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Abstract

We develop approximation algorithms for the problem of plgaeplicated data in arbitrary net-
works, where the nodes may both issue requests for datatelzgid have capacity for storing data
objects, so as to minimize the average data-access costntWdlce thedata placement probleno
model this problem. We have a set of cacligsa set of clientsD, and a set of data object3. Each
cachei can store at most; data objects. Each cliefte D has demand, for a specific data object
o(j) € O and has to be assigned to a cache that stores that objedhgSiarobjecb in cachei incurs a
storage cost of?, and assigning client to cache incurs an access cost dfc;;. The goal is to find a
placement of the data objects to caches respecting theitbapawstraints, and an assignment of clients
to caches, so as to minimize the total storage and cliensaassts.

We present a 10-approximation algorithm for this problerrur @gorithm is based on rounding
an optimal solution to a natural LP-relaxation of the praibleOne of the main technical challenges
encountered during rounding is to preserve the cache dagsaaihile incurring only a constant-factor
increase in the solution cost.

We also introduce theonnected data placement probletm capture settings where write-requests
are also issued for data objects, so that one requires a misohto maintain consistency of data. We
model this by requiring that all caches containing a givejectbe connected by a Steiner tree to a root
for that object, which issues a multicast-message uponte wr{any copy of) that object. The total cost
now includes the cost of these Steiner trees. We devise pfrbdmation algorithm for this problem.

We show that our algorithms can be adapted to handle twontardd the problem: (a) &-median
variant, where there is a specified bound on the number ofesaittat may contain a given object; (b)
a generalization where objects have lengths and the taotgtHeof the objects stored in any cache must
not exceed its capacity.

*This work is a combined version of two papers: an extendettatidy Baev and Rajaraman [3] that appeared in the Proceed-
ings of the 12th Annual ACM-SIAM Symposium on Discrete Algjoms, 2001, and an unpublished manuscript by Swamy [38].
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1 Introduction

Consider a distributed network, some of whose nodes needriodically access certain data objects, and
some of whose nodes have storage capacity and may servehas tastore data objects thereby reducing
the cost of accessing data objects. For example, one coutd naetwork of distributed caches and/or
processors in a large-scale information system or competinironment. A powerful paradigm to improve
performance, which has been explored in several studiess[11) 28] is cooperative caching, wherein the
caches cooperate in making storage decisions and in sexagtgothers’ requests. (Cooperation is of course
likely to be the default mode under centralized control, sehal the network nodes are under the control
of a single entity, e.g, as in an organization’s local ardavak.) Clearly, cooperation has the potential to
improve system performance by reducing average accesswosimproving storage-space utilization. A
basic problem that arises in such a cooperative setup isngicost function specifying the cost of accessing
an object stored at one location from another, and the agadt=n of each node for each object, determine
a placement or mapping of the data objects to caches, so aisitniae the average cost of accessing the
data objects.

We abstract this problem via the following mathematicaffakation, which we call thelata placement
problem We are given a set of cach&s a set of data object®, and a set of client®. Each cache € F
has a capacity; that limits the total number of data objects that may be dtanehe cache. Each client
J € D has demand, for a specific data objeet(j) € O and has to be assigned to a cache that stores that
object. Storing an objectin cachei incurs astorage cosof f, and assigning client to cachei incurs an
access cosdf d;c;; proportional to the “distancet;; betweeni and;j. The storage costs could be used to
model the cost of realizing a placement, e.g., the ¢fshight represent the cost of expunging some items
from the cache in order to free up storage space. The datarpéatt problem seeks a placement of the data
objects to caches that respects the cache capacities, asdignment of clients to caches, so as to minimize
the total storage and client access costs. More preciselyyamt to determine a set of objec®:) C O to
place in each cachec F satisfying|O(7)| < u;, and assign each clieritto a cache(j) that stores object
o(j), (i.e.,0(j) € O(i(4))) so as to MNIMIz& ;. = >~ pcop) [T + 2o jep djci();- As in several previous
studies, especially on facility location [5, 1, 37, 34, 7,8 assume that the caches and clients are located
in a common metric space, so the distange$orm a metric.

More generally, each objeote O may have dengthi,, and the capacity; of cachei € F now bounds
the total length of data objects that may be stored in theeca@lme access-cost of an object is weighted
by its length, so if clientj is assigned to cacheit incurs an access cost dfl,;)c;;- Unless otherwise
stated, we will use the data placement problem to denotertitdgm with unit (or equivalently, uniform)
object-lengths.

The data placement problem can also be motivated from atyalcitation perspective. In a typical
facility-location setting, we are given a set of facilitiegth facility-opening costs and a set of clients with
demands, and we want to open facilities and assign cliergen facilities so as to minimize the sum of the
facility-opening costs and client-assignment costs. hious such applications, the clients are differentiated
according to the kind of service they require, and in ordeyatisfy a client we need to assign (the demand
of) the client to a facility where the service required byastbeen “installed” (so that the facility can provide
this service). The data placement problem can be used t@abstich settings, wherein the caches represent
facilities and the objects correspond to the differentises/required by the clients; the storage cost models
the cost of installing service at a given facility, and theteacapacity imposes a restriction on thwenber of
serviceghat may be installed at a facility. Shmoys et al. [35], angiRad Sinha [33] introduced problems
closely related to the data placement problem, motivateslio facility-location applications.

The data placement problem is a generalization of the matrcapacitated facility locatiofUFL)
problem, and hence, &PX-hard. Moreover, as we show in Section 6 by a reduction frotrimgFL, the
problem (with uniform object-lengths) remaiA®X-hard even when there are no storage costs.



Our results and techniques. Our main result (Section 3) is a 10-approximation algorittumthe data
placement problem. The algorithm we present here is an wepnent over the approximation algorithm
described in [3]. For the benefit of the reader, we brieflydkeéihe differences between this algorithm and
the one in [3] in Section 1.1.

Our algorithm is based on rounding an optimal solution totanadlinear-programming (LP) relaxation
of the problem. Observe that the placement problem for aadiliidual object is a UFL-instance; however
these instances are coupled due to the cache-capacityaintstwhich is what makes the problem hard.
One of the main technical challenges faced in the rounding gseserve the cache capacities while losing
only a constant factor in the approximation ratio. Desgiie similarity with UFL, hard capacities make
it quite difficult to apply the standard rounding ideas uhdeg the design of approximation algorithms
for UFL. All LP-based algorithms for UFL employ either filteg [26, 37], or use the dual to bound the
solution cost [8, 18, 17, 6]. Filtering typically involvesolving up the LP-variables, thereby violating
the cache-capacities, and the dual of the LP-relaxatiomefdiata placement problem contains negative
variables (corresponding to the primal capacity condisginvhich presents a serious obstacle to using the
dual to bound the solution cost. Instead, we use the techsidaveloped by Charikar, Guha, Tardos and
Shmoys [7] for thek-median problem.

