
Approximation Algorithms for Data Placement Problems∗

Ivan Baev† Rajmohan Rajaraman‡ Chaitanya Swamy§

Abstract

We develop approximation algorithms for the problem of placing replicated data in arbitrary net-
works, where the nodes may both issue requests for data objects and have capacity for storing data
objects, so as to minimize the average data-access cost. We introduce thedata placement problemto
model this problem. We have a set of cachesF , a set of clientsD, and a set of data objectsO. Each
cachei can store at mostui data objects. Each clientj ∈ D has demanddj for a specific data object
o(j) ∈ O and has to be assigned to a cache that stores that object. Storing an objecto in cachei incurs a
storage cost offo

i , and assigning clientj to cachei incurs an access cost ofdjcij . The goal is to find a
placement of the data objects to caches respecting the capacity constraints, and an assignment of clients
to caches, so as to minimize the total storage and client access costs.

We present a 10-approximation algorithm for this problem. Our algorithm is based on rounding
an optimal solution to a natural LP-relaxation of the problem. One of the main technical challenges
encountered during rounding is to preserve the cache capacities while incurring only a constant-factor
increase in the solution cost.

We also introduce theconnected data placement problem, to capture settings where write-requests
are also issued for data objects, so that one requires a mechanism to maintain consistency of data. We
model this by requiring that all caches containing a given object be connected by a Steiner tree to a root
for that object, which issues a multicast-message upon a write to (any copy of) that object. The total cost
now includes the cost of these Steiner trees. We devise a 14-approximation algorithm for this problem.

We show that our algorithms can be adapted to handle two variants of the problem: (a) ak-median
variant, where there is a specified bound on the number of caches that may contain a given object; (b)
a generalization where objects have lengths and the total length of the objects stored in any cache must
not exceed its capacity.

∗This work is a combined version of two papers: an extended abstract by Baev and Rajaraman [3] that appeared in the Proceed-
ings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, and an unpublished manuscript by Swamy [38].

†ivan.baev@hp.com. Java, Compilers, and Tools Laboratory, Hewlett-Packard Company, 11000 Wolfe Road, Cupertino,
CA 95014.

‡rraj@ccs.neu.edu. College of Computer Science, Northeastern University, Boston, MA 02115. Supported by NSF
CAREER award NSF CCR-9983901.

§cswamy@math.uwaterloo.ca. Combinatorics and Optimization, University of Waterloo,Waterloo, ON N2L 3G1. Sup-
ported in part by NSERC grant 32760-06. Part of this work was done while the author was a student at Cornell University, NY
14853.

1

1 Introduction

Consider a distributed network, some of whose nodes need to periodically access certain data objects, and
some of whose nodes have storage capacity and may serve as caches to store data objects thereby reducing
the cost of accessing data objects. For example, one could have a network of distributed caches and/or
processors in a large-scale information system or computing environment. A powerful paradigm to improve
performance, which has been explored in several studies [10, 5, 1, 28] is cooperative caching, wherein the
caches cooperate in making storage decisions and in servingeach others’ requests. (Cooperation is of course
likely to be the default mode under centralized control, where all the network nodes are under the control
of a single entity, e.g, as in an organization’s local area network.) Clearly, cooperation has the potential to
improve system performance by reducing average access costand improving storage-space utilization. A
basic problem that arises in such a cooperative setup is: given a cost function specifying the cost of accessing
an object stored at one location from another, and the access-pattern of each node for each object, determine
a placement or mapping of the data objects to caches, so as to minimize the average cost of accessing the
data objects.

We abstract this problem via the following mathematical formulation, which we call thedata placement
problem. We are given a set of cachesF , a set of data objectsO, and a set of clientsD. Each cachei ∈ F
has a capacityui that limits the total number of data objects that may be stored in the cache. Each client
j ∈ D has demanddj for a specific data objecto(j) ∈ O and has to be assigned to a cache that stores that
object. Storing an objecto in cachei incurs astorage costof f o

i , and assigning clientj to cachei incurs an
access costof djcij proportional to the “distance”cij betweeni andj. The storage costs could be used to
model the cost of realizing a placement, e.g., the costf o

i might represent the cost of expunging some items
from the cache in order to free up storage space. The data placement problem seeks a placement of the data
objects to caches that respects the cache capacities, and anassignment of clients to caches, so as to minimize
the total storage and client access costs. More precisely, we want to determine a set of objectsO(i) ⊆ O to
place in each cachei ∈ F satisfying|O(i)| ≤ ui, and assign each clientj to a cachei(j) that stores object
o(j), (i.e.,o(j) ∈ O(i(j))) so as to minimize

∑

i∈F

∑

o∈O(i) f o
i +

∑

j∈D djci(j)j . As in several previous
studies, especially on facility location [5, 1, 37, 34, 7, 6], we assume that the caches and clients are located
in a common metric space, so the distancescij form a metric.

More generally, each objecto ∈ Omay have alengthlo, and the capacityui of cachei ∈ F now bounds
the total length of data objects that may be stored in the cache. The access-cost of an object is weighted
by its length, so if clientj is assigned to cachei it incurs an access cost ofdj lo(j)cij . Unless otherwise
stated, we will use the data placement problem to denote the problem with unit (or equivalently, uniform)
object-lengths.

The data placement problem can also be motivated from a facility-location perspective. In a typical
facility-location setting, we are given a set of facilitieswith facility-opening costs and a set of clients with
demands, and we want to open facilities and assign clients toopen facilities so as to minimize the sum of the
facility-opening costs and client-assignment costs. In various such applications, the clients are differentiated
according to the kind of service they require, and in order tosatisfy a client we need to assign (the demand
of) the client to a facility where the service required by it has been “installed” (so that the facility can provide
this service). The data placement problem can be used to abstract such settings, wherein the caches represent
facilities and the objects correspond to the different services required by the clients; the storage cost models
the cost of installing service at a given facility, and the cache-capacity imposes a restriction on thenumber of
servicesthat may be installed at a facility. Shmoys et al. [35], and Ravi and Sinha [33] introduced problems
closely related to the data placement problem, motivated bysuch facility-location applications.

The data placement problem is a generalization of the metricuncapacitated facility location(UFL)
problem, and hence, isAPX-hard. Moreover, as we show in Section 6 by a reduction from metric UFL, the
problem (with uniform object-lengths) remainsAPX-hard even when there are no storage costs.

2

Our results and techniques. Our main result (Section 3) is a 10-approximation algorithmfor the data
placement problem. The algorithm we present here is an improvement over the approximation algorithm
described in [3]. For the benefit of the reader, we briefly sketch the differences between this algorithm and
the one in [3] in Section 1.1.

Our algorithm is based on rounding an optimal solution to a natural linear-programming (LP) relaxation
of the problem. Observe that the placement problem for each individual object is a UFL-instance; however
these instances are coupled due to the cache-capacity constraints, which is what makes the problem hard.
One of the main technical challenges faced in the rounding isto preserve the cache capacities while losing
only a constant factor in the approximation ratio. Despite the similarity with UFL, hard capacities make
it quite difficult to apply the standard rounding ideas underlying the design of approximation algorithms
for UFL. All LP-based algorithms for UFL employ either filtering [26, 37], or use the dual to bound the
solution cost [8, 18, 17, 6]. Filtering typically involves blowing up the LP-variables, thereby violating
the cache-capacities, and the dual of the LP-relaxation of the data placement problem contains negative
variables (corresponding to the primal capacity constraints), which presents a serious obstacle to using the
dual to bound the solution cost. Instead, we use the techniques developed by Charikar, Guha, Tardos and
Shmoys [7] for thek-median problem.

Our algorithm proceeds in two phases. In the first phase, we build upon a clustering method introduced
by Charikar et al. (Step 1 in [7]) and round the LP-solution toa half-integral solution. In the second phase
of our algorithm, we use the Shmoys-Tardos-Aardal [37] clustering methodwithout any filteringto cluster
the demand-nodes for each object and obtain a solution with the property that for every objecto and cache
i, there is at most one demand-node foro that is served byi. The key observation that allows us to do away
with the problematic filtering step is that, in a half-integral solution, the distance between a client and any
cache serving it fractionally is already bounded relative to its access cost in the half-integral solution. Once
we have the aforementioned property, one can view the fractional solution as a feasible flow to a minimum-
cost flow problem with integral capacities. By the integrality property of flows one can now extract an
integer solution of no greater cost. This algorithm and its analysis are described in Section 3.

