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ABSTRACT
Consider a network in which a collection of source nodes
maintain and periodically update data objects for a collec-
tion of sink nodes, each of which periodically accesses the
data originating from some specified subset of the source
nodes. We consider the task of efficiently relaying the dy-
namically changing data objects to the sinks from their
sources of interest. Our focus is on the following “push-pull”
approach for this data dissemination problem. Whenever a
data object is updated, its source relays the update to a
designated subset of nodes, its push set; similarly, whenever
a sink requires an update, it propagates its query to a des-
ignated subset of nodes, its pull set. The push and pull sets
need to be chosen such that every pull set of a sink inter-
sects the push sets of all its sources of interest. We study
the problem of choosing push sets and pull sets to minimize
total global communication while satisfying all communica-
tion requirements.

We formulate and study several variants of the above
data dissemination problem, that take into account differ-
ent paradigms for routing between sources (resp., sinks) and
their push sets (resp., pull sets) – multicast, unicast, and
controlled broadcast – as well as the aggregability of the
data objects. Under the multicast model, we present an op-
timal polynomial time algorithm for tree networks, which
yields a randomized O(log n)-approximation algorithm for
n-node general networks, for which the problem is hard to
approximate within a constant factor. Under the unicast
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model, we present a randomized O(log n)-approximation al-
gorithm for non-metric costs and a matching hardness re-
sult. For metric costs, we present an O(1)-approximation
and matching hardness result for the case where the inter-
ests of any two sinks are either disjoint or identical. Finally,
under the controlled broadcast model, we present optimal
polynomial-time algorithms.

While our optimization problems have been formulated in
the context of data communication in networks, our prob-
lems also have applications to network design and multicom-
modity facility location and are of independent interest.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications, Net-
work Topology ; G.2.2 [Discrete Mathematics]: Graph
Theory— Graph Algorithms, Network Problems, Trees.

General Terms
Algorithms, Performance, Theory.

Keywords
Network Design, Push & Pull, Data Dissemination, Multi-
cast Tree, Approximation Algorithms, NP-Completeness

1. INTRODUCTION
Consider a network in which a collection of source nodes

maintain and update data objects that are periodically ac-
cessed by a set of sink nodes, each of which is interested
in the data originating from some specified subset of the
source nodes. Moreover, suppose that they always require
the latest data from all their sources of interest at the same
time in order to construct a current and complete view of
all the interesting data within the network. Such scenarios
arise in diverse network applications including event notifi-
cation in sensor networks and publish-subscribe systems [17,
20]. For instance, in an environmental monitoring system,
several geographically distributed sensors (sources) contin-
ually measure local conditions and a distributed collection
of network monitors (sinks) periodically require a picture
of the environment sensed by the network. Similarly, in a



publish-subscribe system, each subscriber (sink) may spec-
ify a rate for receiving updates from an arbitrary subset of
the publishers (sources), each of which may be generating
new information at an arbitrary rate.

A natural problem in the above scenario is to design an
efficient mechanism for relaying the dynamically changing
data from the sources to the sinks while satisfying all com-
munication requirements. One approach is for the source
nodes to always update all their interested sinks as soon as
a data object is updated. This is clearly very inefficient if
the source updates are much more frequent than the sink
queries. Similarly, an approach based purely on the sinks
querying the sources whenever they need an update is waste-
ful when the sink queries are highly frequent. In fact, even
a middle-ground approach in which sources with low update
frequencies update their interested sinks while the remain-
ing sources receive queries can be seen to be inefficient since
it does not exploit any network locality characteristics of the
accesses.

In this paper, we study a push-pull approach toward dis-
seminating dynamic data in networks. Whenever a data
object is updated, its source informs a designated subset of
nodes, referred to as its push set. Similarly, when an up-
dated view of the network is required at a sink, it queries a
designated subset of nodes, its pull set. The push and pull
sets need to be chosen such that every pull set of a sink must
intersect the push sets of all its sources of interest. Three
kinds of communication costs are incurred: the data prop-
agation cost from the sources to their push sets, the query
propagation cost from the sinks to their pull sets, and the
response cost carrying the updates from the nodes at the
intersection of the push and pull sets to the sinks. We con-
sider the question of how to choose push sets and pull sets
to minimize total global communication while satisfying all
communication requirements.

1.1 Our contributions
We formulate optimization problems that consider three

different paradigms for routing data between sources and
their push sets, and sinks and their pull sets: multicast,
unicast, and controlled broadcast. In the multicast model,
the network is an undirected weighted graph and a node u
may communicate with a set S of nodes through a subtree
T of the graph that connects u and S while an incurring a
cost proportional to the sum of the weights of the edges of
T . In the unicast model, the network is a complete weighted
graph over all nodes; all communication is through point-to-
point unicast, with each edge weight indicating the cost of
communicating between the two endpoints. Motivated by
applications in ad hoc networks, we also consider a third
model, the controlled broadcast, in which a source or sink
communicates with its push or pull set by broadcasting to
nodes within a certain distance range in the network.

We also distinguish between the case where data may be
aggregated within the network without changing its size
(such as computing a sum or a maximum), and the case
where data simply has to be collected at the sinks without
being processed within the network. This dimension affects
the contribution of the response costs to the total communi-
cation cost. Section 2 presents the formal model definitions
and all of the problem formulations.

• Under the multicast model, we first present an opti-
mal polynomial-time algorithm for tree networks. An

interesting characteristic of the algorithm for trees is
that a globally optimal solution is obtained by com-
puting suitable “locally optimal solutions” for each
edge of the tree. Using embedding of general met-
rics into tree metrics, we also obtain polynomial-time
randomized O(log n)-approximate solutions for general
graphs. Our optimization problem under the multi-
cast model is a generalization of the minimum Steiner
tree problem, and hence, MAXSNP-hard for general
graphs. These results are described in Section 3.

• Under the unicast model, we first present a polynomial-
time randomized O(log n)-approximation for arbitrary
cost functions and an asymptotically-matching hard-
ness of approximation result. We then present an
O(1)-approximation for metric cost functions in the
special case where the interest sets of any two sinks are
either disjoint or identical, and a matching hardness
result, via a reduction from the metric uncapacitated
facility location problem. Both of the approximation
algorithms are based on rounding linear programming
relaxations of the problem. These results are described
in Section 4.

• We show that the data dissemination problem under
the controlled broadcast model can be solved optimally
in polynomial time by proving that all the vertices of
the polytope of a particular linear programming for-
mulation are integral. By studying the dual of this lin-
ear program, we develop an optimal polynomial-time
combinatorial algorithm using maximum flows. These
results are described in Section 5.

1.2 Related Work
To the best of our knowledge, the optimization problems

solved in this paper have not been studied earlier. The most
closely related work is the recent study on event notifica-
tion in wireless sensor networks by Liu et al. [17] and the
FeedTree project [20]. Liu et al. considered regular two-
dimensional grids and planar Euclidean networks, in which
sensors generate events periodically at a frequency that is
identical for all sensors, while information sinks issue queries
at a frequency identical for all sinks. The focus of their
study is a particular class of communication mechanisms,
whereby the source sensors propagate their updates and the
sinks propagate their queries along specified geometric pat-
terns on the Euclidean plane. From a systems perspective,
the FeedTree project considers the problem of efficient distri-
bution of RSS feeds using peer-to-peer multicast [20]. Com-
pared to [17], our problem formulations are much more gen-
eral with regard to the underlying networks, the dynamics of
the data, as well as the permitted communication structures.
Our work begins to build a valuable theoretical foundation
for projects like Feedtree [20].

