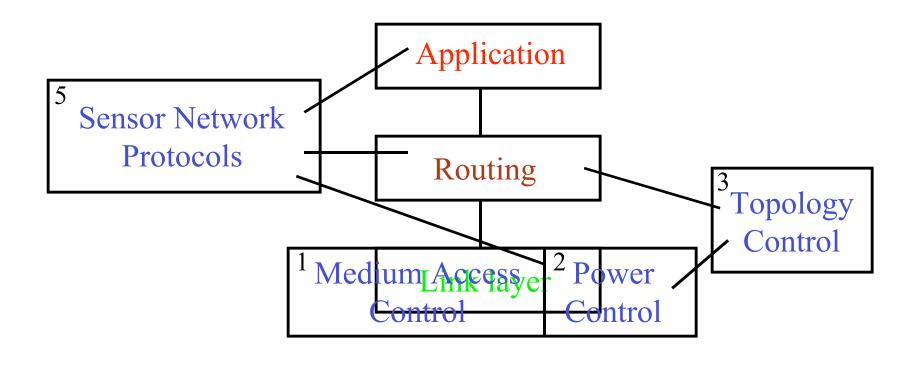
<u>Algorithmic Foundations of</u> <u>Ad Hoc Networks: Part II</u>

Rajmohan Rajaraman, Northeastern U.

www.ccs.neu.edu/home/rraj/AdHocTutorial.ppt

(Part II of a joint tutorial with Andrea Richa, Arizona State U.)

July 2004


ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

Many Thanks to...

- Roger Wattenhofer and organizers of the summer school
- ETH Zurich
- All the researchers whose contributions will be discussed in this tutorial

Outline

Fundamental limits of ad hoc networks

What's Not Covered?

- Frequency (channel) assignment
 - Arises in cellular networks
 - Modeled as coloring problems
- Ad Hoc Network Security
 - Challenges due to the low-power, wireless, and distributed characteristics
 - Authentication, key sharing,...
 - Anonymous routing
- Smart antenna:
 - Beam-forming (directional) antenna
 - MIMO systems
- Many physical layer issues
- ...

Medium Access Control

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Medium Access Control Protocols

- Schedule-based: Establish transmission schedules statically or dynamically
 - TDMA: Assign channel to station for a fixed amount of time
 - FDMA: Assign a certain frequency to each station
 - CDMA: Encode the individual transmissions over the entire spectrum
- Contention-based:
 - Let the stations contend for the channel
 - Random access protocols

Contention Resolution Protocols

- CSMA (Carrier-sense multiple access)
 - Ethernet
 - Aloha
- MACA [Kar90] (Multiple access collision avoidance)
- MACAW [BDSZ94]
- CSMA/CA and IEEE 802.11
- Other protocols:
 - Bluetooth
 - Later, MAC protocols for sensor networks

Ingredients of MAC Protocols

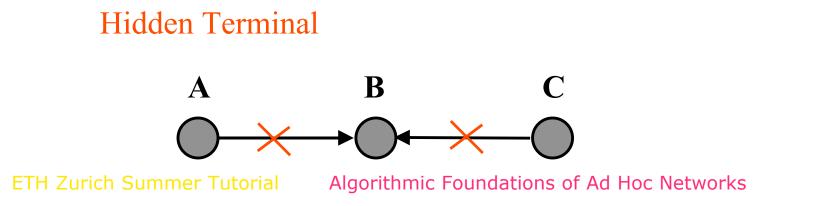
- Carrier sense (CS)
 - Hardware capable of sensing whether transmission taking place in vicinity
- Collision detection (CD)
 - Hardware capable of detecting collisions
- Collision avoidance (CA)
 - Protocol for avoiding collisions
- Acknowledgments
 - When collision detection not possible, link-layer mechanism for identifying failed transmissions
- Backoff mechanism
 - Method for estimating contention and deferring transmissions

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Carrier Sense Multiple Access

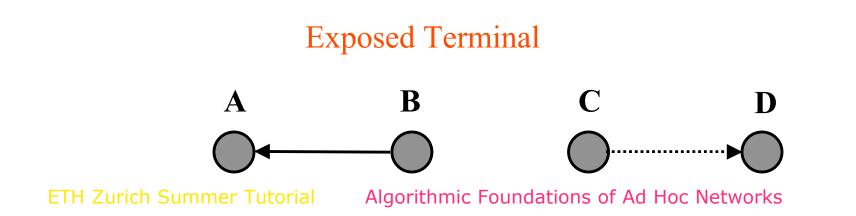
- Every station senses the carrier before transmitting
- If channel appears free
 - Transmit (with a certain probability)
- Otherwise, wait for some time and try again
- Different CSMA protocols:
 - Sending probabilities
 - Retransmission mechanisms

Slotted Aloha


- Proposed for packet radio environments where every node can hear every other node
- Assume collision detection
- Stations transmit at the beginning of a slot
- If collision occurs, then each station waits a random number of slots and retries
 - Random wait time chosen has a geometric distribution
 - Independent of the number of retransmissions
- Analysis in standard texts on networking theory [BG92]

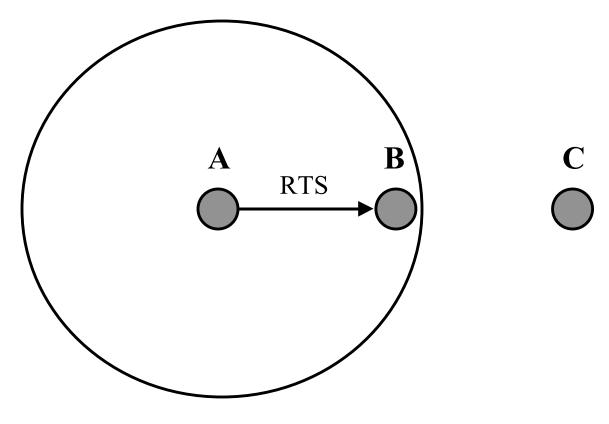
Ethernet

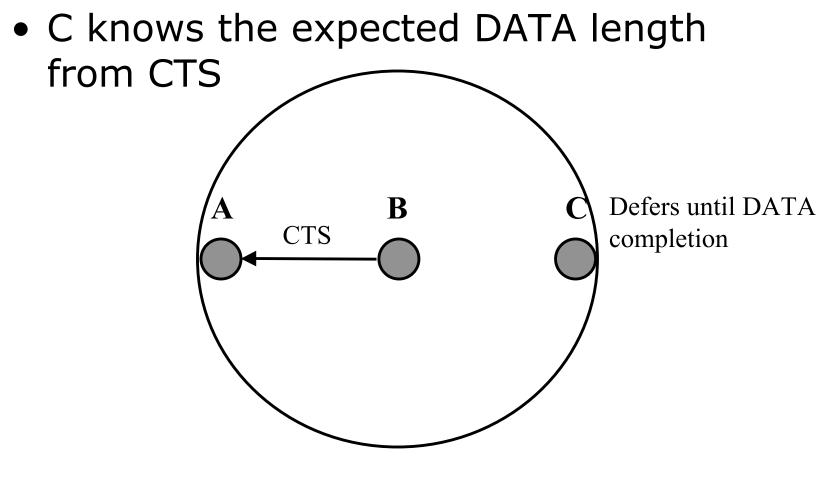
- CSMA with collision detection (CSMA/CD)
- If the adaptor has a frame and the line is idle: transmit
- Otherwise wait until idle line then transmit
- If a collision occurs:
 - Binary exponential backoff: wait for a random number $\in [0, 2^{i}-1]$ of slots before transmitting
 - After ten collisions the randomization interval is frozen to max 1023
 - After 16 collisions the controller throws away the frame


CSMA for Multihop Networks

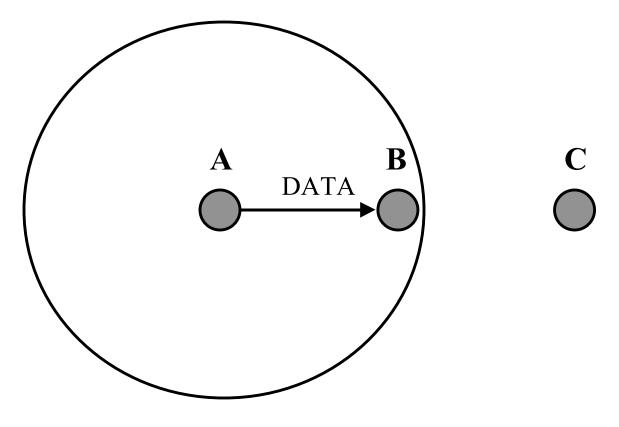
- In CSMA, sender decides to transmit based on carrier strength in *its vicinity*
- Collisions occur at the receiver
- Carrier strengths at sender and receiver may be different:

CSMA for Multihop Networks

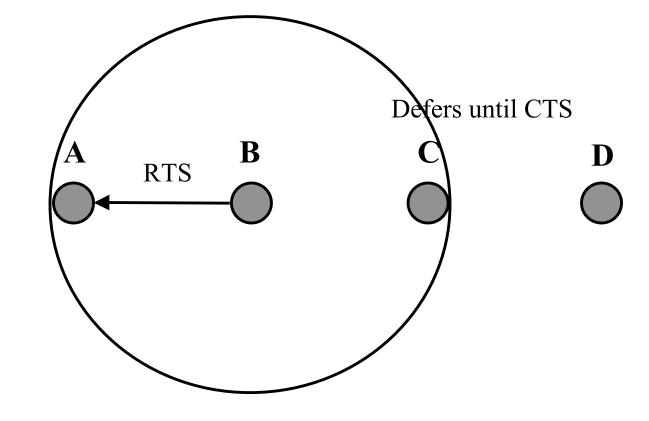

- In CSMA, sender decides to transmit based on carrier strength in *its vicinity*
- Collisions occur at the receiver
- Carrier strengths at sender and receiver may be different:

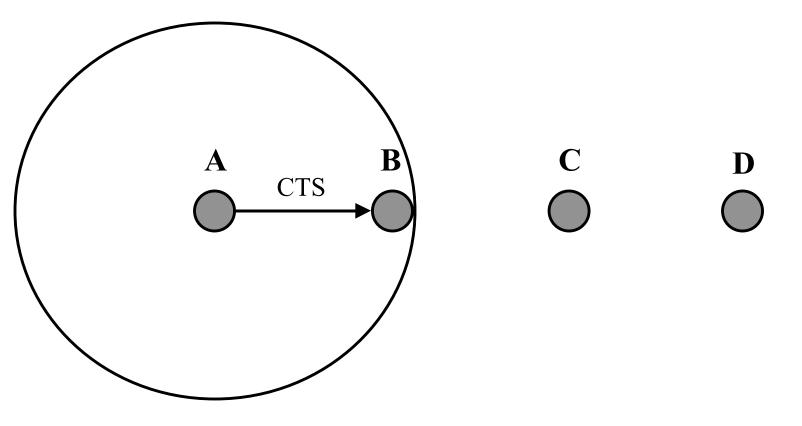


Multiple Access Collision Avoidance

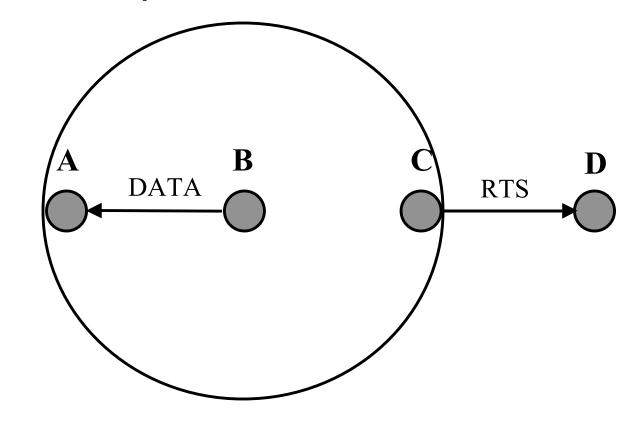

- No carrier sense
- Collision avoidance using RTS/CTS handshake
 - Sender sends Request-to-Send (RTS)
 - Contains length of transmission
 - If receiver hears RTS and not currently deferring, sends Clear-to-Send (CTS)
 - Also contains length of transmission
 - On receiving CTS, sender starts DATA transmission
- Any station overhearing an RTS defers until a CTS would have finished
- Any station overhearing a CTS defers until the expected length of the DATA packet

