
On Constructing DAG-Schedules with Large AREAs

Scott T. Roche, Arnold L. Rosenberg, and Rajmohan Rajaraman

Northeastern University,
College of Computer and Information Science,

Boston, MA 02115, USA
{rraj,str,rsnbrg}@ccs.neu.edu

Abstract. The Area of a schedule Σ for a DAG G is a quality metric that measures the rate at which Σ renders
G’s nodes eligible for execution. Specifically, AREA(Σ) is the average number of nodes of G that are eligible for
execution as Σ executes G node by node. Extensive simulations suggest that, for many distributions of processor
availability and power, DAG-schedules having larger Areas execute DAGs faster on platforms that are dynamically
heterogeneous: the platform’s processors change power and availability status in unpredictable ways and at unpre-
dictable times. (Clouds and desktop grids exemplify such platforms.) While Area-maximal schedules can provably
be found for every DAG, efficient generators of such schedules are known only for families of well-structured DAGs.
Our first result shows that the problem of crafting Area-maximal schedules for general DAGs is NP-complete,
hence likely computationally intractable. The lack of efficient Area-maximizing schedulers for general DAGs has
instigated the development of several heuristics for producing DAG-schedules that have large Areas. We propose
a novel polynomial-time heuristic that produces schedules having quite large Areas; the heuristic is based on the
Sidney decomposition of a DAG. (1) Simulations on DAGs having random structure yield the following results. The
Sidney heuristic produces schedules whose Areas: (a) are at least 85% of maximal; (b) are at least 1.25 times greater
than previously known heuristics. (2) Simulations on DAGs having the structure of random “LEGO R©” DAGs (as
formulated in earlier studies) indicate that the schedules produced by the Sidney heuristic have Areas that are at
least 1.5 times greater than previously known heuristics. The “85%” result is obtained from formulating the Area-
maximization problem as a Linear Program (LP); the Areas of DAG-schedules produced by the Sidney heuristic
are at least 85% of the Area-value produced by the (unrounded) LP. (3) The reported results on random DAGs
are essentially matched by a second heuristic, which produces DAG-schedules by rounding the results of the LP
formulation.

1 Introduction

The problem we study. Many modern computing platforms—notably clouds [34, 35], desktop grids [3], and volunteer-
computing projects [11, 19]—exhibit extreme levels of dynamic heterogeneity. The availability and relative computing
powers of such platforms’ computing resources can change at unexpected times and in unexpected ways. Scheduling
a computation for efficient execution on such a platform can be quite challenging, particularly when there are depen-
dencies among the computation’s constituent chores1 (jobs, tasks, etc.); as is traditional, we model such computations
as DAGs (directed acyclic graphs). The Area of a schedule Σ for a DAG G is a quality metric that measures the rate
at which schedule Σ renders G’s nodes eligible for execution: the larger the better. Specifically, AREA(Σ) is the
average number of nodes of G that are eligible for execution as Σ executes G node by node. The intuition motivating
the Area metric is that increasing the likelihood of having nodes eligible for execution increases the opportunities
to avail oneself of available computational resources, thereby decreasing the likelihood that a computation will stall
for lack of eligible work. Although this is just mathematical/computational intuition—the definition of Area does not
mention any properties of the computing platform—extensive simulations ([5, 6]) suggest that, for many distributions
of processor availability and power, DAG-schedules that have larger Areas execute DAGs faster on dynamically hetero-
geneous platforms. The current paper is motivated by the fact that, while all DAGs provably admit Area-maximizing
schedules, we know how to derive such schedules efficiently only for a variety of specific families of DAGs [5, 8].

1 Since a computation can be scheduled at a variety of levels of coarseness, we use the granularity-neutral term “chore” to denote
the units that combine to form the computation.

