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Abstract

We study the problem of computing a minimum time schedule to
spread rumors in a given graph under several models: In the radio model,
all neighbors of a transmitting node listen to the messages and are able
to record it only when no other neighbor is transmitting; In the wireless
model (also called the edge-star model), each transmitter is at a different
frequency to which any neighbor can tune to, but only one neighboring
transmission can be accessed in this way; In the telephone model, the set
of transmitter-receiver pairs form a matching in the graph. The rumor
spreading problems assume a message at one or several nodes of the graph
that must reach a target node or set of nodes. The transmission proceeds
in synchronous rounds under the rules of the corresponding model. The
goal is to compute a schedule that completes in the minimum number of
rounds.

We present a comprehensive study of approximation algorithms for
these problems, and show several reductions from the harder to the easier
models for special demands. We show a new hardness of approximation of

Ω(n
1
2
−ε) for the minimum radio gossip time by a connection to maximum

induced matchings. We give the first sublinear approximation algorithms
for the most general case of the problem under the wireless model; we also
consider various special cases such as instances with symmetric demands
and give better approximation algorithms. Our work exposes the rela-
tionships across the models and opens up several new avenues for further
study.
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†This material is based upon work supported by the National Science Foundation Graduate

Research Fellowship Program under Grant No. 2013170941.
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1 Introduction

Problems modeling rumor spread are central to the design of coordination net-
works that seek to keep demand pairs of vertices in contact over time. The
prototypical example is the broadcast problem where a message in a root node
must be sent to all the other nodes via connections represented by an undirected
graph. We assume that communication proceeds in synchronized rounds. When
more than one message is being disseminated, we assume that in each round
each node can transmit an unlimited number of messages in one communication.
A subset generalization of broadcast is called the Multicast problem: a subset of
nodes is specified as terminals and the goal is to spread the rumor from the root
only to this subset, using other non-terminal nodes if needed in the process. An
all-to-all generalization of the broadcast problem is termed gossip: every node
has its own piece of information that must be communicated to all nodes, and
the goal is to have all the information spread to all the nodes in the minimum
number of rounds. Gossip and broadcast are special cases of a more general
demand model that we may call multicommodity multicast: in this most general
version, we are given a set of source-sink pairs so that each source has a rumor
that must be sent to the corresponding sink. Recall that messages from many
sources can all be aggregated and exchanged in one round between any pair that
can communicate, and the goal is to minimize the number of rounds. In this pa-
per, we will study a specialization of the multicommodity demand model called
the symmetric multicommodity where for every source-sink pair, we also have
the symmetric requirment that the sink wants to send its rumor to the source;
thus, the demand pairs are unordered in this case. The more general version
will be called the asymmetric multicommodity demand model to distinguish it
from the symmetric demands case.

1.1 Models: Telephone, Radio, and Edge-Star, a New
Model from Wireless

Different communication models result in different constraints on the set of edges
on which messages can be transmitted in a single round. The two most widely
studied models are the telephone and radio models: In the telephone model,
in each round, a node can communicate with at most one other node, thus the
edges on which communication occurs is a matching; In the radio model, a
set of transmitters broadcast the message out but only their neighbors who are
adjacent to exactly only one transmitter can successfully receive the message
(while interference prevents other neighbors from receiving the message): the
set of edges through which the messages are sent in any round in this model is
a set of stars centered at the transmitters, where each leaf of each star has that
star’s center as its unique neighbor among all the star centers.

In this paper, we expand the study of rumor spreading problems by intro-
ducing a new model based on wireless communications between nodes, which we
call the edge-star model. We assume that during each round of wireless com-
munication, each transmitter can choose its own channel or frequency distinct
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from that of all other transmitters. The input undirected graph represents pairs
of nodes that are within wireless range of each other. Receiving nodes that are
in the vicinity of many different transmitting nodes can choose to tune into the
frequency of one of them. In this way, the set of edges in which communication
happens in every round is a set of stars which are defined a subset of edges of
the input graph. Note that unlike the radio model, there is no requirement that
a receiver be adjacent to exactly one transmitter.