Our algorithm proceeds in two phases. In the first phase, We tpoon a clustering method introduced
by Charikar et al. (Step 1 in [7]) and round the LP-solutiom twalf-integral solution. In the second phase
of our algorithm, we use the Shmoys-Tardos-Aardal [37]teliisg methodwithout any filteringto cluster
the demand-nodes for each object and obtain a solution hétiptoperty that for every objeetand cache
i, there is at most one demand-nodeddhat is served by. The key observation that allows us to do away
with the problematic filtering step is that, in a half-intagsolution, the distance between a client and any
cache serving it fractionally is already bounded relattvéd access cost in the half-integral solution. Once
we have the aforementioned property, one can view the draaltisolution as a feasible flow to a minimum-
cost flow problem with integral capacities. By the intedgyafproperty of flows one can now extract an
integer solution of no greater cost. This algorithm anditzlysis are described in Section 3.

The formulation of the data placement problem appears mutstbde for applications where objects
are rarely written. In a setting where write-requests aseiad for data objects, one needs to have a
separate mechanism to maintain consistency among theaepdf an object. In Section 4, we formu-
late theconnected data placement problewhich incorporates this aspect of data management (which i
not captured by the data placement problem). As proposedrizk Kt al. [22] in the context of another
caching problem, we model this by requiring that for everjeoto, all caches containing be connected
via a Steiner tred, to a rootr,. When a write-request is issued for objectthe root initiates an up-
date of all the copies of objeet using the tre€l;, as a multicast tree. The objective is to minimize the
total cost incurred in storing and accessing objects anftilibgi the Steiner trees, that is, to minimize
YieF Zoeoa) P+ Zjep djci(j)j + Dooco Mo D _ecr, Cer Where theM,s are input scaling parameters.
This generalizes theonnected facility locatioproblem [14, 39, 15] for which the best known guarantee is
8.55 [39]. We present a 14-approximation algorithm for fhrisblem. One noteworthy feature here is the
ease with which one can interface the algorithm develop&kition 3 (which handles the data-placement
part of the problem) with the rounding ideas proposed in [I38,to handle the connectivity-aspect of the
problem.

In Section 5, we consider a couple of extensions. First, wesider thek-median variant, where for
every objecb, there is a bound dof, on the number of caches that may store objedDur rounding algo-
rithm is versatile and extends easily with minimal changethis variant, yielding the same approximation
guarantee. Second, we consider the data placement prohinamvitrary object-lengths. It is easy to
show (see Section 6) via a reduction from tlrerRPITION problem that with arbitrary object-lengths, it is
NP-complete to even decide if there exists a feasible solutience, no approximation ratio is achievable in
polynomial time unles® =NP. We can modify our algorithm to obtain a bicriteria approation guarantee



in this setting: we return a placement of cost at most 10 tithe®ptimal where the total length of objects
stored in a cache may exceed its capacity by the maximumtelejegth. We conclude in Section 6 with a
couple of hardness results about the data placement prabiliéngi) no storage costs, and (ii) non-uniform
object lengths.

Related work. The problem of data management in a distributed network bas kxtensively-studied.
Dowdy and Foster [10] initiated the study of cooperativehiag in the context of allocating files in a
distributed network, and this problem has since receivedmaitention. We limit ourselves to an overview
of the work in models that most closely resemble our model;réader is referred to the surveys [10, 12]
for a more detailed discussion.

Various works [5, 2, 1] have considered amnline version of our problem, both with and without cache
capacities, where read and write requests arrive onlinehard to be taken care of on the fly. The com-
petitive ratios achievable in the online setting are, nopssingly, weaker than the approximation ratios
achievable in the offline setting. Awerbuch, Bartal, and R#hgave a randomized algorithm with competi-
tive ratiopolylog(> .. 5 u;) for the uniform metric, whereas Awerbuch et al. [1] givedylog(max;; c;;)-
competitive algorithm for arbitrary metrics, but requir@@lylog(max;; ¢;;)-factor blow-up in the cache-
capacities. Various studies have incorporated routingrimétion into the caching problem, for instance
by having intermediate nodes cache copies of an object wheenliject is being routed [16, 31, 41], or by
considering the problem of minimizing network congestiam ¢io routing of requests [27, 28]. In contrast,
we abstract away routing concerns by assuming that;thealues, which determine the access costs, are
given to us as input.

The offline data placement problem that we consider was first studiedhigzarchical networks, or
equivalently when the access costs form an ultrametric (ee mestricted class of metrics). Leff, Wolf
and Yu [23] considered ultrametrics derived from a star,ugotu, Plaxton and Rajaraman [21] gave ex-
act and approximation algorithms for general ultrametrarsd Korupolu and Dahlin [19] evaluated the
practical performance of several placement algorithmsifioametrics. Independent of [3], Meyerson, Mu-
nagala, and Plotkin [29] considered a generalization ofpvablem (called the page-placement problem),
where a cache also has a client-capacity limiting the nurobetients that may be assigned to it. They
gave a constant-approximation, but with a logarithmicatioln of both the client-capacities and the object-
capacities. Subsequently, Guha and Munagala [13] obtaanegnstant-factor approximation where the
capacities are violated only by a constant factor. FleiscBeemans, Mirrokni, and Sviridenko [11] con-
sidered a maximization version of the data placement pnobléth similar client-capacity constraints that
limit the total demand that may be assigned to a cache. TWeyag(il — % — e)—approximation algorithm,
for anye > 0, and show that no better guarantee is achievable uNIESSDTIME [n©(cslog )],

As mentioned earlier, the data placement problem can alsodtivated from a facility-location per-
spective, where caches correspond to facilities and trextsbforrespond to the differesgrvicesrequired
by clients. Shmoys, Swamy, and Levi [35] formulated a clpselated problem in this context calléakil-
ity location with service installation costs (FLSLIQ)sing the terminology of the data placement problem,
in FLSIC the caches (facilities) are uncapacitated, but lnexe to pay a location-dependent cache-setup
(facility-opening) cost to “build” a cache at a location bef storing any data object at that cache. Inde-
pendently, Ravi and Sinha [33] proposed the multicommofiitylity location problem giving a similar
motivation. Shmoys et al. [35] give a 6-approximation aiton for FLSIC under a certain assumption on
the service installation costs.