The formulation of the data placement problem appears most suitable for applications where objects
are rarely written. In a setting where write-requests are issued for data objects, one needs to have a
separate mechanism to maintain consistency among the replicas of an object. In Section 4, we formu-
late theconnected data placement problem, which incorporates this aspect of data management (which is
not captured by the data placement problem). As proposed by Krick et al. [22] in the context of another
caching problem, we model this by requiring that for every object o, all caches containingo be connected
via a Steiner treeTo to a rootro. When a write-request is issued for objecto, the root initiates an up-
date of all the copies of objecto using the treeTo as a multicast tree. The objective is to minimize the
total cost incurred in storing and accessing objects and building the Steiner trees, that is, to minimize
∑

i∈F

∑

o∈O(i) f o
i +

∑

j∈D djci(j)j +
∑

o∈O Mo
∑

e∈To
ce, where theMos are input scaling parameters.

This generalizes theconnected facility locationproblem [14, 39, 15] for which the best known guarantee is
8.55 [39]. We present a 14-approximation algorithm for thisproblem. One noteworthy feature here is the
ease with which one can interface the algorithm developed inSection 3 (which handles the data-placement
part of the problem) with the rounding ideas proposed in [32,14] to handle the connectivity-aspect of the
problem.

In Section 5, we consider a couple of extensions. First, we consider thek-median variant, where for
every objecto, there is a bound ofko on the number of caches that may store objecto. Our rounding algo-
rithm is versatile and extends easily with minimal changes to this variant, yielding the same approximation
guarantee. Second, we consider the data placement problem with arbitrary object-lengths. It is easy to
show (see Section 6) via a reduction from the PARTITION problem that with arbitrary object-lengths, it is
NP-complete to even decide if there exists a feasible solution; hence, no approximation ratio is achievable in
polynomial time unlessP =NP. We can modify our algorithm to obtain a bicriteria approximation guarantee

3

in this setting: we return a placement of cost at most 10 timesthe optimal where the total length of objects
stored in a cache may exceed its capacity by the maximum object-length. We conclude in Section 6 with a
couple of hardness results about the data placement problemwith (i) no storage costs, and (ii) non-uniform
object lengths.

Related work. The problem of data management in a distributed network has been extensively-studied.
Dowdy and Foster [10] initiated the study of cooperative caching in the context of allocating files in a
distributed network, and this problem has since received much attention. We limit ourselves to an overview
of the work in models that most closely resemble our model; the reader is referred to the surveys [10, 12]
for a more detailed discussion.

Various works [5, 2, 1] have considered anonlineversion of our problem, both with and without cache
capacities, where read and write requests arrive online andhave to be taken care of on the fly. The com-
petitive ratios achievable in the online setting are, not surprisingly, weaker than the approximation ratios
achievable in the offline setting. Awerbuch, Bartal, and Fiat [2] gave a randomized algorithm with competi-
tive ratiopolylog(

∑

i∈F ui) for the uniform metric, whereas Awerbuch et al. [1] give apolylog(maxij cij)-
competitive algorithm for arbitrary metrics, but require apolylog(maxij cij)-factor blow-up in the cache-
capacities. Various studies have incorporated routing information into the caching problem, for instance
by having intermediate nodes cache copies of an object when the object is being routed [16, 31, 41], or by
considering the problem of minimizing network congestion due to routing of requests [27, 28]. In contrast,
we abstract away routing concerns by assuming that thecij-values, which determine the access costs, are
given to us as input.

The offline data placement problem that we consider was first studied forhierarchical networks, or
equivalently when the access costs form an ultrametric (a more restricted class of metrics). Leff, Wolf
and Yu [23] considered ultrametrics derived from a star, Korupolu, Plaxton and Rajaraman [21] gave ex-
act and approximation algorithms for general ultrametrics, and Korupolu and Dahlin [19] evaluated the
practical performance of several placement algorithms forultrametrics. Independent of [3], Meyerson, Mu-
nagala, and Plotkin [29] considered a generalization of ourproblem (called the page-placement problem),
where a cache also has a client-capacity limiting the numberof clients that may be assigned to it. They
gave a constant-approximation, but with a logarithmic violation of both the client-capacities and the object-
capacities. Subsequently, Guha and Munagala [13] obtaineda constant-factor approximation where the
capacities are violated only by a constant factor. Fleischer, Goemans, Mirrokni, and Sviridenko [11] con-
sidered a maximization version of the data placement problem with similar client-capacity constraints that
limit the total demand that may be assigned to a cache. They give a

(

1 − 1
e − ǫ

)

-approximation algorithm,
for anyǫ > 0, and show that no better guarantee is achievable unlessNP⊆DTIME

[

nO(log log n)
]

.
As mentioned earlier, the data placement problem can also bemotivated from a facility-location per-

spective, where caches correspond to facilities and the objects correspond to the differentservicesrequired
by clients. Shmoys, Swamy, and Levi [35] formulated a closely related problem in this context calledfacil-
ity location with service installation costs (FLSIC). Using the terminology of the data placement problem,
in FLSIC the caches (facilities) are uncapacitated, but onehas to pay a location-dependent cache-setup
(facility-opening) cost to “build” a cache at a location before storing any data object at that cache. Inde-
pendently, Ravi and Sinha [33] proposed the multicommodityfacility location problem giving a similar
motivation. Shmoys et al. [35] give a 6-approximation algorithm for FLSIC under a certain assumption on
the service installation costs.

The data placement problem (without storage costs) and FLSIC have also been studied for the special
case of thedirected line-metric under the names ofbroadcast scheduling[4] and thejoint replenishment
problem[24] respectively. In both problems, both the clients and the caches correspond to points on the
time-line. In broadcast scheduling, the objects correspond to pages. A client corresponds to a request for a
page, a cache corresponds to a page-broadcast, and a requestat timet must be assigned to a broadcast of that

4

page at some timet′ > t. At mostc pages may be broadcast at any time; the goal is to minimize theaverage

response time of the requests. The best-known approximation factor for this problem isO
(log2 |O|

log log |O|

)

due
to Bansal et al. [4]. In the joint replenishment problem, theobjects are items. Demands for items occur at
various points of time, and one has to determine which items to order at which times, so that all demand can
be met by orders that are placed at earlier points of time. Placing an order for a subset of items incurs a joint
ordering cost to start the order, and an item-dependent cost, and each demand gets charged the cost incurred
to hold the inventory for that demand. Levi et al. [24] gave a 2-approximation algorithm for this problem.

The data placement problem is a generalization of UFL, whichcorresponds to the special case with only
one object. There is a large body of literature that deals with designing approximation algorithms for metric
UFL; see [34] for a survey of this and earlier work. The first constant approximation guarantee for UFL was
obtained by Shmoys, Tardos, and Aardal [37] via an LP-rounding algorithm, and the current state-of-the-
art is a 1.5-approximation algorithm due to Byrka [6]. For the closely-relatedk-median problem, the first
constant-factor approximation algorithm was given by Charikar, Guha, Tardos and Shmoys [7] using LP
rounding. As mentioned earlier, the clustering method developed by them plays a key role in our algorithm.

Finally, we remark that the presence of cache capacities might suggest a similarity to the capacitated
facility location (CFL) problem, but this resemblance is only superficial. The capacities in our problem
limit the number of objects that may be assigned to a cache, but there isno boundon the demand (or
number) of clients requesting a given object, or total demand, that may be assigned to a cache. (The data
placement problem may be viewed as a collection ofUFL instances, one for each object, that are coupled
due to the cache-capacity constraints.) In particular, as our algorithm shows, the integrality gap of the natural
LP relaxation for our problem is at most a constant, whereas there is no known LP relaxation of CFL with
constant integrality-gap. Moreover, the local search algorithms in [20, 9, 30, 42] do not directly apply, and
it is not clear if they can be adapted to our problem.

