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Abstract

We study a new distributed randomized information propagation mechanism in networks that we
call a branching random walk (BRW). BRW is a generalization of the well-studied “standard” random
walk which is a fundamental primitive useful in a wide variety of network applications ranging from
token management and load balancing to search, routing, information propagation and gossip. BRW is
parameterized by a branching factor k. The process starts from an arbitrary node, which is labeled active
for step 1. For instance, this could be a node that has a piece of data, rumor, or a virus. In a BRW, in any
step, each active node chooses k random neighbors to become active for the next step. A node is active
for step t + 1 only if it is chosen by an active node in step t. This results in a branching type process
in the underlying network which has interesting properties that are strikingly different from the standard
random walk, which is equivalent to BRW with branching factor k = 1. Similar to the standard random
walk, we focus on the cover time, which is the the number of steps for the walk to reach all the nodes
and the partial cover time, which is the number of steps needed for the walk to reach at least a constant
fraction of the nodes.

We derive almost-tight bounds on cover time and partial cover time in expander graphs, an impor-
tant class of graphs that arise in many distributed network applications, especially in the modeling and
construction of peer-to-peer and overlay networks. A main result of this paper is that the time needed
by a BRW for partial coverage in an n-node bounded-degree expander is O(log n) (even with branching
factor 2, assuming sufficiently large expansion) and for full coverage is O(log2 n) with high probability.
Since the cover time of standard random walk is Θ(n log n) in an expander, this shows that BRW gives
an exponential speedup.
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1 Introduction
A well-studied randomized information propagation process in networks is the (standard) random walk. In
a random walk, in each step, the current node (the one that has the piece of information) chooses a random
neighbor to pass the information. Random walk is a fundamental primitive useful in a wide variety of
network applications ranging from token management and load balancing to search, routing, information
propagation, gathering, and gossip (e.g.,[10, 11, 6, 35] and the references therein). Random walks are local
and lightweight and require little index or state maintenance which make them especially attractive to self-
organizing dynamic networks such as Internet overlay and ad hoc wireless networks [35]. An important
parameter of interest in a random walk is the cover time — the (expected) number of rounds needed till the
walk visits all the nodes in the network. Random walks are communication efficient in the sense that there is
only a single “active” node holding the information at any step; thus only constant work (i.e., communication
or number of messages transmitted) is performed per round in a random walk. However, the price is the
cover time can be quite high in general — Θ(n3) in the worst case (see e.g., [29]). In fact, even in expander
networks, an important class of graphs which have good connectivity properties and arise in a number
of network applications (see e.g., [25]), the cover time is polynomially large — Θ(n log n) [29]. Hence,
several recent works have addressed the issue of speeding up the cover time of random walks [1, 4, 12].
In many of these works the main approach to speed up is by slightly modifying the random walks — e.g.,
visiting additional (constant) number of neighbors of the current node, while proceeding with the random
walk as usual. The typical speedup given by these approaches is not very large, the cover time remains
still polynomial. In particular, in expander graphs the speed up is by a logarithmic factor [4]. This raises
the question whether we can speed up random walks significantly (at least in important classes such as
expanders), by modifying the process. This is one main motivation of the current paper.

In this paper, we study a new distributed randomized information propagation mechanism in networks
that we call a branching random walk (BRW). BRW is a generalization of the (standard) random walk, and
is parameterized by a branching factor k. The process starts from an arbitrary node, which is labeled active
for step 1. For instance, this could be a node that has a piece of data, rumor, or a virus. In a BRW, in any
step, each active node chooses k random neighbors to become active for the next step. Note that a node is
active for step t only if it is chosen by an active node in step t− 1. This results in a branching type process
in the underlying network which has interesting properties that are strikingly different from the standard
random walk, which is equivalent to BRW with branching factor k = 1. Similar to the standard random
walk, we focus on the cover time, which is the the number of steps for the walk to reach all the nodes and
the δ-cover time, which is the number of steps needed for the walk to reach at least a δ fraction of the nodes.

We derive almost-tight bounds on cover time and partial cover time in expander graphs. Expanders
are a very important class of graphs that have applications in various areas of computer science —networks,
crypography, derandomization, complexity and coding theory etc. (e.g., see [25] for a survey). For example,
in distributed computing and networks, they have been used for censorship resistant networks [18, 17],
fault tolerant networks [32], analyzing information spreading in networks [24], and efficient (Byzantine)
agreement and leader election algorithms [13, 33, 28, 27, 3].

