree-bounded, and energy-
spanner [WL03, SWL04]
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Topology Control and Interference

• Focus thus far on energy-efficiency and
connectivity

• Previous interference models (physical and
protocol models) for individual transmissions

• How to measure the “interference quotient” of
a topology?
– Edge interference number: What is the maximum

number of edges that an edge interferes with?
– Node interference number: What is the maximum

number of nodes that an edge interferes with?
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Edge Interference Number

• Defined by [MadHSVG02]
• When does an edge

interfere with another
edge?
– The lune of the edge

contains either endpoint of
the other edge

  

€ 

I(e) = {(u,v)∈T :L(e)I{u,v} ≠∅} −1

€ 

I(T ) =max
e∈T

I(e)
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Node Interference Number

• Defined by [BvRWZ04]
• When does an edge

interfere with another
node?
– The lune of the edge

contains the node
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I(e) = L(e)− {u,v}
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I(T ) =max
e∈T

I(e)
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Minimizing NIM

• Goal: Determine
connected topology
that minimizes NIM

• I(e) is independent
of the topology
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I(e) = L(e)− {u,v}
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I(T ) =max
e∈T

I(e)
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L(e) = lune of e



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 90

Minimizing NIM

• Set weight of e to be
I(e)

• Find spanning subgraph
that minimizes
maximum weight
– MST!

• Calculating L(e) possible
using local
communication

• Computing an MST
difficult to do locally

• In general, minimizing
NIM hard to do locally
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Sparseness and Interference

   Prove that for a random distribution of nodes
on the plane, the Yao graph has an NIM (or
EIM) of O(log n) with high probability
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Sparseness and Interference

• Does sparseness necessarily
imply low interference?

• No! [BvRWZ04]
• Performance of topologies

based on proximity graphs
(e.g., Yao graph) may be bad

1

>1

2 4

>2
>4
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Low-Interference Spanners

• Goal: Determine a topology that has distance-
stretch of at most t, and has minimum NIM
among all such topologies [BvRWZ04]

• Let T, initially empty, be current topology
• Process edges in decreasing order of I(·)
• For current edge e = (u,v):

– Until stretch-t path between u and v in T, repeatedly
add edge with least I(·) to T

• NIM-optimal
• Amenable to a distributed implementation:

– L(e) computable locally
– Existence of stretch-t path can be determined by a

search within a local neighborhood
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Minimum Energy Broadcast Routing

• Given a set of nodes
in the plane

• Goal: Broadcast from
a source to all nodes

• In a single step, a
node may broadcast
within a range by
appropriately
adjusting transmit
power
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Minimum Energy Broadcast Routing

• Energy consumed by a
broadcast over range
is proportional to

• Problem: Compute the
sequence of broadcast
steps that consume
minimum total energy

• Centralized solutions
• NP-complete [ZHE02]

r
αr
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Three Greedy Heuristics

• In each tree, power for each node proportional
to   th exponent of distance to farthest child in
tree

• Shortest Paths Tree (SPT) [WNE00]
• Minimum Spanning Tree (MST) [WNE00]
• Broadcasting Incremental Power (BIP) [WNE00]

– “Node” version of Dijkstra’s SPT algorithm
– Maintains an arborescence rooted at source
– In each step, add a node that can be reached with

minimum increment in total cost

• SPT is       -approximate, MST and BIP have
approximation ratio of at most 12 [WCLF01]
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Lower Bound on SPT

• Assume
nodes per ring

• Total energy of SPT:

• Optimal solution:
– Broadcast to all nodes
– Cost 1

• Approximation ratio
)(nΩ

2/)1( −n

2/))1()(1( αα εε −+−n
ε ε−1
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Performance of the MST Heuristic

• Weight of an edge    equals
• MST for these weights same as

Euclidean MST
– Weight is an increasing function of distance
– Follows from correctness of Prim’s algorithm

• Upper bound on total MST weight
• Lower bound on optimal broadcast tree
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Weight of Euclidean MST

• What is the best upper
bound on the weight
of an MST of points
located in a unit disk?
– In [6,12]!