1.2 Previous Work

The radio broadcast and gossip problems have been extensively studied (see the
work reviewed in the survey [10]). The best-known scheme for radio broadcast
is by Kowalski and Pelc [11] which completes in time O(D+ log2 n), where n is
the number of nodes, and D is the diameter of the graph and is a lower bound
to get the message across the graph from any root. The O(log2 n) term is also
unavoidable as demonstrated by Alon et al. [1] in an example with constant
diameter that takes Ω(log2 n) rounds for an optimal broadcast scheme to com-
plete. Elkin and Korsartz [5] also show that this additive log-squared term is
best possible unless NP ⊆ DTIME(nlog logn).

The best bound for radio gossip known so far, however, is O(D + ∆ log n)
steps in an n-node graph with diameter D and maximum degree ∆ [9]. The
maximum degree is not a lower bound on the gossip time, and indeed no previous
results are known about the approximability for radio gossip, which is mentioned
as an open problem in [10].

In the telephone model, the first poly-logarithmic approximation for mini-
mum broadcast time was achieved by Ravi [13] and the current best known ap-
proximation ratio is O( logn

log logn ) due to Elkin and Korsartz [6]. The best known

lower bound on the approximation ratio for telephone broadcast is 3− ε [4].
In his study of the telephone broadcast time problem, Ravi [13] introduced

the idea of finding low poise spanning trees to accomplish broadcast: the poise
of a spanning tree of an undirected graph is the sum of its diameter and its
maximum degree. In the course of deriving a poly-logarithmic approximation,
Ravi also showed how a tree of poise P in an n-node graph can be used to
complete broadcast starting from any node in O(P · logn

log logn ) steps - we will use
this observation later.

1.3 Our contributions

We give the first results on the approximability of gossip and multicommodity
multicast problems in the radio model. We introduce the edge-star model based
on wireless channels and give the first approximation results for minimum time
rumor spreading by relating them to their analogs in the telephone model.

1. We show that it is NP-hard to approximate gossip in the radio model
within a factor of O(n1/2−ε) in an n-node graph. This result is derived
by isolating a gathering version of the broadcast problem in the radio
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model and relating it in a simple bipartite graph to induced matchings
(Section 2).

2. We obtain an O( logn
log logn ) approximation algorithm for gossip in the edge-

star model by reducing the problem to the broadcast problem in the tele-
phone model (Section 3.1).

3. We consider the special case where the underlying graph is a tree, and show
that the multicommodity multicast in the edge-star model reduces to the
broadcast problem in the telephone model, thus proving an O( logn

log logn )

approximation (Section 3.2).

4. We show that the case of edge-star symmetric multicommodity multi-
cast problem has the same optimal solution (up to poly-log factors) as

telephone multicommodity multicast, yielding a 2O(log logn
√
logn) approx-

imation (Section 3.3).

5. We give an O(n
2
3 )-approximation for the general (asymmetric) multicom-

modity multicast problem in the edge-star model (Section 3.4).

Table 1 contains a summary of our results in context.

Broadcast Gossip Multicommodity

Radio D +O(log2 n) [11] O(D + ∆ log n) [9] Unknown
Ω(n1/2−ε) hard* Ω(n1/2−ε) hard*

Edge-star OPT= D OPT·O( logn
log logn )* OPT·Õ(2

√
logn)*(symmetric)

OPT·O(n
2
3 )* (asymmetric)

Telephone OPT·O( logn
log logn ) [7] OPT·O( logn

log logn ) [7] OPT·Õ(2
√
logn) [12]

Table 1: A summary of upper and lower bounds achieved in the different
problems. We prove the results marked * in the table.

Remark: As we were preparing this submission, we learned of recent inde-
pendent results related to the radio gossip problem. Halldorsson et al. (private
communication, Halldorsson, July 2015) recently studied the Radio Aggrega-
tion Scheduling problem which is a gathering version of the rumor spreading
problem in the radio model. The set of edges in which communication occurs
in every round is a matching with the additional property that if the edges
within receivers and within senders are ignored, the communicating edges form
an induced matching. In this model they prove a tight Θ(n1−ε)-approximation
for their radio aggregation scheduling. Our results were derived independently
and we have not seen a description of their methods.
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2 Lower bound for gossip in the radio model

In this section, we show it is NP-hard to approximate gossip in the radio model
within a factor of O(n1/2−ε). This also implies the same hardness result for
multicommodity multicast under the radio model, because gossip is a special
case of multicommodity multicast. In order to show these hardness results, we
first consider the smallest set of induced matchings which cover the vertices of
a bipartite graph.