A main contribution of this paper is the analysis of the cover time and partial cover time of BRW in
a (bounded-degree) expander. We show that the cover time in a n-node expander is O(log n) (even with
branching factor 2, assuming sufficiently large expansion) and the partial cover time is O(log2 n) with high
probability. Since the cover time of standard random walk is Θ(n log n) in an expander, this shows that
BRW gives an exponential speedup. This also implies that the total number of messages sent is O(n log n)
for partial coverage and O(n log2 n) for full coverage. We note that this is essentially optimal and is within
only a logarithmic factor compared to the cover time of the standard random walk (which is BRW with
branching factor 1). Thus, increasing the branching factor to just 2 in every time step, yields an exponential
speedup compared to branching factor 1, while not increasing the total message complexity by too much.
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We believe that our BRW results can also be generalized to understand the time taken for an epidemic
process in an SIS-type model to spread in a network [21, 26, 34]. By varying the branching factor and the
time that a node remains infected, the process can also be viewed as a generalized rumor spreading model,
with applications in both epidemiology and information dissemination.

1.1 Our results
We analyze the partial and full cover times of branching random walks on bounded-degree regular ex-
panders. We say that a graph is an (α, δ)-expander if the number of neighbors of every vertex set S of
vertices of size at most δn is at least α|S|. (Note that the neighbors of vertices in S may include vertices in
S.)

• We show that for any ∆-regular n-vertex (α, δ)-expander, the k-branching random walk covers at
least δn nodes in O(log n) steps for k ≥ 1 + ln(2∆/(α − 1)) assuming α is sufficiently large. In
particular, for any random regular graph, the 2-branching random walk covers Ω(n) nodes in O(log n)
steps with high probability.

• We show that the cover time of a k-branching random walk on any bounded-degree regular (Ω(n), α)-
expander graph is O(log2 n) for k ≥ 1 + ln(2∆/(α − 1)), assuming α is sufficiently large. In
particular, the cover time of the 2-branching random walk on any random regular graph with constant
degree is O(log2 n).

1.2 Related work
The study of random walks on graphs has a rich history, and we refer the reader to [29, 31] for a survey. A
classic result of Aleliunas shows that the cover time of a random walk on an undirected n-vertex m-edge
graph is at most 2nm.

With the rapidly increasing interest in diffusion processes in large-scale networks and the gossiping
paradigm, there have been a number of studies on speeding up random walks. One of the earliest studies
is due to Adler et al [1], who studied a process on the hypercube in which in each round a vertex is chosen
uniformly at random and covered; if the chosen vertex was already covered, then an uncovered neighbor
of the vertex is chosen uniformly at random and covered. For any d-regular graph, Dimitrov and Plaxton
showed that a similar process achieves a cover time of O(n + (n log n)/d) [12]. For expander graphs,
Berenbrink et al showed a simple variant of the standard random walk that achieves a linear cover time [4].

It is instructive to compare BRW with other mechanisms to speed up random walks as well as with
gossip-based rumor spreading mechanisms. Perhaps the most related mechanism is that of parallel random
walks which was first studied in [5] for the special case where the starting nodes are drawn from the station-
ary distribution, and in [2] for arbitrary starting nodes. Nearly-tight results on the speedup of cover time as
a function of the number of parallel walks have been obtained by [15] for several graph classes including
the cycle, d-dimensional meshes, hypercube, and expanders. (Also see [14] for results on mixing time.)
Though BRWs are similar to parallel random walks in the sense that at any step multiple nodes may be
selecting random neighbors, there are significant differences between the two mechanisms. First the cover
times of these walks are not comparable. For instance, while k parallel random walks may have a cover
time of Ω(n2/ log k) for any k ∈ [1, n] [15], a 2-branching random walk on a line has a cover time of O(n).
Second, while the number of active nodes in k parallel random walks is always k, the number of active nodes
in any k-branching random walk is continually changing and may not even be monotonic. Most importantly,
the analysis of cover time of BRWs needs to address several dependencies in the process by which the set
of active nodes evolve; we use the machinery of time-inhomogenous Markov chains to obtain the O(log2 n)
bound on the cover time for bounded-degree expanders [30] (see Section 3).

The works of [10, 11] presented fast distributed algorithms for performing (standard) random walks.
The goal is to improve the round complexity of the standard walk — which takes ` rounds to do a walk
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of length `. The above works present a sublinear time distributed algorithm for performing random walks
whose time complexity is sublinear in the length of the walk. In particular, the algorithm of [11] performs
a random walk of length ` in Õ(

√
`D) rounds with high probability on an undirected network, where D is

the diameter of the network. The high-level idea behind the algorithm is to perform several short walks in
parallel and then stitch them carefully. However, this speed up comes with a drawback: this the message
complexity of the above faster algorithm is much worse compared to the naive sequential walk which takes
only ` messages. In contrast, we note that the exponential speedup given by BRW over the standard comes
only at the cost of a slightly worse message complexity.