1.1 Relationship with the work of [3] and [38]

This work is a merger of two earlier papers: an extended abstract of Baev and Rajaraman [3], and an
unpublished manuscript of Swamy [38]. In order to place our work in proper bibliographic context, and for
the benefit of the reader, we include a brief comparison of ourwork with [3] and [38].

The data placement problem that we consider was introduced by Baev and Rajaraman [3]. (In their
model, each clientj has demanddjo for every objecto ∈ O; this easily reduces to the model considered
here since one can create a co-located copyj(o) of client j with demanddjo for every objecto.) They gave a
20.5-approximation algorithm for this problem, which is based on rounding an optimal solution to the same
LP-relaxation of the problem that we consider. The 10-approximation algorithm described in this paper is
from [38], and is based on an improved rounding procedure forthe same LP. We briefly describe the main
differences between the two algorithms.

As described earlier, our algorithm proceeds in two phases.The first phase of our algorithm, where we
round the LP-solution to ahalf-integral solution, is identical to the first half (steps 1–3) of the algorithm
in [3]. From here on the two algorithms proceed along different tracks. In both algorithms, the goal is to
modify the previously-obtained half-integral solution into one that has the property that for every objecto
and cachei, there is at most one demand-node foro that is served byi, so that one can then set up a minimum-
cost flow problem to round the half-integral solution to an integral one. In the second phase of our algorithm,
we use the Shmoys-Tardos-Aardal [37] clustering method (without filtering) to obtain a solution with the
above property. In contrast, the Baev-Rajaraman algorithmdovetails the rounding procedure of [7] (creating
1-level trees that are used to cluster the clients) to obtaina solution with the aforementioned property. By
adopting a different clustering approach that better exploits half-integrality, we obtain a simpler algorithm
that also yields a much better approximation guarantee.

5

The connected data placement problem was introduced by Swamy [38], and the 14-approximation algo-
rithm that we present for this problem was described therein.

2 An LP relaxation

We can express the data placement problem as an integer program and relax the integrality constraints to get
a linear program. Throughout we will usei to index the caches inF , j to index the clients inD ando to
index the objects inO.

min
∑

i

∑

o

f o
i yo

i +
∑

j

∑

i

djcijxij (P)

s.t.
∑

i

xij ≥ 1 ∀j

xij ≤ y
o(j)
i ∀i, j

∑

o

yo
i ≤ ui ∀i (1)

xij , y
o
i ≥ 0 ∀i, j, o.

Variableyo
i indicates if objecto is stored in cachei andxij indicates if clientj is assigned to cachei. The

first and second constraints say that each client must be assigned to a cache and if clientj is assigned to
cachei then objecto(j) must be stored in cachei. The third constraint states that the total length of items
stored in any cachei is at most its capacityui. An integer solution corresponds exactly to a solution to our
problem. We letGo denote the set of clients that demand objecto, i.e.,Go = {j : o(j) = o}.

3 The rounding procedure

Let (x, y) denote the optimal solution to (P) andOPT be its value. We will round this to an integer solution
losing a factor of at most 10. We use the terms access cost and assignment cost interchangeably.

3.1 Overview of the algorithm

We first give a high level description of the algorithm. Suppose for a moment that the optimal solution(x, y)
satisfies the following property: for any cachei and objecto, there isat most oneclient j ∈ Go such that
xij > 0 (∗). We can then set up the following min-cost flow problem: create a bipartite graph with vertex

setD ∪ F and edges(i, j) for everyi, j such thatxij > 0 with costf o(j)
i + djcij and capacity 1; clientj

has a demand of1 and cachei has capacityui. The LP solution translates to a feasible fractional flow in
this graph of cost at mostOPT . Note that property(∗) is crucial for this. Conversely an integer flow yields
an integer solution to (P) of cost equal to the flow cost. Therefore by the integrality property of flows (given
integer capacities) we can round(x, y) to an integer solution of no greater cost. Of course, the LP solution
need not have property(∗) so our goal will be (loosely speaking) to transform(x, y) to a solution that has
property(∗) without increasing the cost by much. One of the major challenges encountered is to do this
transformationwithout violating the cache capacities, while increasing the cost only by a constant factor.

Roughly speaking we want to do the following: for each objecto, cluster the clients inGo around certain
‘centers’ (also clients inGo) such that (a) every clientk is mapped to a “nearby” cluster centerj whose LP
assignment cost is less than that ofk, and (b) the facilities serving the cluster centers in the fractional solution
(x, y) are disjoint. So, the modified instance where the demand of a client is moved to the center of its cluster
has a fractional solution, namely, the solution induced by(x, y), that satisfies(∗) and has cost at mostOPT .

6

Furthermore, given a solution to the modified instance we canobtain a solution to the original instance losing
a small additive factor. This clustering-idea lies at the core of most algorithms for facility location, however
the necessity of preserving cache-capacities renders manyof the known clustering methods [37, 8, 25]
unsuitable for our purposes. For example, one option is to use the decomposition method of Shmoys et
al. [37] that produces precisely such a clustering. The problem however is that [37] uses filtering which
involves blowing up thexij andyo

i values and thus violating the cache capacities. Chudak and Shmoys [8],
and Levi, Shmoys and Swamy [25] use similar clustering ideasbut without filtering, using the dual solution
to bound (portions of) the cost. The difficulty here in bounding the cost using the dual solution is that there
are terms with negative coefficients in the dual objective function that correspond to the primal capacity
constraints (1). Although [40, 25] showed that it is possible to overcome this difficulty in certain cases, the
situation here looks more complicated and it is not clear howto use their techniques.

Instead, we use the clustering technique of Charikar et al. [7] developed for thek-median problem. Our
algorithm proceeds in two phases. In the first phase (Section3.2), we extract a modified instance and a
fractional solution to this instance from the LP solution, and round this to ahalf-integralsolution(x̂, ŷ), that
is, eacĥxij, ŷi ∈

{

0, 1
2 , 1

}

, losing a factor of 3. Further, any solution here will give a solution to the original
instance while increasing the cost by at most4 · OPT . We do this by first transferring demands to certain
well-separated centers (Step I) exactly as in the demand-consolidation step of [7], so as to ensure that each
center has its own private set of caches that serve it to an extent of at least half. This allows us to set up a
minimum-cost flow problem (Step II) with half-integral capacities with a one-one correspondence between
solutions and flows, and thereby round the fractional solution on the centers to a half-integral solution.

In phase two (Section 3.3), we observe that we can now use the clustering method in [37] on the half-
integral solution(x̂, ŷ) without any filtering(Step III) since such a solution is essentially already filtered:
if client j is assigned toi and i′ in x̂, thencij , ci′j ≤ 2(cij x̂ij + ci′j x̂i′j). This clustering satisfies the
requirements (a) and (b) mentioned above. Thus, one can obtain an integer solution for the new cluster
centers by solving a suitable min-cost flow problem. This is essentially what we do, but we set up the
min-cost flow problem more carefully (Step IV) so as to lose only a factor of 2 in converting(x̂, ŷ) to an
integer solution (for the modified instance extracted in phase 1). So overall we get an approximation ratio
of 4 + 2× 3 = 10 (Theorem 3.5).

We now describe each of these steps in detail. LetC̄j =
∑

i cijxij denote the cost incurred by the LP
solution to assign one unit of demand of clientj.

3.2 Obtaining a half-integral solution (x̂, ŷ)

Step I: Consolidating demands around centers. We first consider every objecto separately, and con-
solidate (or cluster) the demand of clients inGo at certain clients, that we callcluster centers. We do not
modify the fractional solution(x, y) but only modify the demands so that for some clientsj, the demanddj

is “moved” to a “nearby” centerk. We assume every client has a non-zero demand.
Setd′j ← 0 for every j. Consider the clients inGo in increasing order of̄Cj. For each clientj, if

there exists a clientk (including j) such thatd′k > 0 andcjk < 4max(C̄j , C̄k) = 4C̄j , setd′k ← d′k + dj ,
otherwise setd′j ← dj . We do this for every objecto. Let Do = {j ∈ Go : d′j > 0} andD =

⋃

o Do.
Each client inD is a cluster center. LetOPT

′ =
∑

i,s f o
i yo

i +
∑

j∈D,i d
′
jcijxij denote the cost of(x, y)

for the modified instance consisting of the cluster centers.Since the demand of each clientk /∈ D moves a
distance of at most4C̄k, it is clear that any solution to the modified instance yieldsa solution for client-set
D incurring an additive factor of at most4

∑

k/∈D dkC̄k ≤ 4 ·OPT . We obtain the following lemma.