The data placement problem (without storage costs) and®&h&ve also been studied for the special
case of thalirectedline-metric under the names bfoadcast scheduling4] and thejoint replenishment
problem[24] respectively. In both problems, both the clients anel taches correspond to points on the
time-line. In broadcast scheduling, the objects corregdporpages. A client corresponds to a request for a
page, a cache corresponds to a page-broadcast, and a r@duast must be assigned to a broadcast of that
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page at some timé > t. At mostc pages may be broadcast at any time; the goal is to minimizavii@ge

response time of the requests. The best-known approximétior for this problem i@(lg‘g)gig‘%‘) due
to Bansal et al. [4]. In the joint replenishment problem, dbbgects are items. Demands for items occur at
various points of time, and one has to determine which itenasder at which times, so that all demand can
be met by orders that are placed at earlier points of timesifjaan order for a subset of items incurs a joint
ordering cost to start the order, and an item-dependentandteach demand gets charged the cost incurred
to hold the inventory for that demand. Levi et al. [24] gave@pproximation algorithm for this problem.
The data placement problem is a generalization of UFL, wbarhesponds to the special case with only
one object. There is a large body of literature that deals datsigning approximation algorithms for metric
UFL; see [34] for a survey of this and earlier work. The firshstant approximation guarantee for UFL was
obtained by Shmoys, Tardos, and Aardal [37] via an LP-raugpailgorithm, and the current state-of-the-
art is a 1.5-approximation algorithm due to Byrka [6]. Foe ttiosely-related:-median problemthe first
constant-factor approximation algorithm was given by @@y Guha, Tardos and Shmoys [7] using LP
rounding. As mentioned earlier, the clustering method lbpezl by them plays a key role in our algorithm.
Finally, we remark that the presence of cache capacitiebitrsigggest a similarity to the capacitated
facility location (CFL) problem, but this resemblance idyosuperficial. The capacities in our problem
limit the number of objects that may be assigned to a cachethietie isno boundon the demand (or
number) of clients requesting a given object, or total dasmémat may be assigned to a cache. (The data
placement problem may be viewed as a collectiotBL. instancesone for each object, that are coupled
due to the cache-capacity constraints.) In particularpasigorithm shows, the integrality gap of the natural
LP relaxation for our problem is at most a constant, wherearetis no known LP relaxation of CFL with
constant integrality-gap. Moreover, the local searchrlgms in [20, 9, 30, 42] do not directly apply, and
it is not clear if they can be adapted to our problem.

1.1 Relationship with the work of [3] and [38]

This work is a merger of two earlier papers: an extended aftsof Baev and Rajaraman [3], and an
unpublished manuscript of Swamy [38]. In order to place oariwin proper bibliographic context, and for
the benefit of the reader, we include a brief comparison ofamrk with [3] and [38].

The data placement problem that we consider was introdugdslabv and Rajaraman [3]. (In their
model, each clienf has demand, for every objecto € O; this easily reduces to the model considered
here since one can create a co-located gépyof client j with demandl;, for every objecb.) They gave a
20.5-approximation algorithm for this problem, which isbd on rounding an optimal solution to the same
LP-relaxation of the problem that we consider. The 10-axpration algorithm described in this paper is
from [38], and is based on an improved rounding proceduré¢hisame LP. We briefly describe the main
differences between the two algorithms.

As described eatrlier, our algorithm proceeds in two phagbs.first phase of our algorithm, where we
round the LP-solution to half-integral solution, is identical to the first half (steps 1-3) of theaaithm
in [3]. From here on the two algorithms proceed along diffierieacks. In both algorithms, the goal is to
modify the previously-obtained half-integral solutioridrone that has the property that for every object
and caché, there is at most one demand-nodedthat is served by, so that one can then set up a minimum-
cost flow problem to round the half-integral solution to aegral one. In the second phase of our algorithm,
we use the Shmoys-Tardos-Aardal [37] clustering methothfwi filtering) to obtain a solution with the
above property. In contrast, the Baev-Rajaraman algoritvetails the rounding procedure of [7] (creating
1-level trees that are used to cluster the clients) to olatanlution with the aforementioned property. By
adopting a different clustering approach that better asplwalf-integrality, we obtain a simpler algorithm
that also yields a much better approximation guarantee.



The connected data placement problem was introduced by $y&8} and the 14-approximation algo-
rithm that we present for this problem was described therein

2 An LP relaxation

We can express the data placement problem as an integeapragmd relax the integrality constraints to get
a linear program. Throughout we will usdo index the caches i, j to index the clients irD ando to
index the objects 0.

min Z Z f{’yf + Z Z deijwij (P)
% o i %

) .
2y < 7 Vi, j
ny <, Vi (1)
o
xl]vyzo > 0 Vi7j>0'

Variabley? indicates if objecb is stored in caché andzx;; indicates if clientj is assigned to cache The
first and second constraints say that each client must bgnaskto a cache and if clieritis assigned to
cachei then objecio(j) must be stored in cachie The third constraint states that the total length of items
stored in any cachgeis at most its capacity;. An integer solution corresponds exactly to a solution to ou
problem. We letG, denote the set of clients that demand objeéte.,G, = {j : o(j) = o}.

3 The rounding procedure

Let (z,y) denote the optimal solution to (P) adP T be its value. We will round this to an integer solution
losing a factor of at most 10. We use the terms access cosisaighaent cost interchangeably.

3.1 Overview of the algorithm

We first give a high level description of the algorithm. Sup@éor a moment that the optimal solutipn )
satisfies the following property: for any cachand objecto, there isat most oneclient j € G, such that
xi; > 0 (). We can then set up the following min-cost flow problem: aembipartite graph with vertex
setD U F and edgesi, j) for everyi, j such thats;; > 0 with costff(j) + d;c;; and capacity 1; clienf
has a demand df and cache has capacity:;. The LP solution translates to a feasible fractional flow in
this graph of cost at mog2PT'. Note that property ) is crucial for this Conversely an integer flow yields
an integer solution to (P) of cost equal to the flow cost. Tioeecby the integrality property of flows (given
integer capacities) we can roud, y) to an integer solution of no greater cost. Of course, the Létisa
need not have propertyx) so our goal will be (loosely speaking) to transfofm y) to a solution that has
property (x) without increasing the cost by much. One of the major chglenencountered is to do this
transformatiorwithout violating the cache capacitieghile increasing the cost only by a constant factor.
Roughly speaking we want to do the following: for each objeduster the clients id7, around certain
‘centers’ (also clients ii7,) such that (a) every clieritis mapped to a “nearby” cluster centewhose LP
assignment cost is less than thakopénd (b) the facilities serving the cluster centers in thetfonal solution
(z,y) are disjoint. So, the modified instance where the demand st &s moved to the center of its cluster
has a fractional solution, namely, the solution inducedyy)), that satisfie$x) and has cost at mostPT'.