• If C also transmits RTS, collision at B

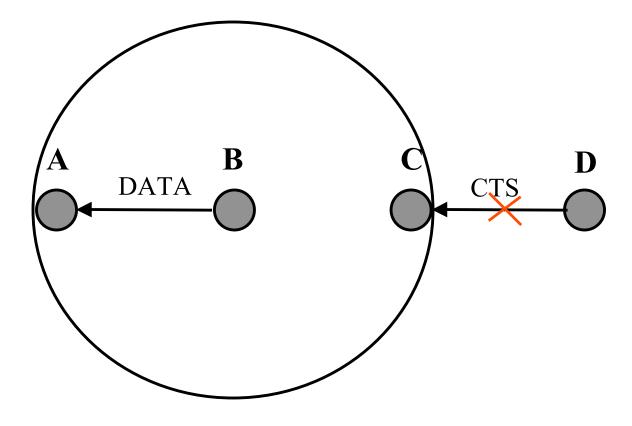



• Avoids the hidden terminal problem

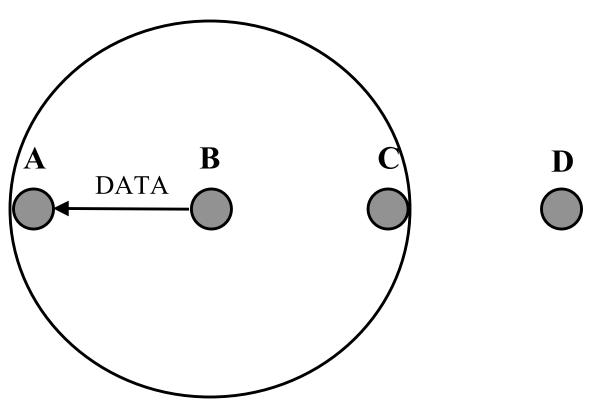
• CTS packets have fixed size


• C does not hear a CTS

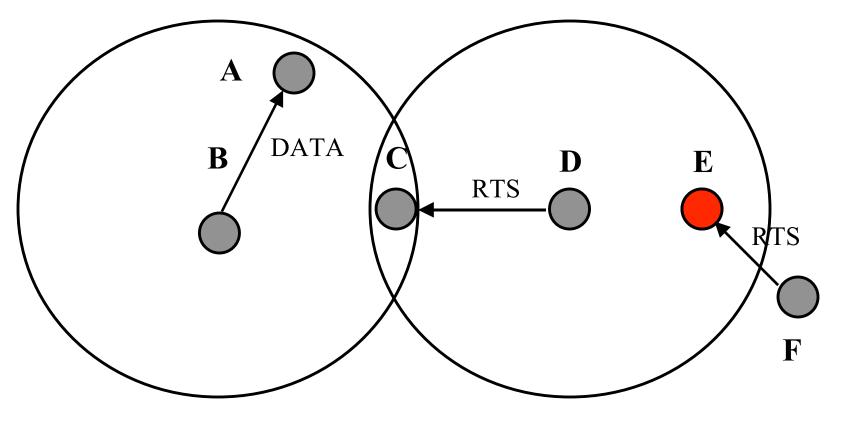
 C is free to send to D; no exposed terminal B D DATA


ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks20

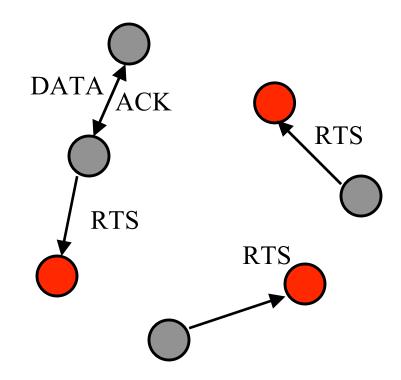
• Is C really free to send to D?


ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

• In fact, C increases its backoff counter!


The CSMA/CA Approach

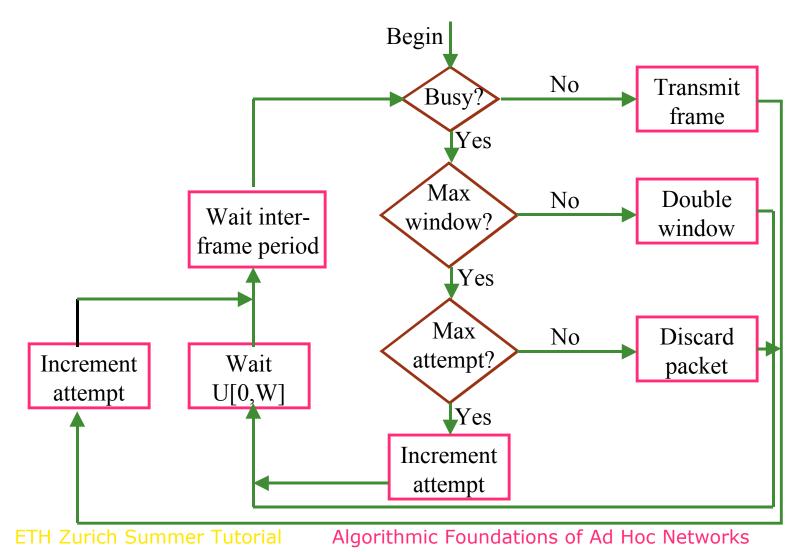
• Add carrier sense; C will sense B's transmission and refrain from sending RTS


False Blocking

- F sends RTS to E; D sends RTS to C
- E is falsely blocked [Bha98, RCS03]

False Blocking

Show that false blocking may lead to temporary deadlocks

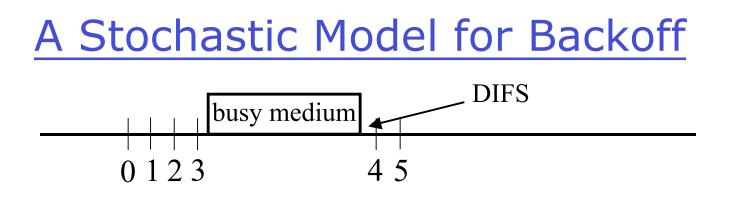

Alternative Approach: MACAW

- [BDSZ94]
- No carrier sense, no collision detection
- Collision avoidance:
 - Sender sends RTS
 - Receiver sends CTS
 - Sender sends DS
 - Sender sends DATA
 - Receiver sends ACK
 - Stations hearing DS defer until end of data transmission
- Backoff mechanism:
 - Exponential backoff with significant changes for improving fairness and throughput

The IEEE 802.11 Protocol

- Two medium access schemes
- Point Coordination Function (PCF)
 - Centralized
 - For infrastructure mode
- Distributed Coordination Function (DCF)
 - For ad hoc mode
 - CSMA/CA
 - Exponential backoff

CSMA/CA with Exponential Backoff

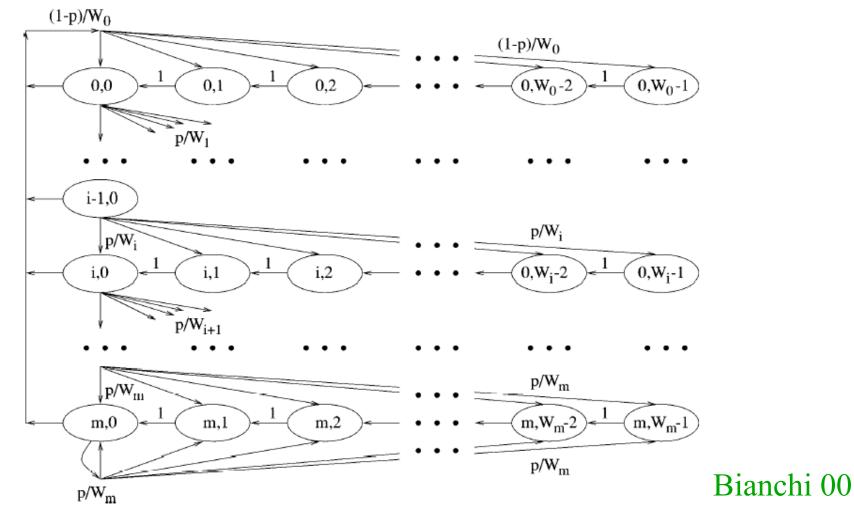


Performance Analysis of 802.11

- Markov chain models for DCF
- Throughput:
 - Saturation throughput: maximum load that the system can carry in stable conditions
- Fairness:
 - Long-term fairness
 - Short-term fairness
- Focus on collision avoidance and backoff algorithms

Analysis of Saturation Throughput

- Model assumptions [Bia00]:
 - No hidden terminal: all users can hear one another
 - No packet capture: all receive powers are identical
 - Saturation conditions: queue of each station is always nonempty
- Parameters:
 - Packet lengths (headers, control and data)
 - Times: slots, timeouts, interframe space



- Let *b*(*t*) denote the backoff time counter for a given node at slot *t*
 - Slot: constant time period σ if the channel is idle, and the packet transmission period, otherwise
 - Note that *t* is not the same as system time
- The variable b(t) is non-Markovian
 - Its transitions from a given value depend on the number of retransmissions

A Stochastic Model for Backoff

- Let s(t) denote the backoff stage at slot t
 - In the set $\{0, ..., m\}$, where m is the maximum number of backoffs
- Is (s(t), b(t)) Markovian?
- Unfortunately, no!
 - The transition probabilities are determined by collision probabilities
 - The collision probability may in turn depend on the number of retransmissions suffered
- Independence Assumption:
 - Collision probability is constant and independent of number of retransmissions

Markov Chain Model

ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

Steady State Analysis

- Two probabilities:
 - Transmission probability au
 - Collision probability p
- Analyzing the Markov chain yields an equation for τ in terms of p
- However, we also have

$$p=1-(1-\tau)^{n-1}$$

• Solve for $\tau \, \operatorname{and} p$

Saturation Throughput Calculation

- Probability of at least one transmission $P_{tr} = 1 (1 \tau)^n$
- Probability of a successful slot

$$P_{s} = \frac{n\tau(1-\tau)^{n-1}}{1-(1-\tau)^{n}}$$

• Throughput: (packet length L)

$$\frac{P_s P_{tr} L}{(1 - P_{tr})\sigma + P_{tr} L}$$

ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

Analysis vs. Simulations

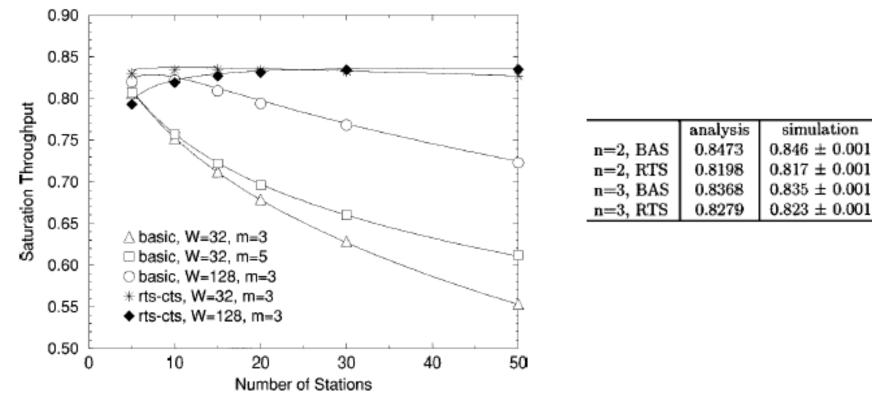


Fig. 6. Saturation Throughput: analysis versus simulation.