Lemma 3.1 The following hold: (i) ifj, k ∈ Do, thencjk ≥ 4max(C̄j , C̄k), (ii) OPT
′ ≤ OPT , and

(iii) any solution (x′, y′) to the modified instance can be converted to a solution to the original instance
incurring an additional cost of at most4 ·OPT .

7

(1; 3d′jγj)

t

(ui; 0)

F ′j

Fj ⊇ F ′j

(1;0) aj

bj

ri

(1
2; 0)

Demand
vj=−1

(capacity;cost) =(1; f
o(j)
i + d′jcij)

Figure 3.1: The min-cost flow network constructed in Step II.The tuple labeling an edge gives the (capac-
ity;cost) for the edge.

From now on we will focus on the modified instance with client-setD and modified demandsd′j . At the
very end we will use the above lemma to translate an integer solution to the modified instance to an integer
solution to the original instance.

Step II: Transforming to a half-integral solution. We define the cluster of a clientj ∈ Do to consist of
all clientsk ∈ Go whose demanddk was moved toj, and a set of facilitiesFj . Fj consists of all facilities
i to which j is fractionally assigned such thatj is the center inDo closest toi, that is,Fj = {i : xij >
0 andcij = mink∈Do

cik}, with ties broken arbitrarily. LetF ′
j ⊆ Fj = {i ∈ Fj : cij ≤ 2C̄j}. Defineγj

to bemini/∈Fj :xij>0 cij . Clearly the setsFj for j ∈ Do are disjoint. By property (i) of Lemma 3.1, we have
thatFj contains all the facilitiesi such thatxij > 0 andcij ≤ 2C̄j . So

∑

i∈F ′
j
xij =

∑

i:cij≤2C̄j
xij ≥

1
2

where the last inequality follows from Markov’s inequality.
In the half-integral solution(x̂, ŷ), we will store objecto only at caches that lie in some setFj for

j ∈ Do. To obtain(x̂, ŷ), we set up a min-cost flow problem. We create a sinkt and a noderi for every
cachei in

⋃

j∈D Fj with an outgoing edge(ri, t) of capacityui and cost 0 (see Fig. 3.1). For each client
j ∈ D we create three nodesvj, aj , andbj. Nodevj has demand−1 (i.e., the net outgoing flow should be
1) to denote the requirement thatj must be assigned to a cache. We add edges(vj , aj) with capacity 1 and
cost 0, and(vj, bj) with capacity1

2 and cost 0. Nodeaj represents the option thatj is assigned to a facility

in F ′
j , so we add edges(aj , ri) to everyi ∈ F ′

j with capacity 1 and costf o(j)
i + d′jcij . Notice that setting the

capacity of(vj , bj) to 1
2 forcesj to be assigned to an extent of at least1

2 to facilities inF ′
j . Nodebj signifies

that j is assigned either to a facility inFj or to some other facility. To encode this, we add edges(bj , ri)

to everyi ∈ Fj with capacity 1 and costf o(j)
i + d′jcij , and an edge(bj , t) with capacity 1 and cost3d′jγj

(since, as we show later, there is always a facility at distance at most3γj from j that is at least half-open).
Figure 3.1 shows the portion of the min-cost flow instance corresponding to clientj.

Since all edge capacities are12 or 1 the network has a half-integral min-cost flow. Given sucha flow
we obtain(x̂, ŷ) as follows. We initialize all̂xij , ŷo

i to 0. Consider objecto. For everyj ∈ Do and cache
i ∈ F ′

j , we set̂yo
i = x̂ij = flow along(aj , ri) + flow along(bj , ri). For everyi ∈ Fj \F ′

j , we set̂yo
i andx̂ij

equal to the flow along edge(bj , ri). Observe that there is at least one cachei ∈ F ′
j such that̂xij > 0; we

call the cache inF ′
j closest toj with x̂ij > 0 theprimary cacheof j. Note that since the setsFj (and hence

F ′
j) for j ∈ Do are disjoint, every client inDo has a unique primary cachei. Let i′ be the cache nearest to

j, other than its primary cache, witĥyo
i′ > 0. If edge(bj , t) carries positive flow (so no edge(bj , ri) carries

any flow implying thatŷo
i = 0 for everyi ∈ Fj \ F ′

j), we setx̂i′j = flow on (bj , t) = 1
2 . We do this for

8

every objecto. If a client j is assigned to a cache other than its primary cache, we call the other cache the
secondary cacheof j. It is easy to verify that(x̂, ŷ) is a feasible solution to (P), where the client-set isD.
The following lemma shows that the cost of(x̂, ŷ) is at most3 ·OPT .

Lemma 3.2 The cost of(x̂, ŷ), that is,
∑

i,o f o
i ŷo

i +
∑

j∈D,i d
′
jcij x̂ij, is at most3 ·OPT

′ ≤ 3 ·OPT .

Proof : First we show that(x, y) induces a flow of cost at most3 ·OPT
′, so the cost of the min-cost flow

is no greater. Then we show that the cost of(x̂, ŷ) is bounded by the cost of the min-cost flow.
Consider the following flow: each edge(vj , aj) has flow

∑

i∈F ′
j
xij , (vj , bj) has flow1 −

∑

i∈F ′
j
xij,

and (bj , t) has flow1 −
∑

i∈Fj
xij ; every edge(aj , ri) or (bj , ri) has flowxij ; the flow on (ri, t) is

∑

o

∑

j∈Do:i∈Fj
xij . It is easy to see that this is a feasible flow. The cost of this flow is

∑

o,j∈Do

(

∑

i∈Fj

(d′jcij + f o
i)xij + 3d′jγj(1−

∑

i∈Fj

xij)
)

≤
∑

i,o

f o
i yo

i +
∑

j

d′j

(

∑

i∈Fj

cijxij + 3γj(1−
∑

i∈Fj

xij)
)

.

We haveOPT
′ =

∑

i,o f o
i yo

i +
∑

j d′jC̄j. For any j ∈ D, C̄j =
∑

i∈Fj
cijxij +

∑

i/∈Fj
cijxij ≥

∑

i∈Fj
cijxij + γj(1 −

∑

i∈Fj
xij) sinceγj was defined asmini/∈Fj :xij>0 cij . This shows that the cost

of the constructed flow, and hence of the min-cost flow, is at most3 ·OPT
′.

Now consider the solution(x̂, ŷ) induced by the half-integral min-cost flow. By construction, the quan-
tity

∑

i,o f o
i ŷo

i +
∑

j∈D,i∈Fj
d′jcij x̂ij is exactly equal to the total cost of the flow on edges(aj , ri) and

(bj , ri). For anyj ∈ D the remaining cost
∑

i/∈Fj
d′jcij x̂ij is equal tod′jci′j · (flow on (bj , t)) wherei′

is the secondary cache ofj. So it suffices to show thatci′j ≤ 3γj . Let γj = ci′′j wherei′′ /∈ Fj and
xi′′j > 0. Let k be the center inDo nearest toi′′ and letℓ be the primary cache ofk. Then,ci′j ≤ cℓj and
4max(C̄j , C̄k) ≤ cjk ≤ ci′′j + ci′′k ≤ 2γj . Also cℓk ≤ 2C̄k sinceℓ ∈ F ′

k. Combining the inequalities we
get thatci′j ≤ 3γj which completes the proof of the lemma.