Furthermore, given a solution to the modified instance wentdain a solution to the original instance losing
a small additive factor. This clustering-idea lies at theeaof most algorithms for facility location, however
the necessity of preserving cache-capacities renders mwifathe known clustering methods [37, 8, 25]
unsuitable for our purposes. For example, one option is ¢otlis decomposition method of Shmoys et
al. [37] that produces precisely such a clustering. The Ipokhowever is that [37] uses filtering which
involves blowing up ther;; andyy values and thus violating the cache capacities. Chudak ambs [8],
and Levi, Shmoys and Swamy [25] use similar clustering idedsvithout filtering, using the dual solution
to bound (portions of) the cost. The difficulty here in boungdthe cost using the dual solution is that there
are terms with negative coefficients in the dual objectivection that correspond to the primal capacity
constraints (1). Although [40, 25] showed that it is possitol overcome this difficulty in certain cases, the
situation here looks more complicated and it is not clear tmuse their techniques.

Instead, we use the clustering technique of Charikar eThtigveloped for thé-median problem. Our
algorithm proceeds in two phases. In the first phase (Seétid)y; we extract a modified instance and a
fractional solution to this instance from the LP solutiondaound this to dalf-integral solution(z, ), that
is, eacht;;, U; € {0, %, 1}, losing a factor of 3. Further, any solution here will giveotéusion to the original
instance while increasing the cost by at mostOPT. We do this by first transferring demands to certain
well-separated centers (Step I) exactly as in the demansgetidation step of [7], so as to ensure that each
center has its own private set of caches that serve it to @megf at least half. This allows us to set up a
minimum-cost flow problem (Step I1) with half-integral cajitées with a one-one correspondence between
solutions and flows, and thereby round the fractional smiutin the centers to a half-integral solution.

In phase two (Section 3.3), we observe that we can now usdubiiing method in [37] on the half-
integral solution(z, ) without any filtering(Step IIl) since such a solution is essentially alreadyrgite
if client j is assigned ta andi’ in &, thenc;;, ci; < 2(cij@i; + cyjyj). This clustering satisfies the
requirements (a) and (b) mentioned above. Thus, one camantainteger solution for the new cluster
centers by solving a suitable min-cost flow problem. Thisdseatially what we do, but we set up the
min-cost flow problem more carefully (Step IV) so as to los&/@factor of 2 in convertingz, y) to an
integer solution (for the modified instance extracted inggh®). So overall we get an approximation ratio
of 4+ 2 x 3 =10 (Theorem 3.5).

We now describe each of these steps in detail. dlet= Y, ¢;;x;; denote the cost incurred by the LP
solution to assign one unit of demand of clignt

3.2 Obtaining a half-integral solution (&, ¢)

Step I: Consolidating demands around centers. We first consider every objeet separately, and con-
solidate (or cluster) the demand of clientsGf at certain clients, that we catluster centers We do not
modify the fractional solutioriz, ) but only modify the demands so that for some cligihtthe demand;
is “moved” to a “nearby” centek. We assume every client has a non-zero demand.

Setd;- «— 0 for everyj. Consider the clients i, in increasing order of’;. For each clien, if
there exists a client (including j) such thatd}, > 0 andc;;, < 4max(Cj, Cy) = 4C}, setd), — d}, + d;,
otherwise setl; — d;. We do this for every objeat. Let D, = {j € G, : d; > 0} andD = |, D.
Each client inD is a cluster center. LeOPT' = 3=, | ffy? + 3 cp; d;cijri; denote the cost ofz, y)
for the modified instance consisting of the cluster cent8isce the demand of each clight? D moves a
distance of at mostCy, it is clear that any solution to the modified instance yieldslution for client-set
D incurring an additive factor of at most_, ., di,Cy < 4- OPT. We obtain the following lemma.

Lemma 3.1 The following hold: (i) ifj,k € D,, thenc;, > 4max(C},Cy), (i) OPT" < OPT, and
(iii) any solution (', y') to the modified instance can be converted to a solution to thgnal instance
incurring an additional cost of at modt- OPT.



Figure 3.1: The min-cost flow network constructed in StefTHe tuple labeling an edge gives the (capac-
ity;cost) for the edge.

From now on we will focus on the modified instance with clisetD and modified demancﬂ:‘j. At the
very end we will use the above lemma to translate an intedetico to the modified instance to an integer
solution to the original instance.

Step II: Transforming to a half-integral solution. We define the cluster of a clienite D, to consist of
all clientsk € G, whose demand;, was moved tgj, and a set of facilitied”;. F; consists of all facilities

i to which j is fractionally assigned such thats the center inD,, closest toi, that is, F; = {i : z;; >

0 ande;; = mingep, cir }, with ties broken arbitrarily. Lef; C Fj = {i € Fj : ¢;j < 2C;}. Definer;

to bemin;g ..., >0 ¢ij. Clearly the setd; for j € D, are disjoint. By property (i) of Lemma 3.1, we have
that F; contains all the facilities such thatr;; > 0 andc;; < 2C;. SoZieFJ, Tij = Diiey <20, Tij 2 1
where the last inequality follows from Markov's inequality

In the half-integral solutior(,y), we will store objecto only at caches that lie in some sgj for
j € D,. To obtain(z, ), we set up a min-cost flow problem. We create a siakd a node; for every
cachei in UjeD F; with an outgoing edgér;,t) of capacityw; and cost O (see Fig. 3.1). For each client
J € D we create three nodes, a;, andb;. Nodev; has demand-1 (i.e., the net outgoing flow should be
1) to denote the requirement thatust be assigned to a cache. We add edggs:;) with capacity 1 and
cost 0, andv;, b;) with capacity% and cost 0. Node; represents the option thais assigned to a facility
in F7, so we add edges:;, ;) to everyi € F with capacity 1 and co%o(” )+ d);c;j. Notice that setting the
capacity of(v;, b;) to § forces; to be assigned to an extent of at legsb facilities in F;. Nodeb; signifies
that j is assigned either to a facility iR; or to some other facility. To encode this, we add eddgsr;)
to everyi € F; with capacity 1 and cosf; U) 4 d;cij, and an edgéb;, t) with capacity 1 and cosﬁd}fyj
(since, as we show later, there is always a facility at desaat mosB; from j that is at least half-open).
Figure 3.1 shows the portion of the min-cost flow instancessponding to clieni.