Gossip-based information propagation mechanisms have also been used for information (rumor) spread-
ing in distributed networks. In the most typical rumor spreading models, gossip involves either a push step,
in which nodes that are aware of a piece of information (being disseminated) pass it to random neighbors, or
a pull step, in which nodes that are unaware of the information attempt to extract the information from one
of their randomly chosen neighbors, or some combination of the two. In such models, the knowledgeable
nodes or the ignorant nodes participate in the dissemination problem in every round (step) of the algorithm.
The main parameter of interest in many of these analyses is the number of rounds needed till all the nodes
in the network get to know the information.

The rumor spreading mechanism that is most closely related to BRWs is the basic push protocol, in
which in every step every informed node selects a random neighbor and pushes the information to the
neighbor, thus making it informed. Feige et al [16] show that the push process completes in every undirected
graph in O(n log n) steps, with high probability. Since then, the push protocol and its variants have been
extensively analyzed both for special graphs, as well as for general graphs in terms of their expansion
properties (see e.g., [7, 8, 9, 23, 22, 20, 19]). Again, though BRWs and rumor spreading share the property
that multiple nodes are active in a given step, the two mechanisms differ significantly from each other. While
the set of active nodes in rumor spreading is monotonically nondecreasing, this is not so in branching random
walks, an aspect that makes the analysis challenging especially with regard to full coverage. Furthermore,
the message complexity of the push protocol can be substantially different than that of BRWs. For instance,
for the star network, the push protocol covers all nodes in Θ(n log n) steps with a message complexity of
Θ(n2 log n), while the 2-branching random walk has both cover time and message complexity Θ(n log n).

2 Partial Cover Time
In this section, we prove the following theorem that bounds the partial cover time for a branching random
walk on graphs with sufficient expansion.

Theorem 1. Let δ > 0, α > 0, and∆ > 2 be constants. Then if for a constant k ≥ 2, the equation

α >
∆2

ek + (k − 1)∆− k2

2
∆
ek + (k − 1)∆− k2

2

is satisfied, then a k-branching random walk on any ∆-regular (α, δ)-expander has a δ-cover time of
O(log n) with high probability.

Remark. For 2 ≤ k ≤ ∆, the condition of the lemma is met if

α > 1 +
∆
ek

(
∆− 1
∆− 2

)
.

Since we must assume ∆ ≥ 3 as one cannot prove fast cover time for ∆ = 2 (the case of a line), and we
have ∆−1

∆−2 ≤ 2 for ∆ ≥ 3, the condition of the theorem will be satisfied if

α > 1 +
2∆
ek

.
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The above gives us the following corollaries.

Corollary 2. If ∆ ≥ 3 and α > 1 + 2∆
e∆ , then a k-branching random walk on a ∆-regular (α, δ)-expander

has a δ-cover time of O(log n) if

k > ln
(

2∆
α− 1

)
.

Corollary 3. A 2-branching random walk on a ∆-regular random graph, where ∆ ≥ 3, covers Ω(n) nodes
in time O(log n) with high probability.

Our proof of Theorem 1 shows the stronger result that the number of active nodes itself grows to δn
in time O(log n) with high probability. The proof is divided into three parts: (a) we first show that if the
number of active nodes is less than δn at time t, then the expected number of active nodes in time t + 1 is
at least a factor (1 + ν) more where ν > 0 (Lemma 4), (b) using this expectation bound and a martingale
argument, we then bound the probability that the number of active nodes do not grow by a constant factor
greater than 1 from time t to t + 1 (Lemma 6), (c) finally, using the bound on the probability of not growing
the number of active nodes by a constant factor, we show that the number of active nodes grows to δn in
time O(log n) with high probability (Lemma 7).

We let St denote the set of active nodes at time t. Also, for any set S of nodes, we let N(S) denote the
set of neighbors of S, i.e., the set of all those nodes which have at least one edge to a node in S. Note that
N(S) can intersect S. First we prove growth in expectation.

Lemma 4. For any t ≥ 0, if |St| ≤ δn, E[|St+1|] ≥ (1 + ν)|St| for some constant ν > 0.