While our optimization problems have been formulated in
the context of data communication in networks, our prob-
lems also have applications to network design and multicom-
modity facility location. In particular, the minimum-cost
2-spanner problem studied by Dodis and Khanna [6] and
Kortsarz and Peleg [14, 15], is a special case of our data dis-
semination problem under the unicast model for non-metric
cost functions. Our algorithm of Section 4 is an alternative
O(log n)-approximation algorithm for the problem, match-
ing the bound of [6]. The optimization problem in the multi-



cast model is a generalization of the classic minimum Steiner
tree problem [8] and is related to the generalized Steiner net-
work [24] and group Steiner problems [19]. For instance, if
the push sets of the sources are fixed, then the problem re-
duces to solving an instance of the group Steiner problem
for each sink.

Under the unicast model, the data dissemination problem
is a generalization of the well-studied uncapacitated facility
location problem [21, 12, 25, 22], many variants of which
have also been studied [9, 23, 3, 16]. In particular, when we
have a single source and many sinks, our problem reduces
to uncapacitated facility location. Thus, our data dissem-
ination problem in the unicast model can be viewed as a
form of multi-commodity facility location (with sources as
commodities and sinks as clients), a class of problems re-
cently studied by Ravi and Sinha [18]. From a technical
standpoint, however, there are crucial differences between
the two studies: the model of [18] includes an initial instal-
lation cost at each node for placing the first facility, a cost for
which our model does not have any provision. On the other
hand, the service cost for a client in [18], is additive over
different commodities, while our aggregation model allows
for the sharing of client service costs across commodities.

2. PROBLEM FORMULATIONS
We consider a network in which a subset of sink nodes

periodically access data objects that are stored and period-
ically updated at another subset of source nodes. We let
P and Q denote the sets of sources and sinks, respectively.
We will assume that each source node has only one data ob-
ject, because multiple objects can be modelled by multiple
colocated source nodes. Each source i updates its data ob-
ject at an average frequency of pi while each sink j accesses
data by issuing queries at an average frequency of qj . Each
sink j has an interest set Ij that is the set of all sources
whose data objects j would like to obtain in each query. For
convenience, we assume throughout this paper that all data
objects are of a uniform size. Many of our results extend to
the case of non-uniform data lengths. We defer a discussion
on this issue to Section 6.

We adopt the following conceptual framework for the dis-
semination of information between the sources and sinks.
Whenever a source i updates its data object, i propagates
this update to a push set Pi of nodes in the network. Sim-
ilarly, any query issued by a sink j is propagated to a pull
set Qj of nodes in the network. To ensure that each query
issued by j obtains the updates generated by all sources in
Ij , we require that i ∈ Ij ⇒ Pi

T

Qj 6= ∅. A node in the
nonempty set Pi

T

Qj then propagates the desired informa-
tion generated by i to j.

The total communication cost for a given network, source
and sink sets and their frequencies, depends on both the
choice of the push and pull sets, as well as the underlying
routing mechanism. In all of our problems, our goal is to
minimize the following objective function which reflects the
total communication cost:
X

i∈P

pi ·SetC(i, Pi)+
X

j∈Q

qj ·SetC(j, Qj)+
X

j∈Q

qj ·RespC(j), (1)

where SetC(i, S) is the communication cost between node
i and the set S of nodes, and RespC(j) is the sum over
all i in Ij of the cost of propagating query responses from
a node in the intersection of Qj and Pi to node j. We

assume that SetC(i, {i}) = 0, so we can assume without loss
of generality that i ∈ Pi. Similarly j ∈ Qj for all j ∈ Q .
We now elaborate on the SetC and RespC terms, beginning
with the latter.
Response cost. We consider two response cost models.
In the aggregation model, we assume that multiple distinct
data objects can be aggregated to yield a single data ob-
ject of the size of an individual object. In this model, the
responses are propagated along paths that are reverse of
query propagation, and aggregated as the paths meet and
merge; so we set RespC(j) = SetC(j, Qj). In the non-
aggregation model, we assume that data objects from two
different sources cannot be aggregated, and hence contribute
separately to the communication cost; so we set RespC(j) =
P

i∈Ij
MinC(Pi ∩Qj , j), where MinC(S, j) is the cost of the

least-cost path from a node in S to j, denoted P (S, j).
Routing mechanism. The communication cost between a
node i and a set S of nodes, namely SetC(i, S), depends on
the underlying routing model. We consider three models,
each based on a standard communication paradigm.

In the multicast model, data is routed from a node i to a
set S on a multicast tree T connecting i to S. The network
is modeled by a graph G = (V, E) with a nonnegative cost
cuv for each edge (u, v). For a given multicast tree T , we
define the function cost(T ) as the sum of the costs of the
edges of the tree. Thus, in the multicast model, we seek a
collection of push- and pull-sets ({Pi}, {Qj}), together with
their respective multicast trees ({Ti}, {T

′
j}), that minimize

Equation 1, with SetC(i, Pi) = cost(Ti) and SetC(j, Qj) =
cost(T ′

j); we set RespC(j) to be cost(T ′
j) in the aggregation

model, and
P

i∈Ij
MinC(Pi ∩ Qj , j), otherwise.

In the unicast model we assume that all communication
is through point-to-point unicast. For each pair of nodes
u and v, we associate a nonnegative cost duv of commu-
nicating between u and v. For the unicast model, we set
SetC(u, S) =

P

k∈S duk and optimize Equation 1. Again we
set RespC(j) equals SetC(j, Qj) in the aggregation model
and

P

i∈Ij
MinC(Pi ∩Qj , j), otherwise. We separately con-

sider the metric case (in which we assume that d satisfies
reflexivity, symmetry and the triangle inequality), and the
non-metric case in which d is reflexive and symmetric, but
may not satisfy the triangle inequality.

In the controlled broadcast model, we assume that com-
munication to a set of nodes is by means of controlled broad-
cast, whereby a node broadcasts data through the network
up to a specified distance, reaching all nodes within this dis-
tance. The network is modeled by a metric distance func-
tion d and a cost function c. The distance between two
nodes u and v is given by duv, and the cost of communicat-
ing from i within a distance d is given by c(i, d). For any
i, we assume that c(i, d) is non-decreasing with increasing
d. For the controlled broadcast model, we seek a radius ri

(resp., rj) for each source i (resp., sink j) such that set-
ting Pi = {v | div ≤ ri} and SetC(i, Pi) = c(i, ri) (resp.,
Qj = {v | djv ≤ rj} and SetC(j, Qj) = c(j, rj)) minimizes
Equation 1. Here RespC(j) equals c(j, rj) in the aggregation
model, and

P

i∈Ij
MinC(Pi ∩ Qj , j) in the non-aggregation

model.

3. THE MULTICAST MODEL
In this section we consider a general model which special-

izes to both the aggregation and the non-aggregation cases of



the multicast problem. Let xuvi be a 0-1 variable that indi-
cates that edge uv is in Ti. Similarly yuvj indicates that uv is
in T ′

j and zuvij indicates that i ∈ Ij and uv is in P (Ti∩T ′
j , j).