Since all edge capacities a%eor 1 the network has a half-integral min-cost flow. Given saditow
we obtain(z, y) as follows. We initialize allz;;, g¢ to 0. Consider objeat. For every; € D, and cache
i€ Fj’ we setj? = #;; = flow along(a;, r;) + flow along(b;,7;). For everyi € F; \ F/, we setj? andz;;
equal to the flow along edgg;, ;). Observe that there is at least one cacke ] such thati;; > 0; we
call the cache id?jf closest tgj with £;; > 0 the primary cacheof j. Note that since the sefs; (and hence
ij) for j € D, are disjoint, every client itD, has a unique primary caclieLet:' be the cache nearest to
J, other than its primary cache, wif}§ > 0. If edge(b;, t) carries positive flow (so no edde;, r;) carries
any flow implying thaty? = 0 for everyi € F; \ ij), we setz;; = flowon(b;,t) = % We do this for
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every objecb. If a clientj is assigned to a cache other than its primary cache, we eatittter cache the
secondary cachef j. It is easy to verify tha{z, ) is a feasible solution to (P), where the client-sebis
The following lemma shows that the cost(df, y) is at mos3 - OPT.

Lemma 3.2 The cost of &, 9), thatis,>, , fP97 + 3 ,cp,; dicijiij, is atmosB - OPT' < 3 - OPT.

Proof : First we show thatz, y) induces a flow of cost at mo8t: OPT’, so the cost of the min-cost flow
is no greater. Then we show that the costafy) is bounded by the cost of the min-cost flow.
Consider the following flow: each edde;, a;) has flow) ", ./ z;;, (v;,b;) has flowl — >, 245,
J J
and (b;,t) has flow1l — ZZEF], xi;; every edge(a;,r;) or (b;,r;) has flowz;;; the flow on(r;,t) is
0 2jeDyick, Tij- Itis easy to see that this is a feasible flow. The cost of thig f

> (Z(d;-cz-j + 9w + 31— wij)) <>+ Z%(Z cijzij + 31— xij))-
2,0 7

0,7€D, ’iEFj ’iEFj ’iEFj iEFj

We have OPT' = Zw foye + Zj d;.()j. Foranyj € D, C; = ZZEFJ_ CijTi; + ZiiFj CijTij >
> icr, CiTij + 75(1 — Yiep, wij) sincer; was defined asninggp;.,,.~o ¢ij. This shows that the cost
of the constructed flow, and hence of the min-cost flow, is atheo OPT’.

Now consider the solutiofi, ¢) induced by the half-integral min-cost flow. By constructitime quan-
tity >0 S0 + 2Xjenicr, d;cij#; is exactly equal to the total cost of the flow on edges,r;) and
(bj,ri). Foranyj € D the remaining cos}_,. . djci;ii; is equal tod;cy; - (flow on (b;,t)) wherei
is the secondary cache ¢f So it suffices to show that;; < 3v;. Lety; = ¢;»; wherei” ¢ F; and
zn; > 0. Letk be the center iD, nearest ta” and let¢ be the primary cache df. Then,c¢;; < ¢,; and
4max(Cj,Ck) < ¢ji < cimj + cimy < 27;. Also ¢, < 20y, sincel € FJ. Combining the inequalities we
get thatcy ; < 3+, which completes the proof of the lemma. [

3.3 Converting (&, g) to an integer solution (Z, )

DefineC'j =Y, ci;Z;; for j € D. Leti;(j) denote the primary cache ¢f For convenience, we will say
that every client € D has both a primary cachie(j) and a secondary cacliewith &;,(;); = &y; = %
with the understanding that jf does not have a secondary cache tidn a copy ofi; (j), so eﬁectivgly

#;,(j); = 1. We denote the secondary cacheifiy). Then we have(; = 2(cii () F Cis(i)i)s Cin(yj < Cj

andc;, (j); < Ciy(j)j < 2@-. Notice thati; (j) andis(j) are the (one or) two caches Wm(j) > 0 that are
nearesttg. Let L, = {i : §? > 0} andL = |, Lo.

Step Ill: Clustering. First for every objecb we cluster the clients b, as follows: pickj € D, with
smallestéj. Remove every client € D, such that bothj and % are (fractionally) assigned to a cache
i € L,, and recurse on the remaining set of clients until no clieridj is left. Let D/ be the set of clients
picked for object and letD’ = |, D.,; D’ denotes th@ew cluster centerslt is clear that for any cache
in L, at most one client irD!) is assigned to it. Observe that for every cliéne D, \ D, there is some
j € D/, such thaC; < Cy, andi;, &, > 0 for somei € L,, implying thatc;;, < 4Cy. We call;j thecenter
of k£ and denote it bytr(k).

Now for every clientt € D \ D’ we can move its demand}. to j = ctr(k). The resulting instance
with client-setD’ (and the new demands) satisfies the propéfjymentioned in Section 3.1. Hence, one
can set up a min-cost flow problem as mentioned in Sectiono3gkt an integer solution to the instance
with client-setD’, which translates to a solution with client-sbt(and the original demands;). Doing



all these edges
have capacity 1

(1,0)

each node has
demand =1

cost of(v;, ;) is fi"(j? + d;‘Cij + ZkeA]- dy.ci
cost of(v, 7y) is ;) + djcyj + e, dicon + Yyen, dilcin — cioon)
cost of (wp, ri») IS [ + D pepo di(cok — Ciyuyr)

Figure 3.2: The min-cost flow network constructed in Steplive tuple labeling an edge gives the (capac-
ity;cost) for the edge.

this naively, we lose an additive factor of (at mos$ty ", dg/,(:*k in translating the demands back from
D’ to D. We will set up the min-cost flow network more carefully sotthee only lose a multiplicative
factor of 2 in rounding(z, §) to an integer solution for the client-sét. We want to capture the following
observation: suppose the demand of a cliert D, is moved toj = ctr(k). Letz;, = Ty, = % and
i = #m»; = . The per-unit-demand assignment coskadé at mostl (c;x + cni) < e + C; < 3Gy
(sinceciny, < ¢mj + cij + cax), which is much less than the naive boundi6f, + C;.

Step IV: The min-cost flow network. Fix o € O and consider a client € D/. We will maintain two
setsA; and B; for j. Leti = i1(j) andi’ = i3(j) be the primary and secondary cacheg.ofVe define
A;j ={k e D, : ctr(k) = j},andB; = {k € D, : ctr(k) # jandi = i;(k)}. Also, for every cache
i € L, such thati;; = 0 for everyj € D, we defineB? = {k € D,, : i = i1(k)} (which is either empty or
a singleton). Note that all the setls, B; and B? are subsets ab,, \ D).

