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Abstract

We present a general framework and algorithmic approach
for incremental approximation algorithms. The framework
handles cardinality constrained minimization problems, such
as the k-median and k-MST problems. Given some notion
of ordering on solutions of different cardinalities k, we give
solutions for all values of k£ such that the solutions respect
the ordering and such that for any &, our solution is close
in value to the value of an optimal solution of cardinality
k. For instance, for the k-median problem, the notion
of ordering is set inclusion and our incremental algorithm
produces solutions such that any k and k', k < k', our
solution of size k is a subset of our solution of size k'.
We show that our framework applies to this incremental
version of the k-median problem (introduced by Mettu
and Plaxton [30]), and incremental versions of the k-MST
problem, k-vertex cover problem, k-set cover problem, as
well as the uncapacitated facility location problem (which is
not cardinality-constrained). For these problems we either
get new incremental algorithms, or improvements over what
was previously known. We also show that the framework
applies to hierarchical clustering problems. In particular,
we give an improved algorithm for a hierarchical version of
the k-median problem introduced by Plaxton [31].

1 Introduction

1.1 Incremental problems A company is building
facilities in order to supply its customers. Because of
limited capital, it can only build a few at this time, but
intends to expand in the future in order to improve its
customer service. Its plan for expansion is a sequence
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of facilities that it will build in order as it has funds.
Can it plan its future expansion in such a way that if it
opens the first k facilities in its sequence, this solution is
close in value to that of an optimal solution that opens
any choice of k facilities? The company’s problem is
the incremental k-median problem, and was originally
proposed by Mettu and Plaxton [30]'. The standard k-
median problem has been the object of intense study in
the algorithms community in the past few years. Given
the locations of a set of facilities and a set of clients in a
metric space, a demand for each client, and a parameter
k, the k-median problem asks to find a set of k facilities
to open such that the sum of the demand-weighted
distances of the clients to the nearest open facility is
minimized. In the incremental k-median problem, we
are given the input of the k-median problem without
the parameter k£ and must produce a sequence of the
facilities. For each k, consider the ratio of the cost of
opening the first k facilities in the ordering to the cost of
an optimal k-median solution. The goal of the problem
is to find an ordering that minimizes the maximum of
this ratio over all values of k. An algorithm for the
problem is said to be a-competitive if the maximum of
the ratio over all k¥ is no more than «. This value «
is called the competitive ratio of the algorithm. We will
also consider randomized algorithms for the incremental
k-median problem. For a randomized algorithm, we
consider the ratio of the expected cost of opening the
first k facilities in the ordering to the cost of an optimal
k-median solution. The algorithm is a-competitive if
this ratio is at most « for all k.

In a similar manner, one can also define natural in-
cremental versions of any cardinality constrained mini-
mization problems, including the k-minimum spanning
tree problem (k-MST), k-vertex cover, and k-set cover
problems. In the standard weighted vertex cover prob-
lem, we are given an undirected graph with weights on
the vertices and we wish to find a minimum-weight sub-

TMettu and Plaxton call it the online median problem, but we

would like to draw a distinction between incremental and online
problems.



set of vertices S such that every edge has at least one
endpoint in S. In the k-vertex cover problem, we wish
to find a minimum-weight set of vertices that covers at
least k edges. In the incremental k-vertex cover prob-
lem, we wish to find a sequence of vertices, such that if
we choose the smallest prefix of vertices in the sequence
that covers at least k edges, this solution is close in value
to that of the optimal k-vertex cover solution. An incre-
mental version of the facility location problem, which is
not cardinality-constrained, has also been defined [31].

Perhaps less obviously, many hierarchical clustering
problems can also be cast as incremental problems. In
hierarchical clustering, we give clusterings with k clus-
ters for all values of k by starting with n clusters and
repeatedly merging selected pairs of clusters until all
points are in a single cluster. Given some objective func-
tion on a k-clustering, again we would like to ensure that
for any k, the cost of our k-clustering obtained in this
way is not too far away from the cost of an optimal k-
clustering. The connection with incremental problems
is this: for the incremental k-median problem, we in-
sist that for any k, k', with k& < k', our solution with
k facilities is ordered with respect to our solution on
k' facilities; namely, the smaller solution is a subset
of the larger. In hierarchical clustering, for any k, k',
with k < k', our k-clustering must also be ordered with
respect to our k'-clustering; namely, the k'-clustering
must be a refinement of the k-clustering. We can then
consider various clustering criteria: minimize the max-
imum radius from a cluster center (k-center), mini-
mize the sum of demand-weighted distances of points
to their cluster center (k-median), or minimize the sum
of demand-weighted distances-squared of points to their
cluster center (k-means). From these we obtain hierar-
chical variants, which we say are a-competitive if for
any k, the k-clustering produced by our algorithm is at
most « times the cost of an optimal k-clustering under
the given objective.