Definition 1 An induced matching is a matching of some vertices U in a graph
G, such that G[U ] is a matching. (We use G[U ] to mean the graph G induced
on the vertex set U .) In other words, in the graph G only the matching edges
are present between the nodes in U .

A covering set of induced matchings (CSIM) is a set of induced matchings
which cover all the vertices in the graph. The size of covering set of induced
matchings is defined to be the number of induced matchings.

First, we will show the hardness of finding a minimum CSIM by a reduction
from coloring. Then we will use the hardness of minimum sized CSIM to prove
the hardness results for radio gossip.

Theorem 1 It is NP-hard to approximate CSIM to within a n1/2−ε factor for
any constant ε > 0.

Proof: Given a coloring instance G = (V,E), we first turn this into a bipartite
graph, where we want to find a CSIM. For each v ∈ V we make n + 1 copies
of v in each side of the partition; vL1 , v

L
2 , . . . v

L
n+1 for L and vR1 , v

R
2 , . . . v

R
n+1 for

R. We use the edges Ev = {(vLi , vRi )|v ∈ V, i ∈ [n + 1]} also referred to as the
straight edges and also Ee = {(uLi , vRj )|uv ∈ E, i, j ∈ [n + 1]} called the cross
edges. Now G′ = (L,R,Ev ∪ Ee) is the bipartite graph for which we want to
find a CSIM. Figure 2 shows an example construction.

Let χ be the number of colors in an optimal coloring in G. Let λ be the
number of sets in a minimal CSIM in G′.

We now show that λ ≤ χ ≤ n. Let Ci be a set of vertices of color i in the
coloring. If we take the edges {(vLj , vRj )|v ∈ Ci, j ∈ [n+1]}, they are an induced
matching. Each vertex has one straight edge in G′, and if a vertex is used in
the matching, then its straight edge is used. So, we only need to show that no
cross edges go between vertices in this matching. If a cross edge (uLj , v

R
k ) did

exist, then (u, v) ∈ E but then u, v couldn’t be the same color. So, for each
color we have defined an induced matching. These induced matchings cover all
the nodes since every node receives some color in the coloring on G′.

Now we will show that χ ≤ λ or n+ 1 ≤ λ. Let S1, S2, . . . Sλ be the induced
matchings covering G′. Assume that there is some v ∈ V that has all of its
corresponding vertices in G′ matched via cross edges. Then we can only have
at most one cross edge per matching. If an induced matching has (vLi , u

R
` )

and (vLj , w
R
`′ ) then this is not an induced matching since (vLj , u

R
` ) is an edge.

Therefore in this case to match all the vLi in some induced matching, we will
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G G’

L R

k=3

Straight edgesCross edges

Figure 1: Here is an example of the construction of G′ from G. The thick edges
represent complete bipartite subgraphs.

need at least n + 1 induced matchings. Now consider each v ∈ G has one of
its straight edges used in some induced matching. Let Sj be the first induced
matching containing a straight edge adjacent to some viL. In Sj , because some
vLi is matched via its straight edge, then no v` is matched via a cross edge. So,
in G color v with the jth color. This is a valid coloring. If some (vLi , v

R
i ) and

(uL` , u
R
` ) were both in the same induced matching, then there can’t be the edge

(u, v) in the original graph G.
Combining the above two parts we get that χ = λ.
We begin with a graph G such that it is NP-hard to distinguish if there

is a coloring of size |V (G)|ε from if the coloring requires at least |V (G)|1−ε
colors [8]. Therefore, in the graph G′ we created, it is NP-hard to distinguish
if there is a set of induced matchings that cover the vertices of size nε or n.
We have n2 vertices in G′ though. So, in a graph with n vertices it is NP-hard
to approximate the number of induced matchings needed to cover the vertices
within a factor of O(n1/2−ε). �

Now that we have developed the hardness result for CSIM, we will use the
graph we created for CSIM, to create instances of radio gossip.

Corollary 1 It is NP-hard to approximate radio gossip to within a n1/2−ε factor
for any constant ε > 0.