= 6

< 12

• Dependence on
–         : in the limit
–         : bounded
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Structural Properties of MST

≥ 60° ≤ radius

60°

Empty Disjoint
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Upper Bound on Weight of MST

• Assume    = 2
• For each edge  , its

diamond accounts for an
area of at least
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| e |2
e
∑

60°

• Total area accounted for is
at most

• MST cost equals

• Claim also applies for
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Lower Bound on Optimal

• For a non-leaf node  ,
let     denote the
distance to farthest
child

• Total cost is

• Replace each star by
an MST of the points

• Cost of resultant
graph at most
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MST has cost at most 12 times optimal  
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Performance of the BIP Heuristic

• Let                  be the nodes added in order by
BIP

• Let     be the complete graph over the same
nodes with the following weights:
– Weight of edge              equals incremental power

needed to connect
– Weight of remaining edges same as in original graph

• MST of    same as BIP tree
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Spanning Trees in Ad Hoc Networks

• Forms a backbone for routing
• Forms the basis for certain network

partitioning techniques
• Subtrees of a spanning tree may be

useful during the construction of local
structures

• Provides a communication framework
for global computation and broadcasts
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Arbitrary Spanning Trees

• A designated node starts the “flooding”
process

• When a node receives a message, it
forwards it to its neighbors the first time

• Maintain sequence numbers to
differentiate between different ST
computations

• Nodes can operate asynchronously
• Number of messages is       ;worst-case

time, for synchronous control, is
)(mO

))(Diam( GO



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 106

Minimum Spanning Trees

• The basic algorithm [GHS83]
–                             messages and                   time

• Improved time and/or message complexity
[CT85, Gaf85, Awe87]

• First sub-linear time algorithm [GKP98]

• Improved to
• Taxonomy and experimental analysis [FM96]
•                         lower bound [PR00]

)log( nnmO + )log( nnO

)logD( *61.0 nnO +

)log/( nnD+Ω

)log( * nnDO +
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The Basic Algorithm
• Distributed implementation of Borouvka’s

algorithm from 1926
• Each node is initially a fragment
• Fragment    repeatedly finds a min-weight

edge leaving it and attempts to merge with
the neighboring fragment, say
– If fragment      also chooses the same edge, then

merge
– Otherwise, we have a sequence of fragments, which

together form a fragment

1F

2F
2F
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Subtleties in the Basic Algorithm

• All nodes operate asynchronously
• When two fragments are merged, we should

“relabel” the smaller fragment.
• Maintain a level for each fragment and ensure

that fragment with smaller level is relabeled:
– When fragments of same level merge, level

increases; otherwise, level equals larger of the two
levels

• Inefficiency: A large fragment of small level
may merge with many small fragments of
larger levels
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Asymptotic Improvements to the
Basic Algorithm

• The fragment level is set to log of the
fragment size [CT85, Gaf85]
– Reduces running time to

• Improved by ensuring that computation in
level   fragment is blocked for         time
– Reduces running time to

)log( * nnO

)(nO

l )2( lO

Level 1 Level 1

Level 2
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A Sublinear Time Distributed
Algorithm

• All previous algorithms perform computation
over fragments of MST, which may have
diameter

• Two phase approach [GKP98]
– Controlled execution of the basic algorithm, stopping

when fragment diameter reaches a certain size
– Execute an edge elimination process that requires

processing at the central node of a BFS tree

• Running time is
• Requires a fair amount of synchronization

)log)(Diam( * nnGO +

)(nΩ
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Open Problems in Topology Control

• Connectivity:
– Energy-optimal bounded-hops topology
– Is the energy-spanner variant of the Yao graph a

spanner?

• Interference number:
– What is the complexity of optimizing the edge

interference number?