Our contributions. The first main result of the current study establishes that the AREA-MAX problem, i.e., the (de-
cision version of the) problem of generating Area-maximizing schedules for general DAGs, is NP-complete; see Sec-
tion 3. It is, therefore, likely that this optimization problem is computationally intractable in general. In response,
we have been seeking an approximation algorithm for AREA-MAX, i.e., an algorithm that produces DAG-schedules
whose Area is within a fixed factor of the area of an area-maximizing schedule. We have not yet discovered a good
approximation algorithm yet, but the search has not been fruitless. In Section 3, we present an algorithm that achieves
AREA always within 1/(2

√
n) of the optimum AREA. The preceding approximation factor is weak for large DAGs,

so the main focus of our work has been on developing heuristics that work well for large classes of DAGs. The second
main result of the current study is a new, polynomial-time, heuristic for producing DAG-schedules which is based on
the Sidney decomposition of a DAG [31]. Simulation experiments suggest that the schedules produced by this Sidney
heuristic have quite large areas; see Section 4.1. Specifically:

1. Simulations on DAGs having random structure yield the following results. The Sidney heuristic produces schedules
whose Areas: (a) are at least 85% of maximal; (b) are at least 1.25 times larger than the Areas of schedules
produced by previously known heuristics.

2. Simulations on DAGs having the structure of random “LEGO R©” DAGs (so named for the toy; cf. [6]) indicate
that the schedules produced by the Sidney heuristic have Areas that are at least 1.5 times larger than the Areas of
schedules produced by previously known heuristics.

The third main contribution of the current study is a new formulation of the Area-maximization problem as a Linear
Program (LP, for short); see Section 4.2. The LP formulation yields two benefits. First, the Area-value produced by
the (unrounded) LP for a DAG G affords us an upper bound on the maximal Area achievable by any schedule for G.
Indeed, this bound gives us access to the “85%” result just mentioned for the Sidney heuristic. Second, the LP formu-
lation yields a second new polynomial-time heuristic for the Area-maximization problem. While the LP heuristic just
essentially matches the random-DAG Areas achieved by the Sidney heuristic’s schedules, the LP schedules promise to
yield valuable information about the structure of Area-maximizing schedules, in the manner discussed in Section 4.2.
Related Work. The problem of scheduling a computation on a parallel/distributed computing platform, with the goal
of minimizing job completion time, has been studied since the development of such platforms [30]. Most variants of
this problem provide nontrivial computational challenges, esecially when the constituent chores of the computation
of interest have inter-chore dependencies that constrain the order of chores’ executions. In common with most of the
scheduling literature, we represents a job and its inter-chore dependencies as a directed acyclic graph (DAG) each
of whose arcs exposes one chore that cannot be executed before some other chore. An extensive overview of DAG-
scheduling algorithms related to grids is given in [10]. Most significant scheduling problems on DAGs are, even under
simplified assumptions, computationally intractable, which has led to the development of a multitude of heuristics;
cf. [20].

Despite differences in detail, virtually all proposed strategies for scheduling DAGs rely on knowing, possibly in
a stochastic sense as in [36], (almost) exact execution times of chores; for this reason, dynamically heterogeneous
platforms resist all standard scheduling strategies. To address this situation, a number of attempts have been made
to adapt earlier DAG-scheduling heuristics, such as HEFT [32] and FCP [28], to the new platforms. None of these
attempts have successfully addressed the range of challenges posed by dynamically heterogeneous platforms.

Among the bold approaches to crafting DAG-schedules for dynamically heterogeneous platforms are the partial-
order schedules of [27], which strive to craft schedules that enjoy temporal flexibility that is solidified only at run
time. A similar delay-of-commitment strategy forms the response advocated in [2, 17] to the unpredictability of highly
volatile computing platforms. Yet other studies propose scheduling strategies wherein a precomputed static schedule
is reorganized at run time in response to changes in processors’ powers [36, 23]; one instance of this appears in [26],
where planned checkpoints allow one to react dynamically to unexpected behavior by a volatile platform.

The scheduling strategy that leads to the current study was initiated in [29, 25]. These sources advocated ignoring
the (unknowable) characteristics of the host platform and, instead, deploying the chores of a DAG in an order that
maximized the rate of producing more chores that are eligible for deployment. The intuition is that under this regimen,
which is called IC-scheduling, whenever processors speed up, one will be more likely to have work to allocate to
them. Simulation experiments in [16, 24] seem to validate this intuition, but an unrecoverable flaw in IC-scheduling
was discovered in [25]—many DAGs do not admit optimal schedules under this paradigm (although many computa-
tionally significant DAGs do admit such schedules [7]). This discovery led to the development of Area-maximizing