1.2 Our contribution Our central contribution is
to give a general approach for solving incremental op-
timization problems. We then apply this to the in-
cremental versions of the k-median, k-means, k-MST,
facility location, k-vertex cover, and k-set cover prob-
lems. Furthermore, we apply it to hierarchical cluster-
ing problems with the k-median and k-means objective
functions. We state our approach in terms of posets
on solutions to the problems, in which two solutions
are comparable in the poset if they obey the ordering
imposed by the incremental solution (e.g. if one of the
k-median solutions is a subset of the other, or one of the
k-vertex cover solutions is a subset of the other, or one
of the k-clusterings is a refinement of the other). Each

solution in the poset has a cost, as defined by the under-
lying optimization problem. In addition, we associate a
benefit with each solution that models the constraint of
the optimization problem (corresponding, for example,
to the number of unopened facilities, or the number of
edges covered). The goal of the incremental problem
is to find a chain of solutions such that for any b, the
least element in the chain (according to the partial or-
der) that has benefit at least b has cost close to that of
an optimal solution of benefit at least b.

To obtain a competitive solution for a given incre-
mental problem in polynomial-time, our algorithm relies
on an a-approximation algorithm for the underlying of-
fline optimization problem. It also relies on an augmen-
tation subroutine that, given two solutions of benefits
b,b', b < b', which are incomparable in the poset, finds
another solution of benefit at least b’ that is comparable
in the poset to the solution of benefit b. If one can show
that this solution has cost no more than a linear com-
bination of the costs of the original two solutions, then
one can obtain an O(a)-competitive algorithm, where
the constant in the big-O depends on the constants in
the linear combination. The basic idea of the incre-
mental algorithm is to build a chain of solutions of ge-
ometrically increasing cost by repeatedly applying the
augmentation subroutine to the current solution in the
chain and a solution generated by the offline approxi-
mation algorithm that has cost no more than the next
bound in the geometrically increasing order. Similar
ideas are implicit in the minimum latency approxima-
tion algorithm of Blum et al [4], the incremental facility
location algorithm of Plaxton [31] and the hierarchical
k-center algorithm of Dasgupta and Long [12]. Choos-
ing a random shift of the buckets as in Goemans and
Kleinberg [17] and Dasgupta and Long [12] gives im-
proved randomized algorithms.

In some cases, we are able to improve the compet-
itive ratio still further. In particular, if there exists a
Lagrangean multiplier preserving p-approximation algo-
rithm for the problem in which Lagrangean relaxation
has been applied to the benefit constraint, we are able
to give the same result as above in which this algo-
rithm replaces the a-approximation algorithm. This
yields improved competitive ratios in the cases where
we have such algorithms with performance guarantees
p better than the best known performance guarantee
a for the problem with the benefit constraint. In par-
ticular, there is a Lagrangean multiplier preserving 2-
approximation algorithm for the facility location prob-
lem (due to Jain et al. [25]), which we can use in place
of a (3 + ¢)-approximation algorithm for the k-median
problem (due to Arya et al. [3]), yielding improvements
in the competitive ratios for the incremental k-median



problem, hierarchical k-median problem, and hierarchi-
cal k-means problem.
We summarize our main results in Table 1.

1.3 Related work All of the optimization problems
studied in this paper are NP-hard and have been ex-
tensively studied with respect to their approximabil-
ity. Several approximation algorithms are known for
the vertex cover and set cover problems (see, for ex-
ample, [23, 34]). Our incremental k-vertex cover algo-
rithm relies on a 2-approximation algorithm for k-vertex
cover, while our incremental k-set cover algorithm re-
lies on an O(logn)-approximation algorithm for k-set
cover [6, 15, 22, 29, 32].

The k-median problem and the related uncapaci-
tated facility location problems have been the objects
of intense study in the algorithms community in the
past few years. The currently best known approxima-
tion algorithms for these problems have performance
guarantees of 3 + € (due to Arya et al. [3]) and 1.52
(due to Mahdian, Ye, and Zhang [28]) respectively. Of
interest to us is the best known Lagrangean multiplier
preserving approximation algorithm for the facility lo-
cation problem with performance guarantee of 2, which
is due to Jain et al. [25]. The best currently known
approximation algorithm for the k-MST problem has a
performance guarantee of 2 (Garg [16]).

There has been a lot of previous work on incremen-
tal approximation algorithms, but it was usually done
on a problem-by-problem basis. Mettu and Plaxton [30]
introduce the incremental k-median problem, and give
a 29.86-competitive algorithm for it. Their algorithm
runs in near linear time and their argument also applies
when the distances satisfy a weaker version of triangle
inequality, yielding an O(1)-competitive solution for the
incremental k-means problem. Plaxton [31] introduces
the incremental facility location problem and gives an
(4 + €)a-competitive algorithm for it, given any a-
approximation algorithm for the uncapacitated facility
location problem, resulting in a 12.16-competitive algo-
rithm. Gonzélez [18] gives a 2-approximation algorithm
for the k-center problem, which is also a 2-competitive
algorithm for the incremental k-center problem. Im-
plicit in the work of Charikar et al. [7] on incremental
clustering are a deterministic 8-competitive algorithm
and a randomized 2e-competitive algorithm for the hi-
erarchical k-center problem. Dasgupta and Long [12]
explicitly introduce the idea of finding competitive hi-
erarchical clusterings, and derive the same bounds as
above for the hierarchical k-center problem. Plaxton
[31] gives an 8a-competitive algorithm for the hierar-
chical k-median problem, given an a-competitive al-
gorithm for the incremental k-median problem. Us-