• Minimum energy broadcast routing:
– Best upper bound on the cost of an MST in Euclidean

space
– Local algorithms

• Tradeoffs among congestion, dilation, and
energy consumption [MadHSVG02]
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Capacity of Ad Hoc Networks
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The Attenuation Model

• Path loss:
– Ratio of received power to transmitted

power
– Function of medium properties and

propagation distance

• If      is received power,      is the
transmitted power, and    is distance

• where     ranges from 2 to 4
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Interference Models

• In addition to path loss, bit-error rate of
a received transmission depends on:
– Noise power
– Transmission powers and distances of other

transmitters in the receiver’s vicinity

• Two models [GK00]:
– Physical model
– Protocol model



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 115

The Physical Model

• Let        denote set of nodes that are
simultaneously transmitting

• Let     be the transmission power of node
• Transmission of     is successfully received by

if:

•    is the min signal-interference ratio (SIR)
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The Protocol Model

• Transmission of     is successfully received by
if for all

• where     is a protocol-specified guard-zone to
prevent interference
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Measures for Network Capacity

• Throughput capacity [GK00]:
– Number of successful packets delivered per second
– Dependent on the traffic pattern
– What is the maximum achievable, over all protocols,

for a random node distribution and a random
destination for each source?

• Transport capacity [GK00]:
– Network transports one bit-meter when one bit has

been transported a distance of one meter
– Number of bit-meters transported per second
– What is the maximum achievable, over all node

locations, and all traffic patterns, and all protocols?
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Transport Capacity: Assumptions

•    nodes are arbitrarily located in a unit
disk

• We adopt the protocol model
– Each node transmits with same power
– Condition for successful transmission from

to    : for any

• Transmissions are in synchronized slots

),()1(),( YXdYXd ki δ+≥

iX
Y k

n
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Transport Capacity: Lower Bound

• What configuration and traffic pattern
will yield the highest transport capacity?

• Distribute        senders uniformly in the
unit disk

• Place        receivers just close enough
to senders so as to satisfy threshold

2/n

2/n
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Transport Capacity: Lower Bound

sender

receiver
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Transport Capacity: Lower Bound

• Sender-receiver distance is
• Assuming channel bandwidth W,

transport capacity is

• Thus, transport capacity per node is
)( nWΩ

)/1( nΩ

)(
n
W

Ω
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Transport Capacity: Upper Bound

• For any slot, we will upper bound the
total bit-meters transported

• For a receiver j, let r_j denote the
distance from its sender

• If channel capacity is W, then bit-
meters transported per second is

∑≤
j
jrW

receiver 
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Transport Capacity: Upper Bound

• Consider two successful transmissions
in a slot:

j

k

l

i
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Transport Capacity: Upper Bound

• Balls of radii         around  , for all  , are
disjoint

• So bit-meters transported per slot is
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Throughput Capacity of Random
Networks

• The throughput capacity of an   -node
random network is

• There exist constants   and    such that
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Implications of Analysis

• Transport capacity:
– Per node transport capacity decreases as
– Maximized when nodes transmit to

neighbors

• Throughput capacity:
– For random networks, decreases as
– Near-optimal when nodes transmit to

neighbors

• Designers should focus on small
networks and/or local communication

n
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nn log
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Remarks on Capacity Analysis

• Similar claims hold in the physical model as
well

• Results are unchanged even if the channel can
be  broken into sub-channels

• More general analysis:
– Power law traffic patterns [LBD+03]
– Hybrid networks [KT03, LLT03, Tou04]
– Asymmetric scenarios and cluster networks [Tou04]
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Asymmetric Traffic Scenarios

• Number of destinations smaller than number
of sources
–  nd destinations for n sources; 0 < d <= 1
– Each source picks a random destination

• If 0 < d < 1/2, capacity scales as nd

• If 1/2 < d <= 1, capacity scales as n1/2

• [Tou04]
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Power Law Traffic Pattern

• Probability that a node communicates with
a node   units away is

– For large negative    , destinations clustered
around sender

– For large positive    , destinations clustered at
periphery

• As    goes from < -2 to > -1, capacity
scaling goes from       to            [LBD+03]

∫
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Relay Nodes

• Offer improved capacity:
– Better spatial reuse
– Relay nodes do not count in
– Expensive: addition of     nodes as pure

relays yields less than         -fold increase

• Hybrid networks: n wireless nodes and
nd access points connected by a wired
network
– 0 < d < 1/2: No asymptotic benefit
– 1/2 < d <= 1: Capacity scaling by a factor

of nd

n
kn

1+k
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Mobility and Capacity
• A set of    nodes communicating in random

source-destination pairs
• Expected number of hops is
• Necessary      scaling down of capacity
• Suppose no tight delay constraint
• Strategy: packet exchanged when source and

destination are near each other
– Fraction of time two nodes are near one another is