Finally, we introduce a new parameter mij , which represents
the average frequency of the responses. Our algorithms in
this section work for arbitrary mij . For the non-aggregation
case, we set mij = qj , and for the aggregation case, we set
mij = 0 and double the qj values. By choosing other values
for mij , we can model other scenarios as well; for instance,
setting mij = min(pi, qj) models the non-aggregation sce-
nario in which we omit responses when there is no new data.
The objective function may be rewritten as follows:
X

i∈P

pi

X

uv∈E

cuvxuvi+
X

j∈Q

qj

X

uv∈E

cuvyuvj+
X

i∈P

X

j∈Q

mij

X

uv∈E

cuvzuvij

In section 3.1 we present a polynomial-time exact combina-
torial algorithm for trees. Then in section 3.2 we present an
O(log n)-approximation algorithm for general graphs, based
on the technique of embedding arbitrary metrics into tree
metrics.

3.1 An optimal polynomial algorithm for trees
When G is a tree T = (V, E), the distance MinC(Ti∩T ′

j , j)
is simply the sum of edge weights on a shortest path P (Ti, j)
from any node in Ti to j. First we rearrange the sums so
that we sum by edges last, and then split the coefficient of
the cuv term into two components, one for each direction of
overall information flow. For any edge uv, let Suv be the
largest subtree that contains u and excludes v. Note that
Svu = V \ Suv. We now substitute V = Suv ∪ Svu into the
equation and note that when i and j are both in Suv the
edge uv can not possibly be on the path P (Ti, j). There-
fore the sum

P

i∈Suv

P

j∈Suv
mijzuvij is zero, and similarly

P

i∈Svu

P

j∈Svu
mijzuvij is also zero. Thus we obtain:

X

uv∈E

cuv

"

X

i∈Suv

pixuvi +
X

j∈Svu

qjyuvj +
X

i∈Suv

X

j∈Svu

mijzuvij

#

+
X

uv∈E

cuv

"

X

i∈Svu

pixuvi +
X

j∈Suv

qjyuvj +
X

i∈Svu

X

j∈Suv

mijzuvij

#

This grouping into two components for each uv is quite nat-
ural because tradeoffs in the sizes of Ti, T ′

j and P (Ti, j)
involve cuv when i ∈ Suv and j ∈ Svu (or else when i ∈ Svu

and j ∈ Suv). We minimize the objective function by inde-
pendently minimizing the coefficients of cuv in each of the
two components above. The argument for both components
is symmetric, so we present only one of them in detail. For
any edge ab, let Pab = {i ∈ Sab | pi > 0} and similarly let
Qab = {j ∈ Sab | qj > 0}. Since pi = 0 for all i ∈ Suv \ Puv

and qj = 0 for all j ∈ Svu \ Qvu, we can replace Suv and
Svu with Puv and Qvu respectively in the coefficient of the
first component of the above equation, and we obtain the
coefficient:

αuv =
X

i∈Puv

pixuvi +
X

j∈Qvu

qjyuvj +
X

i∈Puv

X

j∈Qvu

mijzuvij

We can informally interpret this to be the cost (per unit
edge weight) of using edge uv to communicate events from
Puv to queries in Qvu at the given frequencies. This includes
sources in Puv pushing data across from u to v, queries sent
by sinks in Qvu going across from v to u and responses

from Suv into Svu going across from u to v. We will show
how to optimize αuv locally for each edge and obtain a
globally consistent solution. Define Xuv = {(i, j) | i ∈
Puv, j ∈ Qvu and i ∈ Ij}. We will define a set of tokens {xij |
(i, j) ∈ P × Q} for constructing graphs. For (i, j) ∈ Xuv,
we can represent the constraints for membership of edge uv
in subtrees of the form Ti, T ′

j and P (Ti, j) using the follow-
ing bipartite graph. Define Guv with Puv as one part and
Qvu∪{xij | (i, j) ∈ Xuv} as the other part. The set of edges
of Guv is defined by E(Guv) = Xuv∪{(i, xij) | (i, j) ∈ Xuv}.
Finally we associate weights pi, qj and mij with the nodes in
i ∈ Puv, j ∈ Qvu and xij such that (i, j) ∈ Xuv respectively.

Lemma 3.1. For each directed edge e = uv, the weight
of a minimum weight vertex cover of Guv is precisely the
minimum value of αuv in any feasible solution.

Proof. We show that there exists a vertex cover of Guv

with weight W if and only if there exists a feasible solution
in which αuv = W . First, suppose C is a vertex cover of
weight W . For i ∈ Puv ∩ C, define Ti = T [Suv ∪ {v}], and
for i ∈ Puv \ C, define Ti = T [Suv], and for all i ∈ Puv,
define the pull tree T ′

i = ({i}, ∅). For all j ∈ Qvu ∩C, define
T ′

j = T [Svu∪{u}] and for all j ∈ Qvu\C, define T ′
j = T [Svu]

and finally define source trees Tj = T for all j ∈ Qvu. For
all xij ∈ C ∩ {xij | (i, j) ∈ Xuv}, define P (Ti, j) = P (u, j),
and finally for all xij ∈ {xij | (i, j) ∈ Xuv} \ C, define
P (Ti, j) = P (v, j). It is easy to verify that this is a feasible
solution, and that αuv = W .

Conversely suppose we have a feasible solution Ti, T ′
j and

P (Ti, j) for all i and j, in which αuv = W . We can construct
a corresponding vertex cover C of weight W as follows. If
there exists (i, j) ∈ Xuv such that e ∈ Ti then we include i
into C, at a cost of pi. Similarly if there exists (i, j) ∈ Xuv

such that e ∈ T ′
j then we include j into C, at a cost of

qj , and finally, for all (i, j) ∈ Xuv, if e ∈ P (Ti, j) then we
include xij into C, at a cost of mij .

We claim that C is a vertex cover of Guv. Consider edges
in Guv of the form (i, j) where (i, j) ∈ Xuv. Since the so-
lution is feasible, (i, j) ∈ Ti, or (i, j) ∈ T ′

j (because if nei-
ther subtree contains (i, j), then there exists an (i, j) ∈ Xuv

for which Ti ∩ T ′
j = ∅. So either i ∈ C or j ∈ C. On

the other hand for edges in Guv of the form (i, xij) for
some (i, j) ∈ Xuv, then since the solution is feasible, ei-
ther (i, xij) ∈ Ti, in which case i ∈ C, meaning (i, xij) is
covered, or (i, xij) 6∈ Ti, and therefore (i, xij) ∈ P (Ti, j) and
xij ∈ C. Therefore C is a cover of Guv.

It is well known that for bipartite graphs like Guv, the
minimum weight vertex cover can be computed in polyno-
mial time, using maximum flow algorithms. The standard
procedure is to orient all the edges in Guv from A = Puv

to B = Qvu ∪ {xij | (i, j) ∈ Xuv} and assign them infi-
nite capacities. We then create a new supersource s and
edges (s, i) with capacity pi for all i ∈ Puv. We also cre-
ate a new supersink t and edges (j, t) for all j ∈ Qvu, each
with capacity qj , and finally we create edges (xij , t) for all
(i, j) ∈ Xuv, each with capacity mij . Call this graph G′

uv.
A max flow from s to t can be used to determine a minimum
cut R. From R, we obtain a minimum weight vertex cover
Cuv = (A \ R) ∪ (B ∩ R) for Guv.