ing the algorithm of Mettu and Plaxton [30] gives
a 238.88-competitive algorithm for the hierarchical k-
median problem. The work of [31] also includes an
O(1)-competitive algorithm for the hierarchical k-means
problem. Implicit in work on the minimum latency
problem is a number of different algorithms for the in-
cremental k-MST problem; given an a-approximation
algorithm for the k-MST problem, the work of Blum et
al. [4] yields an 4a-competitive algorithm, while a ran-
domized ea-competitive algorithm is implicit in Goe-
mans and Kleinberg [17]. Other work on incremen-
tal approximation algorithms includes incremental flow
(Hartline and Sharp [21]) and incremental bin packing
(Codenotti et al. [11]).

Independently Chrobak, Kenyon, Noga, and Young
[9] also discovered the same (24 + €)-competitive de-
terministic and (6e + €)-competitive randomized algo-
rithms as ours for the incremental k-median problem.
They also consider the incremental version of a median
problem in which the goal is to minimize the number
of medians required to satisfy a given cost constraint.
These results are derived by a reduction from a new
problem, which they call online bribery, for which tight
upper and lower bounds are established. Chrobak et
al. [9] also extend their work to fractional k-medians,
approximately metric distance functions, which include
the k-means objective, and bicriteria approximations.

As a paradigm for dealing with uncertainty, incre-
mental approximations are most closely related to online
algorithms, stochastic optimization, and universal ap-
proximations. The study of online algorithms considers
problems in which the input is revealed over time, and
the algorithm must make decisions without knowledge
of future inputs [5, 14, 33]. The study of stochastic opti-
mization (e.g., see [13, 19, 20, 24]) considers problems in
which the cost of future decisions may be significantly
different than those now: the future is unknown, but
is chosen randomly from one of a number of different
possible scenarios which are known (possibly given as a
black box). In contrast, an incremental algorithm for
a problem performs all of the computation offline and
outputs a single chain of solutions such that for every
possible benefit constraint there is a valid solution that
is close to the optimal. Our measure of performance for
incremental solutions is modeled on the measure of com-
petitive ratio from online algorithms. The notion of uni-
versal approximations studied in [27] considers a much
stronger notion of uncertainty in the sense that the num-
ber of possibilities for the unknown portion of the input
is exponential in the size of the problem. As a result,
the competitive ratios achievable within the incremental
framework are much smaller than the approximations
achievable within the universal framework.



Competitive ratio

Via optimal Via approx Via LMP approx
Problem Prev known Det | Rand Det Rand Det Rand
Incremental k-median 29.86 [30] 8* 2¢e* 24 + ¢* 6e + € 16 4de
Incremental k-MST 8 [4], 2e [17] 4 e 8 2e
Incremental k-vertex cover 4 e 8 2e
Incremental k-set cover 4 e || O(logn) | O(logn)
Incremental facility location 12.16 [31 4 e 12.16 1.52e
Hierarchical k-median 238.88 [31] || 20.71 | 10.03 || 62.13+ ¢ | 30.09 + ¢ || 41.42 20.06

Table 1: Our summary of results. The first column gives the best previously known competitive ratio for a
polynomial-time algorithm. The second and third state the competitive ratio for incremental solutions obtained
using optimal algorithms for the benefit-constrained problems and are thus non-polynomial-time algorithms; they
should be viewed as existential results. The fourth and fifth state the competitive ratio for our polynomial-
time algorithms via an a-approximation algorithm. The sixth and seventh give the competitive ratio for our
polynomial-time algorithms via a Lagrangean multiplier preserving p-approximation algorithm. The results with
* were independently obtained by Chrobak, Kenyon, Noga, and Young [9].

2 A general framework for incremental
optimization

In this section, we present a general framework for

incremental optimization (Section 2.1) and a generic

approximation algorithm for incremental optimization

problems that lie within this framework (Section 2.2).

2.1 Problem definitions The problems we consider
in this paper are all minimization problems and share
the following characteristics. Each optimization prob-
lem II can be specified by a quadruple (U, ben, cost, p),
where U is a set of feasible solutions, ben : U — R
and cost : U — R are benefit and cost functions, re-
spectively, and the goal is to seek a solution S that
minimizes cost(S) subject to the condition ben(S) > p.
We refer to II as an offline problem to distinguish it
from its incremental version, which we now define. We
introduce a binary relation <, which induces a partial
order on U, i.e., (U, <) is a poset. Throughout this
paper, we focus on benefit and cost functions that are
monotonically non-decreasing with respect to the par-
tial order; that is, if S < ', then ben(S) < ben(S")
and cost(S) < cost(S’). The incremental version of II is
specified by the quadruple (U, <X, ben, cost) and seeks a
chain C of (U, X). Define the competitive ratio of C as

cost(r (C, p))
sup  ——— L,
0<p<ben(t) COst(Opt(p))
where 7(C, p) denotes the smallest indexed element of C
whose benefit is at least p and cost(Opt(p)) is the cost

of an optimal solution for the offline problem for benefit
p, namely (U, ben, cost, p).