3.3 Converting(x̂, ŷ) to an integer solution(x̃, ỹ)

DefineĈj =
∑

i cij x̂ij for j ∈ D. Let i1(j) denote the primary cache ofj. For convenience, we will say
that every clientj ∈ D has both a primary cachei1(j) and a secondary cachei′ with x̂i1(j)j = x̂i′j = 1

2 ,
with the understanding that ifj does not have a secondary cache theni′ is a copy ofi1(j), so effectively
x̂i1(j)j = 1. We denote the secondary cache byi2(j). Then we have,̂Cj = 1

2(ci1(j)j + ci2(j)j), ci1(j)j ≤ Ĉj

andci1(j)j ≤ ci2(j)j ≤ 2Ĉj . Notice thati1(j) andi2(j) are the (one or) two caches witĥyo(j)
i > 0 that are

nearest toj. Let Lo = {i : ŷo
i > 0} andL =

⋃

o Lo.

Step III: Clustering. First for every objecto we cluster the clients inDo as follows: pickj ∈ Do with
smallestĈj. Remove every clientk ∈ Do such that bothj andk are (fractionally) assigned to a cache
i ∈ Lo, and recurse on the remaining set of clients until no client in Do is left. LetD′

o be the set of clients
picked for objecto and letD′ =

⋃

o D′
o; D′ denotes thenew cluster centers. It is clear that for any cache

in Lo at most one client inD′
o is assigned to it. Observe that for every clientk ∈ Do \ D′

o there is some
j ∈ D′

o such thatĈj ≤ Ĉk andx̂ij , x̂ik > 0 for somei ∈ Lo, implying thatcjk ≤ 4Ĉk. We callj thecenter
of k and denote it byctr(k).

Now for every clientk ∈ D \ D′ we can move its demandd′k to j = ctr(k). The resulting instance
with client-setD′ (and the new demands) satisfies the property(∗) mentioned in Section 3.1. Hence, one
can set up a min-cost flow problem as mentioned in Section 3.1 to get an integer solution to the instance
with client-setD′, which translates to a solution with client-setD (and the original demandsd′j). Doing

9

all these edges
have capacity 1

(ui”; 0)

(ui; 0)ri

tvj

wo
i”

ri′ (ui′; 0)

i = i1(j)

i′ = i2(j)

ri”

(1,0)

cost of(vj, ri) is f
o(j)
i + d′jcij +

∑

k∈Aj
d′kcik

cost of(wo
i”, ri”) is f o

i” +
∑

k∈Bo
i”

d′k(ci”k − ci2(k)k)

cost of(vj, ri′) is f
o(j)
i′ + d′jci′j +

∑

k∈Aj
d′kci′k +

∑

k∈Bj
d′k(ci′k − ci2(k)k)

each node has
demand =−1

Figure 3.2: The min-cost flow network constructed in Step IV.The tuple labeling an edge gives the (capac-
ity;cost) for the edge.

this naively, we lose an additive factor of (at most)4
∑

k∈D d′kĈk in translating the demands back from
D′ to D. We will set up the min-cost flow network more carefully so that we only lose a multiplicative
factor of 2 in rounding(x̂, ŷ) to an integer solution for the client-setD. We want to capture the following
observation: suppose the demand of a clientk ∈ Do is moved toj = ctr(k). Let x̂ik = x̂i′k = 1

2 and
x̂ij = x̂i′′j = 1

2 . The per-unit-demand assignment cost ofk is at most12(cik + ci′′k) ≤ cik + Ĉj ≤ 3Ĉk

(sinceci′′k ≤ ci′′j + cij + cik), which is much less than the naive bound of4Ĉk + Ĉj.

Step IV: The min-cost flow network. Fix o ∈ O and consider a clientj ∈ D′
o. We will maintain two

setsAj andBj for j. Let i = i1(j) andi′ = i2(j) be the primary and secondary caches ofj. We define
Aj = {k ∈ Do : ctr(k) = j}, andBj = {k ∈ Do : ctr(k) 6= j andi′ = i1(k)}. Also, for every cache
i ∈ Lo such that̂xij = 0 for everyj ∈ D′

o, we defineBo
i = {k ∈ Do : i = i1(k)} (which is either empty or

a singleton). Note that all the setsAj, Bj andBo
i are subsets ofDo \D′

o.
We create a sinkt, and a noderi for everyi ∈ L for which x̂ij > 0 for somej ∈ D′, orBo

i 6= φ for some
o (see Fig. 3.2). We have an edge(ri, t) of capacityui and cost 0. For every clientj ∈ D′ we create a node
vj . Further, for everyi ∈ L, o ∈ O with Bo

i 6= φ we create a nodewo
i . The nodesvj andwo

i all have demand
−1. For every nodevj we have edges(vj , ri) to everyi with x̂ij > 0, and we have edges(wo

i , ri), (wo
i , t)

for every nodewo
i . All these edges have capacity 1. The cost of these edges is set as follows. Consider a

nodevj and leti = i1(j), i
′ = i2(j). We set the cost of(vj , ri) to f

o(j)
i + d′jcij +

∑

k∈Aj
d′kcik and the

cost of(vj , ri′) to f
o(j)
i′ + d′jci′j +

∑

k∈Aj
d′kci′k +

∑

k∈Bj
d′k(ci′k − ci2(k)k). We set the cost of(wo

i , ri) to
f o

i +
∑

k∈Bo
i
d′k(cik − ci2(k)k) and the cost of(wo

i , t) to 0; see Figure 3.2.
Since all capacities are integer, there is an integer min-cost flow. We map this to an integer solution(x̃, ỹ)

to the instance with client-setD. Setx̃ij, ỹi ← 0 for all i, j. Consider objecto. First, for everyj ∈ D′
o and

i ∈ {i1(j), i2(j)}, we setx̃ij = flow on edge(vj , ri). For every clientk ∈ Bj we setx̃i2(j)k = x̃i2(j)j , and
for everyk ∈ Bo

i we setx̃ik = flow on (wo
i , ri). Next, for everyj ∈ D′

o and everyk ∈ Aj that has not yet
been assigned (i.e.,

∑

i x̃ik = 0), we setx̃ik = x̃ij for i ∈ {i1(j), i2(j)}. Finally, setỹo
i = maxj∈Do x̃ij.

We do this for everyo. Observe that̃yo
i = 1 for at most one facility fromF ′

j for every clientj ∈ Do. This

10

will be useful in Section 4. It is easy to see that(x̃, ỹ) is a feasible integer solution. We now bound its cost.

Lemma 3.3 The cost of the min-cost flow in the network is at most twice thecost of(x̂, ŷ).

Proof : We exhibit a fractional flow of cost at most the claimed cost. The fractional flow is obtained by
setting the flow on every edge(vj , ri) to x̂ij , and the flow on(wo

i , t) and(wo
i , ri) to maxk∈Bo

i
x̂ik = 1

2 ,
where the equality follows since everyk ∈ Bo

i is assigned to an extent of1
2 to i2(k) 6= i. The flow on the

edges(ri, t) is set accordingly to
∑

o

(
∑

j∈D′
o
x̂ij + maxk∈Bo

i
x̂ik

)

. This is a feasible flow since for every
i, o, eitherBo

i = φ and there is exactly onej ∈ D′
o such that̂xij > 0, or Bo

i 6= φ and x̂ij = 0 for every
j ∈ D′

o. So
∑

j∈D′
o
x̂ij + maxk∈Bo

i
x̂ik is at mostyo

i .

The cost of an edge(vj , ri) or (wo
i , ri) consists of a storage component (f

o(j)
i or f o

i) and an assignment
component that can be attributed to various clients. We callthe contribution of the storage components to
the flow cost theflow storage cost, and the contribution of the assignment components theflow assignment
cost. The flow storage cost is

∑

i,o f o
i

(
∑

j∈D′
o
x̂ij +maxk∈Bo

i
x̂ik

)

≤
∑

i,o f o
i yo

i by the above reasoning. To
evaluate the flow assignment cost we consider the contribution of each client to the assignment components
separately. Fix an objecto. First considerj ∈ D′

o with i = i1(j), i′ = i2(j). Client j only figures in the
assignment component of(vj , ri) and(vj , ri′) and its contribution isd′j(cij x̂ij + ci′j x̂i′j) = d′jĈj . A client
k ∈ Do \D′

o is in exactly one setAj wherej = ctr(k) and may possibly also lie in one of the setsBj′ or
Bo

i′′ . Let i = i1(j) andi′ = i2(j).