Proof: We convert the induced matching instance to a gossip problem in a
similar fashion to above. We can consider that we have the bipartite graph
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G′ and we build a complete binary tree with it’s leaves being the vLi . Now the
terminal nodes in the gossip problem are all the nodes. Now to communicate the
message to all other nodes, then each node vRi must at some point be the only
node trying to talk to some node on the other side of the bipartition. In other
words, we need to have induced matchings at each point in order for the vRi to
propogate their messages to some other node without interference. Therefore,
we need at least as many induced matchings as it takes to cover the graph to
complete the gossip. Call this number C; we can now achieve gossip in time
2C + 3 log n as follows. We do this by doing the induced matchings so that
each vertex vRi communicates its message to someone on the other side of the
partition. Next we propagate the message up the binary tree to the root node.
This takes time at most 2 log n since at each node of the path in the binary tree,
a message can be delayed only for two step, and the path length is logarithmic.
Then we broadcast the message down the tree. This takes time log n since we
can use the edge-star model to just broadcast all the gathered messages from
the root along the down-stars in one time step per leve;. Lastly, we need to
communicate the message back to the vRi , which takes time C. We know that
radio gossip takes time at least C and can be done in time 2C + 3 log n on this
graph.

Therefore, it is NP-hard to approximate radio gossip better than a factor of
O(n1/2−ε) otherwise, we could approximate the CSIM within the same factor.

�

3 The Edge-Star Model

In this section, we consider the edge-star model which generalizes the telephone
model. We focus on three specific classes of problems; gossip, symmetric mul-
ticommodity multicast, and asymmetric multicommodity. In the symmetric
multicommodity problem, we are given a set of demand pairs, and if (si, ti) is
a demand, then (ti, si) is also a demand. In the asymmetric multicommodity
case, there are no restrictions on which demand pairs are present.

In Section 3.1, we first obtain an O( logn
log logn ) approximation algorithm for

gossip in the edge-star model by reducing the problem to the broadcast prob-
lem in the telephone model. Next, in Section 3.2, we consider the special case
where the underlying graph is a tree. In this special case, then we show that
the multicommodity multicast in the edge-star model reduces to the broad-
cast problem in the telephone model, yielding an O( logn

log logn ) approximation.
In Section 3.3, we show that the case of edge-star symmetric multicommodity
multicast problem has the same optimal solution (up to poly-log factors) as tele-

phone multicommodity multicast, yielding an Õ(2
√
logn) approximation. Lastly,

in Section 3.4, we give an O(n
2
3 )-approximation for the general (asymmetric)

multicommodity multicast problem in the edge-star model.
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3.1 Gossip

Here we show an O( logn
log logn ) approximation for edge-star gossip. First, we show

that a solution to the gossip problem in the edge-star model gives a solution
to the broadcast problem in the telephone model of the same length. Next, we
show that using a solution for the broadcast problem in telephone we can get a
solution of twice the length to the gossip problem in the edge-star model. This
show that their optimal solutions differ in cost by a factor of at most two.

Lemma 1 The optimal broadcast time in the telephone model is no more than
the optimal gossip time in the edge-star model.

Proof: Let S denote an optimal schedule for gossip in the edge-star model that
completes in T rounds. Let r denote the root node for the broadcast problem in
the telephone model. Fix a node v. Let Pv denote a path taken by the message
from v to arrive at r in the schedule S. Let Et denote the set of all directed
edges in ∪vPv that are activated in round t in S. By definition of the edge-star
model, if (u1, v1) and (u2, v2) are in Et, then v1 6= v2. Furthermore, by our
choice of the paths, we obtain that (i) for any distinct (u1, v1) and (u2, v2) in
Et, u1 6= u2; and (ii) the edges of Pv appear in order of increasing time in the
collection of Ets.

We now argue that a reverse schedule in which the activated sets are given
by E′t = rev(ET−t) forms a broadcast schedule from the root, where rev(X)
equals {(v, u) : (u, v) ∈ X} for any set X of directed edges. In any round
t, for any distinct (u1, v1) and (u2, v2) in Et, we have u1 6= u2 and v1 6= v2;
therefore, rev(Et) is a matching. Since the edges of Pv appear in order of
increasing time in the collection of Ets, the edges of the rev(Pt) appear in
order of increasing time in the collection of E′ts. Consequently, the message
from the root is delivered to each node in T rounds. �

Lemma 2 The optimal gossip time in the edge-star model is no more than twice
the optimal broadcast time in the telephone model.