We create a sink, and a node; for everyi € L for which;; > 0 for somej € D', or BY # ¢ for some
o (see Fig. 3.2). We have an ed@e, t) of capacityu; and cost 0. For every cliefite D’ we create a node
v;j. Further, for every € L,o € O with B? # ¢ we create a node;. The nodes; andw; all have demand
—1. For every node; we have edgeév;, ;) to everyi with z;; > 0, and we have edgés?,r;), (wy,t)
for every nodew?. All these edges have capacity 1. The cost of these edgetas $allows. Consider a
nodev; and leti = i;(j),# = iy(j). We set the cost ofv;,r;) to f79) + djcij + Dojea, dicix and the

cost of(v;, r/) to fio,(j) + ey + > kea, djcirg + > ken, d,(citk — Cip(iyi)- We set the cost ofwy, ;) to
I+ 2 kene di(cik — ciynyi) @nd the cost ofw?, t) to O; see Figure 3.2.

Since all capacities are integer, there is an integer matftmv. We map this to an integer soluti@n, )
to the instance with client-sé®. Setz;;,7; < 0 for all , j. Consider objecb. First, for everyj € D/ and
i € {i1(j),32(4)}, we setz;; = flow on edge(v;, r;). For every client: € B; we Seti;, jy, = Tj,(j);, and
for everyk € B? we setz;;, = flow on (w?,r;). Next, for everyj € D/ and everyk € A; that has not yet
been assigned (i.€},; Z;; = 0), we setz;, = Z;; for i € {i1(j),i2(j)}. Finally, sety? = max;cp, Zi;.
We do this for every. Observe thafiy = 1 for at most one facility fromFJf for every clientj € D,. This
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will be useful in Section 4. It is easy to see tliaty) is a feasible integer solution. We now bound its cost.

Lemma 3.3 The cost of the min-cost flow in the network is at most twicediseof(z, 7).

Proof : We exhibit a fractional flow of cost at most the claimed codte Tractional flow is obtained by
setting the flow on every edge);, ;) to &;;, and the flow on(w?,t) and (w¢,r;) to maxepe Tik = %
where the equality follows since evekyc By is assigned to an extent éfto i2(k) # i. The flow on the
edges(r;, t) is set accordingly t(EO(ZjED(,) &ij + maxpepo Z41,). This is a feasible flow since for every
i,0, eitherBY = ¢ and there is exactly ong € D/ such thati;; > 0, or B # ¢ andz;; = 0 for every
JjE Dg. SOZ:J-ED{7 fi'z'j + maXge Be Ty is at mOStyiO.

The cost of an edgev;, ;) or (w?, ;) consists of a storage componegﬁzf(() or f?) and an assignment
component that can be attributed to various clients. Wetlsallcontribution of the storage components to
the flow cost thdlow storage costand the contribution of the assignment componentgltire assignment
cost The flow storage cost ¥, , f7 (3" e p, &ij +maxgens 1) < >, , f{y7 by the above reasoning. To
evaluate the flow assignment cost we consider the conwibuati each client to the assignment components
separately. Fix an objeet First considerj € D! with i = i1(j), i’ = i2(j). Clientj only figures in the
assignment component 6f;, ;) and(v;, ) and its contribution isl’ (c;; &5 + cirjdir;) = d;C]. A client
k € D, \ D, is in exactly one setl; wherej = ctr(k) and may possibly also lie in one of the séts or
Bg,. Leti = i1(j) andi’ = ia(j).

1. If k does not lie in any seB;, or B, then it must be that;, ;); > 0. Clientk contributes only to the
assignment component of edg(@g,rl) and (v;, ) and this contribution i€}, (c;xZi; + cikdir;) <
d;g(cll(k‘)k‘ + CJ) < 2d§€C’k SinCEi’ij =y = % andc;, + ¢ < 2Ci1(k)k + ¢i5 + ¢y

2. Now suppose is also in one of the set8;, or B, so it also contributes to the assignment component
of an edge(v;/, r;, (1)) or an edggwg,,r;»). The contribution in both cases ﬁlgs(cil(k)k — Ciy(k)k)
since we must have;, ), = % = x;7;. Adding the contributions to edg¢s;, r;) and(v;, ), the

. . . d A A A .
total contribution is (cit, + cik + ¢ ()t — Ciziyr) < d(Cr + C) < 2d;,.Cy, sincecyy, + cpp <
2Ci2(k)k + cij + ¢y

So the flow assignment cost is at mas} ., jC Thus the total flow cost is at mo3t, , f797
23 iep jC which is at most twice the cost ¢f, 7). ]

Lemma 3.4 The cost of the integer solutidix, 7) is at most the cost of the min-cost integer flow.

Proof : Observe that for any, 3, /707 = >_; jep, 7% + Xnodeswe J7 (flow on (w7, r;)). So the total

storage cost i$ ,_ (v3,74) e o(J )(flow one)+ > _ fo(flow one) which is just the flow storage cost.
We will bound the assignment cost of a cllent by the contrdoutt makes to the flow assignment cost.
Fix objecto. Considerj € D). Leti = i1(j) andi’ = i2(j). At most one of the edges;,7;), (vj,7)
carries non-zero flow and we sgt;, 7,/ ; equal to the flow on the corresponding edge. So the assigroosnt
of j is d; (ci;(flow on (vj, 7;))+cyr;(flow on (v, 7)) ), which is also the contribution gfto the assignment
flow cost. The same argument holds fore A; if & is assigned to one afor i’. The remaining case is
whenk € A;, andk is not assigned te or ¢/, but it is assigned t¢’ = i,(k) either becausé € Bj
wherei” = iy(j') and (v;/,r;») has non-zero flow, or becaugec B, and (w$,,r;») carries non-zero
flow. The assignment cost @f is dj.c;»;. The contribution oft: to the assignment flow cost is at least
dj (cimg — Cia (k)k k) + dj, min(ci, cir) sincek € A;. This is at leastl, c;», since bothe;x, ¢/, are at least
Ciy(k)- SO the assignment cost @f, §) is bounded by the flow assignment cost. This completes the.[mo
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Combining Lemmas 3.1-3.4, we obtain tliaty) yields an integer solution to the original instance of
cost at mosi0 - OPT'. Thus, we obtain the following theorem.

Theorem 3.5 There is a 10-approximation algorithm for the data placetmmoblem.

4 The connected data placement problem

The formulation of the data placement problem seems mdstdeifor applications where objects are rarely
written. In the presence of write-requests, one needs te hamechanism that ensures that all the copies
of a data-object replicated in the various caches are densjsnd this requires that a write-request updates
all the replicas of the data object. One way of modeling thssproposed by Krick et al. [22], is to insist
that all caches containing the same data object be inteectedh via a Steiner tree, which would serve as a
multicast tree that is used to update all copies of an objbetrva write-request is issued for it.