1. If k does not lie in any setBj′ or Bo
i′′ , then it must be that̂xi1(k)j > 0. Clientk contributes only to the

assignment component of edges(vj , ri) and(vj , ri′) and this contribution isd′k(cikx̂ij + ci′kx̂i′j) ≤

d′k(ci1(k)k + Ĉj) ≤ 2d′kĈk sincex̂ij = x̂i′j = 1
2 andcik + ci′k ≤ 2ci1(k)k + cij + ci′j.

2. Now supposek is also in one of the setsBj′ or Bo
i′′ , so it also contributes to the assignment component

of an edge(vj′ , ri1(k)) or an edge(wo
i′′ , ri′′). The contribution in both cases is

d′
k

2 (ci1(k)k − ci2(k)k)

since we must havexi1(k)j′ = 1
2 = xi′′k. Adding the contributions to edges(vj , ri) and(vj , ri′), the

total contribution is
d′

k

2 (cik + ci′k + ci1(k)k − ci2(k)k) ≤ d′k(Ĉk + Ĉj) ≤ 2d′kĈk sincecik + ci′k ≤
2ci2(k)k + cij + ci′j.

So the flow assignment cost is at most2
∑

j∈D d′jĈj. Thus the total flow cost is at most
∑

i,o f o
i ŷo

i +

2
∑

j∈D d′jĈj which is at most twice the cost of(x̂, ŷ).

Lemma 3.4 The cost of the integer solution(x̃, ỹ) is at most the cost of the min-cost integer flow.

Proof : Observe that for anyo,
∑

i f o
i ỹo

i =
∑

i,j∈D′
o
f o

i x̃ij +
∑

nodeswo
i
f o

i (flow on (wo
i , ri)). So the total

storage cost is
∑

e=(vj ,ri)
f

o(j)
i (flow one) +

∑

e=(wo
i ,ri)

f o
i (flow one) which is just the flow storage cost.

We will bound the assignment cost of a client by the contribution it makes to the flow assignment cost.
Fix objecto. Considerj ∈ D′

o. Let i = i1(j) andi′ = i2(j). At most one of the edges(vj , ri), (vj , ri′)
carries non-zero flow and we setx̃ij, x̃i′j equal to the flow on the corresponding edge. So the assignmentcost
of j is d′j

(

cij(flow on (vj , ri))+ci′j(flow on (vj , ri′))
)

, which is also the contribution ofj to the assignment
flow cost. The same argument holds fork ∈ Aj if k is assigned to one ofi or i′. The remaining case is
whenk ∈ Aj , andk is not assigned toi or i′, but it is assigned toi′′ = i1(k) either becausek ∈ Bj′

wherei′′ = i2(j
′) and (vj′ , ri′′) has non-zero flow, or becausek ∈ Bo

i′′ and (wo
i′′ , ri′′) carries non-zero

flow. The assignment cost ofk is d′kci′′k. The contribution ofk to the assignment flow cost is at least
d′k(ci′′k − ci2(k)k) + d′k min(cik, ci′k) sincek ∈ Aj . This is at leastd′kci′′k since bothcik, ci′k are at least
ci2(k). So the assignment cost of(x̃, ỹ) is bounded by the flow assignment cost. This completes the proof.

11

Combining Lemmas 3.1–3.4, we obtain that(x̃, ỹ) yields an integer solution to the original instance of
cost at most10 ·OPT . Thus, we obtain the following theorem.

Theorem 3.5 There is a 10-approximation algorithm for the data placement problem.

4 The connected data placement problem

The formulation of the data placement problem seems most suitable for applications where objects are rarely
written. In the presence of write-requests, one needs to have a mechanism that ensures that all the copies
of a data-object replicated in the various caches are consistent, and this requires that a write-request updates
all the replicas of the data object. One way of modeling this,as proposed by Krick et al. [22], is to insist
that all caches containing the same data object be interconnected via a Steiner tree, which would serve as a
multicast tree that is used to update all copies of an object when a write-request is issued for it.

This gives rise to theconnected data placement problem. We assume that there is a rootro ∈ D ∪ F
for each objecto that issues the multicast message when a write-request is issued foro, and require that all
caches containing objecto be connected toro. Thus, our goal is to find a placement{O(i)}i∈F of objects to
caches respecting the cache-capacity constraints, assigneach clientj to a cachei(j) containing the object
o(j), and for each objecto, connect the caches storing objecto to ro via a Steiner treeTo, so as to minimize

∑

i∈F

∑

o∈O(i)

f o
i +

∑

j∈D

djci(j)j +
∑

o∈O

Mo

∑

e∈To

ce.

HereMo ≥ 1 is an input scaling parameter, e.g., it might denote the total number of write-requests for object
o.

The LP relaxation (P) is modified as follows. We introduce variableszo
e ≥ 0 for each objecto, and

each edgee (of the complete graph onD ∪ F) that indicates (in the integer program) if edgee is part of
the treeTo. The objective function includes the additional term

∑

o Mo
∑

e cez
o
e . For each objecto, set

S ⊆ D ∪ F such thatro /∈ S, and clientj ∈ Go, we add the constraint
∑

e∈δ(S) zo
e ≥

∑

i∈S xij, where
δ(S) = {e = (u, v) : |S ∩ {u, v}| = 1}. Although this LP has an exponential number of constraints,it can
be solved efficiently via the ellipsoid method.

Observe that the connected data placement is a generalization of theconnected facility locationprob-
lem [14, 39, 15] (which is the special case with only one object) for which the best-known approximation
guarantee is 8.55 [39]. However, due to the presence of cachecapacities, it is not clear how to apply the
primal-dual technique in [39], or the random-sampling ideain [15]. We show that the LP-rounding tech-
nique proposed in [32, 14] to handle such connectivity requirements can be overlaid almost directly on top
of our rounding procedure from Section 3, to round an optimalsolution to the above LP losing a factor of at
most 14.

We briefly sketch the main steps. Let(x, y, z) be an optimal fractional solution, and̄Cj =
∑

i cijxij.
We slightly modify the demand-consolidation step (Step I) of our rounding procedure: we now move the
demand of clientk to client j (whered′j > 0, C̄j ≤ C̄k) if cjk < 8max(C̄j , C̄k). Recall thatF ′

j = {i :

xij > 0, cij ≤ 2C̄j} and that the setsF ′
j are disjoint for clients inDo. Due to the above change, we

lose an additive factor of8
∑

j djC̄j in translating a solution for client-setD =
⋃

o Do to a solution forD.
More importantly, for any two facilitiesi ∈ F ′

j andi′ ∈ F ′
k wherej, k ∈ Do, j 6= k, we now have that

cii′ ≥ 4max(C̄j , C̄k). The rest of the rounding process in Section 3 is unchanged. Thus, the sum of the
storage costs and access costs is at most14

(
∑

i,o f o
i yo

i +
∑

j,i djcijxij

)

.
For each objecto, we build the treeTo as follows. We contract the setsF ′

j for j ∈ Do into supernodes and
build a minimum spanning tree (MST)T ′

o connecting these toro, and then connect the caches storing objecto
to T ′

o. To bound the cost ofT ′
o, notice that2zo yields a fractional Steiner tree on the supernodes andro, since

12

for any setS containing a supernodeF ′
j and not containingro, we have

∑

e∈δ(S) zo
e ≥

∑

i∈F ′
j
xij ≥

1
2 . Thus,

we getc(T ′
o) ≤ 4

∑

e zo
e since it is well known the cost of the MST is at most twice the cost of a fractional

solution for the Steiner tree LP. Observe that an edgee of T ′
o joining F ′

j andF ′
k hasce ≥ 4max(C̄j , C̄k). Let

i be a facility on which objecto is stored. Notice there is auniqueclientj ∈ Do such thati ∈ F ′
j . To connect

i to T ′
o, we add the edge(i, j), and add edges joiningj to every cache inF ′

j that has an edge incident to it
in T ′

o. We do this for every cache on whicho is stored. Letδj denote the degree of the supernodeF ′
j in the

treeT ′
o. The cost of adding these extra edges is at most

∑

j∈Do
(1 + δj)2C̄j ≤ 2

∑

j∈Do
δj · 2C̄j ≤ 2c(T ′

o).
Thus,c(To) ≤ 3c(T ′

o) ≤ 12
∑

e zo
e , and the total cost incurred is at most14

∑

i,o f o
i yo

i + 14
∑

j,i djcijxij +
12

∑

o Mo
∑

e zo
e , yielding a 14-approximation algorithm.