Proof: The proof mirrors the proof of Lemma 1. Let S denote an optimal
schedule for broadcast from root r in the telephone model that completes in T
rounds. Fix a node v. Let Pv denote a path taken by the message from r to
arrive at v in the schedule S. Let Et denote the set of all directed edges in ∪vPv
that are activated in round t in S. By definition of the telephone model, for
distinct (u1, v1) and (u2, v2) in Et, u1 6= u2 and v1 6= v2. Furthermore, by our
choice of the paths, we obtain that the edges of Pv appear in order of increasing
time in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given
by E′t = rev(ET−t) forms a schedule for gathering in the edge-star model. In
any round t, for any distinct (u1, v1) and (u2, v2) in Et, we have u1 6= u2 and
v1 6= v2; therefore, rev(Et) is a matching, and is a valid set of edges to activate
in the edge-star model in round T − t. Since the edges of Pv appear in order of
increasing time in the collection of Ets, the edges of the rev(Pt) appear in order

8



of increasing time in the collection of E′ts. Consequently, the message from any
node v is delivered to the root in T rounds.

Once the root has all the messages, we can complete the gossip by running
the broadcast schedule. Since any schedule in the telephone model is valid in
the edge-star model, it follows that this broadcast completes in T rounds. We
thus have a gossip schedule that completes in the edge-star model in 2T rounds.

�

There exists anO( logn
log logn ) approximation for telephone broadcast [7]. There-

fore this same approximation holds for the edge-star gossip problem.

3.2 Multicommodity multicast on a tree

In this part, we consider the multicommodity multicast problem in the edge-
star model in the special case where our host graph is a tree. Here we give a
reduction to telephone broadcast. When the host graph is a tree, the path taken
by any message is known, so we simply need to coordinate the communications.

Lemma 3 There is an O( logn
log logn ) approximation for the edge-star multicom-

modity multicast problem in a tree.

Proof: We will start by choosing some vertex r to be the root of the tree.
Let the optimal solution take time D (we can try all 2n possible values for D
only losing a polynomial factor in runtime). Now for each demand pair, (si, ti)
the message will have to go from si to lca(si, ti), and then from the lca(si, ti)
down to ti. Bringing all the messages down the tree from lca(si, ti) to ti can
be done in time D+ 1; we spend D+ 1 time steps alternating between the odd
layers broadcasting their messages down and the even layers broadcasting their
message down. SInce each layer is a collection of edge-disjoint stars, it can be
implemented in one round in the edge-star model.

The hard part is bringing the messages up from si to t′i = lca(si, ti). So, we
will consider that we simply have the constraints of the form (si, t

′
i). First we

will break the tree up into sets of 2D consecutive layers starting every D layers.
This guarantees that every constraint (si, ti) is in some set of 2D layers.

Now consider some 2D layers in the tree. Look at the union of all the (si, t
′
i)

paths in these layers. These form a forest, where each tree has depth at most
2D and each node has a max degree of D; so each tree has poise 4D (recall
that the poise is the sum of the maximum degrree and the diameter). Therefore
these trees can gather to their uppermost node in time O(D logn

log logn ).

We can run all the gathers to satisfy (si, t
′
i) in two groups; we run every other

set of 2D layers in the tree simultaneously as they are disjoint layers. Hence,
in time O(D logn

log logn ), we can satisfy the demands (si, t
′
i). In time D + 1, then

we can satisfy the demands (t′i, ti). Therefore in time O(D logn
log logn ) we satisfy

all the (si, ti) demands. �
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3.3 Symmetric Multicommmodity Multicast

Note that the symmetric multicommodity multicast problem in the telephone
model is equivalent (within constant factors) to the general multicommodity

multicast problem [13, 3] for which an O(2
√
log k) approximation algorithm is

known, where k is the number of terminals [12]. We show a reduction from the
symmetric multicommodity multicast problem in the edge-star model to the
symmetric multicommodity multicast problem in the telephone model, losing

an additional O( log3 n
log logn ) factor in the approximation ratio in an n-node graph.

Theorem 2 Given a ρ-approximation for the symmetric multicommodity mul-
ticast problem on k terminal pairs in an n-node undirected graph under the
telephone model, we can design an O(ρ · log2 k · logn

log logn ) approximation for the
same problem in the edge-star model.