For each edge uv there may be many different minimum-
weight vertex covers. A consistent tie-breaking scheme is
needed to ensure that the resulting structures Ti, T ′

j and



P (Ti, j) are connected. To resolve this problem, we will first
prove the following lemma, which will enable us to define
a canonical minimum weight vertex cover. Let A be one
part of a bipartite graph G. We say a minimum weight
vertex cover of G is A-maximal if it maximizes its weight
in A. The following lemma shows that A-maximal covers
are unique and we will use this to show how to achieve a
globally consistent solution by using covers for Guv that
are Puv-maximal. Thus every edge uv will prefer to do as
much pushing as possible among all the possible cheapest
configurations. Let w(A) be the sum of node weights of
nodes in a set A.

Lemma 3.2. Let G = (A∪B, E) be a node-weighted bipar-
tite graph, let A1, A2 ⊆ A and let B1, B2 ⊆ B. If A1 ∪ B1

and A2 ∪ B2 are both A-maximal minimum weight vertex
covers, then A1 = A2 and B1 = B2.

Proof. Let A1∪B1 and A2∪B2 (where A1, A2⊆A and
B1, B2 ⊆ B) both be minimum weight vertex covers of a
bipartite graph G = (A∪B, E), which are A-maximal. Sup-
pose A1∪B1 6= A2∪B2. Then A1 6= A2 or B1 6= B2, that is,
A1\A2 6= ∅ or A2\A1 6= ∅ or B1\B2 6= ∅ or B2\B1 6= ∅.

If u ∈ A1 \ A2 and N(u) ⊆ B1, then (A1 ∪ B1) \ {u} is a
lighter cover. So u ∈ A1\A2 implies that N(u)∩(B\B1) 6= ∅.
Now if v ∈ N(u) then v 6∈ B \ (B1 ∪B2), otherwise the edge
uv is not covered by A2∪B2. So every node in A1\A2 has at
least one neighbor in B2 \B1 and none in B \ (B1 ∪B2). By
symmetry, every node in B1 \ B2 has at least one neighbor
in A2 \ A1 and none in A \ (A1 ∪ A2).

Now w(A1 ∪ B1) = w(A2 ∪ B2) since both vertex covers
have minimum weight. Subtracting out the weights w(A1 ∩
A2) and w(B1 ∩B2), we get that w(A1 \A2)+w(B1 \B2) =
w(A2 \ A1) + w(B2 \ B1). So w(A1 \ A2) − w(A2 \ A1) =
w(B2 \ B1) − w(B1 \ B2).

Now w(A1) = w(A2) since both minimum weight vertex
covers are A-maximal. So w(A1 \A2)−w(A2 \A1) = 0, and
therefore we also get that w(B2\B1)−w(B1\B2) = 0. That
is, w(A1 \ A2) = w(A2 \ A1) and w(B1 \ B2) = w(B2 \ B1).

First suppose w(B2 \ B1) < w(A2 \ A1). Then, starting
with A1∪B1, we can exclude A1 \A2, thus uncovering some
edges with endpoints in A1 \ A2 and B2 \ B1. This can be
corrected by including B2\B1, so the set (A1∩A2)∪(B1∪B2)
is also a vertex cover. Moreover, since w(B2 \B1) < w(A2 \
A1), the new vertex cover is strictly lighter, contradicting
the choice of A1 ∪ B1 as a minimum weight cover.

Next, suppose w(B2 \ B1) > w(A2 \ A1). This implies
w(B1 \B2) > w(A2 \A1). Starting with A1∪B1, we can ex-
clude B1\B2 and include A2\A1, and obtain another strictly
lighter vertex cover (A1 ∪ A2) ∪ (B1 ∩ B2), a contradiction.

So it must be the case that w(B2 \ B1) = w(A2 \ A1). If
both of these quantities are nonzero then we can start with
A1 ∪ B1, exclude B1 \ B2 and include A2 \ A1, and obtain
another vertex cover (A1 ∪ A2) ∪ (B1 ∩ B2), which is the
same weight, but which has strictly more weight in A than
before, another contradiction. So it can only be the case that
w(A1 \ A2) = w(A2 \ A1) = w(B1 \ B2) = w(B2 \ B1) = 0.
Thus A1 = A2 and B1 = B2.

Next, we generalize the notion that if an edge is a push
edge, then it must be a push edge all the way back to the
source, and if it is a pull edge it must be a pull edge all
the way to the sink, and finally if it is a response edge, it
must be a response edge all the way to the sink. For that
we require the following lemma:

Lemma 3.3. Let A, A′, B, B′ and B′′ be five sets of nodes
with assigned nonzero node weights1, for which the two fam-
ilies {A, A′, B, B′} and {A, B, B′′} are each pairwise dis-
joint. Let A1, A2 ⊆ A, B1, B2 ⊆ B, A3 ⊆ A′, B3 ⊆ B′ and
B4 ⊆ B′′. Let E0 be a set of edges between A and B, E1 be a
set of edges between A′ and B, E2 be a set of edges between
A and B′′, and E3 be a set of edges between A′ and B′. Let
G1 be a bipartite graph with parts A ∪ A′ and B ∪ B′, and
edges E0 ∪ E1 ∪ E3. Let G2 be a bipartite graph with parts
A and B ∪ B′′, and edges E0 ∪ E2. If A1 ∪ B1 ∪ A3 ∪ B3 is
the (A ∪ A′)-maximal minimum weight vertex cover of G1,
and A2 ∪B2 ∪B4, is the A-maximal minimum weight vertex
cover of G2, then A1 ⊆ A2 and B1 ⊇ B2.

Proof. Let A1 ∪ B1 ∪ A3 ∪ B3 be (A ∪ A′)-maximal in
G1, and let A2 ∪B2 ∪B4 be A-maximal for G2. Every node
u in A1 \A2 has to have at least one neighbor v outside B1.
If not, then N(u) ⊆ B1 in G1, so we can drop u from the
cover A1 ∪ B1 ∪ A3 ∪ B3 and obtain a lighter cover for G1.
Moreover, v ∈ N(u) in G1 implies that v 6∈ B \ (B1 ∪ B2),
otherwise uv is not covered by A2 ∪ B2 ∪ B4 in G2. Thus,
every node in A1 \ A2 has at least one neighbor in B2 \ B1

and none in B \ (B1∪B2). Similarly we can show that every
node in B2 \ B1 has at least one neighbor in A1 \ A2 and
none in A \ (A1 ∪ A2).

If w(A1 \ A2) < w(B2 \ B1), then we can obtain a lighter
cover for G2 by starting with A2∪B2∪B4, excluding B2\B1,
and including A1\A2. The new cover is (A1∪A2)∪(B1∩B2)∪
B4. Note that it covers G2 and is lighter, a contradiction.

Similarly, if w(A1 \ A2) > w(B2 \ B1), we can obtain a
lighter cover, but for G1 this time, by starting with A1 ∪
B1∪A3∪B3, excluding A1 \A2, and including B2 \B1. The
new cover is (A1 ∩ A2) ∪ (B1 ∪ B2) ∪ A3 ∪ B3. Note that it
covers G1 and is lighter, a contradiction.

Now suppose w(A1 \ A2) = w(B2 \ B1) 6= 0. Then there
exists a cover for G2 with strictly more weight in A. Starting
with A2 ∪ B2 ∪ B4, exclude B2 \ B1, and include A1 \ A2.
The newly formed cover is (A1 ∪A2)∪ (B1 ∩B2)∪B4. Note
that it covers G2 and while it is the same weight, it has a
higher amount of weight in A. This is again a contradiction.