This gives rise to theonnected data placement probleie assume that there is a rogte DU F
for each objecb that issues the multicast message when a write-requesuisddoro, and require that all
caches containing objeatbe connected to,. Thus, our goal is to find a placemef® (i) } ;< » of objects to
caches respecting the cache-capacity constraints, asa@mnclientj to a cache(j) containing the object
o(j), and for each objeat, connect the caches storing objedb r, via a Steiner tred},, so as to minimize

SN Y i+ Y Moy e

1€F 0€0(3) j€D ocO e€To

HereM, > 1is an input scaling parameter, e.g., it might denote thé notaber of write-requests for object
0.

The LP relaxation (P) is modified as follows. We introduceiaales z¢ > 0 for each objecb, and
each edge (of the complete graph ofv U F) that indicates (in the integer program) if edgés part of
the treeT;,. The objective function includes the additional tepmy M, >, c.z¢. For each objecb, set
S C DU F such that, ¢ S, and clientj € G,, we add the constraift_ ;o) 20 > >_cq zij, Where
3(S) = {e = (u,v) : |SN{u,v}| = 1}. Although this LP has an exponential number of constraittsn
be solved efficiently via the ellipsoid method.

Observe that the connected data placement is a geneaizattheconnected facility locatiomprob-
lem [14, 39, 15] (which is the special case with only one aiyjéar which the best-known approximation
guarantee is 8.55 [39]. However, due to the presence of czmbecities, it is not clear how to apply the
primal-dual technique in [39], or the random-sampling idefl5]. We show that the LP-rounding tech-
nique proposed in [32, 14] to handle such connectivity negméents can be overlaid almost directly on top
of our rounding procedure from Section 3, to round an optisoéition to the above LP losing a factor of at
most 14.

We briefly sketch the main steps. Lt,y, z) be an optimal fractional solution, ar@; = ", ¢;j;;.
We slightly modify the demand-consolidation step (Stepfldur rounding procedure: we now move the
demand of clien to clientj (whered; > 0, C; < Cy) if cjr < 8max(Cy,Cy). Recall thatF} = {i :
z;; > 0, ¢;j < 2C;} and that the set#’ are disjoint for clients inD,. Due to the above change, we
lose an additive factor of > _ ; d;C; in translating a solution for client-sé = | J, D, to a solution forD.
More importantly, for any two facilities € F; andi’ € Fj wherej,k € D,, j # k, we now have that
civ > 4max(Cj,Cy). The rest of the rounding process in Section 3 is unchangéds,the sum of the
storage costs and access costs is at moSE,; , fy7 + Y, djcijij)-

For each objeat, we build the tred’, as follows. We contract the seﬂ$ for j € D, into supernodes and
build a minimum spanning tree (MST) connecting these tg,, and then connect the caches storing ohject
to 7). To bound the cost df, notice thaz° yields a fractional Steiner tree on the supernodesrarsince
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i / i 1
for any setS containing a supernod€; and not containing,, we have) | . s ) z¢ = ZZEF; ry; > 5. Thus,

we gete(T)) < 4, 2¢ since it is well known the cost of the MST is at most twice thetauf a fractional
solution for the Steiner tree LP. Observe that an edgfel; joining £} andF, hasc, > 4max(Cj, Cy). Let

1 be afacility on which objeact is stored. Notice there isumiqueclientj € D, such that Fj/ To connect
ito T,, we add the edgé, j), and add edges joiningto every cache i’ that has an edge incident to it
in 7. We do this for every cache on whietis stored. Let; denote the degree of the supernd@ein the
treeT}. The cost of adding these extra edges is at Most, (1 +6;)2C; < 23" p d; - 2C; < 2¢(T,).
Thus,c(T5) < 3¢(T,) < 123", z¢, and the total cost incurred is at mast) ", | foy? + 143", djcijzij +
123", M, >, 2¢, yielding a 14-approximation algorithm.

Theorem 4.1 There is a 14-approximation algorithm for the connectedagadicement problem.

5 Extensions

The k-median variant. We can easily adapt our techniques to handle an extensidm afata placement
problem where additionally, for every objegtthere is a bound o, on the number of caches that can store
objecto. This adds the constrainis , y¢ < k, Vo to (P). We need to modify the min-cost flow network
construction slightly in Steps Il and IV of Section 3. In Stépwe remove the edge®;,t). Instead for
every objeci, we add a node, with demand D,| — k, and edgesb;, p,) for j € D, of capacity% and
cost3y;. We also add an edde,,, t) with capacityk, and cost 0. The effect of these changes is to limit the
total flow on edgesa;, ;) and(b;,r;), wherej € D,, to at mostk, so that at mosk, caches store object
o (half-integrally). The half-integral solutiof, ¢) is obtained as before with, playing the role ot now.

It is easy to see thdt:, §) is feasible and Lemma 3.2 still holds. Similarly, in StepWé remove the edges
(w?,t). For everyo, we add a node, with demand{i : BY # ¢}| — (k, — | DJ|), add edges$w?, p,) with
capacity 1 and cost 0, and add edge, ¢) with capacityk, — |D/| and cost 0. This limits the total flow on
edges(vj,r;), wherej € D/ and(w?,r;) to at mostk,. The integer solutioriz, 7) is obtained as before
and Lemmas 3.3 and 3.4 still hold. So we get the following tbso

Theorem 5.1 There is a 10-approximation algorithm for the data placetroblem with a priori bounds
on the number of caches that may store an object.

Non-uniform object-lengths. We can obtain a bicriteria approximation algorithm for tiedting where
each objecb has a non-uniform length, and the total length of the objects stored in any cache must no
exceed its capacity. Constraint (1) of (P) now re3dsl,y’ < u;. As mentioned in the Introduction, no

approximation ratio is achievable in polynomial time instltiase, unlesB =NP (see Theorem 6.2). We
show the following.

Theorem 5.2 For the data placement problem with arbitrary object-lédmgtone can compute in polynomial
time a placement of cost at madgt - OPT where the cache capacities are violated by an additive armnoun
of at mostmax,, [,.