Proof. Let k =. Fix a t and suppose |St| ≤ δn. It will suffice to show that E[|N(St)− St+1|] ≤ |N(St)| −
(1 + ν)|St|. For each vertex u ∈ N(St), let Xu be the indicator variable that is 1 if u /∈ St+1 and 0
otherwise. The probability that Xu = 1 is p =

(
1− 1

∆

)kdu , where du the number of edges of u to vertices
in St. Thus the expectation of Xu is p. We have

E[|N(St)− St+1|] =≤
∑

u∈N(St)

Xu =
∑

u∈N(St)

(
1− 1

∆

)kdu

≤
∑

u∈N(St)

e−
kdu
∆ .

We will like to know for what values of du’s the expression e−
kdu
∆ is maximized? We note that

∑
u∈N(St)

du =
∆|St|. Combining this fact with Lemma 5, it is immediate that the expression will be maximized when for
any u, du is either ∆ or 1, except possibly for one u. Let R1 be the number of u’s for which du = 1, and R2

be the number of u’s for which du = 1. We have

R1 + R2 = |N(St)|,
R1 + ∆R2 = ∆|St|.

Solving for R1 and R2, we get

R1 =
∆

∆− 1
(|N(St)| − |St|),

R2 =
1

∆− 1
(∆|St| − |N(St)|).

Thus we have

E[|N(St)− St+1|] ≤ R1e
− k

∆ + R2e
−k

=
∆

∆− 1
(|N(St)| − |St|)e−

k
∆ +

1
∆− 1

(∆|St| − |N(St)|)e−k
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and we want to show that this is at most

|N(St)| − (1 + ν)|St|.

Rearranging, we want

|N(St)|
(

1− ∆
∆− 1

e−
k
∆ +

1
∆− 1

e−k

)
+ |St|

(
∆

∆− 1
e−

k
∆ − ∆

∆− 1
e−k − 1

)
≥ ν|St|.

We know |N(St)| ≥ α|St| since |St| ≤ δn. Since 1− ∆
∆−1e−

k
∆ + 1

∆−1e−k > 0, the above will be true if

α

(
1− ∆

∆− 1
e−

k
∆ +

1
∆− 1

e−k

)
+

(
∆

∆− 1
e−

k
∆ − ∆

∆− 1
e−k − 1

)
> 0.

Rearranging, we want

(α− 1)
(

1− ∆
∆− 1

e−
k
∆

)
− ∆− α

∆− 1
e−k > 0.

Since e−
k
∆ ≤ 1− k

∆ + k2

2∆2 , the above condition will be met if

(α− 1)
(

1− ∆
∆− 1

(
1− k

∆
+

k2

2∆2

))
− ∆− α

∆− 1
e−k > 0,

which simplifies to

α >
∆2

ek + (k − 1)∆− k2

2
∆
ek + (k − 1)∆− k2

2

.

We used the following easy lemma in the proof above.

Lemma 5. Let c > 0 and a, b > 1 such that a ≤ b. Then

e−c(a−1) + e−c(b+1) > e−ca + e−cb.

Proof.

e−c(a−1) + e−c(b+1) − (e−ca + e−cb) = e−ca(ec − 1) + e−c(b+1)(1− ec)
= (ec − 1)(e−ca − e−c(b+1))
> 0,

since c > 0 and a < b + 1.

Next, we show that the number of active nodes is concentrated near the expectation.

Lemma 6. For any time t, Pr[|St+1| − E[|St+1|] ≤ −τ |St|] ≤ exp(− τ2|St|
2k ).

Proof. For any time step t, we arbitrarily order the active nodes in St. Then we define random variables
(Zj

i ), 1 ≤ i ≤ |St|, 1 ≤ j ≤ k, where Zj
i indicates which vertex was chosen by the ith node in St in its j

trial to be active at time t + 1. (Note that each active node in St chooses k neighbors uniformly at random
with replacement.)
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Let A be the size of St+1. Then Xj
i = E[A|Z1

1 , . . . , Zk
1 , . . . , Z1

i−1, . . . , Z
k
i−1, Z

1
i , . . . , Zj

i ] is the Doob
martingale of A. We have Xk

|St| = |St+1|. Since Xj − Xj−1 is bounded by at most 1, Azuma’s inequality
gives us:

Pr[|St+1| − E[|St+1|] ≤ −τ |St|] ≤ exp(−τ2|St|2

2k|St|
)

= exp(−τ2|St|
2k

).

Lastly, using the bound on probability of growth obtained above, we prove an O(log n) bound for the
δ-cover time.

Lemma 7. |St| ≥ δn for some t = O(log n).