Therefore we are left with the case w(A1 \ A2) = w(B2 \
B1) = 0, from which it follows that A1 ⊆ A2 and B1 ⊇ B2

as required, since all node weights are nonzero.

Algorithm 3.4. For each directed edge uv (ie. consider
each undirected edge in both directions separately), construct
the graph Guv, and find its canonical minimum cut Cuv. For
all i ∈ Puv, if i ∈ Cuv then include uv in Ti. For all j ∈ Qvu

if j ∈ Cuv then include uv in T ′
j . Finally, for all (i, j) ∈ Xuv

if xij ∈ Cuv then include uv in P (Ti, j).

The correctness of this algorithm is proven in Lemma 3.6
below, by applying Lemma 3.3 with the following definition:

Definition 3.5. Let Y ⊗ Z = {xij | i ∈ Y, j ∈ Z, i ∈ Ij},
and let ⊗ have lower precedence than \. Let u, v, w be three
consecutive nodes on any path. We define G1 = Gvw, G2 =
Guv and the following:

1Nodes with zero weights for either push or pull frequency
are assumed to not generate or consume any data, and there-
fore no connections are required from or to these nodes.



A=Puv B=Qwv∪(Puv⊗Qwv)
A′ =Pvw\Puv B′ =Pvw\Puv⊗Qwv

A1 =Cvw∩Puv B′′ =Qvu\Qwv∪(Puv⊗Qvu\Qwv)
A2 =Cuv∩Puv B1 =Cvw∩(Qwv∪(Puv⊗Qwv))
A3 =Cvw∩Pvw\Puv B2 =Cuv∩(Qwv∪(Puv⊗Qwv))

B3 =Cvw∩(Pvw\Puv⊗Qwv)
B4 =Cuv∩(Qvu\Qwv∪(Puv⊗Qvu\Qwv))

Lemma 3.6. The edge sets {Ti | i ∈ V }, {T ′
j | j ∈ V }

and {P (Ti,j ) | i, j ∈ V } resulting from Algorithm 3.4 are
all connected, and can correctly be called subtrees and paths.

Proof. To show that the edge set Ti is connected for
each i ∈ P, it suffices to show that if i ∈ Pvw ∩Cvw then for
all rs ∈ P (i, v), i ∈ Crs. That in turn follows by induction
if we can show that if i ∈ Pvw ∩Cvw and i 6= v and uv is the
next edge on a path from v back to i, then i ∈ Cuv. Suppose
i ∈ Pvw ∩ Cvw. Since i ∈ Pvw and uv ∈ P (i, v), it follows
that i ∈ Puv. Also it follows from i ∈ Cvw that i ∈ A1, by
definition 3.5. Lemma 3.3 gives us that A1 ⊆ A2, and since
A2 ⊆ Cuv, it follows that i ∈ Cuv.

Similarly we show that the edge set T ′
j is also connected

for each j ∈ Q, by showing that if j ∈ Qvu ∩ Cuv then
for all rs ∈ P (v, j), j ∈ Crs. The inductive step in this
case is to show that if j ∈ Qvu ∩ Cuv and j 6= v and vw
is the next edge on a path from v to j, then j ∈ Cvw.
Suppose j ∈ Qvu ∩ Cuv. Since j ∈ Qvu and vw ∈ P (v, j), it
follows that j ∈ Qwv. Also, j ∈ Cuv implies j ∈ B2. So by
Lemma 3.3, j ∈ B2 ⊆ B1 ⊆ Cvw.

Finally we show that for every pair (i, j) ∈ P×Q, the edge
set P (Ti, j) is connected, by showing that if xij ∈ Xuv ∩Cuv

for some edge uv, then for all rs ∈ P (v, j), xij ∈ Crs. Again
the main step is to show that if xij ∈ Xuv ∩ Cuv and j 6= v
and vw is the next edge on the path from v to j, then xij ∈
Cvw. Suppose xij ∈ Xuv ∩ Cuv. First, xij ∈ Xuv implies
i ∈ Puv and j ∈ Qvu and i ∈ Ij . Now since vw ∈ P (v, j),
j ∈ Qwv. Moreover Puv ⊆ Pvw. So xij ∈ Xvw. Next, notice
that xij ∈ Cuv implies xij ∈ B2, by definition of B2. So we
use Lemma 3.3 again to obtain xij ∈ B2 ⊆ B1 ⊆ Cvw.

Having established correctness, it remains to show that
Algorithm 3.4 runs in polynomial time. To establish this, we
need to verify that the push-biased (that is, Puv-maximal)
minimum weight vertex cover of Guv can be computed in
polynomial time. To this end, consider the following two
lemmas (the first one is well known in the folklore so we
omit the proof, but though the second lemma is simple, we
are not aware of situations in which it has been used).

Lemma 3.7. If R1 and R2 are two minimum cuts of G′
uv

that are reachable from s in the residual networks of maxi-
mum flows f1 and f2 respectively, then R1 = R2.

Lemma 3.8. If R is the minimum cut for G′
uv that is

reachable from s in the residual network of a maximum flow
f and C = (A \ R) ∪ (B ∩ R), then C is Puv-maximal.

Proof. It is well-known that C is a minimum weight
vertex cover. It only remains to show that it is A-maximal.
From the definition of C, it must be the case that w(A\R) is
as large as possible for any minimum cut, and equivalently,
that w(A ∩ R) is as small as possible. Suppose not. Then
there exists a minimum cut R′ such that w(A∩R′) < w(A∩
R). Now consider R∩R′ which, being the intersection of two
minimum cuts, is also a minimum cut. Let f ′ be a maximum

flow that saturates R∩R′, and let v ∈ R\R′. Clearly v ∈ R,
but v is not reachable in the residual network of f ′, which
contradicts Lemma 3.7. So w(A ∩ R) is in fact as small as
possible.

Distributed implementation. Our algorithm in the mul-
ticast model for trees achieves global optimality by indepen-
dently solving local optimization problems for each edge of
the network. This enables a simple three-phase distributed
implementation of the algorithm. The first phase consists of
a global exchange in which each network node learns of the
interest sets and frequencies of all of the sources and sinks.
The second phase is entirely local, in which each node com-
putes the minimum vertex cover for the problem defined for
each of its adjacent edges. The resulting local solutions are
directly used in the final long-running phase in which the in-
formation published by the sources is continually pushed to
the respective push sets and pulled by the sinks from their
respective pull sets in a cost-optimal manner.

The second and third phases are self-explanatory. The
first parameter exchange phase can be carried out by a com-
munication step in which every source and sink node inform
other nodes of their frequency and interest sets. The num-
ber of bits communicated in this phase is proportional to
the total number of sources and sinks and the sizes of their
interest sets. Since this is a one-time cost, this communica-
tion can be amortized against the cost incurred during the
long-running phase. Furthermore, if the number of different
frequency values and the number of different interest sets
are small, the total amount of communication in the first
phase can be significantly reduced. We finally note that any
change in the set of sources, set of sinks, frequencies, or in-
terest sets, can be broadcast within the network, following
which each node can locally compute an updated solution.