Bianchi 00

36

ETH Zurich Summer Tutorial

Fairness Analysis

- How is the throughput distributed among the users?
- Long-term:
 - Steady-state share of the throughput
- Short-term:
 - Sliding window measurements
 - Renewal reward theory based on Markov chain modeling

Long-Term Fairness

- Basic binary exponential backoff:
 - Steady-state throughput equal for all nodes
 - However, constant probability (> 0) that one node will capture the channel

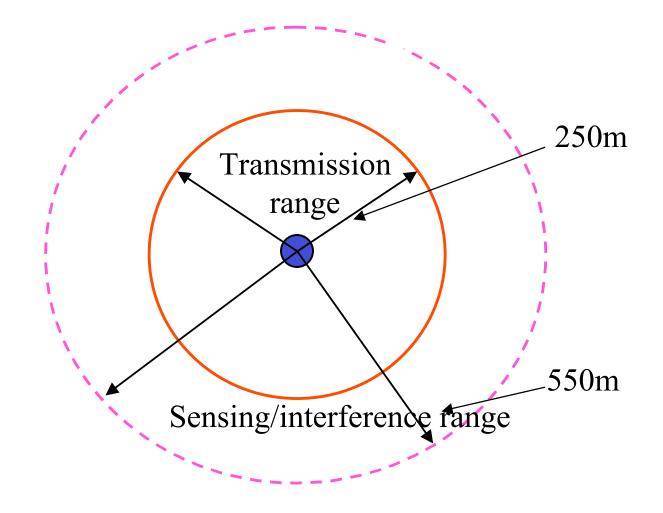
Consider two nodes running CSMA with basic exponential backoff on a shared slotted channel. Assume that both nodes have an infinite set of packets to send. Prove that there is a **constant (> 0) probability** that one node will have O(1) throughput, while the **other will be unable to send even a single packet**.

Long-Term Fairness

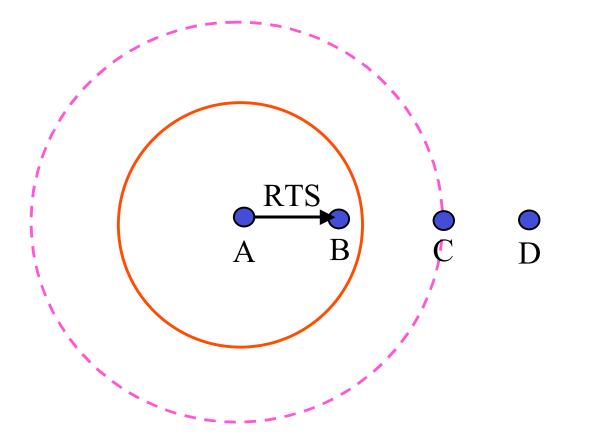
- Basic binary exponential backoff:
 - Steady-state throughput equal for all nodes
 - However, constant probability (> 0) that one node will capture the channel
- Bounded binary exponential backoff:
 - After a certain number of retransmissions, backoff stage set to zero and packet retried
- MACAW: All nodes have the same backoff stage

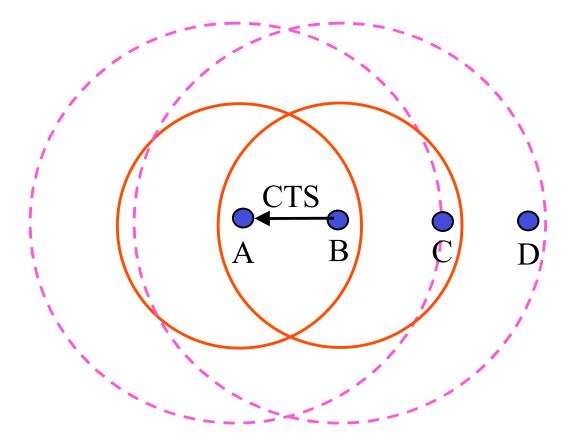
Short-Term Fairness

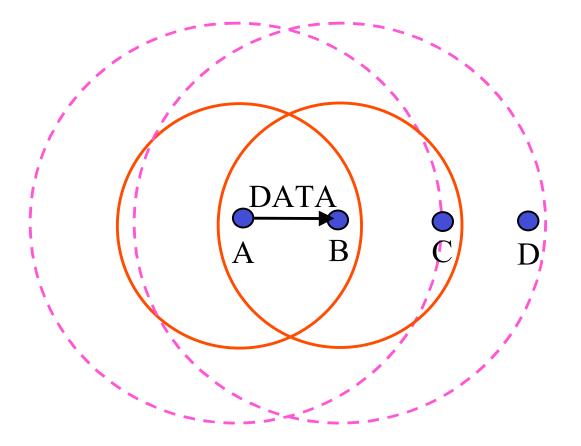
- Since focus on successful transmissions, need not worry about collision probabilities
- The CSMA/CA and Aloha protocols can both be captured as Markov chains
- CSMA/CA has higher throughput, low shortterm fairness
 - The capture effect results in low fairness
- Slotted Aloha has low throughput, higher short-term fairness
- [KKB00]

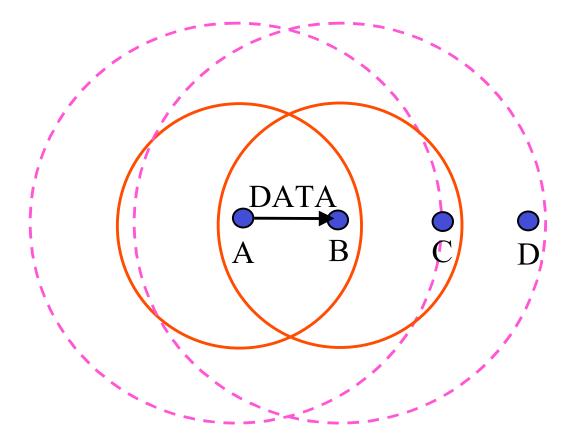

Backoff in MACAW

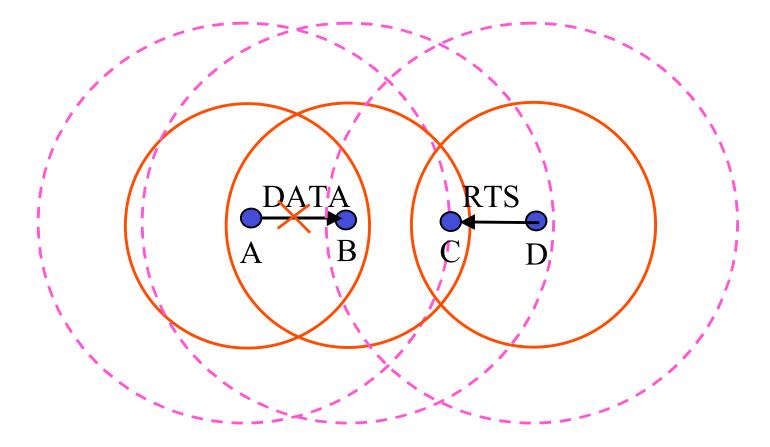
- Refinement of exponential backoff to improve fairness and throughput
- Fairness:
 - Nodes contending for the same channel have the same backoff counter
 - Packet header contains value of backoff counter
 - Whenever a station hears a packet, it copies the value into its backoff counter
- Throughput:
 - Sharing backoff counter across channels causes false congestion
 - Separate backoff counter for different streams (destinations)


Open Problems in Contention Resolution


- Throughput and fairness analysis for multihop networks
 - Dependencies carry over hops
 - In the "single hop" case nodes get synchronized since every node is listening to the same channel
 - Channels that a node can communicate on differ in the multihop case
 - Even the simplest case when only one node cannot hear all nodes is hard
- Fairness analysis of MACAW
 - All nodes contending for a channel use same backoff number; similar fairness as slotted Aloha?
 - Different backoff numbers for different channels


Transmission and Sensing Ranges




ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Implications of Differing Ranges

- Carrier sense does not completely eliminate the hidden terminal problem
- The unit disk graph model, by itself, is not a precise model
- The differing range model itself is also simplistic
 - Radios have power control capabilities
 - Whether a transmission is received depends on the signal-to-interference ratio
 - Protocol model for interference [GK00]

Power Control

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

What and Why

- The ability of a mobile wireless station to control its energy consumption:
 - Switching between idle/on/off states
 - Controlling transmission power
- Throughput:
 - Interference determined by transmission powers and distances
 - Power control may reduce interference allowing more spatial reuse
- Energy:
 - Power control could offer significant energy savings and enhance network lifetime

The Attenuation Model

- Path loss:
 - Ratio of received power to transmitted power
 - Function of medium properties and propagation distance
- If P_R is received power, P_T is the transmitted power, and d is distance

$$P_{R} = O(\frac{P_{T}}{d^{\alpha}})$$

- where $\alpha\,$ ranges from 2 to 4


ETH Zurich Summer Tutorial

Interference Models

- In addition to path loss, bit-error rate of a received transmission depends on:
 - Noise power
 - Transmission powers and distances of other transmitters in the receiver's vicinity
- Two models:
 - Physical model
 - Protocol model

The Physical Model

- Let $\{X_i\}$ denote set of nodes that are simultaneously transmitting
- Let P_i be the transmission power of node X_i
- Transmission of X_i is successfully received by Yif:

• β is the min signal-interference ratio (SIR)

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

The Protocol Model

- Transmission of $X_{\scriptscriptstyle i}$ is successfully received by $Y_{\scriptscriptstyle i}$ if for all k

$$\frac{P_i}{d(X_i, Y)^{\alpha}} \ge (1 + \Delta) \frac{P_k}{d(X_k, Y)^{\alpha}}$$

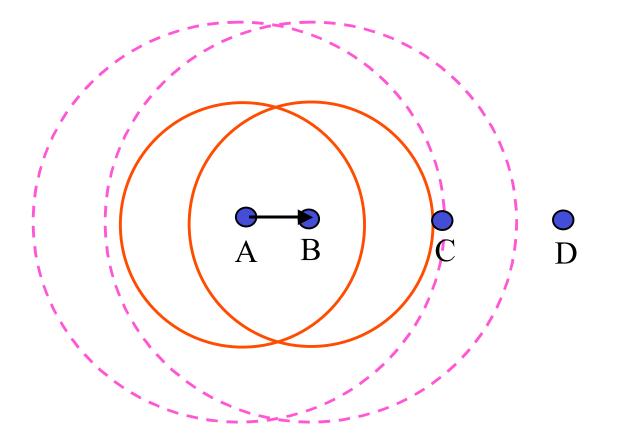
- where Δ is a protocol-specified guard-zone to prevent interference

Scenarios for Power Control

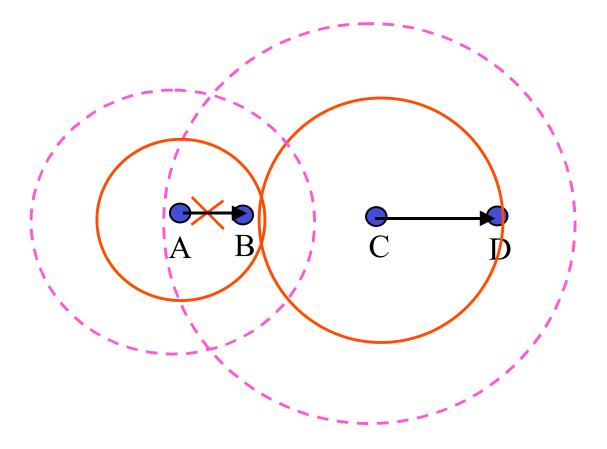
- Individual transmissions:
 - Each node decides on a power level on the basis of contention and power levels of neighbors
- Network-wide task:
 - Broadcast
 - Multicast
- Static:
 - Assign fixed (set of) power level(s) to each node
 - Topology control

Review of Proposed Schemes

- Basic power control scheme
 PCM
- POWMAC δ -PCS Throughput and energy
- PCMA
 PCDC
 Dual channel schemes


The Basic Power Control Scheme

- The IEEE 802.11 does not employ power control
 - Every transmission is at the maximum possible power level $P_{\rm max}$
- Transmit RTS/CTS at $P_{\rm max}$
- In the process, determine minimum power level *P* needed to transmit:


– Function of sender-receiver distance d

• DATA and ACK are sent at level \ensuremath{P}

Deficiency of the Basic Scheme

Deficiency of the Basic Scheme

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks60

Power Control MAC (PCM)

- RTS/CTS at P_{max}
- For DATA packets:
 - Send at the minimum power ${\cal P}$ needed, as in the basic scheme
 - Periodically send at $P_{\rm max}$, to maintain the collision avoidance feature of 802.11
- ACK sent at power level P
- Throughput comparable to 802.11
- Significant energy savings [JV02]