Proof. We want to analyze the change in the number of active nodes as a Markov process. For this, consider
a Markov process Xt on the state space {1, 2, . . . n}. Setting τ = ν/2 in Lemma 6, we would like to define
the transitions as follows: with probability 1 − exp(−ν2Xt

8k ), Xt+1 = (1 + ν
2 )Xt, and with probability

exp(−ν2Xt
8k ), Xt+1 = 1, a conservative over-estimate.

But for technical simplicity, we define our random walk slightly differently. Let C be a sufficiently large
constant. It is clear that with some constant probability we can arrive at Xt = C in a constant number of
steps from 1. Thus, letting r = ν2

8k , we define our transitions as follows. Let Xt = C(1 + ν
2 )i. Then, with

probability 1−exp(−rC(1+inu
2 )), Xt+1 = (1+ ν

2 )Xt, and with probability exp(−rC(1+inu
2 )), Xt = C.

It is not difficult to see that it suffices to prove that this random walk will reach δn in time O(log n).
We want to show that starting from C, our random walk will reach size δn without going back to 1 with

probability greater than 1
2 . We observe that the probability of this not happening is at most

e−rC + e−rC(1+ ν
2
) + e−rC(1+2 ν

2
) + · · · ≤ e−rC(1 + e−rC ν

2 + e−2rC ν
2 + . . . ) =

e−rC

1− e−rC ν
2

≤ 1
2
.

if C is chosen sufficiently large, depending on the value of r. From here, we can easily achieve our result
in time O(log2 n) with high probability by repeating the above O(log n) times. However, we can actually
do better and achieve an O(log n) bound. For this, we view each segment of walk where starting from C
we either reach δn (success) or go back to C (failure), whichever is earlier, as a trial. Since probability of a
successful trial is at least 1

2 , we know that with high probability, there are at most b log n failed trials before
we have a trial that is successful, for some constant b. Label a step (within a trial) where the walk advances
as heads in a coin flip and a step where we go back to C as tails. Each failed trial then consists of some
number (possibly zero) of heads flips followed by a single tails flip. Given that we have b log n failed trials
before we have a successful trial, we know that there are b log n tails before we get a successful trial. We
would like to show that with high probability, there are O(log n) heads in all the failed trials combined as
well, which will prove our lemma.

We need to bound the probability of heads conditioned that we are in a failed trial. Now the probability
that we get a tails in step i of a failure trial is larger than

e−rC(1+i ν
2
)∑∞

l=i

[∏l−1
j=i(1− e−rC(1+j ν

2
))

]
e−rC(1+l ν

2
)
≥ 1− e−rC ν

2 .

Thus the conditional probability of heads within a failure trial is at most e−rC ν
2 . Now applying Chernoff

bound we get that with high probability, there are O(log n) heads within all failure trials.
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3 Cover time analysis
In this section, we show that the cover time of a k-branching random walk on constant-degree regular
expanders is O(log2 n), for any k ≥ 2. In particular, we show that once the number of active nodes
reaches Ω(n) as we have already established in Section 2, the number of subsequent steps needed to cover
every node on a bounded degree regular expander is O(log2 n). Our analysis proceeds by considering an
alternative process, which we call Ralt, whose cover time stochastically dominates that of the k-branching
walk starting from a state of δ-coverage.

In Ralt, we consider each active vertex as possessing a pebble. In Ralt, pebbles continue their walks
but no branching occurs. The walks of the pebbles, though random, are not independent from one another.
In particular, the transition probabilities of pebbles are modified when more than one pebble hits the same
vertex at the same time to resemble collisions of pebbles in the original process. The walk of one pebble,
conditioned on the walk of another, can be viewed as a time-inhomogenous Markov process that is only a
minor perturbation of the independent walk of a lone pebble on G. Using a well-known result of Mihail
[30] that exploits an expansion-like property of the graph, called merging conductance, but is applicable to
arbitrary irreducible Markov chains, we show that any given node is visited by a pebble in Θ(log n) time,
ensuring full coverage of G in O(log2 n) time.

In Section 3.1, we define Ralt. In Section 3.2, we show that Ralt has a cover time of O(log2 n) with high
probability, implying an O(log2 n) bound on the cover time of a k-branching random walk for any k ≥ 2.