Proof: Given an optimal solution to symmetric multicommodity multicast in
the edge-star model, we demonstrate a solution to the symmetric multicom-
modity multicast problem in the telephone model with a poly-log multiplicative
loss in performance. Consider an input instance with demand pairs {si, ti} for
i = 1 · · · k on an undirected graph G. Consider an optimal schedule for the
edge-star symmetric multicommodity multicast problem on this instance. This
defines for each pair s, t, a pair of paths from one node to the other where the
edges of the paths are labeled in increasing time order denoting the periods in
which these edges participated in an information transmission. Suppose the op-
timal time for multicasting is L; then these paths are of length at most L. Also,
given the in-degree one bound for the edge-star model (each receiver can listen
to at most one transmitter in this wireless model), the indegree of the sugraph
representing the union of these optimal transmissions is also at most L. Our
goal is to use these paths to aggregate the messages from a set of these pairs
into a subset of carefully selected terminals using a reverse broadcast scheme,
and then transmit the aggregated messages back to the corresponding mates of
these sources. Both these steps of gathering and sending will be accomplished
using multicommodity multicast instances in the telephone model.

To define the aggregation pattern, define an auxiliary graph H with one
node per demand pair si, ti. This graph is only for the sake of argument so we
will use optimal paths in the edge-subgraph multicommodity multicast scheme
in defining it. Note that the optimal transmission paths for a pair represent two
paths: one from si to ti and the second from ti to si, where these two paths may
share edges. Concatenated together they define what we will call an “optimal
cycle” for this pair. Define an edge between two pairs if their optimal cycles
intersect at a node. In Figure 2, we can see an example of when optimal cycles
intersect. Thus H defines the conflict or interference between the demand pairs
in the optimal multicommodity multicast schedule in the edge-subgraph model.

We now use a network decomposition procedure [2] on H to decompose the
k demand pairs into log2 k disjoint layers with the following property: the set
of nodes in each layer can be decomposed into node-disjoint shallow trees, i.e.,
each tree in one of the layers has diameter at most 2 log2 k. This decomposition
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𝑠𝑖

𝑡𝑖

𝑠𝑗

𝑡𝑗

𝑠𝑘

𝑡𝑘

Figure 2: Here is an example of the optimal paths between some (si, ti) pairs.
Here we see that the (sj , tj) pair intersects (si, ti) and (sk, tk), but (si, ti) and
(sk, tk) do not intersect.

is done as follows: pick any vertex v in H and build a BFS tree from v. Now let
i be the smallest depth such that the number of nodes at depth i or less is more
than the number of nodes at depth i+ 1. Put v and everything within distance
i of v into the current layer. Now remove v and it’s BFS tree up to depth i+ 1
from H. Repeat this process to form each layer. Once H is empty, let U be the
vertices not yet assigned to a layer. Then start forming a new layer from the
graph H[U ].

This process assigns at least half of the remaining nodes to the current layer,
hence we build at most log2 k layers. The diameter of each component in a layer
is at most 2 log2 k, because as we move down the BFS tree the number of nodes
contained in it double at each step.

Now we can use these layers to define our gathering problems. Consider
one layer i and one tree Ti,j in this layer in the decomposition. This represents
a shallow subgraph in H, so let us root this at a demand pair denoted Pij .
By following the paths in this subgraph from every other node to Pij , we can
replace their intersections with paths in the optimal multicast originating at
each terminal s in any of the pairs to one of the two terminals, say tij in the
pair Pij . This defines one of the gathering trees gathering to the terminal tij .
By construction, the in-degree of any node in the gathering tree is at most L
and the distance from any node to the root tij is at most O(L log k). Note that
by the disjointness of the subgraphs in one layer i, all the gather trees are node
disjoint. For each gather tree Tij , we now set up a gathering multicast problem
with all the terminals in the tree going to the root tij . Note that since each
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tree has total degree + diameter at most O(L log k), the poise of each tree is
bounded by O(L log k) and thus each of these trees has a gathering schedule
in the telephone model taking at most O(Poise · logn

|log logn ) steps in an n-node

graph [13]. This gives a feasible solution to the set of all gathering problems in
one layer i running in time O(L · log k · logn

log logn ). Repeating this over the layers
finally gives a set of gathering problems in the telephone model that complete
in total time O(L · log2 k · logn

log logn ).
Note that the same schedules can be reversed to send all the gathered in-

formation in each tree to all the terminals in a tree finishing the requirements.
Employing a ρ-approximation for this multicommodity multicast problem in the
telephone model proves the theorem. �

3.4 Asymmetric Multicommodity Multicast

For the edge-star asymmetric multicommodity multicast problem, we will use
the network decomposition used in the previous proof, along with telephone
broadcast in trees with small poise.