POWMAC

- Access window for RTS/CTS exchanges
- Multiple concurrent DATA packet transmissions following RTS/CTS
- Collision avoidance information attached in CTS to bound transmission power of potentially interfering nodes
- Aimed at increasing throughput as well as reducing energy consumption
- [MK04]

$$\delta \underline{-PCS}$$

• IEEE 802.11

$$P = P_{\max} \propto d^0$$

 $P \propto d^{\delta}$

- Basic power control scheme $P \propto d^{\alpha}$
- δ -PCS: $0 \le \delta \le \alpha$ [JLNR04]

$$P = P_{\max} (d / d_{\max})^{\delta}$$

- Simulations indicate:
 - δ in the range 2-3 provides best performance
 - 30-40% increase in throughput and 3-fold improvement in energy consumption
 - Fair over varying distance ranges

Dual-Channel Schemes

- Use a separate control channel
- PCMA [MBH01]:
 - Receiver sends busy tone pulses advertising its interference margin
- PCDC [MK03]:
 - RTS/CTS on control channel
- Signal strength of busy tones used to determine transmission power for data

Open Problems in Power Control

- Develop an analytical model for measuring the performance of power control protocols
 - Model for node locations
 - Model for source and destination selections: effect of transmission distances
 - Interaction with routing
 - Performance measures: throughput, energy, and fairness


Topology Control

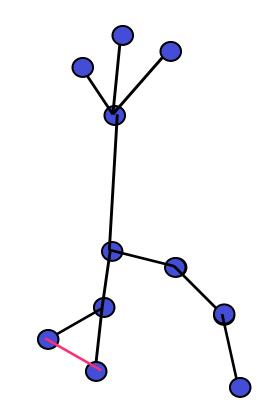
ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Connectivity

- Given a set of nodes in the plane
- Goal: Minimize the maximum power needed for connectivity
- Let $p: V \rightarrow \Re$ denote the power function
- Induced graph contains edge (*u*,*v*) if

$$p(u), p(v) \ge d(u, v)^{\alpha}$$

Connectivity


• To obtain a given topology *H*, need

 $p(u) = \max_{(u,v)\in H} d(u,v)^{\alpha}$

- Goal: Minimize the maximum edge length
- MST!
 - MST also minimizes the weight of the maxweight edge
- Find MST T and set

$$p(u) = \max_{(u,v)\in T} d(u,v)^{\alpha}$$

ETH Zurich Summer Tutorial

Connectivity: Distributed Heuristics

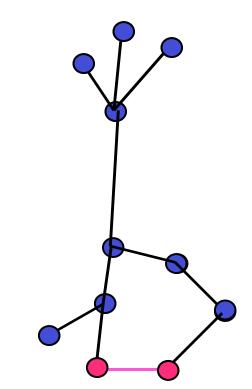
- Motivated by need to address mobility [RRH00]
- Initially, every node has maximum power
- Nodes continually monitor routing updates to track connectivity
- Neighbor Reduction Protocol:
 - Each node attempts to maintain degree within a range, close to a desired degree
 - Adjusts power depending on current degree
 - Magnitude of change dependent on difference between current and desired degree
- Neighbor Addition Protocol:
 - Triggered if node recognizes graph not connected
 - Sets power to maximum level

Connectivity: Total Power Cost

Given a set of nodes in the plane, determine an assignment of power levels that achieves connectivity at minimum **total power cost**

Bounded-Hops Connectivity

- Goal: Minimize the total power cost needed to obtain a topology that has a diameter of at most h hops [CPS99, CPS00]
- Assume $\alpha = 2$
- Lower bound:
 - If minimum distance is δ , then total power cost is at least $\Omega(\delta^{lpha}n^{1+1/h})$
- Upper bound:
 - If maximum distance is D, then total power cost is at most


$$O(D^{\alpha}n^{1/h})$$

K-Connectivity

- Goal: Minimize the maximum transmission power to obtain a k-connected topology
- Critical transmission radius
 - Smallest radius r such that if every node sets its range to r then the topology is k-connected
- Critical neighbor number [WY04]
 - Smallest number I such that if every node sets its transmission range to the distance to the lth nearest neighbor then the topology is k-connected
- Characterization of the critical transmission radius and critical neighbor number for random node placements [WY04]

Energy-Efficient Topologies

- Goal: Construct a topology that contains energy-efficient paths
 - For any pair of nodes, there exists a path nearly as energyefficient as possible
- Constraints:
 - Sparseness
 - Constant degree
 - Distributed construction

Formalizing Energy-Efficiency

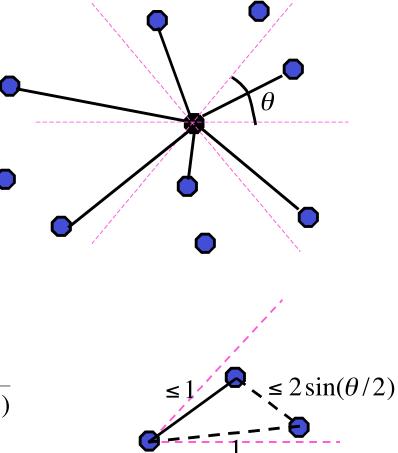
- Given a subgraph *H* of *G*, the complete graph over the *n* nodes:
 - Define energy-stretch of H as the maximum, for all u and v, of the ratio of the least energy path between and v in H to that in G

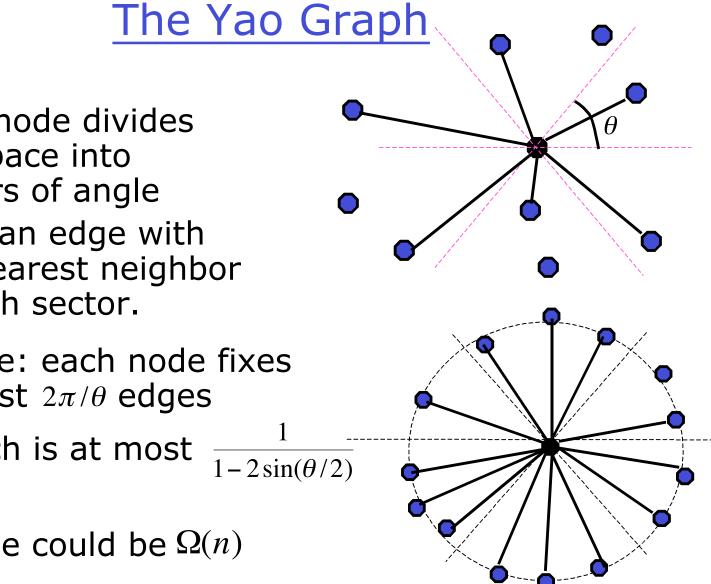
 $\max_{u,v} \frac{\text{optimal-energy}_H(u,v)}{\text{optimal-energy}_G(u,v)}$

• Variant of distance-stretch

 $\max_{u,v} \frac{\text{optimal-distance}_H(u,v)}{\text{optimal-distance}_G(u,v)}$

 Since α>1, a topology of distance-stretch O(1) also has energy-stretch O(1)

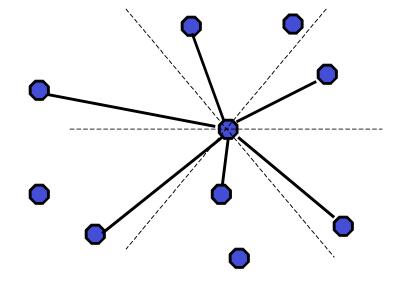

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks


Spanners

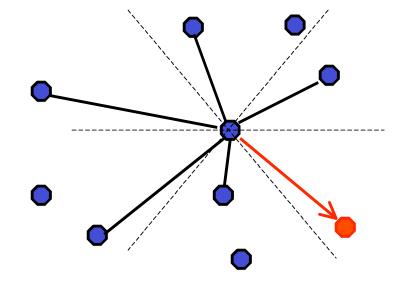
- Spanners are topologies with O(1) distance stretch
- Extensively studied in the graph algorithms and graph theory literature [Epp96]
- (Distance)-spanners are also energy-spanners
- Spanners for Euclidean space based on proximity graphs:
 - Delaunay triangulation
 - The Yao graph

The Yao Graph

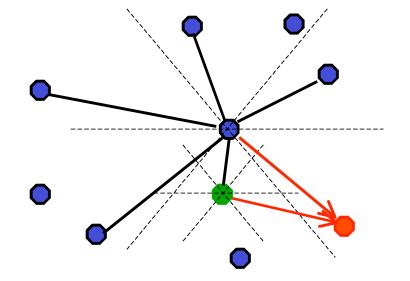
- Each node divides the space into sectors of angle
- Fixes an edge with the nearest neighbor in each sector.
- Sparse: each node fixes at most $2\pi/\theta$ edges
- Stretch is at most $\frac{1}{1-2\sin(\theta/2)}$

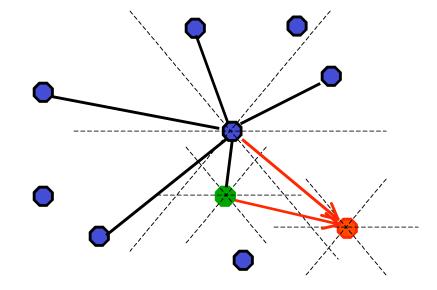

 Each node divides the space into sectors of angle

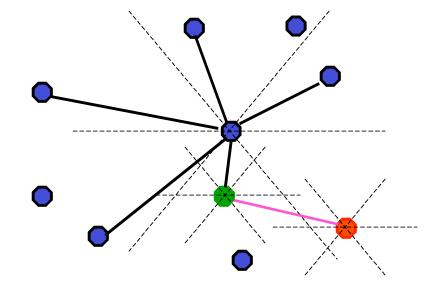
- Fixes an edge with the nearest neighbor in each sector.
- Sparse: each node fixes at most $2\pi/\theta$ edges
- Stretch is at most
- Degree could be $\Omega(n)$


ETH Zurich Summer Tutorial

Variants of the Yao Graph


- Can derive a constant-degree subgraph by a phase of edge removal [WLBW00, LHB+01]
 - Increases stretch by a constant factor
 - Need to process edges in a coordinated order
- Locally computable variant of the Yao graph [LWWF02, WL02]
 - 1. Each node divides the space into sectors of angle $\theta.$
 - 2. Each node computes a neighbor set which consists of each nearest neighbor in all its sectors.
 - (u,v) is selected if v is in u's neighbor set and u is the nearest among those that selected v in its neighbor set.


1. Each node divides the space into sectors of angle $\boldsymbol{\theta}$


2. Each node computes a neighbor set which consists of each nearest neighbor in all its sectors.

2. Each node computes a neighbor set which consists of each nearest neighbor in all its sectors.

3. (u,v) is selected if v is in u's neighbor set and u is the nearest among those that selected v into its nearest neighbor. FTH Zurich Summer Tutorial

3. (u,v) is selected if v is in u's neighbor set and u is the nearest among those that selected v into its nearest neighbor.

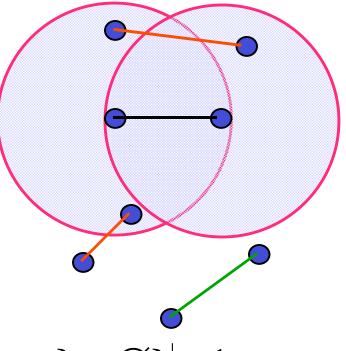
ETH Zurich Summer Tutorial

Properties of the Topology

- By definition, constant-degree
- For θ sufficiently small, the topology has constant energy stretch for arbitrary point sets [JRS03]
 - Challenge: Unlike for the Yao graph, the min-cost path from u to v may traverse nodes that are farther from u than v
- Does the algorithm yield a distancespanner?
 - Can establish claim for specialized node distributions [JRS03]

– Weak spanner property holds [GLSV02] ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Other Recent Work

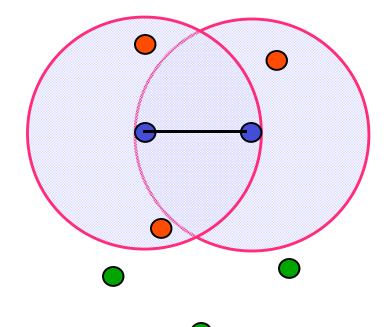

- Energy-efficient planar topologies:
 - Combination of localized Delaunay triangulation and Yao structures
 - Planar, degree-bounded, and energyspanner [WL03, SWL04]

Topology Control and Interference

- Focus thus far on energy-efficiency and connectivity
- Previous interference models (physical and protocol models) for individual transmissions
- How to measure the "interference quotient" of a topology?
 - Edge interference number: What is the maximum number of edges that an edge interferes with?
 - Node interference number: What is the maximum number of nodes that an edge interferes with?