Proof : We only need to modify Steps Il and IV above. Instead of fomting a min-cost flow problem to
take care of cache-capacities, we will now construct amits of thegeneralized assignment problg¢&6]
(GAP). In Step Il, each node;, b; of the min-cost flow network represents a job, and each mpdad the
sinkt represents a machine. Each machipieas processing-time capacity;, and the sink has 0 capacity.
An edge(a;,r;) or (b;, ;) denotes that job; or b; has processing timig ;) on machine;. Its assignment

cost for machine; is ff(j) + d;-lo(j)cij, which is simply a modification of the cost of the correspogdedge
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in the flow network that takes into account the length,. Jobb; also has processing time 0 and assignment
cost3d;.lo(j)7j on machine, corresponding to the edgé;, ¢). All other processing times (corresponding
to non-edges) are infinity. It is not hard to see t{#at, 2y) induces a feasible solution to this GAP-instance
of cost at mos6 - OPT". Hence, by [36], there exists an integer soluti@, 2;) of no greater cost where
Yoolo - 209 < 2u; + max, [, for everyi € F. Thus,(z,7) yields a half-integral solution of cost at most
3 - OPT’ where the cache capacities are violated by at ré@sﬁxo lo-

Similarly, in Step IV, we have a job for each nodeand each node, and a machine for each node
r; and the sink. Each machine; has capacity; + %maxo l, and maching has 0 capacity. As before,
an edgg(v;, r;) or (w?, r;) represents that the corresponding job has processing jimer [, respectively
on machiner;. The assignment cost is the cost of the corresponding edte ifflow network modified
(as above) to incorporate object-lengths by multiplying terms not involving the storage-cost by the

object-length ,;, in case of jobv;, andl, in case of jobw?). For example, corresponding to the edge
(v, ), Wherei’ = i5(j), we set the assignment cost of jopon a machine;s to befio,(j) + log) (deirj +
Dokea, Bcint ke p, d(con—ciykr)) (nNote thab(k) = o) for all k € A;UB;). Edge(w?,t) denotes
that jobw{ has 0 processing time and 0 assignment cost on machiA# job-machine processing times
corresponding to non-edges are infinity. As in Lemma @:3y) induces a half-integral feasible solution of
cost at most twice the cost ¢f, 7). Using the algorithm in [36] directly, one can obtain an geesolution

of no greater cost where the load of every machirie at mostu; + % max, l,. A more careful analysis that
exploits the half-integrality of the solution shows thag¢ Wiolation in the capacity of; is in fact at most
%maxo l,, and the load of; is at mostu; + max, l,. As in Lemma 3.4 and Theorem 3.5, this yields an
integer solution of cost at mo$6 - OPT. [

We observe that for the connected versions of the above ®ates) one obtains the same guarantees
as for the connected data placement problem. We simply @selgforithms described above (with the
modification to Step | specified in Section 4) to handle the-gédacement part of the problem; then we
apply the rounding method of Section 4 to build the Steireedr The analysis from Section 4 still applies,
since it is still true that for any cachieon which an objecb is stored, there is a unique cliepte D, such
thati € F.

Theorem 5.3 There is a 14-approximation algorithm for the connectedsiaer of the following data place-
ment problems:

(i) the placement problem with a priori bounds on the numideraches that may store a data object;

(i) the placement problem with arbitrary object lengthsré we obtain a bicriteria guarantee where the
cache capacities may be violated by an additive amount ofost max, /.

6 Hardness results

In this section, we establish two hardness results. It iardlgat the data placement problem with storage
costs isAPX-hard, since it is a generalization of metric UFL. We showt tha data placement problem is
APX-hard even when there are no storage costs. Our second isethat for the data placement problem
with arbitrary object lengths, it islP-complete to even decide if there exists a feasible soluhience, one
cannot achieve any approximation ratio in polynomial timéegsP =NP.

Theorem 6.1 The data placement problemAd®>X-hard even when there are no storage costs.

Proof : We give a reduction from metric UFL. In the unit-demand vemsof metric UFL (which is still
APX-hard), we are given a set of facilities F' with facility-opening costs| f; }:c#, a client-setD and
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distances/assignment-cosiS;; } that form a metric. The goal is to open a subset of the fagsliind assign
each client to an open facility, so as to minimize the sum ef#tility-opening and client-assignment costs.

Given such a UFL instance, we construct the following instaof the data placement problem. We let
F = F U{I'} be the set of caches, afidl = D U F’ be the set of clients, wher®' is a copy ofF, i.e.,
for everyi € F, we create a unique clienti) € F’. There ard F'| + 1 data objectsy, 01, ..., 0,. Each
clientj € D has unit demand for objeet. Each clientz(i) € F’ has demand;/M for objecto;, where
M is some large number such thiat > max; ; C;;. Each cache € F has unit capacity, and cacliehas
capacityn + 1 = |F'| + 1. We define the distances; for i € 7 and;j € D; all other distances are equal to
the shortest-path distances in the bipartite grebtu D, {(i,5) : i € F, j € D U {o(i)}}) with thesec;;s
as the edge-weights. For everg F, we setc;; = C;; if j € D C D', and 0ifj = o(i); fori = T" and
everyj € D, we selc;; = M. Itis easy to see that thg;’s form a metric.

We show that this is an approximation-preserving redudtiparguing that any UFL-solution translates
to a data-placement solution of no greater cost and viceaveConsider a UFL-solution that opens the
facilities in S C F' (and assigns each client to the nearest facilitg)nWe map this to the data-placement
solution, where each cache $hstores objecb,, each cache € F'\ S stores objecb;, and cachd’ stores
the objects; for i € S. Clearly, the total access cost incurred for objgcis equal to the client-assignment
cost of the UFL-solution, the total access cost incurredlierobjectso;, wherei € S'is )", f;, and the
access cost for all other objects is 0. So the cost of thisplatzement solution is exactly the cost of the
UFL-solution.

Conversely, suppose we have a data-placement solution. ai@ssume that objeag is stored in some
cache inF’, otherwise we can improve the solution-cost by storingn some cache € F' (and moving the
object stored in to I" if necessary). Leb C F be the set of caches that stagg We open the facilities
corresponding t&' (and assign each client to the nearest facility)n Since M > max; ; C;;, the client-
assignment cost in the UFL solution is at most the total accest forog. For each cachée S, the access
cost for objecb; is at leastf;/M - M = f; (since the distance fromto any other cache is at leakf), so
the facility-opening cost of the UFL solution is at most tleeess cost for the objects wherei € S. Thus,
the cost of the UFL-solution is at most that of the data-piaeet solution. [

Theorem 6.2 It is NP-complete to decide if there exists a feasible solution tmatance of the data place-
ment problem with arbitrary object lengths. Consequettitlgre is no polynomial time approximation algo-
rithm for this problem unlesB =NP.

Proof : Membership inrNPis immediate. Th&P-hardness proof follows from an easy reduction from the
PARTITION problem. Leta,, ..., ay, be an instance of theARTITION problem withA = . a;/2. In the
data-placement instance, we have two caches with capdcity objects with lengths, ..., a,,, andm
clients, each of which has unit demand for a unique objedte distances and the locations of the clients
and the caches are not important.) Clearly, any feasiblgtienl to the data placement problem yields a
solution to the RRTITION problem, and vice-versa. TiNP-completeness result follows. [
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