3.1 Description of Ralt

For this process, we have the same underlying graph, G, as in our original process. Each of the δn marked
nodes has its own individual pebble to start. Arbitrarily index and order the pebbles. This ordering will
be used to assign priority when determining the transition probability of a pebble. At each time step, each
pebble choses a neighbor to move to according to the following rules: (a) If there is one pebble at a node,
the pebble choses a neighbor with probability 1

∆ ; (b) If there are at least two pebbles at a node, then the two
highest priority pebbles each chose a neighbor independently and uniformly at random with probability 1

∆ .
The remaining pebbles chooses one of the already-selected neighbors independently with probability 1

2 .
Note that if a node has one pebble, behavior of Ralt is locally equivalent to random walk over graph

G. We can map the original process to Ralt as follows. If a node in Ralt has two or more pebbles, it
behaves exactly identical to an active node in the original process in the next time step (i.e. choosing two
neighbors uniformly and independently at random). If Ralt has only one pebble, then it does not behave like
an active node in the original process, since it only picks one neighbor to transmit its pebble to. In this way,
the number of active nodes at the next time step under the original process is a superset of the nodes with
pebbles in Ralt at the next time step. In this way, the original process stochastically dominates Ralt.

3.2 Analysis of Ralt

Theorem 8. Let G be a bounded-degree ∆-regular expander graph. Let there be δn pebbles on δn vertices
of G. Then the cover time of Ralt is O(log2 n) with high probability.

Proof. If we can show that each vertex in G is covered with constant probability in Θ(log n) steps, then the
theorem follows by carrying out O(log n) phases of Θ(log n) steps each. Let Ei be the event that pebble i
covers an arbitrary vertex v in s steps. We are interested in Pr[

⋃
i Ei], the probability that v is covered by

at least one pebble, because we want to show that it is larger than some constant. To prove this, we use a
second-order approximation:

Pr[
⋃
i

Ei] ≥
∑

i

Pr[Ei]−
∑
i6=j

Pr[Ei ∩ Ej ] =
∑

i

Pr[Ei]−
∑
i6=j

Pr[Ei] Pr[Ej |Ei] (1)

Each term Pr[Ei] is ≤ O( 1
n), since at the end of phase 2, each pebble has a probability of being at any

particular node equal to the value of the vertex’s component of the stationary distribution vector, 1
n . From
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[2], the probability that an independent walk of pebble i of length O(log n) deviates from 1
n by at most 2

n .
To bound the second-order term we will need to analyze the conditional walk of pebble j given the walk of
pebble i, which has already been fixed.

To bound Pr[Ej |Ei], fix the walk of pebble i. Now consider the walk of j. Clearly if it does not
intersect the walk of j in such a way that both i and j are at the same node at the same time, it is just
another independent random walk, since we are not including the walks of other pebbles, we can view the
edge-selection probability of pebble j at each step of 1

∆ as a marginal probability across all other pebble
paths, except for i’s. On the other hand, if i and j intersect in both space and time, we need to consider the
priorities of the two pebbles. In the worst of all possible cases, i is highly ranked and j is lowly ranked such
that by the time we get to j it is at least the third pebble at that node. If this is the case, then j will pick i’s
edge out of the intersection node with probability 1

2 . With probability 1
2 it will pick another pebble’s edge

out of the node. However, since we are calculating without knowledge of the path of any other pebble, we
again use the marginal probability of edge selection, 1

∆ for each edge, thus giving us probability of selecting
the same edge as i of 1

2 + 1
2∆ and 1

2∆ for every other edge.
Based on the above discussion, pebble j follows the modified transition matrix (M +Tl(i),t), where M is

the standard transition matrix for G, and Tl(i),t is a perturbation matrix depending on the vertex location of i
at time t, viewed as the function l(i). The rows (M+Tl(i),t)k are identical to M for k 6= l(i). For k = l(i), the
entries of the column are 1

2 + 1
2∆ for one randomly selected entry that is 1

∆ in M , and the rest of the entries
are 1

2∆ . From any probability distribution z over V (G), it is clear that that after s = O(log n) steps the
probability of pebble j being a vertex v is the corresponding component of the vector z

∏s
t=1(M + Tl(i),t).

By Lemma 9 below each component of z
∏s

t=1(M + Tl(i),t) < 2
n . Thus,

Pr(
⋃

Ei) ≥
∑

i

P (Ei)−
∑
i6=j

P (Ei)P (Ei|Ej)

≥ εn
1
n
−

(
n

2

)
2
n2

≥ ε− ε2

and the theorem follows.

Lemma 9. For z a probability distribution over V (G), and (M + Tl(i),t) a family of transition operators
on V(G) over a fixed sequence {l(i), t} for t ∈ {1, . . . , s}, each component of z ·

∏s
t=1(M + Tl(i),t) < 2

n .