Theorem 4.1 There is a 14-approximation algorithm for the connected data placement problem.

5 Extensions

The k-median variant. We can easily adapt our techniques to handle an extension of the data placement
problem where additionally, for every objecto, there is a bound ofko on the number of caches that can store
objecto. This adds the constraints

∑

i yo
i ≤ ko ∀o to (P). We need to modify the min-cost flow network

construction slightly in Steps II and IV of Section 3. In StepII, we remove the edges(bj , t). Instead for
every objecto, we add a nodepo with demand|Do| − ko and edges(bj , po) for j ∈ Do of capacity1

2 and
cost3γj . We also add an edge(po, t) with capacityko and cost 0. The effect of these changes is to limit the
total flow on edges(aj , ri) and(bj , ri), wherej ∈ Do, to at mostko so that at mostko caches store object
o (half-integrally). The half-integral solution(x̂, ŷ) is obtained as before withpo playing the role oft now.
It is easy to see that(x̂, ŷ) is feasible and Lemma 3.2 still holds. Similarly, in Step IV,we remove the edges
(wo

i , t). For everyo, we add a nodepo with demand|{i : Bo
i 6= φ}| − (ko − |D

′
o|), add edges(wo

i , po) with
capacity 1 and cost 0, and add edge(po, t) with capacityko − |D

′
o| and cost 0. This limits the total flow on

edges(vj , ri), wherej ∈ D′
o and(wo

i , ri) to at mostko. The integer solution(x̃, ỹ) is obtained as before
and Lemmas 3.3 and 3.4 still hold. So we get the following theorem.

Theorem 5.1 There is a 10-approximation algorithm for the data placement problem with a priori bounds
on the number of caches that may store an object.

Non-uniform object-lengths. We can obtain a bicriteria approximation algorithm for the setting where
each objecto has a non-uniform lengthlo and the total length of the objects stored in any cache must not
exceed its capacity. Constraint (1) of (P) now reads

∑

o loy
i
o ≤ ui. As mentioned in the Introduction, no

approximation ratio is achievable in polynomial time in this case, unlessP =NP (see Theorem 6.2). We
show the following.

Theorem 5.2 For the data placement problem with arbitrary object-lengths, one can compute in polynomial
time a placement of cost at most10 · OPT where the cache capacities are violated by an additive amount
of at mostmaxo lo.

Proof : We only need to modify Steps II and IV above. Instead of formulating a min-cost flow problem to
take care of cache-capacities, we will now construct an instance of thegeneralized assignment problem[36]
(GAP). In Step II, each nodeaj , bj of the min-cost flow network represents a job, and each noderi and the
sink t represents a machine. Each machineri has processing-time capacity2ui, and the sinkt has 0 capacity.
An edge(aj , ri) or (bj , ri) denotes that jobaj or bj has processing timelo(j) on machineri. Its assignment

cost for machineri is f
o(j)
i +d′jlo(j)cij , which is simply a modification of the cost of the corresponding edge

13

in the flow network that takes into account the lengthlo(j). Jobbj also has processing time 0 and assignment
cost3d′j lo(j)γj on machinet, corresponding to the edge(bj , t). All other processing times (corresponding
to non-edges) are infinity. It is not hard to see that(2x, 2y) induces a feasible solution to this GAP-instance
of cost at most6 · OPT

′. Hence, by [36], there exists an integer solution(2x̂, 2ŷ) of no greater cost where
∑

o lo · 2ŷ
o
i ≤ 2ui + maxo lo for everyi ∈ F . Thus,(x̂, ŷ) yields a half-integral solution of cost at most

3 ·OPT
′ where the cache capacities are violated by at most1

2 maxo lo.
Similarly, in Step IV, we have a job for each nodevj and each nodewo

i , and a machine for each node
ri and the sinkt. Each machineri has capacityui + 1

2 maxo lo and machinet has 0 capacity. As before,
an edge(vj , ri) or (wo

i , ri) represents that the corresponding job has processing timelo(j) or lo respectively
on machineri. The assignment cost is the cost of the corresponding edge inthe flow network modified
(as above) to incorporate object-lengths by multiplying the terms not involving the storage-cost by the
object-length (lo(j) in case of jobvj , and lo in case of jobwo

i). For example, corresponding to the edge

(vj , ri′), wherei′ = i2(j), we set the assignment cost of jobvj on a machineri′ to bef
o(j)
i′ + lo(j)

(

d′jci′j +
∑

k∈Aj
d′kci′k +

∑

k∈Bj
d′k(ci′k−ci2(k)k)

)

(note thato(k) = o(j) for all k ∈ Aj∪Bj). Edge(wo
i , t) denotes

that jobwo
i has 0 processing time and 0 assignment cost on machinet. All job-machine processing times

corresponding to non-edges are infinity. As in Lemma 3.3,(x̂, ŷ) induces a half-integral feasible solution of
cost at most twice the cost of(x̂, ŷ). Using the algorithm in [36] directly, one can obtain an integer solution
of no greater cost where the load of every machineri is at mostui +

3
2 maxo lo. A more careful analysis that

exploits the half-integrality of the solution shows that the violation in the capacity ofri is in fact at most
1
2 maxo lo, and the load ofri is at mostui + maxo lo. As in Lemma 3.4 and Theorem 3.5, this yields an
integer solution of cost at most10 ·OPT .

We observe that for the connected versions of the above extensions, one obtains the same guarantees
as for the connected data placement problem. We simply use the algorithms described above (with the
modification to Step I specified in Section 4) to handle the data-placement part of the problem; then we
apply the rounding method of Section 4 to build the Steiner trees. The analysis from Section 4 still applies,
since it is still true that for any cachei on which an objecto is stored, there is a unique clientj ∈ Do such
thati ∈ F ′

j.

Theorem 5.3 There is a 14-approximation algorithm for the connected version of the following data place-
ment problems:

(i) the placement problem with a priori bounds on the number of caches that may store a data object;

(ii) the placement problem with arbitrary object lengths; here we obtain a bicriteria guarantee where the
cache capacities may be violated by an additive amount of at mostmaxo lo.

6 Hardness results

In this section, we establish two hardness results. It is clear that the data placement problem with storage
costs isAPX-hard, since it is a generalization of metric UFL. We show that the data placement problem is
APX-hard even when there are no storage costs. Our second resultis that for the data placement problem
with arbitrary object lengths, it isNP-complete to even decide if there exists a feasible solution; hence, one
cannot achieve any approximation ratio in polynomial time unlessP =NP.

Theorem 6.1 The data placement problem isAPX-hard even when there are no storage costs.

Proof : We give a reduction from metric UFL. In the unit-demand version of metric UFL (which is still
APX-hard), we are given a set ofn facilities F with facility-opening costs{fi}i∈F , a client-setD and

14

distances/assignment-costs{Cij} that form a metric. The goal is to open a subset of the facilities and assign
each client to an open facility, so as to minimize the sum of the facility-opening and client-assignment costs.

Given such a UFL instance, we construct the following instance of the data placement problem. We let
F = F ∪ {Γ} be the set of caches, andD = D ∪ F ′ be the set of clients, whereF ′ is a copy ofF , i.e.,
for everyi ∈ F , we create a unique clientσ(i) ∈ F ′. There are|F | + 1 data objectso0, o1, . . . , on. Each
client j ∈ D has unit demand for objecto0. Each clientσ(i) ∈ F ′ has demandfi/M for objectoi, where
M is some large number such thatM ≫ maxi,j Cij . Each cachei ∈ F has unit capacity, and cacheΓ has
capacityn + 1 = |F |+ 1. We define the distancescij for i ∈ F andj ∈ D; all other distances are equal to
the shortest-path distances in the bipartite graph(F ∪ D,

{

(i, j) : i ∈ F , j ∈ D ∪ {σ(i)}
}

) with thesecijs
as the edge-weights. For everyi ∈ F , we setcij = Cij if j ∈ D ⊆ D′, and 0 ifj = σ(i); for i = Γ and
everyj ∈ D, we setcij = M . It is easy to see that thecij ’s form a metric.