2.2 A generic incremental approximation algo-
rithm The core of each of our approximation algo-
rithms for incremental optimization problems is a sub-
routine for augmenting a given solution to achieve a
certain benefit. In this section, we present a sufficient
condition for the existence of such an augmentation.
By repeatedly invoking this augmentation subroutine
(which is specific to the particular problem), we show
how to derive a sequence that has a good competitive
ratio. We begin by defining the augmentation property.
For convenience, let Bj,,, denote maxgcy ben(S), the
maximum benefit achieved by a feasible solution.

DEFINITION 2.1. (v, d)-Augmentation: For every solu-
tion S of U and every real p < Bz, there exist an
augmentation S' and reals v,0 > 0 such that

1. §=<5".
2. cost(S') < ycost(S) + dcost(Opt(p)).
3. ben(S") > p.

Let Augment(S, p,v,d) denote a subroutine that com-
putes such an augmentation.

We now present two generic incremental optimiza-
tion algorithms, given an augmentation subroutine.
One is deterministic, while the other is randomized.
Since these two algorithms share the same structure,
differing only in the parameter setting (the Initializa-
tion step below), they are shown together. In the sub-
sequent sections, we show that for each of the problems
we consider in this paper, the augmentation subroutine
can be implemented using an approximation algorithm



Algorithm 1 INCAPPROX(7, §)

1. Initialization:

1D: (Deterministic) i =0, So = 0, 8 = 27, Bo = 1.
1R: (Randomized) ¢ = 0, So = 0, 8 is the minimizer of
(1_5/%, Bo = 8%, where X is uniform from [0, 1).
2. Iteration ¢: S;+1 = Augment(S;,p,7,d), where p is the
largest value for which cost(Augment(S;, p,~,4)) is at most
BoB*! (e.g., do a binary search on p).
3. Termination: If ben(S;) # Bmaz, @ < ¢ + 1, go to step 2;
Otherwise, return sequence S1,-- -, S;.

to the offline optimization problem for suitable choices
of v and 6.

REMARK 2.1. For some applications discussed in this
paper, most notably the incremental and hierarchical
median problems, the poset induced by the partial order
is, in fact, a ranked poset; that is, every mazximal
chain in the poset is of the same length. For these
problems, we can replace the chain C that is output by
the above incremental algorithm by any mazimal chain
that contains C, without increasing the competitive ratio.

THEOREM 2.1. If (v,d)-augmentation holds for reals
v > 1, § > 0, then (i) INCAPPROX(7,d) (Deter-
ministic) computes an incremental solution with com-
petitive ratio 4v6; () INCAPPROX(%,d) (Randomized)
computes an incremental solution with competitive ratio
ming %, which equals ed, when v = 1.

Proof. Fix a real p < B. Let S* denote an optimal
solution for the instance with benefit p. Let i be the
smallest integer such that 5°°5t(5 ) < ByfBi. Tt follows

that cost(5*) > (BoB/B) - (1 1/B)/6.

By the augmentation property, we have ben(S;) > p
since cost(S; 1) < BoBi ! and BB + dcost(S*) <
Bof:. Note that for the examples treated in this paper,
cost(Sp) is either 0 or could be scaled to 1. Now we
analyze the two versions of the algorithm.

Deterministic case: We lower bound cost(S*) by
ﬁ"ﬁﬁl . #, and obtain the following upper bound on
the competitive ratio of C.

cost(7(C, p))/cost(Opt(p))

< cost(S;)/cost(Opt(p))
BB’ 2
< m =pB%/(B—")-
B
The above bound is minimized when § = 2y, thus

yielding a 44 competitive ratio.

Randomized case: Since f; is a random variable 3%,

where X is uniform in [0, 1), it follows that % isa
T=a7F
random variable 3Y, where Y is uniform in [0,1). Thus

the expectation of the ratio smst(s*) is f BYdy =

ln ﬁ
1—~/8
We conclude that the competltn;e ratio is
B [ Bof’ ] BoB' | 90
t(S* dcost(S*) 1—
cost(S*) T v/B

R C )

(1-~/B)Inp
We select 8 to minimize the last term. In particular,
with v = 1, we set § = e, obtaining a ratio of ed. O

3 Applications

In this section, we apply our framework of Section 2
to incremental versions of several classical optimization
problems. Due to space constraints, we have omitted
several proofs from this extended abstract.

3.1 The incremental k-MST problem Given a
complete graph G = (V, E), |V| = n, with metric cost
function w : E — Q% and a special r € V, the (rooted)
k-MST problem seeks a minimum-cost subgraph of G
that spans at least k vertices, including r. In the
incremental k-MST problem, we seek a sequence of n—1
edges of E, ey, e, ...,e,—1 such that for any k € [2,n],
the first £ — 1 edges of the sequence span k vertices
including r. For each k, consider the ratio of the sum of
the cost of the first £k —1 edges to the cost of an optimal
k-MST of G that covers r. The goal of incremental k-
MST is to seek a sequence of edges that minimizes the
maximum of this ratio, over all k.