Theorem 3 There is an Õ(n
2
3 )-approximation for the asymmetric multicom-

modity multicast problem in the edge-star model.

Proof: We develop the algorithm in two phases. First, we design an O(
√
p)-

approximation algorithm for the case with p demand pairs (note that p can be
up to O(n2) in an n-node graph). Then we combine this with an algorithm that
satisfies all the demands in the in-neighborhood of a node in the demand graph
with high indegree to get the final result.

A Greedy Algorithm. To design the Õ(
√
p)-approximation algorithm, we

use a greedy method: assume that the value of the optimal multicast time is L
(we can try all the 2n possible guesses in parallel to dispense this assumption
with a polynomial running-time overhead). For every unsatisfied demand pair
(si, ti) (note that demand pairs are ordered in the asymmetric case), we look
for a path of length at most L from si to ti. If we find one, we add it to the
greedy collection and delete all the nodes in this path. Suppose we are able to
collect g paths for the pairs denoted G in the greedy phase until we can find no
more paths of small length for the remaining demands.

Now it must be the case that all optimal paths for the remaining demands
in P \ G must intersect the greedy paths. This implies that for every demand
pair (s, t) in P \G, we can follow its optimal path to its intersection with one of
the greedy paths, say for the pair (si, ti), and then continue in the greedy path
to ti. In this way, every demand source in P \G can be routed and assigned to
one of the sinks in the greedy pairs G in a collection of paths: each such path
has length at most 2L (coming from at most L steps to the intersection with
the greedy collection and another L from the intersection to the sink at the end
of this greedy path); also the indegree of the collection of these paths is at most
L+1 since they arise from the optimal collection plus the greedy subgraph which
adds at most one to each node’s indegree. We now set up a dummy broadcast
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problem (following Nikzad and Ravi [12]) by hooking up the set of sinks at the
end of the greedy paths, say T (G), as leaves in a complete binary tree with
new dummy nodes and a dummy root t. We solve for the broadcast problem in
this graph from the dummy root t to all the sources si in all the pairs. By the
above construction, there exists a tree of poise O(L + log n) that connects all
the sources to this root. From the result of Ravi [13], this implies a broadcast
scheme completing in O(L logn

log logn ). Using an α-approximation algorithm for
broadcast in the telephone model, we get a tree that assign the sources in P
to the sinks in T (G) in O(α · L logn

log logn ) steps. Let us denote the set of sinks in

T (G) by t′1, ·, t′g and the set of sources assigned to a sink t′i by Si.
The remaining task is to send back the messages gathered from Si at t′i to

the sinks corresponding to the sources in Si - let us denote this sink set by
Ti. Note that by construction, all the sinks in Ti are at a distance at most
O(α · L logn

log logn ) from t′i by following the paths to the corresponding source s
and then concatenating the undirected path to its mate t. However, these local
broadcasts must obey the edge-subgraph condition of having indegree at most
one which is tricky to enforce.

If the number of greedy pairs g = |G| is at least
√
p, we simply satisfy

these pairs and move to the next iteration: the number of such iterations is
at most

√
p and each iteration can be implemented in O(L) steps (running the

disjoint greedy path schedules in parallel). If the number of pair is less than√
p, we can carry out the broadcast from each greedy sink t′i to its sink set Ti

in time O(α · L logn
log logn ) by reversing the gathering in the earlier broadcast tree

and extending it to the corresponding sinks. Processing these trees one after
another, we use a total of O(

√
p ·α ·L logn

log logn ). Since α is sublogarithmic [6], we

finally get an Õ(
√
p)-approximation as claimed.

A Local Algorithm. For the second ingredient we observe that if the
in-degree of any node v in the demand graph is δ, then we can satisfy all the
demand requirements of the predecessors of v in the demand graph In(v) in
time Õ(L). Note that since all the terminals in In(v) send their message to
v, the union of the directed paths that transmit these messages in the optimal
solution have distance at most L from the terminals to v and induce an in-degree
of at most L. This defines a tree of poise O(L) and hence enables us to find a
broadcast scheme that gathers all the messages from In(v) at v in time Õ(L).
By reversing this broadcast tree and then following the optimal paths from each
terminal in In(v) to its other sinks, we can find a tree of depth (not poise) at
most Õ(L) rooted at v where these messages are gathered. Since v is the only
node sending out the gathered messages, we can send all these messages to their
intended sinks in a breadth-first tree in time Õ(L). Note that we have taken
care of all the demands originating in |In(v)| nodes.