3.2 Results for general graphs
We now present a randomized O(log n)-approximation for

general graphs in the multicast model, based on the tech-
nique of embedding arbitrary metrics into tree metrics [1,
7, 13]. In particular, we first use the 2-HST (hierarchically
well-separated tree) construction of Fakcharoenphol et al [7],
which O(log n)-probabilistically approximates the metric d
over the given graph. We then apply the result of Konjevod
et al.[13], who showed that any k-HST resulting from weak
or strong probabilistic partitions can be replaced by a tree
whose vertex set is that of the original graph at the cost
of a constant factor in stretch. By a standard argument,
we obtain a randomized O(log n)-approximation for general
graphs. One can also obtain a deterministic O(log n) ap-
proximation via the deterministic rounding techniques of [2,
7].

On the hardness side, the data dissemination problem is
easily seen to be a generalization of the classic minimum
Steiner tree problem, which is NP-hard to approximate to
within a factor 96/95 [5].
Approximation algorithm for general graphs.

Theorem 3.9 (Konjevod et al.[13]). Any k-HST T ′

resulting from weak or strong probabilistic partitions can be
replaced by a tree T whose vertex set is V (G), such that
dG(u, v) ≤ dT (u, v) ≤ 2dT ′(u, v)k/(k − 1) for any u, v ∈
V (G).

We apply this result to the 2-HST construction of Fakcharoen-
phol et al [7].



Theorem 3.10 (Fakcharoenphol et al.[7]). The dis-
tribution over tree metrics resulting from (their) algorithm
O(log n)-probabilistically approximates the metric d.

Let (SG,S ′
G) be an optimal solution in a given graph G

with cost OPT (G). Let T be a tree (defined on the nodes
of G) selected at random from the distribution of metric-
spanning trees that O(log n)-probabilistically approximates
the metric d of shortest distances in a graph G. Convert
every edge e in a structure of (SG,S ′

G) into the corre-
sponding path P (e) within T . (By a structure we mean
a push tree, a pull tree or a response path). Since two
structures Ti and T ′

j in the optimal solution of G inter-
sect in G, they will also intersect in T . Thus we obtain
a family of structures in T which is feasible for T , with cost
O(log n) ·OPT (G). Therefore the optimal solution OPT (T )
of T satisfies OPT (T ) ≤ O(log n) · OPT (G).

After running the Algorithm of section 3.1 on T , we obtain
the value OPT (T ) of an optimal solution (ST ,S ′

T ) for T .
We project it back into the graph G as follows: every edge e
in a structure (Ti say) of (ST ,S ′

T ) is replaced by the corre-
sponding path P−1(e) in G. Call the images of the endpoints
of e essential nodes if e is in a subtree like Ti or T ′

j . Other-
wise e is in a response path from u to v, say, and then let the
images of only u and v be essential in G for this structure.
The resulting structures in G are connected but may not nec-
essarily be subtrees, so we replace each such structure with
the Steiner tree of G (or a 2-approximate MST approxima-
tion of the Steiner tree) or else the shortest path (in the case
of a response path) that contains its essential nodes. Since
structure intersections in T only occur at essential points,
the required intersection properties hold in G, and the cost
of each such structure in G is at most twice the cost of its
precursor in T . Therefore we have obtained an approximate
solution ALG(G) which is at most twice OPT (T ). There-
fore ALG(G) ≤ 2 · OPT (T ) ≤ O(log n) · OPT (G). Thus we
have shown that:

Theorem 3.11. There is an expected O(log n)-approximation
for the Multicast problem in general graphs.

4. APPROXIMATION ALGORITHMS FOR
THE UNICAST MODEL

In this section, we present approximation algorithms and
hardness results for the unicast model. Recall that in the
unicast model, we are given distances duv for every pair of
nodes u and v in the network, and the goal is to determine
the push-sets Pi and pull-sets Qj that minimize the total
communication cost

X

i∈P

pi

X

k∈Pi

dik +
X

j∈Q

qj

X

k∈Qj

dkj +
X

j∈Q

qj · RespC(j),

subject to Pi ∩ Qj 6= ∅ for all i ∈ Ij . We first consider the
aggregation model. In Section 4.1, we present an O(log n)-
approximation algorithm for the arbitrary distance functions
and interest sets, using a variant of the standard randomized
rounding scheme, and an asympototically matching hard-
ness result. In Section 4.2, we present a constant-factor
approximation for metric distances in the special case when
the interest set for every sink is identical, and the MAXSNP-
hardness for this special case. Finally, in Section 4.3, we
consider the non-aggregation model where we show that the
problem reduces to solving multiple instances of the unca-
pacitated facility location problem.

4.1 The general unicast model with aggrega-
tion

In this section, we present an O(log n) approximation for
the information dissemination problem in the unicast model
for general (non-metric) cost functions, when responses are
aggregated. In the aggregation model,

P

j∈Q
RespC(j) is

simply
P

j∈Q
qj

P

k∈Qj
dkj ; so we can replace the response

cost by doubling the sink frequencies. Thus, we can ignore
response costs without loss of generality. Our algorithm is
based on rounding a linear programming relaxation for the
problem. We begin by presenting an integer program for the
problem.

min
X

i∈P

pi

X

k∈V

dikxik +
X

j∈Q

qj

X

k∈V

dkjykj ,

subject to
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<

:

rijk ≤ xik

rijk ≤ ykj
P

k rijk ≥ 1
, where xik, ykj , rijk ∈ {0, 1}.

Consider the linear programming (LP) relaxation obtained
by replacing the ∈ {0, 1} constraint in the integer program
by the ≥ 0 constraint. Let (x∗, y∗, r∗) denote an optimal
solution to the LP. Our rounding procedure is as follows.

1. We zero out any variable whose value is at most 1/n2.
As a result of this, the solution may no longer be fea-
sible since the third condition of the LP may not be
satisfied. However, for any pair (i, j), the sum of the
r∗ijk’s that are at most 1/n2 is at most 1/n; so we can
scale up all of the values by a factor of 1/(1−1/n) and
obtain a feasible solution.

2. We next round each value up to the nearest power of
1/2. Let (x̃, ỹ, r̃) denote the resulting solution.

3. For any node k and integer p, 0 ≤ p < 2 log n, let Xpk

(resp,. Ypk) denote the set of nodes i (resp., j) such
that x̃ik ≥ 1/2p (resp., ỹkj ≥ 1/2p).

4. We execute the following randomized rounding step in-
dependently for each node k and integer p: with prob-
ability min{(log n)/2p, 1}, add k to Pi for all i in Xpk

and to Qj for all j in Ypk.

Lemma 4.1. For any pair (i, j) and node k, the probabil-
ity that k lies in Pi ∩ Qj is at least min{1, r̃ijk log(n)}.

Proof. Follows directly from the fact that i ∈ Xlog(r̃ijk)k

and j ∈ Ylog(r̃ijk)k.

Lemma 4.2. For all i, j, and k, the probability that k is
in Pi (resp., k is in Qj) is at most min{1, 2x̃ik log n} (resp.,
min{1, 2ỹjk log n}).

Proof. The probability that k is in Pi is at most
P

p:i∈Xpk
(log n)/2p = 2x̃ik log n. The proof of Qj is simi-

lar.

Theorem 4.3. With high probability, the solution ({Pi}, {Qj})
is feasible and the cost is O(log n) times that of the optimal
LP solution.