• Refined strategy: Pick random relay node (a la
Valiant) as intermediate destination [GT01]

• Constant scaling assuming that stationary
distribution of node location is uniform
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Open Problems in Capacity Analysis

• Detailed study of impact of mobility
– [GT01] study is “optimistic”

• Capacity of networks with beam-forming
antennas [Ram98]
– Omnidirectional antennas incur a tradeoff between

range and spatial reuse
– A beam-forming antenna can transmit/receive more

energy in preferred transmission and reception
directions

• Capacity of MIMO systems
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Algorithms for Sensor Networks
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Why are Sensor Networks Special?

• Very tiny nodes
– 4 MHz, 32 KB memory

• More severe power constraints than PDAs,
mobile phones, laptops

• Mobility may be limited, but failure rate higher
• Usually under one administrative control
• A sensor network gathers and processes

specific kinds of data relevant to application
• Potentially large-scale networks comprising of

thousands of tiny sensor nodes
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Focus Problems

• Medium-access and power control:
– Power saving techniques integral to most sensor

networks
– Possibility of greater coordination among sensor

nodes to manage channel access

• Synchronization protocols:
– Many MAC and application level protocols rely on

synchronization

• Query and stream processing:
– Sensor network as a database
– Queries issued at certain gateway nodes
– Streams of data being generated at the nodes by

their sensors
– Need effective in-network processing and adequate

networking support
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MAC Protocols for Sensor Networks

• Contention-Based:
– Random access protocols
– IEEE 802.11 with power saving methods

• Scheduling-Based:
– Assign transmission schedules (sleep/awake

patterns) to each node
– Variants of TDMA

• Hybrid schemes
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Proposed MAC Protocols
• PAMAS [SR98]:

– Contention-based access
– Powers off nodes that are not receiving or forwarding

packets
– Uses a separate signaling channel

• S-MAC [YHE02]:
– Contention-based access

• TRAMA [ROGLA03]:
– Schedule- and contention-based access

• Wave scheduling [TYD+04]:
– Schedule- and contention-based access

• Collision-minimizing CSMA [TJB]:
– For bursty event-based traffic patterns



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 138

S-MAC

• Identifies sources of energy waste [YHE03]:
– Collision
– Overhearing
– Overhead due to control traffic
– Idle listening

• Trade off latency and fairness for reducing
energy consumption

• Components of S-MAC:
– A periodic sleep and listen pattern for each node
– Collision and overhearing avoidance
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S-MAC: Sleep and Listen Schedules

• Each node has a sleep and listen schedule and
maintains a table of schedules of neighboring
nodes

• Before selecting a schedule, node listens for a
period of time:
– If it hears a schedule broadcast, then it adopts that

schedule and rebroadcasts it after a random delay
– Otherwise, it selects a schedule and broadcasts it

• If a node receives a different schedule after
selecting its schedule, it adopts both
schedules

• Need significant degree of synchronization
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S-MAC: Collision and Overhearing
Avoidance

• Collision avoidance:
– Within a listen phase, senders contending to send

messages to same receiver use 802.11

• Overhearing avoidance:
– When a node hears an RTS or CTS packet, then it

goes to sleep
– All neighbors of a sender and the receiver sleep until

the current transmission is over
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TRAMA

• Traffic-adaptive medium adaptive protocol
[ROGLA03]

• Nodes synchronize with one another
– Need tight synchronization

• For each time slot, each node computes an
MD5 hash, that computes its priority

• Each node is aware of its 2-hop neighborhood
• With this information, each node can compute

the slots it has the highest priority within its
2-hop neighborhood
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p(u,t) = MD5(u⊕ t)



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 142

TRAMA: Medium Access

• Alternates between random and scheduled
access

• Random access:
– Nodes transmit by selecting a slot randomly
– Nodes can only join during random access periods

• Scheduled access:
– Each node computes a schedule of slots (and

intended receivers) in which will transmit
– This schedule is broadcast to neighbors
– A free slot can be taken over by a node that needs

extra slots to transmit, based on priority in that slot
– Each node can determine which slots it needs to

stay awake for reception
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Wave Scheduling