Edge Interference Number

- Defined by [MadHSVG02]
- When does an edge interfere with another edge?
 - The lune of the edge contains either endpoint of the other edge

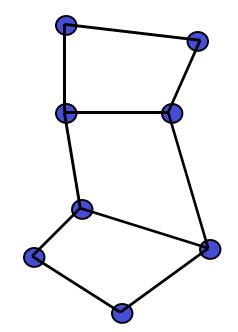


L(e) = lune of e $I(e) = \left| \{ (u, v) \in T : L(e) \cap \{u, v\} \neq \emptyset \} \right| - 1$ $I(T) = \max_{e \in T} I(e)$

ETH Zurich Summer Tutorial

Node Interference Number

- Defined by [BvRWZ04]
- When does an edge interfere with another node?
 - The lune of the edge contains the node

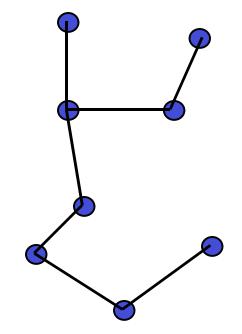


L(e) = lune of e $I(e) = |L(e) - \{u, v\}|$ $I(T) = \max_{e \in T} I(e)$

ETH Zurich Summer Tutorial

Minimizing NIM

- Goal: Determine connected topology that minimizes NIM
- I(e) is independent of the topology

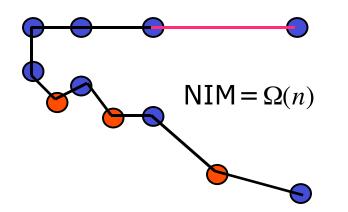

L(e) = lune of e $I(e) = \left| L(e) - \{u, v\} \right|$ $I(T) = \max_{e \in T} I(e)$

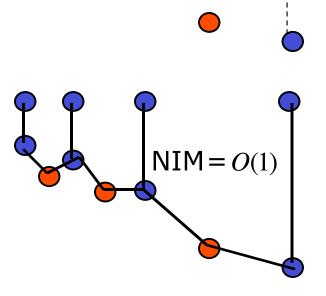
ETH Zurich Summer Tutorial

Minimizing NIM

- Set weight of *e* to be *I(e)*
- Find spanning subgraph that minimizes maximum weight
 - MST!
- Calculating *L(e)* possible using local communication
- Computing an MST difficult to do locally
- In general, minimizing NIM hard to do locally

ETH Zurich Summer Tutorial



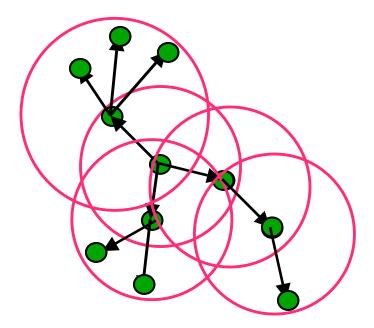

Sparseness and Interference

Prove that for a random distribution of nodes on the plane, the Yao graph has an NIM (or EIM) of O(log n) with high probability

Sparseness and Interference

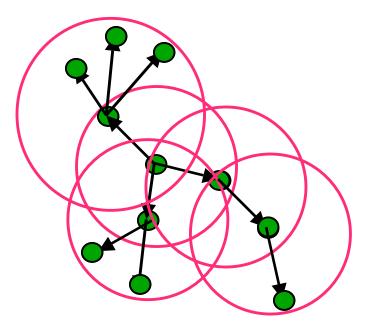
- Does sparseness necessarily imply low interference?
- No! [BvRWZ04]
- Performance of topologies based on proximity graphs (e.g., Yao graph) may be bad

Nearest neighbor forestOptimalETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks


>4

Low-Interference Spanners

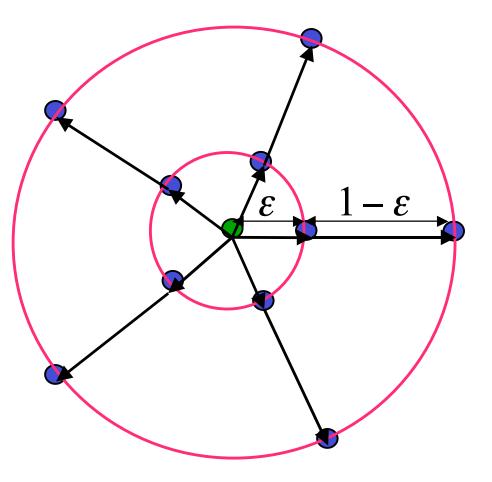
- Goal: Determine a topology that has distancestretch of at most t, and has minimum NIM among all such topologies [BvRWZ04]
- Let *T*, initially empty, be current topology
- Process edges in decreasing order of $I(\cdot)$
- For current edge e = (u, v):
 - Until stretch-t path between u and v in T, repeatedly add edge with least $I(\cdot)$ to T
- NIM-optimal
- Amenable to a distributed implementation:
 - *L(e)* computable locally
 - Existence of stretch-t path can be determined by a search within a local neighborhood


Minimum Energy Broadcast Routing

- Given a set of nodes in the plane
- Goal: Broadcast from a source to all nodes
- In a single step, a node may broadcast within a range by appropriately adjusting transmit power

Minimum Energy Broadcast Routing

- Energy consumed by a broadcast over range r is proportional to r^{α}
- Problem: Compute the sequence of broadcast steps that consume minimum total energy
- Centralized solutions
- NP-complete [ZHE02]

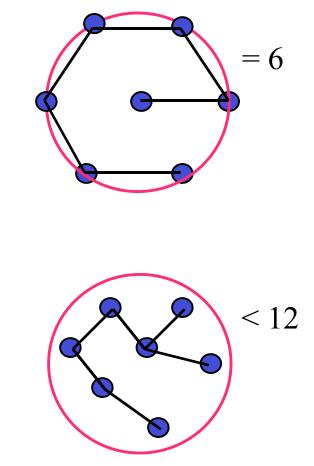

Three Greedy Heuristics

- In each tree, power for each node proportional to αth exponent of distance to farthest child in tree
- Shortest Paths Tree (SPT) [WNE00]
- Minimum Spanning Tree (MST) [WNE00]
- Broadcasting Incremental Power (BIP) [WNE00]
 - "Node" version of Dijkstra's SPT algorithm
 - Maintains an arborescence rooted at source
 - In each step, add a node that can be reached with minimum increment in total cost
- SPT is $\Omega(n)$ -approximate, MST and BIP have approximation ratio of at most 12 [WCLF01]

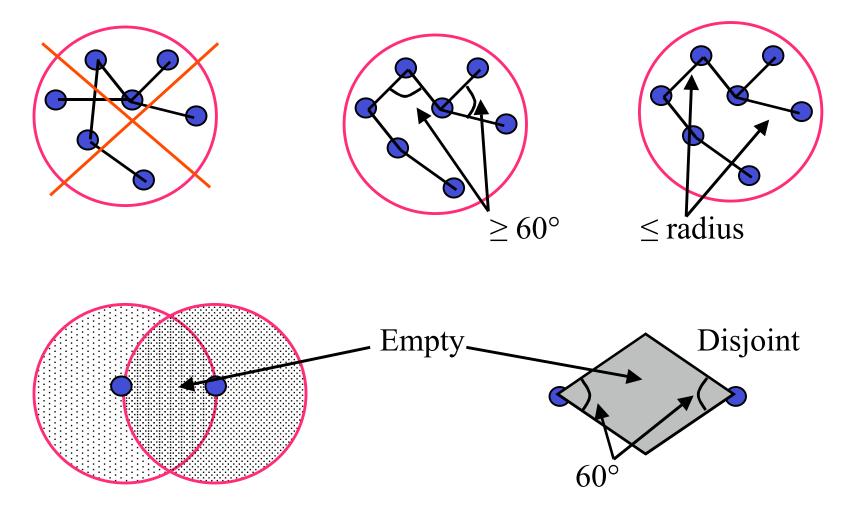
ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Lower Bound on SPT

- Assume (n-1)/2 nodes per ring
- Total energy of SPT: $(n-1)(\varepsilon^{\alpha} + (1-\varepsilon)^{\alpha})/2$
- Optimal solution:
 - Broadcast to all nodes
 - Cost 1
- Approximation ratio
 Ω(n)



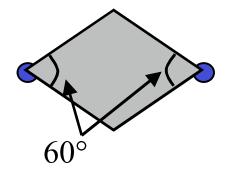
Performance of the MST Heuristic


- Weight of an edge (u,v) equals $d(u,v)^{\alpha}$
- MST for these weights same as Euclidean MST
 - Weight is an increasing function of distance
 - Follows from correctness of Prim's algorithm
- Upper bound on total MST weight
- Lower bound on optimal broadcast tree

Weight of Euclidean MST

- What is the best upper bound on the weight of an MST of points located in a unit disk?
 - In [6,12]!
- Dependence on α
 - α < 2 : in the limit ∞
 - $\alpha \ge 2$: bounded

Structural Properties of MST

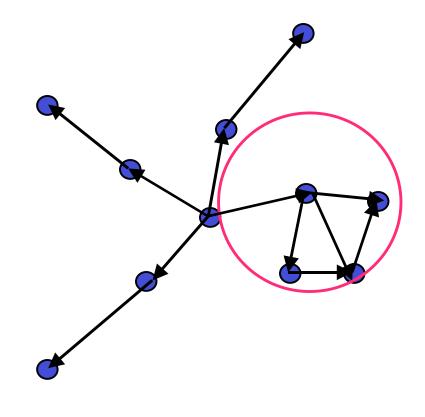


ETH Zurich Summer Tutorial

Upper Bound on Weight of MST

- Assume $\alpha = 2$
- For each edge *e*, its diamond accounts for an area of at least

$$\frac{|e|^2}{2\sqrt{3}}$$


- Total area accounted for is at most $\pi(2/\sqrt{3})^2 = 4\pi/3$
- MST cost equals $\sum |e|^2$
- Claim also applies for $\alpha > 2$

$$\sum_{e} \frac{|e|^2}{2\sqrt{3}} \le \frac{4\pi}{3}$$
$$\sum_{e} |e|^2 \le \frac{8\pi}{\sqrt{3}} \approx 14.51$$

е

Lower Bound on Optimal

- For a non-leaf node u, let r_u denote the distance to farthest child
- Total cost is $\sum_{u} r_{u}^{\alpha}$
- Replace each star by an MST of the points
- Cost of resultant graph at most $12\sum r_u^{\alpha}$

MST has cost at most 12 times optimal

ETH Zurich Summer Tutorial

Performance of the BIP Heuristic

- Let $v_1, v_2, ..., v_n$ be the nodes added in order by BIP
- Let H be the complete graph over the same nodes with the following weights:
 - Weight of edge (v_{i-1}, v_i) equals incremental power needed to connect V_i
 - Weight of remaining edges same as in original graph G
- MST of *H* same as BIP tree *B*

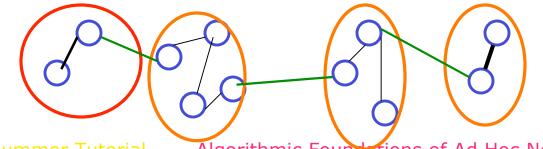
$$\operatorname{Cost}_{G}(B) = \operatorname{Cost}_{H}(B)$$
$$\leq \operatorname{Cost}_{H}(T)$$
$$\leq \operatorname{Cost}_{G}(T)$$