In our framework, U is the set of all connected
subgraphs of G that contain r, < is the C relation of the
edge subsets. The benefit of a solution is the number
of vertices it spans, and the cost is the sum of the edge
weights.

LEMMA 3.1. There ezists a (1,1)-augmentation for the
k-MST problem, and a (1,a)-augmentation that can be
implemented in poly-time, where o = 2. O

THEOREM 3.1. There exists a solution to incremental
k-MST problem with competitive ratio 4. A determinis-
tic solution with competitive ratio 4o and a randomized
solution with competitive ratio ea can be computed effi-
ciently, where a = 2.

Proof. Immediate from Lemma 3.1, Theorem 2.1, and
the 2-approximation for k-MST due to Garg [16]. DO

We note that this computation of 8-competitive incre-
mental MST is implicit in the work of Blum et al [4].



3.2 Incremental and hierarchical median prob-
lems

3.2.1 The incremental k-median problem Given
the locations of a set F' of |F| = ny facilities and a set
C of |C| = n, clients in a metric space, the k-median
problem asks to find a set of k facilities to open such that
the sum of the demand-weighted distances of the clients
to the nearest open facility is minimized. Let ¢;; denote
the distance between any two locations ¢ and j. In the
incremental k-median problem, we seek an ordering of
the facilities. For each k, consider the ratio of the cost
of opening the first k facilities in the ordering to the cost
of an optimal k-median solution. The goal is to find an
ordering that minimizes the maximum of this ratio over
k= 1, ey Ng.

We model the incremental median problem using
our framework of Section 2 by the quadruple (U, =<
,ben, cost). The set U = 2F is the set of all feasible
solutions, each solution represented by the set of open
facilities. The binary relation is given as S; < Sy iff
S1 2 S, ben(S) equals ny — [S|, and cost(S) is the
cost of connecting the clients to their nearest facilities
in S. The output of our incremental approximation
algorithm is a chain of subsets of the facilities, where
each chain element (subset of facilities) is a subset of the
previous element. As shown in Theorem 3.2 below, the
desired sequence of facilities for the incremental median
problem is simply a concatenation of the differences
between consecutive sets of this chain, presented in
reverse order. The main claim of the following lemma
is implicit in [26] and [10].

LEMMA 3.2. There exists a (1,2)-augmentation for the
incremental median problem. A (1,2a)-augmentation
can be efficiently implemented, where o = 3 + €.

Proof. Let S2 (ben(S2) < p) be a set of facilities. We
would like to augment it to get a benefit of at least p.
Let Sy be a set of facilities with benefit p. According to
the definition, |S3| > [S1]. We aim to find a subset S
such that Sy < S, i.e., S C Sz, and |S| < |Sy].

For any location (client or facility) j, let di(j)
(resp., d2(j)) be the closest facility to j in Sy (resp., Sa2).
For any client j let us bound the distance ¢; 4,(4, (;))-

S Cidi(g) T Cdi(4).da(da(5)
Cjd1(j) T Cdr(4).d2(4)
Cj,d1(5) T Cida(s) T Cida (i)
2¢5,d1(3) + Cj,da()>

Cj,d2(d1(5))

IN A

where the second inequality follows since da(d;(j)) is
the closest median in Sy to di(j). Define S = {d»(3) :
i € Si}; that is, S is the set of facilities in Sy that

are closest to the facilities in S;. Let d(j) be the
closest facility in S for a location j. For any client j,
Cjd() S Chddi(i) = Cida(di(i) = 2€j,a1() T Cida(y)-
Multiplying by the client demand and summing over all
clients, we obtain cost(S) < cost(S2) + 2cost(S1). Note
that S C Sz and |S| < |S1].

Using an optimum solution (resp., a-approximate
solution [3]) to the k-median problem for S; proves the
first (resp., second) assertion. m|

THEOREM 3.2. There exists a solution to the incremen-
tal median problem with competitive ratio 8. A deter-
ministic solution with competitive ratio 8a and a ran-
domized solution with competitive ratio 2ea can be com-
puted efficiently, where oo = 3 + €.

Proof. The existence and computability of chains of
(U, %) with the desired competitive ratios follow imme-
diately from Lemma 3.2 and Theorem 2.1. To convert a
given chain C of facility sets into a sequence of medians,
we simply generate a maximal chain containing C and
concatenate the differences between consecutive sets of
this chain in reverse order. By the definition of com-
petitive ratio (see Section 2.1), the competitive ratio of
the chain is at least that of the median sequence, thus
completing the proof of the theorem. O

3.2.2 The hierarchical k-median problem We
define an assignment of a k-median solution as func-
tion from clients to facilities that assigns each client to
an open facility in the solution. In the hierarchical k-
median problem, we give an ordering of facilities along
with assignments ay,...,a,, such that the assignment
ay assigns clients only to the first & facilities in the or-
dering; this corresponds to a clustering with k clusters.
To ensure that the clusterings are formed by merging
pairs of clusters, we require that for any two assign-
ments a; and aj_1 that a;_1 can be obtained from ay
by reassigning all the clients assigned to the kth facility
in the ordering to a single facility earlier in the order-
ing. Now consider the ratio of the cost of assignment ay,
to the cost of an optimal k-median solution. The goal
of the problem is to find an ordering of facilities and
a valid sequence of assignments so as to minimize the
maximum of this ratio over all k =1,...,ny.