• Motivation:
– Trade off latency for reduced energy consumption
– Focus on static scenarios

• In S-MAC and TRAMA, nodes exchange local
schedules

• Instead, adopt a global schedule in which data
flows along horizontal and vertical “waves”

• Idea:
– Organize the nodes according to a grid
– Within each cell, run a leader election algorithm to

periodically elect a representative (e.g., GAF [XHE01])
– Schedule leaders’ wakeup times according to positions

in the grid
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Wave Scheduling: A Simple Wave
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Wave Scheduling: A Pipelined Wave
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Wave Scheduling: Message Delivery

• When an edge is scheduled:
– Both sender and receiver are awake
– Sender sends messages for the duration of the

awake phase
– If sender has no messages to send, it sends an NTS

message (Nothing-To-Send), and both nodes revert
to sleep mode

• Given the global schedule, route selection is
easy
– Depends on optimization measure of interest
– Minimizing total energy consumption requires use of

shortest paths
– Minimizing latency requires a (slightly) more

complex shortest-paths calculation
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Collision-Minimizing CSMA
• Focus on bursty event-based traffic [TJB]

– Room monitoring: A fire triggers a number of redundant
temperature and smoke sensors

– Power-saving: When a node wakes up and polls, all
coordinators within range may respond

• Goal: To minimize latency
• Scenario:

– N nodes contend for a channel
– There are K transmission slots
– Sufficient for any one of them to transmit successfully
– No collision detection: collisions may be expensive since

data packet transmission times may be large

• Subgoal: To maximize the probability of a
collision-free transmission!!!!!!!!!!!!!!!



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 148

Collision-Free Transmission
• Probability of transmission varies over slots
• Probability of successful collision-free

transmission in K slots

• Can calculate probability vector p* that optimizes
above probability

• MAC protocol: CSMA/p*
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Synchronization in Sensor Networks



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 150

Synchronization in Sensor Networks

• Sensor data fusion
• Localization
• Coordinated actuation

– Multiple sensors in a local area make a
measurement

• At the MAC level:
– Power-saving duty cycling
– TDMA scheduling
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Synchronization in Distributed Systems

• Well-studied problem in distributed
computing

• Network Time Protocol (NTP) for
Internet clock synchronization [Mil94]

• Differences: For sensor networks
– Time synchronization requirements more stringent

(µs instead of ms)
– Power limitations constrain resources
– May not have easy access to synchronized global

clocks
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Network Time Protocol (NTP)

• Primary servers (S1)
synchronize to
national time
standards
– Satellite, radio,

modem

• Secondary servers
(S2, …) synchronize
to primary servers
and other secondary
servers
– Hierarchical subnet

S3 S3 S3
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S2 S2 S2 S2

S3 S3

S1 S1 S1 S1
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S1 S1

S2 S2

Primary
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Measures of Interest

• Stability: How well a clock can maintain
its frequency

• Accuracy: How well it compares with
some standard

• Precision: How precisely can time be
indicated

• Relative measures:
– Offset: Difference between times of two

clocks
– Skew: Difference between frequencies of

two clocks
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Synchronization Between Two Nodes

• A sends a message to B; B sends an ack back
• A calculates clock drift and synchronizes

accordingly
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Error Analysis
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2

  

€ 

SA :  Sender time at A

  

€ 

RA :  Receiver time at A

  

€ 

PA→B :  Prop. time for A→B

  

€ 

RUC :  RB − RA
  

€ 

SUC :  SA − SB

  

€ 

PUC :  PA→B − PB→A
  

€ 

Error =
SUC + RUC + PUC

2
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Sources of Synchronization Error

• Non-determinism of processing times
• Send time:

– Time spent by the sender to construct packet;
application to MAC

• Access time:
– Time taken for the transmitter to acquire the channel

and exchange any preamble (RTS/CTS): MAC

• Transmission time: MAC to physical
• Propagation time: physical
• Reception time: Physical to MAC
• Receive time:

– Time spent by the receiver to reconstruct the
packet; MAC to application
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Sources of Synchronization Error