Proof. Let z = u + x, where u is the uniform distribution over V (G) and x is a vector such that
∑

xi = 0.
Then z ·

∏s
t=1(M + Tl(i),t) = x ·

∏s
t=1(M + Tl(i),t) + u ·

∏s
t=1(M + Tl(i),t).

Lemma 10 proves that the merging conductance of any M + Tl(i),t is bounded by some constant away
from zero and that therefore we can use Mihail’s theorem to show that x ·

∏s
t=1(M + Tl(i),t) is component-

wise within O( 1
n) of the stationary distribution of the perturbed matrix within Θ(log n) time.

Finally, we want to show that each component of u ·
∏s

t=1(M +Tl(i),t) < 2
n . Consider our arbitrary path

v0 → v1 → . . . → vs. Start a pebble walking from a vertex drawn from the stationary distribution u. Define
pj(vi) as the probability of a pebble being at vertex i at time step j. We want to show that the probability of
being at any vertex in G after s time steps is less than 2

n . We have that ∀v, p0(v) = 1
n . We claim that for all

vertices along the fixed path, pk(vk) ≤ 2
n , and that pk(v) ≤ 1

n for v /∈ {v0, . . . , vs}.
The first claim, pk(vk) ≤ 2

n , is proved by induction. We will show that pj ≤ 1
n(1 + 1

2 + 1
22 + · · ·+ 1

2j ).
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For the base case, p1(v1) = 1
n(1

2 + 1
2) + 1

n(∆−1
∆ ) = 1

n(2− 1
2∆) ≤ 2

n . For the inductive case, we have

pj+1(vj+1) ≤ pj(vj)(
1
2

+
1

2∆
) +

1
n

∆− 1
∆

.

≤ 1
n

(1 +
1
2

+ · · ·+ 1
2j

)(
1
2

+
1

2∆
) +

1
n

∆− 1
∆

=
1
n

(
1
2

+
1
4

+ · · ·+ 1
2j+1

+
1
n

+
1

∆n
(
1
2

+
1
4

+ · · ·+ 1
2j+1

)− 1
∆n

≤ 1
n

(1 +
1
2

+ · · ·+ 1
2j+1

)

The second claim has two cases: the first is that v is a neighbor of vertex along the path, vj . Then
pj+1(v) ≤ 1

2∆pj(vj) + ∆−1
∆

1
n ≤

1
n .

Finally, if v is not a neighbor of vj , then we have pj+1(v) ≤ 1
n

Lemma 10. Let M + Tl(i),t be a perturbed random walk on expander G as described in the description
of Ralt and x be a vector over V such that

∑
i xi = 0. Then for s = Θ(log n), each component of x ·∏s

t=1(M + Tl(i),t) is O( 1
n).

Proof. The proof of this lemma relies heavily on Theorem 3.2 in [30], which we review and state here. Let
P be an irreducible, ergodic Markov process. Note that time-reversibility and even strong aperiodicity are
not required. Rather than using just the transition probabilities pij between vertices i and j, instead consider
a weighted transition wij , where wij = πipij , with πi being the ith component of the stationary distribution
of P . For a subset A ⊂ V , consider a property called the merging conductance, defined as:

Φ∗
P (A) =

∑
j1∈A

∑
j2∈S−A

∑
i

wj1iwj2i

πi∑
i∈A πi

(2)

and define the merging conductance of G to be

Φ∗
P (A) = min

A⊂S:
P

i∈A πi≤ 1
2

Φ∗
P (A) (3)

Intuitively, the merging conductance can be viewed as a measure of the flow coming into all vertices from
both A and S−A, for some set A. The higher the merging conductance of a graph, the more well connected
it is and evenly distributed the flow is. If we define ‖~x(t)‖ =

∑ (pi(t)−πi)
2

πi
to be a measure of the distance of

a distribution over V , ~p from the stationary distribution, [30] gives us the following theorem, which indicates
for a graph with conductance bounded away from zero, convergence to the stationary distribution occurs in
logarithmic time.

Theorem 11. [30, Theorem 3.2]

‖~x(t)‖ ≤ (1− 1
2
(Φ∗

P )2)t‖~x(0)‖ (4)

Any bound on the merging conductance of M + Tl(i),t requires an understanding of how much the
stationary distribution of the perturbed walk differs from the stationary distribution of the original walk, for
which πi = 1/n for all i ∈ V ). Consider u to be the one vertex in M + Tl(i),t whose transition probabilities
are perturbed. Let v be the neighbor that receives the pebble with probability 1

2 + 1
2∆ , and let u1, . . . , u∆−1

be the other neighbors of u that receive the pebble with probability 1
2∆ . Clearly πv is the max of the πi’s.