Combining the two algorithms. We can now combine the two algorithms
as follows: As long as p, the number of demand pairs in the n-node graph, is at
least Ω(n

4
3 ), we use the local algorithm. By averaging over the indegrees that

partition the demand pairs, there exists a node of indegree at least Ω(n
1
3 ) in

the demand graph. The local algorithm thus satisfies the demands originating
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in at least this many nodes in one iteration. The number of iterations is thus at
most n

2
3 each taking Õ(L) multicast steps. On the other hand, when p drops

below O(n
4
3 ), we use the greedy algorithm to get an approximation ratio of

Õ(
√
p) = Õ(n

2
3 ) giving the result. �

4 Conclusion

We have obtained new results in the approximability of rumor spreading prob-
lems in the well-studied radio model as well as a new model motivated by wire-
less communications, which we call the edge-star model. For the radio model,
we present an Ω(n1/2−ε) hardness of approximation bound for radio gossip,
making progress on an open problem mentioned in [10]. For the edge-star
model, we present an O(log n/ log log n) approximation algorithm for gossip,

an O(2
√
logn log logn) approximation algorithm for symmetric multicommodity

multicast, and an O(n2/3) approximation algorithm for asymmetric multicom-
modity multicast. Our approximation algorithms expose relationships between
the edge-star model and the well-studied telephone model.

Our work leaves several interesting open problems. Among the nine cells
listed in the matrix of Table 1 of Section 1, only radio broadcast and edge-star
broadcast are resolved. Significant gaps between the best known upper and
lower bounds on approximability remain for telephone broadcast, the gossip
problem under all three models, and the multicommodity multicast problem
under all three models. In the edge-star model, the symmetric and asymmetric
versions of the multicommodity multicast problem are distinct, and both are
open, in terms of the best approximation factor achievable in polynomial-time.

References

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio
broadcast. Journal of Computer and System Sciences, 43:290298, 1991.

[2] B. Awerbuch and D. Peleg. Sparse partitions. In Foundations of Computer
Science, 1990. Proceedings., 31st Annual Symposium on, pages 503–513.
IEEE, 1990.

[3] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Multicasting in heteroge-
neous networks. In Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
448–453, 1998.

[4] M. Elkin and G. Kortsarz. A combinatorial logarithmic approximation
algorithm for the directed telephone broadcast problem. SIAM J. Comput.,
35(3):672–689, 2005.

[5] M. Elkin and G. Kortsarz. Polylogarithmic additive inapproximability of
the radio broadcast problem. SIAM J. Discrete Math, 19(4):881–899, 2005.

14



[6] M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone
multicast. J. Comput. Syst. Sci., 72(4):648–659, 2006.

[7] M. Elkin and G. Kortsarz. An improved algorithm for radio broadcast.
ACM Transactions on Algorithms (TALG), 3(1):8, 2007.

[8] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J.
Comput. Syst. Sci., 57:187–199, 1998.

[9] L. Gasieniec, D. Peleg, and Q. Xin. Faster communication in known topol-
ogy radio networks. Distributed Computing, 19(4):289–300, 2007.

[10] L. Gsieniec. On efficient gossiping in radio networks. In S. Kutten and
J. erovnik, editors, Structural Information and Communication Complexity,
volume 5869 of Lecture Notes in Computer Science, pages 2–14. Springer
Berlin Heidelberg, 2010.

[11] D. R. Kowalski and A. Pelc. Optimal deterministic broadcasting in known
topology radio networks. Distributed Computing, 19(3):185–195, 2007.

[12] A. Nikzad and R. Ravi. Sending secrets swiftly: Approximation algorithms
for generalized multicast problems. In Automata, Languages, and Program-
ming, pages 568–607. Springer, 2014.

[13] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast
time. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 202–213. IEEE, 1994.

15


	Introduction
	Models: Telephone, Radio, and Edge-Star, a New Model from Wireless
	Previous Work
	Our contributions

	Lower bound for gossip in the radio model
	The Edge-Star Model
	Gossip
	Multicommodity multicast on a tree
	Symmetric Multicommmodity Multicast
	Asymmetric Multicommodity Multicast

	Conclusion