Proof. By Lemma 4.1, the probability that Pi and Qj do
not intersect for a given pair is at most

Q

k(1− r̃ijk log n) ≤

e−
P

k r̃ijk log n ≤ 1/n2. Let Ci be the random variable de-
noting the cost per unit frequency for i. By Lemma 4.2,



Ci is dominated by
P

k Cik, where Cik is the random vari-
able that independently takes value dik with probability
min{1, 2x̃ik log n}. By standard Chernoff-Hoeffding bounds [4,
11] with high probability,

P

k Cik is O(log n) ·
P

k dikx̃ik,
which is O(log n) times the cost per unit frequency for i
in the optimal LP cost. Adding over all of the at most n
sources and sinks yields the desired bound on the cost with
high probability.

Hardness of approximation. We establish an asymp-
totically matching bound on the hardness of approximation
by reduction from the minimum-cost 2-spanner problem,
which is NP-hard to approximate to within an O(log n)-
factor on n-node graphs in polynomial time [14]. In the
minimum-cost 2-spanner problem, we are given an undi-
rected graph G with edge costs and seek a spanning sub-
graph of G of minimum total cost such that the distance
between any two vertices in the subgraph is at most twice
that in G. This problem reduces to the data dissemination
problem by placing a source and sink at each node of G,
setting the interest set of each sink to be the sources at its
neighbors in G, the distance between two adjacent nodes to
be 1 and non-adjacent nodes to be ∞, and all frequencies to
be unit. Given any solution to the 2-spanner problem, we
set the push set (resp., pull set) to be the set of neighbors of
the node in the solution subgraph; the resulting cost is twice
the cost of the subgraph. On the other hand, any solution
of push and pull sets for the data dissemination problem
yields a 2-spanner of at most half the cost. We defer the
proof details to the full paper.

4.2 The metric unicast model with uniform in-
terest sets and aggregation

In this section, we assume that the interest sets of all
the sinks are identical. It is easy to see that any result
for this special case extends to the case where the interest
sets of any two sinks are either disjoint or identical. Our
approximation algorithm is based on a different, determin-
istic, rounding of the linear program relaxation presented in
Section 4.1. Our rounding procedure is based on the filter-
ing technique of [16], as has also been used for other facility
location problems [21, 18]. As in Section 4.1, let (x∗, y∗, r∗)
denote an optimal solution to the LP. For any node u and
real r, we define the ball of radius r around u, Bu(r), as the
set {v : duv ≤ r}. Let Ci denote the term

P

k dikx∗
ik, that

is, the push cost of node i in the LP solution. Similarly we
define the pull cost C ′

j =
P

k dkjy
∗
kj for each node j.

Lemma 4.4. For any i ∈ P, j ∈ Q, and α > 1, we have
X

k/∈Bi(αCi)

x∗
ik ≤ 1/α, and

X

k/∈Bj(αC′

j
)

y∗
kj ≤ 1/α.

We compute two sets S and S′ from P and Q and the
linear program solution. Set S is obtained by going through
the sources in non-decreasing order of their Ci values. We
initially set S to ∅. Let β > 1. When we consider source
i, we add i to S, iff there does not exist ` ∈ S such that
di` ≤ β(Ci + C`). We similarly compute S′.

We now compute an O(1)-approximate feasible solution
as follows. For each i in P, let `i be an arbitrary point in
S such that C`i

≤ Ci and di` ≤ β(Ci + C`); note that if
i ∈ S, then `i is simply i, while it is well-defined for i /∈ S
by our construction of S above. We similarly define `′j for
each j in Q. For each i ∈ P, we set Pi = {i} ∪ {`i} ∪

{j : j ∈ S′ and C ′
j ≤ Ci}, and for each j in Q, we set

Qj = {j} ∪ {`′j} ∪ {i : i ∈ S and Ci < C′
j}.

Lemma 4.5. For each i ∈ P and j ∈ Q, Pi∩Qj 6= ∅.

Theorem 4.6. For each i ∈ P and j ∈ Q, we have
X

k∈Pi

dik ≤ O(Ci), and
X

k∈Qj

dkj ≤ O(C ′
j).

Proof. Consider the elements of the set Pi. These in-
clude i, `i, and all j ∈ S′ such that C ′

j ≤ Ci. We have
dii = 0 and di`i

≤ β(Ci + C`i
) ≤ 2βCi. Consider the balls

of radius βC ′
j around j, for all j in S′. By our construction,

these balls Bj(βC′
j) are all disjoint. Therefore, at most one

of these balls contains i. Let Si denote the set of j ∈ S′ such
that C ′

j ≤ Ci and i /∈ Bj(βC′
j). For every j ∈ Si, consider

the ball Bj(αC′
j) contained within Bj(βC′

j), where α < β.
By Lemma 4.4, we obtain that

P

k∈Bj(αC′

j
) r∗ijk ≥ 1 − 1/α.

Since these balls are all disjoint and none of them contains
i, we obtain that

Ci ≥
X

j∈Si

(dij − αC ′
j)

X

k∈Bj(αC′

j
)

r∗ijk ≥
X

j∈Si

dij

»

1 −
α

β

–»

1 −
1

α

–

=
(β − α)(α − 1)

αβ

X

j∈Si

dij .

In cases where i ∈ Bj(βC′
j) for some j, dij ≤ βC ′

j ≤ βCi.
Thus, recalling that di`i

≤ 2βCi, we can write:

X

k∈Pi

dik ≤ (3β +
αβ

(β − α)(α − 1)
)Ci.

This completes the proof of the first inequality. The proof
of the second is analogous. If we set α = 1.69 and β = 2.86,
we obtain a 14.57-approximation.

We next show that the data dissemination problem in the
metric unicast model is NP-hard to approximate to within a
constant factor, even in the special case of uniform interest
sets. Our hardness result is via an approximation-preserving
reduction from the facility location problem.

Consider an instance of the uncapacitated facility loca-
tion problem over a set D of n points with metric distances
given by function d, with unit facility cost and unit demand
at each node. The class of such instances is known to be
NP-hard and cannot be approximated in polynomial-time to
within a factor of 1.278 unless NP ⊂ DTIME(nlog log n) [10].
We reduce this problem to the metric unicast problem with
uniform interest sets as follows. The set of nodes is V =
D ∪ {t}, where t is a new node at distance 1/ε from every
node in D, for some ε < 1/ maxu,v∈D duv. Clearly this de-
fines a metric space. We let D be the set of sources, each
with frequency equal to its demand, and t be the lone sink
with frequency ε.

Consider any optimal solution to the data dissemination
problem. Since there is only one sink, the push sets are all
singleton sets. Let S be the union of all push sets. If S
contains t and has size at least two, then we can replace
t in any push set by any node in S and reduce the total
cost. Furthermore, if S equals {t}, then the total cost is
greater than the case when S is the singleton set contain-
ing any source node. Thus, we can assume that S does not
contain t. In this case, the total communication cost is ex-
actly equal to the cost incurred when opening facilities at



nodes in S in the facility location problem, thus complet-
ing the reduction. To make the reduction approximation
preserving, if we set ε < 1/(α

P

u,v∈D duv), we obtain that
an α-approximate solution to the data dissemination prob-
lem yields an α-approximate solution to the facility location
problem, thus yielding the desired hardness result.

4.3 Response cost without aggregation
In the non-aggregation model for response costs, RespC(j)

equals
P

i∈Ij
d(Pi

T

Qj , j), where d(S, j) is the distance to j

from the node in S that is nearest to j. Since we can assume
without loss of generality that Qj ⊆

S

i∈Ij
Pi, it follows that

the total response cost is thus at least the query propagation
cost. It is easy to see that the problem of minimizing the
sum of the push costs and response costs can be reduced to
|P| instances of the uncapacitated facility location problem,
one for every source node. Thus, constant-factor approxima-
tions for the facility location problem yield constant-factor
approximations in the non-aggregation model. We defer a
discussion of the best approximation factors obtained to the
full paper.