Suppose it were not. Then some other vertex j not in {u, v, u1, . . . u∆−1} has πj = πmax. But since
πj = πmax =

∑
k∈N−1(j) πkpkj , and pkj = 1

∆ , it follows that πmax is equal to the mean of the neighboring

9



πk’s implies πk = πmax for all k ∈ N−1(j). We continue this calculation until we reach one of the ui’s,
implying that πui = πmax. However, this is a contradiction, since πui = 1

2dπu + d−1
d πmax ≤ πmax. Thus

πmax must either be πu or πv, and w.l.o.g. we can assume that it is πv. A similar argument shows that the
u1, . . . , u∆−1 take values πmin.

Now we bound the spread between πmin and πmax. Note that πu = ∆−1
∆ πmin + 1

∆πmax. Then, by
elementary algebra, we obtain πmax ≤ (∆ + 1)πmin. Note that the mean value for π over V is 1/n. Using
the bounds calculated above, that means that πmin ≥ 1

(∆−1)n > 1
∆n and πmax ≤ ∆−1

n < ∆
n .

We next lower-bound the number of wj1iwj2i

πi
terms in the calculation of the merging conductance. Let

A be the set that produces the minimum merging conductance. Essentially, we need to bound from below
the number of vertices that have one neighbor in A and another neighbor in V −A. Using vertex expansion
α, we have that N(A), the neighborhood of A comprised of neighbors j of each i ∈ A s.t. j ∈ V − A
has size |N(A)| ≥ α|A|. Now, we do not know how many of the vertices in N(A) also have a neighbor in
V −A. However, we can look at the vertex expansion of set N(A)

⋃
A. Clearly |N(N(A)

⋃
A)| ≥ α2|A|.

However, since all the neighbors of A in V − A were captured in N(A), this implies that N(N(A)
⋃

A)
must consist only of vertices in V −A. From this we can conclude that there is at least one edge from each
vertex in N(N(A)

⋃
A) to N(A), and that this edge is incident to a vertex that has at least one edge back

to A. Thus there are at least α2|A| conductance terms in Φ∗
P . Plugging in our worst-case values for πi and

pij , assuming that |A| = cn for some c ∈ [0, 1], and that
∑

i∈A = 1
2 , we have:

Φ∗
P ≥ α2|A|

π2
minp2

ij

πmax

|A|πmax
= α2(

1
∆

)2(
1

2∆
)2 = Ω(

1
∆4

).

As long as ∆ is a constant integer much smaller than n, the merging conductance Φ∗
P is safely bounded

away from zero. Note that we make no attempt to optimize this bound – clearly much tighter bounds are
achievable. Therefore, we can treat (1 − 1

2(Φ∗
P )2) as a constant, γ ∈ (0, 1]. The largest value of ‖~x(0)‖

occurs of course when starting the walk at one vertex. Thus:

‖~x(0)‖ ≤ (1− πmin)2

πmin
+ (n− 1)

(πmax)2

πmin
= ∆n(1− 1

∆n
)2 + ∆n(n− 1)(

∆
n

)2.

Hence ‖~x(0)‖ is O(n). In order to obtain a value for ‖~x(s)‖ that is O( 1
n) we will need to pick a value of s

so that γt is Ω( 1
n2 ):

γs =
A

n2
for some constant A ⇒ n2γs = c ⇒ 2 log n + s log γ = log c ⇒ s =

log c− 2 log n

log γ
⇒ s = Θ(log n).

Thus for s = Θ(log n) we are guaranteed that ‖~x(0)‖ = Ω( 1
n), and therefore so is each component.

4 Conclusion
We introduced a new type of distributed information propagation mechanism, namely the BRW and analyzed
the cover time and partial cover time of BRW in expanders, which are used to model and design P2P and
overlay networks. We showed that the the cover time and partial cover time are exponentially faster in BRW
compared to the standard random walk. Since random walks have extensive applications in networks, we
hope BRW will also be useful, with the additional property of faster coverage. There are several interesting
open problems regarding BRW that remain to be solved. In general, unlike the standard random walk which
has a well-developed theory, we know little about the properties of BRW in general graphs. For example,
what is the worst case cover time of BRW, and how does it vary with the branching factor k? It is clear
that the cover time is not worse than a standard random walk, but it will be interesting to establish tight
asymptotic bounds. Furthermore, it will be interesting to establish and compare the message complexity of
BRW with the standard random walk as well as other gossip-based rumor spreading processes.
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