We show that this is an approximation-preserving reductionby arguing that any UFL-solution translates
to a data-placement solution of no greater cost and vice-versa. Consider a UFL-solution that opens the
facilities in S ⊆ F (and assigns each client to the nearest facility inS). We map this to the data-placement
solution, where each cache inS stores objecto0, each cachei ∈ F \ S stores objectoi, and cacheΓ stores
the objectsoi for i ∈ S. Clearly, the total access cost incurred for objecto0 is equal to the client-assignment
cost of the UFL-solution, the total access cost incurred forthe objectsoi, wherei ∈ S is

∑

i fi, and the
access cost for all other objects is 0. So the cost of this data-placement solution is exactly the cost of the
UFL-solution.

Conversely, suppose we have a data-placement solution. We may assume that objecto0 is stored in some
cache inF , otherwise we can improve the solution-cost by storingo0 in some cachei ∈ F (and moving the
object stored ini to Γ if necessary). LetS ⊆ F be the set of caches that storeo0, We open the facilities
corresponding toS (and assign each client to the nearest facility inS). SinceM ≫ maxi,j Cij , the client-
assignment cost in the UFL solution is at most the total access cost foro0. For each cachei ∈ S, the access
cost for objectoi is at leastfi/M ·M = fi (since the distance fromi to any other cache is at leastM), so
the facility-opening cost of the UFL solution is at most the access cost for the objectsoi wherei ∈ S. Thus,
the cost of the UFL-solution is at most that of the data-placement solution.

Theorem 6.2 It is NP-complete to decide if there exists a feasible solution to aninstance of the data place-
ment problem with arbitrary object lengths. Consequently,there is no polynomial time approximation algo-
rithm for this problem unlessP =NP.

Proof : Membership inNP is immediate. TheNP-hardness proof follows from an easy reduction from the
PARTITION problem. Leta1, . . . , am be an instance of the PARTITION problem withA =

∑

i ai/2. In the
data-placement instance, we have two caches with capacityA, m objects with lengthsa1, . . . , am, andm
clients, each of which has unit demand for a unique object. (The distances and the locations of the clients
and the caches are not important.) Clearly, any feasible solution to the data placement problem yields a
solution to the PARTITION problem, and vice-versa. TheNP-completeness result follows.

References

[1] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.Journal of Algorithms,
28(1):67–104, 1998.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Heat & Dump: competitive distributed paging. InProceedings of
the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993, pages 22–31, 1993.

15

[3] I. Baev and R. Rajaraman. Approximation algorithms for data placement in arbitrary networks. In
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 661–670, 2001.

[4] N. Bansal, D. Coppersmith, and M. Sviridenko. Improved approximation algorithms for broadcast
scheduling. InProceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
344–353, 2006.

[5] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.Journal of
Computer and System Sciences, 51(3):341-358, 1995.

[6] J. Byrka An optimal bifactor approximation algorithm for the metric uncapacitated facility location
problem. InProceedings of the 10th APPROX, pages 29–43, 2007.

[7] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for
thek-median problem.Journal of Computer and System Sciences, 65(1):129–149, 2002.

[8] F. Chudak and D. Shmoys. Improved approximation algorithms for the uncapacitated facility location
problem.SIAM Journal on Computing, 33(1):1–25, 2003.

[9] F. A. Chudak and D. P. Williamson. Improved approximation algorithms for capacitated facility loca-
tion problems.Mathematical Programming, 102(2):207–222, 2005.

[10] L. Dowdy and D. Foster. Comparative models of the file assignment problem. ACM Computing
Surveys, 14(2):287–313, 1982.

[11] L. Fleischer, M. Goemans, V. Mirrokni, and M. Sviridenko. Tight approximation algorithms for max-
imum general assignment problems. InProceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 611–620, 2006.

[12] B. Gavish and O. Sheng. Dynamic file migration in distributed computer systems.Communications of
the ACM, 33(2):177–189, 1990.

[13] S. Guha and K. Munagala. Improved algorithms for the data placement problem. InProceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 106–107, 2002.

[14] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual private network: A
network design problem for multicommodity flow. InProceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pages 389–398, 2001.

[15] A. Gupta, A. Kumar, and T. Roughgarden. Simple and better approximation algorithms for network
design. InProceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 365–372,
2003.

[16] A. Heddaya and S. Mirdad. WebWave: Globally load balanced fully distributed caching of hot pub-
lished documents. InProceedings of the 17th International Conference on Distributed Computing
Systems, pages 160–168, May 1997.

[17] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location algorithms
analyzed using dual-fitting with factor-revealing LP.Journal of the ACM, 50(6):795–824, 2003.

[18] K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location andk-median prob-
lems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM, 48:274–296, 2001.

16

[19] M. Korupolu and M. Dahlin. Coordinated placement and replacement for large-scale distributed
caches. InProceedings of the IEEE Workshop on Internet Applications, pages 62–71, July 1999.

[20] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility
location problems.Journal of Algorithms, 37(1):146–188, 2000.

[21] M. Korupolu, C. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical cooperative
caching.Journal of Algorithms, 38(1):260–302, 2001.

[22] C. Krick, H. Räcke, and M. Westermann. Approximation algorithms for data management in networks.
In Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
237–246, 2001.

[23] A. Leff, J. Wolf, and P. Yu. Replication algorithms in a remote caching architecture.IEEE Transactions
on Parallel and Distributed Systems, 4(11):1185–1204, 1993.

[24] R. Levi, R. Roundy, and D. Shmoys. Primal-dual algorithms for deterministic inventory problems.
Mathematics of Operations Research, 31:267–284, 2006.

[25] R. Levi, D. Shmoys, and C. Swamy. LP-based approximation algorithms for capacitated facility loca-
tion. In Proceedings of the 10th International Conference on Integer Programming and Combinatorial
Optimization, 2004.

[26] J. H. Lin and J. S. Vitter.ǫ-approximations with minimum packing constraint violation. InProceedings
of the 24th Annual ACM Symposium on Theory of Computing, pages 771–782, 1992.

[27] B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Exploiting locality for data
management in systems of limited bandwidth. InProceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science, pages 284–293, 1997.

[28] F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Caching in networks. InProceedings of
11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 430–439, 2000.

[29] A. Meyerson, K. Munagala, and S. Plotkin. Web caching using access statistics. InProceedings of
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 354–363, 2001.

[30] M. Pál,É. Tardos, and T. Wexler. Facility location with nonuniformhard capacities. InProceedings of
the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 329–338, 2001.

[31] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A dynamic object replication and mi-
gration protocol for an Internet hosting service. InProceedings of the IEEE International Conference
on Distributed Computing Systems, pages 101–113, May 1999.

[32] R. Ravi and F. S. Selman. Approximation algorithms for the traveling purchaser problem and its
variants in network design. InProceedings of the 7th Annual European Symposium on Algorithms,
pages 29–40, 1999.

[33] R. Ravi and A. Sinha. Multicommodity facility location. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 335–342, 2004.

[34] D. B. Shmoys. Approximation algorithms for facility location problems. InProceedings of the 3rd
APPROX, pages 27–33, 2000.

17

[35] D. B. Shmoys, C. Swamy, and R. Levi. Facility location with service installation costs. InProceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1081–1090, 2004.

[36] D. B. Shmoys and́E. Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming A, 62:461–474, 1993.

[37] D. B. Shmoys,́E. Tardos, and K. I. Aardal. Approximation algorithms for facility location problems.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265–274, 1997.

[38] C. Swamy. Algorithms for Data Placement Problems.Unpublished manuscript, 2004.

[39] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems.Algorith-
mica, 40(4):245–269, 2004.

[40] C. Swamy and D. B. Shmoys. Fault-tolerant facility location. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 735–736, 2003.

[41] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.ACM Transactions on
Database Systems, 22(2):255–314, 1997.

[42] J. Zhang, B. Chen, and Y. Ye. A multi-exchange local search algorithm for the capacitated facility
location problem. InProceedings of the 10th IPCO, pages 219–233, 2004.

18