5. CONTROLLED BROADCAST MODEL
In this section, we provide a polynomial-time optimal al-

gorithm for the controlled broadcast model, for each of the
two response cost models. Throughout this section, we as-
sume for simplicity that the metric distances dij are induced
by an undirected unweighted graph. Our results can be ex-
tended to the case of weighted graphs; we defer this discus-
sion to the full paper.

In the controlled broadcast problems, we seek ri and rj for
each i ∈ P, j ∈ Q, such that that ri + rj ≥ dij for all i ∈ Ij .
When the responses are aggregated, then the objective is
to minimize

P

i∈X pic(i, ri)+2
P

j∈Y qjc(j, rj). When there
is no aggregation, then the objective is to minimize the to-
tal cost

P

i∈X pic(i, ri)+
P

j∈Y qjc(j, rj)+
P

i∈Ij
MinC(Pi∩

Qj , j).
We formulate the problems as integer linear programs as

follows. Let M = maxi,j{dij}. Note that M < n. For each
i ∈ P define 0-1 variables xi1, xi2, . . . xiM and similarily for
each j ∈ Q, define variables yj1, yj2, . . . yjM . The relation
between these variables and the variables ri, rj is given by
the constraints ri ≥ k ⇔ xik = 1 and rj ≥ l ⇔ yjl =
1. In the aggregation model, we have the following linear
constraints:

xik + yjl ≥ 1 ∀e = (i, j) ∈ E; ∀k, l ≥ 1 : k+l = dij+1

xik ≤ xi(k−1) ∀i ∈ P; 1 < k ≤ M (2)

yjl ≤ yj(l−1) ∀j ∈ Q; 1 < l ≤ M.

In order to capture the response cost in the non-aggregation
model, we introduce a third set of variables zijl, for every
j, i ∈ Ij , and k, which indicates whether i’s data item is
propagated to j by a node that is at least distance ` away.
We have the following additional constraints:

xik + zijl ≥ 1 ∀e = (i, j) ∈ E; ∀k, l ≥ 1 : k+l = dij+1

zijl ≤ yjl ∀j ∈ Q, i ∈ Ij ; 1 ≤ l ≤ M (3)

zijl ≤ zij(l−1) ∀j ∈ Q, i ∈ Ij ; 1 < l ≤ M.

In the aggregation model, we seek to minimize the linear
objective

P

ik αikxik +2
P

jl βjlyjl, where αik = pi(c(i, k)−

c(i, k − 1)) and βjl = qj(c(j, l) − c(j, l − 1)). In the

non-aggregation model, we seek to minimize
P

ik αikxik +
P

jl βjlyjl +
P

ijl qjzijl.
It is easy to see that both of the above linear programs

are, in fact, special cases of the following linear program over
variable sets U = {u1, . . . , up} and V = {v1, . . . , vq}, with
E1, E2, and E3 as arbitrary subsets of U × V , U2, and V 2,
respectively

min
X

u∈U

fu · u +
X

v∈V

gv · v,

subject to

8

<

:

u + v ≥ 1 ∀(u, v) ∈ E1

u1 ≥ u2 ∀(u1, u2) ∈ E2

v1 ≥ v2 ∀(v1, v2) ∈ E3.
(4)

Theorem 5.1. All the vertices of the polytope of the lin-
ear program 4 are integral; hence, an optimal integral solu-
tion can be found in polynomial time.

Proof. Let S = (u1, . . . , up, v1, . . . , vq) be a feasible so-
lution with at least one fractional variable, and let θ =
min0<ui,vj<1{ui, 1−ui, vj , 1−vj}. Let S1 denote a solution
vector derived from S in which all fractional ui are incre-
mented by θ and all fractional vj and are decremented by
θ. Similarily, define S2 as the solution vector in which all
fractional ui are decremented by θ and all fractional vj are
incremented by θ. The solution vectors S1 and S2 satisfy
the constraints of the linear program and hence are feasible
solutions. Further, S = 1

2
S1 + 1

2
S2 and hence S is a linear

combination of S1 and S2. Hence S is not a vertex. Thus,
any solution vector containing at least one fractional vari-
able can not be a vertex. Hence, all vertices of the above
linear program are integral.

We now present a more efficient combinatorial algorithm
for solving the linear program of Equation 4 by considering
its dual, which maximizes

P

(u,v)∈E1
au,v subject to

X

(u,v)∈E1

au,v +
X

(u,u′)∈E2

bu,u′ −
X

(u′,u)∈E2

bu′,u ≤ fu u ∈ U (5)

X

(u,v)∈E1

au,v +
X

(v,v′)∈E3

cv,v′ −
X

(v′,v)∈E3

cv′,v ≤ gv v ∈ V. (6)

Consider the directed graph with the vertex set {s, t}∪U∪V ,
where s and t are the source and sink, respectively. Let
E4 = {(s, u) | u ∈ U}, E5 = {(v, t) | v ∈ V }, E′

3 =
{(v, v′) | (v′, v) ∈ E3}. The edge set in the graph is E1∪E2∪
E′

3 ∪E4 ∪E5. We set the capacity of an edge (s, u) to be fu

and that of (v, t) to be gv. All other capacities are infinity.
Let au,v, bu,u′ , cv,v′ denote the flow through edges through
E1, E2, and E′

3 respectively. Then, the flow constraint at
each vertex in U gives constraints (5) and at vertices in V
give constraints (6), respectively. Further, since E1 is a cut,
the flow through E1 =

P

u,v au,v is the total flow from s to
t. Thus, the maximum flow solves the dual LP, from which
we can obtain a solution to the primal LP.

The LP (4) is general enough to capture the data dis-
semination problem under the multicast model for tree net-
works, studied in Section 3.1. It thus yields an alterna-
tive polynomial-time algorithm for that problem. This al-
gorithm, however, has higher complexity than the algorithm
of Section 3.1 since the size of the maximum flow graph in
the above algorithm is at least the sum of the sizes of the
bipartite graphs whose vertex covers are computed in the
algorithm of Section 3.1.



6. CONCLUDING REMARKS
Our model described in Section 2 assumes uniform lengths

for all data items. Non-uniform data lengths affect both the
push costs and the response costs. The effect of non-uniform
data lengths on the push costs can be easily modeled by
scaling the source frequencies appropriately. The impact on
response costs depends on whether the responses are aggre-
gated. If the responses are not aggregated, then non-uniform
data lengths can be easily modeled by multiplying the length
of the data item of a source i to the response cost for the
data item to every sink j such that i is in Ij . Thus all of
our results hold when the responses are not aggregated. If
the responses are aggregated, then we need an additional
model that specifies the size of the aggregation of two data
items or aggregates, an issue that we do not consider in this
paper. Our results do apply in the special case when all of
the aggregates have uniform size.

Two significant open problems left by our work are to re-
solve the gap between the O(log n) upper bound and the
O(1) lower bound on the approximation ratios for both the
multicast model on general graphs and the metric unicast
model with general interest sets. It would also be interest-
ing to consider scenarios where the data update and query
frequencies are unknown and may change with time, thus re-
quiring solutions that estimate these frequencies and adapt
to these changes. Heuristics for such adaptive schemes under
special cases have been studied in [17].
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