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Spanning Trees in Ad Hoc Networks

- Forms a backbone for routing
- Forms the basis for certain network partitioning techniques
- Subtrees of a spanning tree may be useful during the construction of local structures
- Provides a communication framework for global computation and broadcasts

Arbitrary Spanning Trees


- A designated node starts the "flooding" process
- When a node receives a message, it forwards it to its neighbors the first time
- Maintain sequence numbers to differentiate between different ST computations
- Nodes can operate asynchronously
- Number of messages is O(m);worst-case time, for synchronous control, is O(Diam(G))

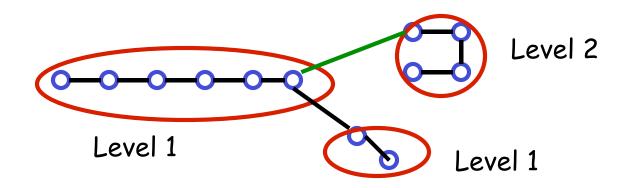
Minimum Spanning Trees

- The basic algorithm [GHS83]
 - $O(m + n \log n)$ messages and $O(n \log n)$ time
- Improved time and/or message complexity [CT85, Gaf85, Awe87]
- First sub-linear time algorithm [GKP98] $O(D + n^{0.61} \log^* n)$
- Improved to $O(D + \sqrt{n}\log^* n)$
- Taxonomy and experimental analysis [FM96]
- $\Omega(D + \sqrt{n}/\log n)$ lower bound [PR00]

The Basic Algorithm

- Distributed implementation of Borouvka's algorithm from 1926
- Each node is initially a fragment
- Fragment F_1 repeatedly finds a min-weight edge leaving it and attempts to merge with the neighboring fragment, say F_2
 - If fragment $\,F_{\!_2}$ also chooses the same edge, then merge
 - Otherwise, we have a sequence of fragments, which together form a fragment

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks


Subtleties in the Basic Algorithm

- All nodes operate asynchronously
- When two fragments are merged, we should "relabel" the smaller fragment.
- Maintain a level for each fragment and ensure that fragment with smaller level is relabeled:
 - When fragments of same level merge, level increases; otherwise, level equals larger of the two levels
- Inefficiency: A large fragment of small level may merge with many small fragments of larger levels

108

Asymptotic Improvements to the Basic Algorithm

- The fragment level is set to log of the fragment size [CT85, Gaf85]
 - Reduces running time to $O(n \log^* n)$
- Improved by ensuring that computation in level ℓ fragment is blocked for O(2^ℓ) time
 - Reduces running time to *O*(*n*)

<u>A Sublinear Time Distributed</u> <u>Algorithm</u>

- All previous algorithms perform computation over fragments of MST, which may have $\Omega(n)$ diameter
- Two phase approach [GKP98]
 - Controlled execution of the basic algorithm, stopping when fragment diameter reaches a certain size
 - Execute an edge elimination process that requires processing at the central node of a BFS tree
- Running time is $O(\text{Diam}(G) + \sqrt{n}\log^* n)$
- Requires a fair amount of synchronization

110

Open Problems in Topology Control

- Connectivity:
 - Energy-optimal bounded-hops topology
 - Is the energy-spanner variant of the Yao graph a spanner?
- Interference number:
 - What is the complexity of optimizing the edge interference number?
- Minimum energy broadcast routing:
 - Best upper bound on the cost of an MST in Euclidean space
 - Local algorithms
- Tradeoffs among congestion, dilation, and energy consumption [MadHSVG02]

Capacity of Ad Hoc Networks

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks112

The Attenuation Model

- Path loss:
 - Ratio of received power to transmitted power
 - Function of medium properties and propagation distance
- If P_R is received power, P_T is the transmitted power, and d is distance

$$P_{R} = O(\frac{P_{T}}{d^{\alpha}})$$

• where $\alpha\,$ ranges from 2 to 4


ETH Zurich Summer Tutorial

Interference Models

- In addition to path loss, bit-error rate of a received transmission depends on:
 - Noise power
 - Transmission powers and distances of other transmitters in the receiver's vicinity
- Two models [GK00]:
 - Physical model
 - Protocol model

The Physical Model

- Let $\{X_i\}$ denote set of nodes that are simultaneously transmitting
- Let P_i be the transmission power of node X_i
- Transmission of X_i is successfully received by Yif:

• β is the min signal-interference ratio (SIR)

The Protocol Model

• Transmission of $X_{\scriptscriptstyle i}$ is successfully received by $Y_{\scriptscriptstyle i}$ if for all k

$$\frac{P_i}{d(X_i, Y)^{\alpha}} \ge (1 + \Delta) \frac{P_k}{d(X_k, Y)^{\alpha}}$$

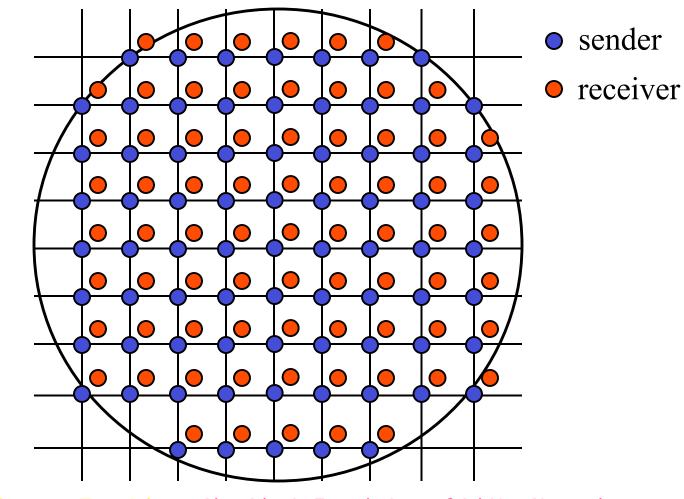
- where Δ is a protocol-specified guard-zone to prevent interference

Measures for Network Capacity

- Throughput capacity [GK00]:
 - Number of successful packets delivered per second
 - Dependent on the traffic pattern
 - What is the maximum achievable, over all protocols, for a random node distribution and a random destination for each source?
- Transport capacity [GK00]:
 - Network transports one bit-meter when one bit has been transported a distance of one meter
 - Number of bit-meters transported per second
 - What is the maximum achievable, over all node locations, and all traffic patterns, and all protocols?

Transport Capacity: Assumptions

- n nodes are arbitrarily located in a unit disk
- We adopt the protocol model
 - Each node transmits with same power
 - Condition for successful transmission from $X_{\scriptscriptstyle i}$ to Y : for any k


$$d(X_i, Y) \ge (1 + \delta)d(X_k, Y)$$

• Transmissions are in synchronized slots

Transport Capacity: Lower Bound

- What configuration and traffic pattern will yield the highest transport capacity?
- Distribute *n*/2 senders uniformly in the unit disk
- Place n/2 receivers just close enough to senders so as to satisfy threshold

Transport Capacity: Lower Bound

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks120

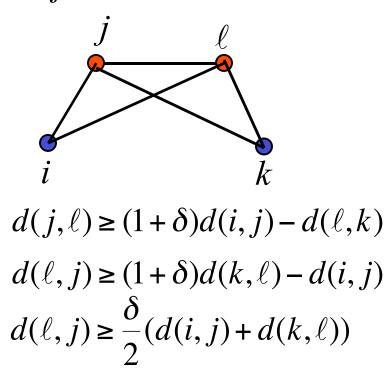
Transport Capacity: Lower Bound

- Sender-receiver distance is $\Omega(1/\sqrt{n})$
- Assuming channel bandwidth W, transport capacity is

$$\Omega(W\sqrt{n})$$

• Thus, transport capacity per node is

$$\Omega(\frac{W}{\sqrt{n}})$$


Transport Capacity: Upper Bound

- For any slot, we will upper bound the total bit-meters transported
- For a receiver j, let r_j denote the distance from its sender
- If channel capacity is W, then bitmeters transported per second is

$$\leq W(\sum_{\text{receiver } j} r_j)$$

Transport Capacity: Upper Bound

• Consider two successful transmissions in a slot: $i \rightarrow j$ and $k \rightarrow \ell$

ETH Zurich Summer Tutorial

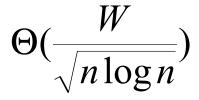
Algorithmic Foundations of Ad Hoc Networks 123

Transport Capacity: Upper Bound

• Balls of radii $\Theta(r_j)$ around j, for all j, are disjoint

$$\sum_{j} r_{j}^{2} = O(1)$$
$$\left(\sum_{j} r_{j}\right)^{2} = O(h) = O(n)$$
$$\sum_{j} r_{j} = O(\sqrt{n})$$

• So bit-meters transported per slot is $O(W\sqrt{n})$


ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

124

<u>Throughput Capacity of Random</u> <u>Networks</u>

• The throughput capacity of an *n*-node random network is

- There exist constants c and c' such that $\lim_{n \to \infty} \Pr[c \frac{W}{\sqrt{n \log n}} \text{ is feasible}] = 1$ $\lim_{n \to \infty} \Pr[c' \frac{W}{\sqrt{n \log n}} \text{ is feasible}] = 0$
- ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks 125

Implications of Analysis

- Transport capacity:
 - Per node transport capacity decreases as $\frac{1}{\sqrt{n}}$
 - Maximized when nodes transmit to neighbors
- Throughput capacity:
 - For random networks, decreases as $\sqrt{n \log n}$
 - Near-optimal when nodes transmit to neighbors
- Designers should focus on small networks and/or local communication

ETH Zurich Summer Tutorial

Remarks on Capacity Analysis

- Similar claims hold in the physical model as well
- Results are unchanged even if the channel can be broken into sub-channels
- More general analysis:
 - Power law traffic patterns [LBD+03]
 - Hybrid networks [KT03, LLT03, Tou04]
 - Asymmetric scenarios and cluster networks [Tou04]

Asymmetric Traffic Scenarios

- Number of destinations smaller than number of sources
 - n^d destinations for n sources; 0 < d <= 1
 - Each source picks a random destination
- If 0 < d < 1/2, capacity scales as n^d
- If 1/2 < d <= 1, capacity scales as $n^{1/2}$
- [Tou04]

Power Law Traffic Pattern

 Probability that a node communicates with a node x units away is

$$p(x) = \frac{x^{\alpha}}{\int_{\varepsilon}^{1} t^{\alpha} dt}$$

- For large negative α , destinations clustered around sender
- For large positive $\alpha,$ destinations clustered at periphery
- As α goes from < -2 to > -1, capacity scaling goes from O(1) to $O(1/\sqrt{n})$ [LBD+03]

ETH Zurich Summer Tutorial

Relay Nodes

- Offer improved capacity:
 - Better spatial reuse
 - Relay nodes do not count in n
 - Expensive: addition of kn nodes as pure relays yields less than $\sqrt{k+1}$ -fold increase
- Hybrid networks: n wireless nodes and n^d access points connected by a wired network
 - -0 < d < 1/2: No asymptotic benefit
 - 1/2 < d <= 1: Capacity scaling by a factor of n^d

130

Mobility and Capacity

- A set of *n* nodes communicating in random source-destination pairs _____
- Expected number of hops is \sqrt{n}
- Necessary \sqrt{n} scaling down of capacity
- Suppose no tight delay constraint
- Strategy: packet exchanged when source and destination are near each other
 - Fraction of time two nodes are near one another is 1/n
- Refined strategy: Pick random relay node (a la Valiant) as intermediate destination [GT01]
- Constant scaling assuming that stationary distribution of node location is uniform

Open Problems in Capacity Analysis

- Detailed study of impact of mobility
 - [GT01] study is "optimistic"
- Capacity of networks with beam-forming antennas [Ram98]
 - Omnidirectional antennas incur a tradeoff between range and spatial reuse
 - A beam-forming antenna can transmit/receive more energy in preferred transmission and reception directions
- Capacity of MIMO systems

Algorithms for Sensor Networks

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks133

Why are Sensor Networks Special?