We show how to cast the hierarchical median prob-
lem into our incremental optimization framework. A so-
lution to the k-median problem is represented as a pair
(S,a) containing a subset S of facilities and an assign-
ment a of clients to facilities in S. In the incremental
k-median problem, the assignment function assigns each
client to its nearest available facility. This cannot be as-
sumed for the hierarchical median problem. For any i
in S, let a 1(i) be the set of clients assigned to i by a.



Given a solution (S, a), we say that a is locally-optimal
for S if for all i in S, assigning all clients in a=!(i) to
any other single facility in S will not decrease the total
cost. We adopt the convention that if the assigment is
omitted, the default assignment is to assign each client
to its nearest available facility.

In the quadruple (U, <, ben, cost), we let U be the
set of all pairs (S,a) such that a is locally-optimal in
(S,a). It is easy to see that U includes all optimal k-
median solutions, for all values of k.

DEFINITION 3.1. We say two solution pairs (Si,a1)
and (Sa,az2) in U are nested if

1. §1 C Sy;

2. Vj € C, if ax(j) € S1 then a1(j) = a2(4);

3. Vi, k € C, if ax(j) = aa(k) then a1(j) = a1 (k).
We denote nested solutions by (S1,a1) C (S2,as).

We define < as (S2,a2) =< (Si,a1) iff (S1,41) C
(S2,a2), the benefit of a solution (S,a) as ny — |S|,
and the cost of (S,a) to be the service cost for the
clients according to the assignment a. By definition,
the benefit function is monotonically non-decreasing
with the partial order. The same holds for the cost
function since the assignment in any solution is locally
optimal. We now develop an incremental approximation
for (U, =<, ben, cost) and show that a chain output by this
algorithm can be transformed to a hierarchical ordering
of solution pairs, with the desired competitive ratio.

We first prove the following lemma which will be
useful in deriving the augmentation lemma.

LEMMA 3.3. Given a set Vi of facilities and a solution
(Va,a2) € U, we can obtain a solution (V1,a1) € U such
that (V1,a1) and (Va,az2) are nested and cost(Vi,a1) <
2cost(V3, as2) + cost(V1).

Proof. Let dy(j) denote the nearest median in V; to the
client j. We define two functions P and (). The function
P maps the facilities in V5 \ V4 to their nearest facilities
in V7. This is the “parent” function of the hierarchical
algorithms of Dasgupta and Long [12] and Plaxton [31].
The function @ maps any facility ¢ in V2 \ V; to a facility
i1 in Vi, which services the clients in a5 1(z) at the least
total cost, among all facilities in V;.

We now create assignment a;: for any client j,
a1(j) = a2(j) if az(j) € Vi and a1(j) = Q(az(j)) if
as(j) € Vo \ V1. Tt is easy to verify that (Vi,a1) is
locally-optimal and the pairs (V1,a1) and (Va,as) are
nested. Consider the assignment a, which is defined the
same way as aj by replacing P for (). By the definition
of @, it follows that cost(Vi,a1) < cost(Vi,a). Showing

Cia() < 2€5,a5(5) T €4, (5) for all clients j and summing
over all clients in C gives the required result.

If a2(j) E' Vi then cj,a(j) = cj,ag(j) S 20‘7‘,@2(]‘) +
Cj,da(4)- If a2(]) eV, \ Vi1 then

Cja2(3) T Caz(4),P(az(4))
Cjaa(s) T Caz(4),d1(4)

2¢5,05(5) T Cj,da (G)-

c]:"/(]) = c]vP(a'2(]))

IN N IA

The second inequality follows from the definition of
P(-); the third is due to triangle inequality. |

LEMMA 3.4. There exists a (3,2)-augmentation for the
hierarchical median problem. A (3,2a)-augmentation
can be efficiently implemented, where o = 3 + €.

Proof. Given (Va,as) € U, with ben(V2) < p, let V
with ben(V) = p be a solution to the p-median problem
(with closest facility assignment). Using Lemma 3.2 we
can find another set Vi C V5 with |Vi| = |V] such
that cost(Vy) < cost(Vz2) + 2cost(V). Using Vi and
(V2,as) in Lemma 3.3 we get cost(V1,a1) < cost(V7) +
2cost(Va, az). Since cost(Va) < cost(Vz, az),

cost(Vi,a1) < cost(V7) + 2cost(Va, az)

2cost(V') + cost(Va) + 2cost(Va, az)

<
< 3cost(Vs,az) + 2cost(V).

Using an optimum solution (resp., an a-
approximate solution [3]) to the k-median problem for
V proves the first (resp., second) assertion. |

THEOREM 3.3. There exists a solution to the hierarchi-
cal median problem with competitive ratio 24. A deter-
ministic solution with competitive ratio 24a and a Tan-
domized solution with competitive ratio 10.76a can be
computed efficiently, where a = 3 + €.