• Sender time = send time + access time +
transmission time
– Send time variable due to software delays at the

application layer
– Access time variable due to unpredictable contention

• Receiver time = receive time + reception time
– Reception time variable due to software delays at

the application layer

• Propagation time dependent on sender-
receiver distance
– Absolute value is negligible when compared to other

sources of packet delay
– If node locations are known, these times can be

explicitly accounted for
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Two Approaches to Synchronization

• Sender-receiver:
– Classical method, initiated by the sender
– Sender synchronizes to the receiver
– Used in NTP
– Timing-sync Protocol for Sensor Networks (TPSN)

[GKS03]

• Receiver-based:
– Takes advantage of broadcast facility
– Two receivers synchronize with each other based on

the reception times of a reference broadcast
– Reference Broadcast Synchronization (RBS) [EGE02]
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TPSN

• Time stamping done at
the MAC layer
– Eliminates send, access, and

receive time errors

• Creates a hierarchical
topology

• Level discovery:
– Each node assigned a level

through a broadcast

• Synchronization:
– Level i node synchronizes to

a neighboring level i-1 node
using the sender-receiver
procedure

333

222

111

0
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Reference Broadcast Synchronization

• Motivation:
– Receiver time errors are significantly smaller than

sender time errors
– Propagation time errors are negligible
– The wireless sensor world allows for broadcast

capabilities

• Main idea:
– A reference source broadcasts to multiple receivers

(the nodes that want to synchronize with one
another)

– Eliminates sender time and access time errors



ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 161

Reference Broadcast Synchronization

• Simple form of RBS:
– A source broadcasts a

reference packet to all
receivers

– Each receiver records
the time when the
packet is received

– The receivers exchange
their observations

€ 

i

€ 

j

  

€ 

Ti :  Receive time at i
Δij = Tj −Ti

€ 

Δij =
1
m

(Tkj −Tki )
k=1

m

∑

• General form:
– Several executions of

the simple form

• ! ! ! ! ! ! ! !For each receiver  ,
receiver   derives an
estimate of

€ 

i

€ 

Δij

€ 

j
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Reference Broadcast Synchronization

• Clock skew:
– Averaging assumes      equals 1
– Find the best fit line using least

squares linear regression
– Determines       and

€ 

t j = tisij +Δij

• Pairwise synchronization in
multihop networks:
– Connect two nodes if they were

synchronized by same reference
– Can add drifts along path
– But which path to choose?
– Assign weight equal to root-

mean square in regression
– Select path of min-weight

€ 

sij

€ 

sij

€ 

Δij

€ 

i

€ 

j
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Pairwise and Global Synchronization

• Global consistency:
– Converting times from i to j and then j to k

should be same as converting times from i to k

€ 

sik = sij s jk

• Optimal precision:
– Find an unbiased estimate for each pair

with minimum variance
• [KEES03]

€ 

(sij ,Δij )

€ 

Δik = Δij s jk +Δ jk
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Consistency and Optimal Precision

• Min-variance pairwise
synchronizations are globally
consistent!

• Maximally likely set of offset
assignments yield minimum variance
synchronizations!

• Flow in resistor networks
– Bipartite graph connecting the

receivers with the sources
– Resistance of each edge equal to

the variance of the error
corresponding to that source-
receiver pair

– Min-variance is effective resistance
– Estimator can be obtained from the

current flows

€ 

i

€ 

j

1

1
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Algorithmic Support for Query
Processing in Sensor Networks
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The Sensor Network as a Database
• From the point of view of the user, the sensor

network generates data of interest to the user
• Need to provide the abstraction of a database

– High-level interfaces for users to collect and process
continuous data streams

• TinyDB [MFHH03], Cougar [YG03]
– Users specify queries in a declarative language (SQL-

like) through a small number of gateways
– Query flooded to the network nodes
– Responses from nodes sent to the gateway through

a routing tree, to allow in-network processing
– Especially targeted for aggregation queries

• Directed diffusion [IGE00]
– Data-centric routing: Queries routed to specific

nodes based on nature of data requested
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Classification of Queries

• Long-running vs ad hoc
– Long-running: Issued once and require periodic

updates
– Ad hoc: Require one-time response

• Temporal:
– Historical
– Present
– Future: e.g., trigger queries

• Nature of query operators
– Aggregation vs. general

• Spatial vs. non-spatial
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Processing of Aggregate Queries

• Aggregation query q:S→ℜ
– Sum, minimum, median, etc.