- Very tiny nodes
 - 4 MHz, 32 KB memory
- More severe power constraints than PDAs, mobile phones, laptops
- Mobility may be limited, but failure rate higher
- Usually under one administrative control
- A sensor network gathers and processes specific kinds of data relevant to application
- Potentially large-scale networks comprising of thousands of tiny sensor nodes

Focus Problems

- Medium-access and power control:
 - Power saving techniques integral to most sensor networks
 - Possibility of greater coordination among sensor nodes to manage channel access
- Synchronization protocols:
 - Many MAC and application level protocols rely on synchronization
- Query and stream processing:
 - Sensor network as a database
 - Queries issued at certain gateway nodes
 - Streams of data being generated at the nodes by their sensors
 - Need effective in-network processing and adequate networking support

MAC Protocols for Sensor Networks

- Contention-Based:
 - Random access protocols
 - IEEE 802.11 with power saving methods
- Scheduling-Based:
 - Assign transmission schedules (sleep/awake patterns) to each node
 - Variants of TDMA
- Hybrid schemes

Proposed MAC Protocols

- PAMAS [SR98]:
 - Contention-based access
 - Powers off nodes that are not receiving or forwarding packets
 - Uses a separate signaling channel
- S-MAC [YHE02]:
 - Contention-based access
- TRAMA [ROGLA03]:
 - Schedule- and contention-based access
- Wave scheduling [TYD+04]:
 - Schedule- and contention-based access
- Collision-minimizing CSMA [TJB]:
 - For bursty event-based traffic patterns

S-MAC

- Identifies sources of energy waste [YHE03]:
 - Collision
 - Overhearing
 - Overhead due to control traffic
 - Idle listening
- Trade off latency and fairness for reducing energy consumption
- Components of S-MAC:
 - A periodic sleep and listen pattern for each node
 - Collision and overhearing avoidance

S-MAC: Sleep and Listen Schedules

- Each node has a sleep and listen schedule and maintains a table of schedules of neighboring nodes
- Before selecting a schedule, node listens for a period of time:
 - If it hears a schedule broadcast, then it adopts that schedule and rebroadcasts it after a random delay
 - Otherwise, it selects a schedule and broadcasts it
- If a node receives a different schedule after selecting its schedule, it adopts both schedules
- Need significant degree of synchronization

S-MAC: Collision and Overhearing Avoidance

- Collision avoidance:
 - Within a listen phase, senders contending to send messages to same receiver use 802.11
- Overhearing avoidance:
 - When a node hears an RTS or CTS packet, then it goes to sleep
 - All neighbors of a sender and the receiver sleep until the current transmission is over

TRAMA

- Traffic-adaptive medium adaptive protocol [ROGLA03]
- Nodes synchronize with one another
 - Need tight synchronization
- For each time slot, each node computes an MD5 hash, that computes its priority

 $p(u,t) = MD5(u \oplus t)$

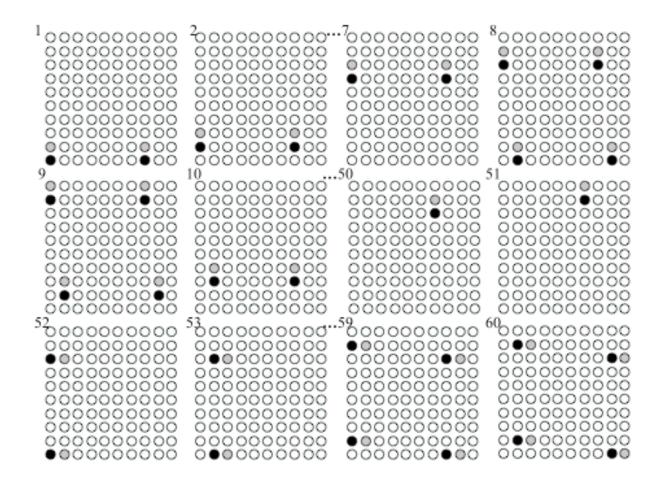
- Each node is aware of its 2-hop neighborhood
- With this information, each node can compute the slots it has the highest priority within its 2-hop neighborhood

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

141

TRAMA: Medium Access

- Alternates between random and scheduled access
- Random access:
 - Nodes transmit by selecting a slot randomly
 - Nodes can only join during random access periods
- Scheduled access:
 - Each node computes a schedule of slots (and intended receivers) in which will transmit
 - This schedule is broadcast to neighbors
 - A free slot can be taken over by a node that needs extra slots to transmit, based on priority in that slot

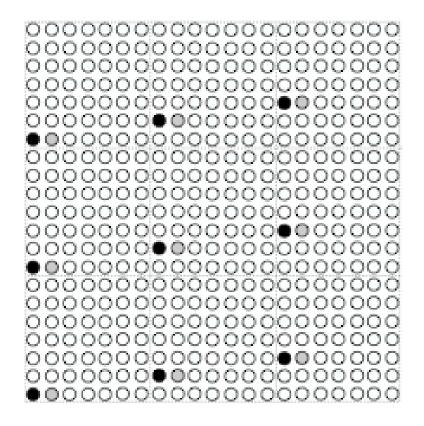

142

 Each node can determine which slots it needs to stay awake for reception

Wave Scheduling

- Motivation:
 - Trade off latency for reduced energy consumption
 - Focus on static scenarios
- In S-MAC and TRAMA, nodes exchange local schedules
- Instead, adopt a global schedule in which data flows along horizontal and vertical "waves"
- Idea:
 - Organize the nodes according to a grid
 - Within each cell, run a leader election algorithm to periodically elect a representative (e.g., GAF [XHE01])
 - Schedule leaders' wakeup times according to positions in the grid

Wave Scheduling: A Simple Wave



ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

144

Wave Scheduling: A Pipelined Wave

Wave Scheduling: Message Delivery

- When an edge is scheduled:
 - Both sender and receiver are awake
 - Sender sends messages for the duration of the awake phase
 - If sender has no messages to send, it sends an NTS message (Nothing-To-Send), and both nodes revert to sleep mode
- Given the global schedule, route selection is easy
 - Depends on optimization measure of interest
 - Minimizing total energy consumption requires use of shortest paths
 - Minimizing latency requires a (slightly) more complex shortest-paths calculation

Collision-Minimizing CSMA

- Focus on bursty event-based traffic [TJB]
 - Room monitoring: A fire triggers a number of redundant temperature and smoke sensors
 - Power-saving: When a node wakes up and polls, all coordinators within range may respond
- Goal: To minimize latency
- Scenario:
 - N nodes contend for a channel
 - There are K transmission slots
 - Sufficient for any one of them to transmit successfully
 - No collision detection: collisions may be expensive since data packet transmission times may be large
- Subgoal: To maximize the probability of a collision-free transmission

Collision-Free Transmission

- Probability of transmission varies over slots
- Probability of successful collision-free transmission in K slots

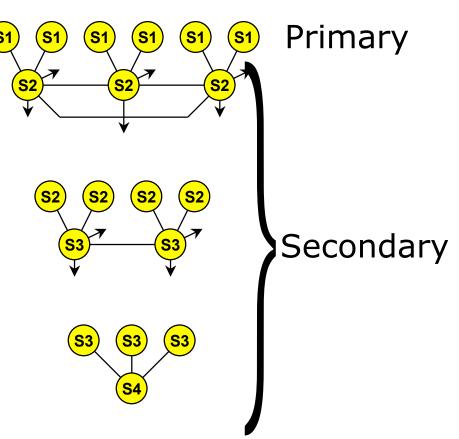
$$\begin{split} &Np_1(1-p_1)^{N-1} + Np_2(1-p_1-p_2)^{N-1} \\ &+ ... + Np_{K-1}(1-p_1-p_2-...-p_{K-1})^{N-1} \\ &= N\sum_{s=1}^{K-1} p_s(1-\sum_{r=1}^s p_r)^{N-1} \end{split}$$

- Can calculate probability vector p* that optimizes above probability
- MAC protocol: CSMA/p*

Synchronization in Sensor Networks

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks149

Synchronization in Sensor Networks


- Sensor data fusion
- Localization
- Coordinated actuation
 - Multiple sensors in a local area make a measurement
- At the MAC level:
 - Power-saving duty cycling
 - TDMA scheduling

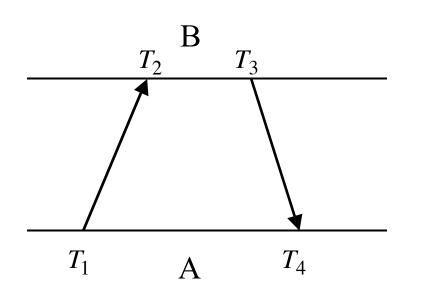
Synchronization in Distributed Systems

- Well-studied problem in distributed computing
- Network Time Protocol (NTP) for Internet clock synchronization [Mil94]
- Differences: For sensor networks
 - Time synchronization requirements more stringent (µs instead of ms)
 - Power limitations constrain resources
 - May not have easy access to synchronized global clocks

Network Time Protocol (NTP)

- Primary servers (S1) synchronize to national time standards
 - Satellite, radio, modem
- Secondary servers (S2, ...) synchronize to primary servers and other secondary servers
 - Hierarchical subnet

ETH Zurich Summer Tutorial

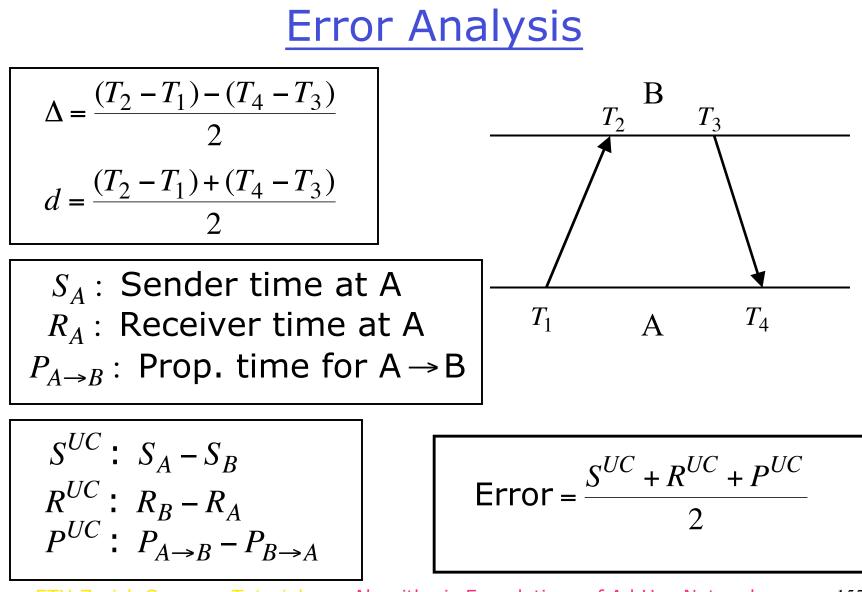

Algorithmationdatiwawadaton

Measures of Interest

- Stability: How well a clock can maintain its frequency
- Accuracy: How well it compares with some standard
- Precision: How precisely can time be indicated
- Relative measures:
 - Offset: Difference between times of two clocks
 - Skew: Difference between frequencies of two clocks

Synchronization Between Two Nodes

- A sends a message to B; B sends an ack back
- A calculates clock drift and synchronizes accordingly



- $\Delta : \text{ Measured offset}$
- *d* : Propagation delay

$$\Delta = \frac{(T_2 - T_1) - (T_4 - T_3)}{2}$$
$$d = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$$

ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

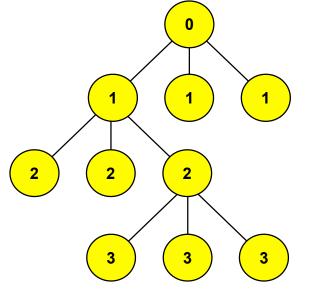
ETH Zurich Summer Tutorial

Algorithmic Foundations of Ad Hoc Networks

Sources of Synchronization Error

- Non-determinism of processing times
- Send time:
 - Time spent by the sender to construct packet; application to MAC
- Access time:
 - Time taken for the transmitter to acquire the channel and exchange any preamble (RTS/CTS): MAC
- Transmission time: MAC to physical
- Propagation time: physical
- Reception time: Physical to MAC
- Receive time:
 - Time spent by the receiver to reconstruct the packet; MAC to application