Proof. The existence and computability of chains of
(U, %) with the desired competitive ratios follow from
Lemma 3.4 and Theorem 2.1. To convert a given chain C
into a hierarchical sequence of solution pairs, we return
the reverse of a maximal chain that contains C. One
can obtain a maximal chain of a given chain as follows:
between any consecutive pair of solution pairs (Sp, ag)
and (S, a) such that |Sy| = |S|+k, for some k > 1, insert
solution pairs (S1,a1), (S2,as2), - .., (Sk_1,axr_1), where
S; equals S; 1 \ {f} for an arbitrary f in S;_; \ S and
a; is identical to a;_; except that all clients assigned to
f in a;—;1 are assigned to a facility in S; that offers the
least service cost. By the definition of competitive ratio
(see Section 2.1), the competitive ratio of the chain is at
least that of the hierarchical sequence, thus completing
the proof of the theorem. m|



REMARK 3.1. In the proof of Lemma 3.4, we have made
no additional assumptions about Vo with respect to V
or Vi. In fact, their costs are geometrically related.
Using this fact, one can then do a better analysis of
the incremental approrimation algorithm and replace
the performance ratios 24,24a,10.76c in Theorem 3.3,
by 20.71,20.71a and 10.03a respectively. Details are
deferred to the full paper.

3.2.3 The k-
means problems These problems are identical to their
k-median counterparts, except that the k-means cost
function is the the demand-weighted sum of squares of
the distances of the clients to their nearest open facility.
The set of solutions, their benefit, the binary operator,
and the structure of posets are exactly the same as that
of the k-median problems.

incremental and hierarchical

LEMMA 3.5. There exzists a (2,8)-augmentation for
the incremental k-means problem. Given an a-
approzimation algorithm to the k-means problem, a
(2, 8a)-augmentation can be computed. m|

THEOREM 3.4. There exists a solution to the incremen-
tal k-means problem with competitive ratio 64. Given a
polynomial-time a-approrimation for the k-means prob-
lem, a deterministic solution and a randomized solution
with competitive ratios 64a and 31.82a, respectively, can
also be computed efficiently. O

LEMMA 3.6. There exists an (18,8)-augmentation for
the hierarchical k-means problem. Given an a-
approzimation algorithm for the k-means problem, an
(18, 8ar) -augmentation can be computed. O

THEOREM 3.5. There ezists a solution to the hierarchi-
cal k-means problem with competitive ratio 576. Given
an a-approximation algorithm for the k-means problem,
a deterministic and a randomized solution with compet-
itiwe ratios 576a and 151.1a can be computed. O

3.3 The incremental facility location problem
This problem was first defined by Plaxton [31], who
also gives a (4 + €)a competitive algorithm, where « is
the best available approximation factor for the facility
location problem. We show that our framework also
handles this problem with competitive ratio 4a.

The setting is similar to that of the k-median
problem. In addition to the facility-set F, client-set C,
client demands w(-), and metric connection cost c(i, j)
between any two locations ¢ and 7, there is an opening
cost v(i) for each facility . To define the incremental
facility location problem, we introduce a positive scaling
factor A, so that the total cost associated with opening

a subset Y C F'is

costA(C,Y) = XA- > c(5,Y) - w(i) + Y vi),

jec i€y
where ¢(4,Y) = min;ey ¢(j,i). The incremental prob-
lem is to compute an ordered sequence of the facilities
F, (fi, f2, -+, fn) and a threshold sequence? t; < to <
--- < t,, drawn from R U oo, such that for any scaling
factor A > 0, costy(C, {fi|¢ < k}) is a good approxi-
mation to Opt, = minycr costy(C,Y’), where k is the
smallest index such that ¢, > A.

To fit this problem into the framework described in
Section 2, we can conceptually reformulate the problem
as follows. Each solution element of the universe U is a
subset of F'x R. For S € U, define ben(S) = sup m2(S5),
where 7; is the projection to the i*" coordinate, i = 1, 2.
The binary operator is defined as S; < Sy iff S C Ss.
The cost function can now be defined as

cost(S) = ben(5) - 3 el m(8)) - w(i) + 3 v(i):

jec iem1(S)

LEMMA 3.7. There exists a (1,1)-augmentation for the
A-facility location problem. A (1,a)-augmentation can
be computed efficiently, where a = 1.52. a

THEOREM 3.6. There exists an incremental solution
for the incremental facility location problem with com-
petitive ratio 4. Moreover, an incremental solution of
ratio 4o and o randomized solution of expected ratio e
can be computed efficiently, where a = 1.52.

Proof. Follows from Lemma 3.7 and Theorem 2.1. O
3.4 Incremental covering problems

3.4.1 The incremental k-set cover problem
Given a universe X of n elements and a collection of
subsets of X, ¢ = {Cy,---,C;,} and a cost function
¢:C — QT, find an ordered sequence of C, such that
for any k € [1,n], the minimal prefix of the sequence
that covers k elements is a good approximation to the
k-set cover problem. Recall that the k-set cover prob-
lems asks for a min-cost subcollection of C that covers
at least k elements.