• Queries flooded within the
network

• An aggregation tree is
obtained

• Query results propagated
and aggregated up the tree

• Aggregation tree selection
• Multi-query optimization
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Multi-Query Optimization

• Given:
– An aggregation tree
– Query workload
– Update probabilities of sensors

• Determine an aggregation procedure that
minimizes communication complexity:

• Push vs. pull:
– When should we proactively send up sensor data?

• Problem space [DGR+03]:
– Deterministic queries, deterministic updates
– Deterministic queries, probabilistic updates
– Probabilistic queries, deterministic updates
– Probabilistic queries, probabilistic updates
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Multi-Query Optimization

• Two queries: A+B and A+C,
each with probability 1-ε

• ε=0: Proactively forward
each sensor reading up the
tree

• ε nearly 1: Let parent pull
information

• Intermediate case depends
on the ratio of result/query
message sizes

A

I

B C

R

2r
q+2(1-ε)r

q+(1-ε)rq+(1-ε2)r
rr
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Multi-Query Optimization

• q > 2εr:
– Push on every edge

• εr < q <2εr:
– Pull on (I,R)
– Push on other edges

• ε2r < q < εr:
– Push on (A,I)
– Pull on other edges

• q < ε2r:
– Pull on every edge

• Optimizations:
– Send results of a basis of the projected query set

along an edge

A

I

B C

R

2r
q+2(1-ε)r

q+(1-ε)rq+(1-ε2)r
rr
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Aggregation Tree Selection

• Given:
– An aggregation procedure for a fixed aggregation

tree
– Query workload: e.g., probability for each query
– Probability of each sensor update

• Determine an aggregation tree that minimizes
the total energy consumption

• Clearly NP-hard
– Minimum Steiner tree problem is a special case

• Approximation algorithms for interesting
special cases
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Approximations for Special Cases
• Individual queries:

– Any approximation to minimum Steiner tree suffices
– MST yields 2-approximation, improved approximations

known

• Universal trees [JLN+04]:
– There exists a single tree whose subtree induced by any

query is within polylog(n) factor of the optimum
– Unknown query, deterministic update

• A single aggregation tree for all concave
aggregation functions [GE03]
– All sensor nodes participate
– The aggregation operator is not known a priori, but

satisfies a natural concaveness property
– There exists a single tree that achieves an O(log n)-

approximation
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Simultaneous Optimization for
Concave Aggregation Functions

• A function that gives the size of the
aggregated data given the number of items
being aggregated

• Binary aggregation method:
– Find a min-cost matching
– For each pair, select one node at random and make

it the parent of the other
– Repeat the procedure with the parents until have

exactly one node

    

€ 

f :Ζ aℜ

f and f '  are nondecreasing
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Simultaneous Optimization for
Concave Aggregation Functions

• Independent of the function f
• Binary aggregation method yields an O(log n)

approximation for any function
– n is the number of nodes

• Can be derandomized to yield the same
asymptotic result

    

€ 

f :Ζ aℜ

f and f '  are nondecreasing
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Data-Centric Storage and Routing

• Need to ensure the query originator rendezvous
with nodes containing matching data
– Flooding queries is expensive

• Data-centric storage [RKY+02]:
– Designated collection of nodes storing data items

matching a certain predicate
– These nodes can also perform in-network processing to

compute intermediate values

• Data-centric routing [RKY+02]:
– Gateway determines node(s) storing data matching a

particular predicate
– Routes query to these nodes using unicast or multicast
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Open Problems in Sensor Network
Algorithms

• Topology control:
– Aggregation tree selection
– Scheduling node and edge activations for specific

communication patterns

• Multi-query optimization:
– Need to address general (non-aggregate) queries
– Related to work in distributed databases; energy

consumption a different performance measure
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Outline
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Fundamental limits of ad hoc networks
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