Sources of Synchronization Error

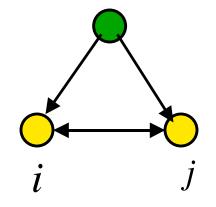

- Sender time = send time + access time + transmission time
 - Send time variable due to software delays at the application layer
 - Access time variable due to unpredictable contention
- Receiver time = receive time + reception time
 - Reception time variable due to software delays at the application layer
- Propagation time dependent on senderreceiver distance
 - Absolute value is negligible when compared to other sources of packet delay
 - If node locations are known, these times can be explicitly accounted for

Two Approaches to Synchronization

- Sender-receiver:
 - Classical method, initiated by the sender
 - Sender synchronizes to the receiver
 - Used in NTP
 - Timing-sync Protocol for Sensor Networks (TPSN) [GKS03]
- Receiver-based:
 - Takes advantage of broadcast facility
 - Two receivers synchronize with each other based on the reception times of a reference broadcast
 - Reference Broadcast Synchronization (RBS) [EGE02]

<u>TPSN</u>

- Time stamping done at the MAC layer
 - Eliminates send, access, and receive time errors
- Creates a hierarchical topology
- Level discovery:
 - Each node assigned a level through a broadcast
- Synchronization:
 - Level *i* node synchronizes to a neighboring level *i*-1 node using the sender-receiver procedure



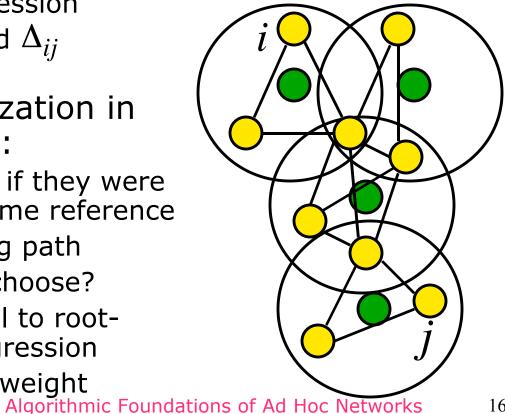
Reference Broadcast Synchronization

- Motivation:
 - Receiver time errors are significantly smaller than sender time errors
 - Propagation time errors are negligible
 - The wireless sensor world allows for broadcast capabilities
- Main idea:
 - A reference source broadcasts to multiple receivers (the nodes that want to synchronize with one another)
 - Eliminates sender time and access time errors

Reference Broadcast Synchronization

- Simple form of RBS:
 - A source broadcasts a reference packet to all receivers
 - Each receiver records the time when the packet is received
 - The receivers exchange their observations
- General form:
 - Several executions of the simple form
- For each receiver j, receiver i derives an estimate of Δ_{ij}

 T_i : Receive time at i $\Delta_{ii} = T_i - T_i$


$$\Delta_{ij} = \frac{1}{m} \sum_{k=1}^{m} (T_{kj} - T_{ki})$$

Algorithmic Foundations of Ad Hoc Networks

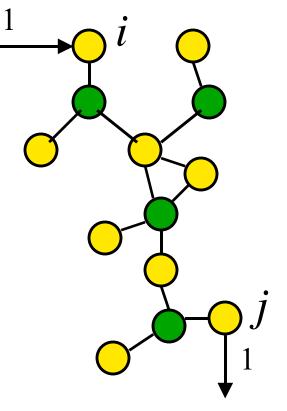
Reference Broadcast Synchronization

- Clock skew:
 - Averaging assumes s_{ii} equals 1
 - Find the best fit line using least squares linear regression
 - Determines s_{ij} and Δ_{ij}
- Pairwise synchronization in multihop networks:
 - Connect two nodes if they were synchronized by same reference
 - Can add drifts along path
 - But which path to choose?
 - Assign weight equal to rootmean square in regression
 - Select path of min-weight ETH Zurich Summer Tutorial Algorithm

 $t_j = t_i s_{ij} + \Delta_{ij}$

Pairwise and Global Synchronization

- Global consistency:
 - Converting times from *i* to *j* and then *j* to *k* should be same as converting times from *i* to *k*


$$s_{ik} = s_{ij} s_{jk}$$
$$\Delta_{ik} = \Delta_{ij} s_{jk} + \Delta_{jk}$$

- Optimal precision:
 - Find an unbiased estimate for each pair (s_{ij}, Δ_{ij}) with minimum variance
- [KEES03]

Consistency and Optimal Precision

- Min-variance pairwise synchronizations are globally consistent!
- Maximally likely set of offset assignments yield minimum variance synchronizations!
- Flow in resistor networks
 - Bipartite graph connecting the receivers with the sources
 - Resistance of each edge equal to the variance of the error corresponding to that sourcereceiver pair
 - Min-variance is effective resistance
 - Estimator can be obtained from the current flows Algorithmic Foundations of Ad Hoc Networks

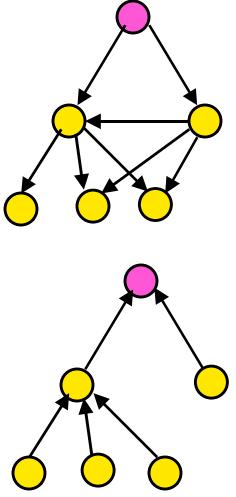
H Zurich Summer Tutorial

Algorithmic Support for Query Processing in Sensor Networks

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks165

The Sensor Network as a Database

- From the point of view of the user, the sensor network generates data of interest to the user
- Need to provide the abstraction of a database
 - High-level interfaces for users to collect and process continuous data streams
- TinyDB [MFHH03], Cougar [YG03]
 - Users specify queries in a declarative language (SQLlike) through a small number of gateways
 - Query flooded to the network nodes
 - Responses from nodes sent to the gateway through a routing tree, to allow in-network processing
 - Especially targeted for aggregation queries
- Directed diffusion [IGE00]
 - Data-centric routing: Queries routed to specific nodes based on nature of data requested

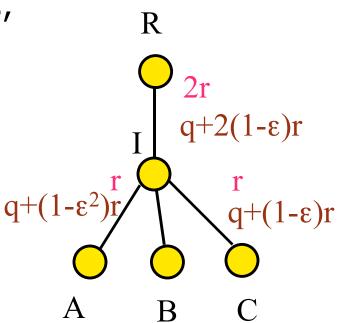

ETH Zurich Summer Tutorial Algorithmic Foundations of Ad Hoc Networks

Classification of Queries

- Long-running vs ad hoc
 - Long-running: Issued once and require periodic updates
 - Ad hoc: Require one-time response
- Temporal:
 - Historical
 - Present
 - Future: e.g., trigger queries
- Nature of query operators
 - Aggregation vs. general
- Spatial vs. non-spatial

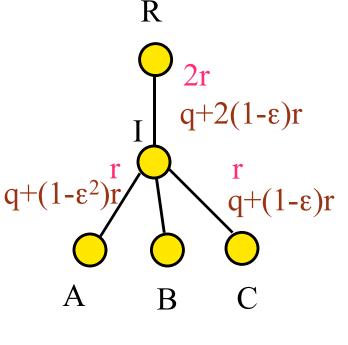
Processing of Aggregate Queries

- Aggregation query $q:S \rightarrow \Re$
 - Sum, minimum, median, etc.
- Queries flooded within the network
- An aggregation tree is obtained
- Query results propagated and aggregated up the tree
- Aggregation tree selection
- Multi-query optimization



Multi-Query Optimization

- Given:
 - An aggregation tree
 - Query workload
 - Update probabilities of sensors
- Determine an aggregation procedure that minimizes communication complexity:
- Push vs. pull:
 - When should we proactively send up sensor data?
- Problem space [DGR+03]:
 - Deterministic queries, deterministic updates
 - Deterministic queries, probabilistic updates
 - Probabilistic queries, deterministic updates
 - Probabilistic queries, probabilistic updates


Multi-Query Optimization

- Two queries: A+B and A+C, each with probability $1-\epsilon$
- ε=0: Proactively forward each sensor reading up the tree
- ε nearly 1: Let parent pull information
- Intermediate case depends on the ratio of result/query message sizes

Multi-Query Optimization

- $q > 2\epsilon r$:
 - Push on every edge
- εr < q <2εr:
 - Pull on (I,R)
 - Push on other edges
- $\varepsilon^2 r < q < \varepsilon r$:
 - Push on (A,I)
 - Pull on other edges
- q < ε²r:
 - Pull on every edge
- Optimizations:
 - Send results of a basis of the projected query set along an edge

Aggregation Tree Selection

- Given:
 - An aggregation procedure for a fixed aggregation tree
 - Query workload: e.g., probability for each query
 - Probability of each sensor update
- Determine an aggregation tree that minimizes the total energy consumption
- Clearly NP-hard
 - Minimum Steiner tree problem is a special case
- Approximation algorithms for interesting special cases

Approximations for Special Cases

- Individual queries:
 - Any approximation to minimum Steiner tree suffices
 - MST yields 2-approximation, improved approximations known
- Universal trees [JLN+04]:
 - There exists a single tree whose subtree induced by any query is within polylog(n) factor of the optimum
 - Unknown query, deterministic update
- A single aggregation tree for all concave aggregation functions [GE03]
 - All sensor nodes participate
 - The aggregation operator is not known a priori, but satisfies a natural concaveness property
 - There exists a single tree that achieves an O(log n)approximation

Simultaneous Optimization for Concave Aggregation Functions

 $f: \mathbf{Z} \mapsto \mathfrak{R}$

 $f \, \mathrm{and} \, f' \,$ are nondecreasing

- A function that gives the size of the aggregated data given the number of items being aggregated
- Binary aggregation method:
 - Find a min-cost matching
 - For each pair, select one node at random and make it the parent of the other
 - Repeat the procedure with the parents until have exactly one node

Simultaneous Optimization for Concave Aggregation Functions

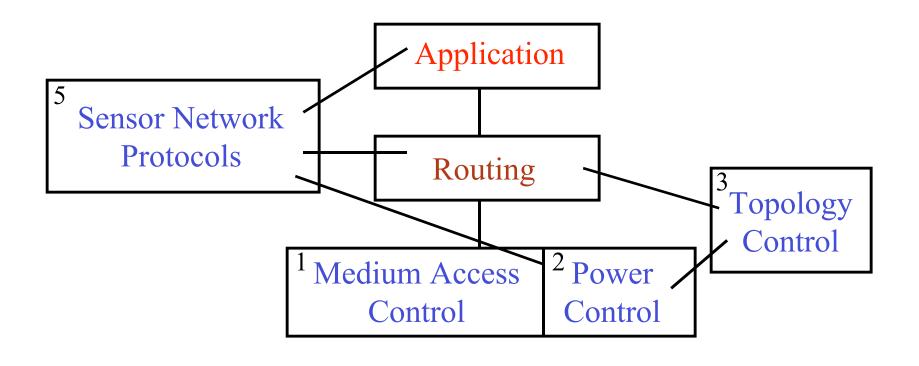
 $f: \mathbf{Z} \mapsto \mathfrak{R}$

 $f \, \mathrm{and} \, f' \, \mathrm{are} \, \mathrm{nondecreasing}$

- Independent of the function *f*
- Binary aggregation method yields an O(log n) approximation for any function
 - n is the number of nodes
- Can be derandomized to yield the same asymptotic result

Data-Centric Storage and Routing

- Need to ensure the query originator rendezvous with nodes containing matching data
 - Flooding queries is expensive
- Data-centric storage [RKY+02]:
 - Designated collection of nodes storing data items matching a certain predicate
 - These nodes can also perform in-network processing to compute intermediate values
- Data-centric routing [RKY+02]:
 - Gateway determines node(s) storing data matching a particular predicate
 - Routes query to these nodes using unicast or multicast


Open Problems in Sensor Network Algorithms

- Topology control:
 - Aggregation tree selection
 - Scheduling node and edge activations for specific communication patterns
- Multi-query optimization:
 - Need to address general (non-aggregate) queries
 - Related to work in distributed databases; energy consumption a different performance measure

ETH Zurich Summer TutorialAlgorithmic Foundations of Ad Hoc Networks178

Outline

Fundamental limits of ad hoc networks