In the language of Section 2, the universe U is 2C.
The benefit of S C C is simply the total number of
elements covered by S. Then S; < Sy iff S; C S5, and
cost(S) is the sum of the weights of the subsets in S.

LEMMA 3.8. There ezists a (1,1)-augmentation for k-
set cover problem. Moreover, a (1, a)-augmentation can

be computed efficiently, where o =Ilnn + 1. O
2The definition of threshold sequence in [31] is slightly different

from ours, but serves the same purpose.



THEOREM 3.7. There exists an incremental solution
for the incremental k-set cover problem with competitive
ratio 4. Moreover, a solution with ratio 4a can be
computed efficiently, where « =Inn + 1.

Proof. Follows from Lemma 3.8 and Theorem 2.1. O

3.4.2 The incremental k-vertex cover problem
Just as vertex cover is a special case of set cover, k-
vertex cover problem is a special case of k-set cover.
We hence have a corresponding incremental vertex cover
problem. A 2-approximation algorithm for k-vertex
cover is known [6, 15, 29].

THEOREM 3.8. There exists an incremental solution
for the incremental k-vertex cover problem with com-
petitive ratio 4. Moreover, a solution with ratio 4a can
be computed efficiently, where a = 2.

4 A general approach for problems with

bounded envelope

Consider a problem IT specified by a quadruple (U, <
,ben, cost) as discussed in Section 2. We additionally
assume that the range of benefit function is positive
integers with maximum value B.

DEFINITION 4.1. An a-approximate bounded envelope
of a problem I1 consists of values by for k ranging from
1 to B and solutions S,; with ben(S,,) = n; for some
1=mn; <ng <---<ng = B, such that:

1. by, < cost(Opt(k)) for 1 <k < B;
2. cost(Sy,) <a-by, for1<i<l;

8. b =bp,_, + 7121.__7:;:_11 (bm
andi=2,...,1.

—bn,_y) formni_y <k <mny

The idea of an a-approximate bounded envelope
was first used for the k-MST and the minimum latency
problems by Archer, Levin, and Williamson [2, 1].

DEFINITION 4.2. An interpolation algorithm T for a
problem 11 is defined as an algorithm which when given
two solutions Sk, and Sy, with Sk, = Sk,, ben(Sk,) =
ki, ben(Sg,) = k2, outputs a sequence Sk, = Sk,+1 =
Ski+2 =2 ... R Sp,—1 = Sk, of solutions such that for
k1 < k < ko, we have ben(Sy) = k, and cost(Sy) <
cost(Sk, ) + ,f;_kkl (cost(Sk,) — cost(Sk,)).

1

We use an idea similar to the generalized approach
for incremental algorithms in Section 2 to get a good
incremental algorithm for the problem II given an a-
approximate bounded envelope, interpolation algorithm
and an augmentation algorithm Augment(S,p,~,d) for

that problem. The performance guarantee of the ap-
proximation algorithm in the augmentation is now re-
placed by «, the factor from the bounded envelope.

In particular, we obtain a 2-bounded envelope for
the k-median problem, and an associated interpolation
algorithm for both the incremental and hierarchical k-
median problems, which allows us to replace the factors
of (3 + €) in the competitive ratios of these problems
coming from the approximation algorithm of Arya et
al. [3] with a factor of 2. To do this, we exploit the fact
that the facility location problem is a Lagrangean re-
laxation of the k-median problem, as observed by Jain
and Vazirani [26]. We use a Lagrangean multiplier pre-
serving (LMP) (2 — ¢)-approximation facility location
algorithm of Jain et al [25] to obtain a 2-approximate
bounded envelope for the k-median problem. Our ap-
proximation algorithm computes the orderings for the
incremental and hierarchical k-median problems using
this 2-approximate bounded envelope, an interpolation
algorithm, and the augmentation algorithms of Lem-
mas 3.2 and 3.4, respectively. Owing to space con-
straints, we only state the main results here and defer
the algorithm details and analysis to the full version.

The above approach based on bounded envelopes
yields a 16-competitive deterministic solution and a 4e-
competitive randomized solution for the incremental k-
median problem, and a 41.42-competitive deterministic
solution and a 20.06-competitive randomized solution
for the hierarchical k-median problem.

5 Concluding Remarks

Our approach described in Section 2, and illustrated in
Section 3, is general and can be easily used to handle
other problems such as the k-center problem and the
minimum dominating set problem. In Section 3.3, we
have considered the incremental facility location prob-
lem introduced by [31]. Another natural incremental
version of facility location can be defined using a partial
facility location problem studied in [8], where all but s
cities need to be served. Our approach again obtains an
O(1)-competitive solution using a O(1)-approximation
algorithm for the offline version.

One limitation of our work is that it may not lead
to the best incremental solutions for a given problem.
For instance, we can obtain an efficient 2-competitive
algorithm for the unweighted vertex cover problem
using the standard primal-dual approach (e.g., [34,
Chap. 24]), while our generic approach only achieves
a bound of 8. We also mention that for each of
the problems discussed in the technical sections, there
exists a constant ¢ such that no c-competitive solution
exists. For each of these problems, however, the best
competitive ratio achievable is not known.
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