2

DAG-scheduling, whose study we continue here. The fundamentals of Area-maximizing scheduling are established
in [5] where, among other results, it is shown that (a) every DAG admits an optimal Area-maximizing schedule and
(b) optimal Area-maximizing schedules and optimal IC-schedules coincide for any DAG that admits an optimal IC-
schedule. Since efficient generators are not known for Area-maximizing schedules, a heuristic was developed in [6]
that converted a DAG G to a series-parallel version σ(G) and then generated a schedule for G by “filtering” an Area-
maximizing schedule for σ(G) (obtained via the algorithm in [8]). The simulation experiments reported in [6] suggest
that Area-maximizing DAG-scheduling has computational benefits similar to those of IC-scheduling, although to a
moderated degree. The current study focuses on a new heuristic whose schedules have Areas larger than those of the
schedules of [6].

There have also been studies that focus on DAG-scheduling strategies rather than complete schedules. An inter-
esting comparison of two dynamic approaches appears in [18]: replicated allocation of chores vs. deadline-triggered
reallocation. Other sources have analyzed the reliability of scheduling DAGs under execution-time uncertainty [14, 22].
Finally, one finds in [1] a framework for minimizing makespan when processors proceed asynchronously, executing
DAGs having unit-time chores.

Throughout, we exploit a nonobvious connection between the AREA-MAX problem and the Minimum Weighted-
Completion-Time problem for DAGs, MWCT. In Section 3, we invoke a result from [33] to establish the NP-Completeness
of our problem; in Section 4.1, we draw inspiration from [21] to develop a new heuristic for producing large-Area
schedules for DAGs.

2 Computation-DAGs and Their Schedules

Basic Definitions. Computation-DAGs. A (computation-)DAG G has a set N G of cardinality NG comprising its nodes,
each representing a chore in a computation, and a set AG of cardinality AG comprising its arcs, each representing an
intertask dependency. For arc (u → v) ∈ AG : • chore v cannot be executed until chore u is; • u is a parent of v; v
is a child of u in G. The notion of the ancestor of a node is inherited from the notion of parent. The indegree (resp.,
outdegree) of u ∈ N G is its number of parents (resp., children). A parentless node is a source; a childless node is a
sink. G is bipartite if N G can be partitioned into X and Y , and each arc (u → v) has u ∈ X and v ∈ Y ; we say that
G is bipartite of type (X → Y).

DAG schedules and their quality. When one executes a DAG G, a node v ∈ N G becomes eligible (for execution)
only after all of its parents have been executed. (Hence, sources are always eligible.) We do not allow recomputation
of nodes, so a node loses its eligible status once it is executed. In compensation, the execution of a node v ∈ N G may
render new nodes eligible; this occurs when v is their last-executed parent. A schedule Σ for a DAG G is a rule for
selecting which eligible node to execute at each step of an execution of G. Σ is, thus, a topological sort [9] of G, i.e.,
a linearization ΛΣ of N G in which all children of each node v appear after v.

We measure the quality of a scheduleΣ via the rate at whichΣ’s successive node-executions produce new eligible
nodes—the more, the better. Because many DAGs do not admit schedules that execute nodes so that the number of
eligible nodes on G is maximized at every step of the computation—these are the IC-optimal schedules of [25]—our
goal is schedules that maximize the average number of eligible nodes on G, averaged over all steps of the computation.
A schedule that achieves this goal is said to be AREA-maximizing, as explained in the next subsection.

AREA-maximizing schedules. The AREA metric. For any schedule Σ for a DAG G and any integer T ∈ [0, NG],2 we
denote by EΣ(T) the number of nodes of G that are eligible at step T when Σ executes G.3 The eligibility profile of
schedule Σ is the (NG + 1)-tuple Π(Σ) = 〈EΣ(0), EΣ(1), . . . , EΣ(NG)〉. The AREA of Σ is the sum

AREA(Σ) = EΣ(0) + EΣ(1) + · · ·+ EΣ(NG). (1)

Note that AREA(Σ) is the unnormalized average number of nodes of G that are eligible when Σ executes G.4 Our
goal is to find, for each DAG G an AREA-maximizing schedule (A-M schedule, for short), i.e., a schedule Σ? for G such

2 [a, b] denotes the set of integers {a, a+ 1, . . . , b}.
3 We measure time in an event-driven manner, as the number of nodes executed to that point.
4 The term Area arises by analogy with the approximation of integrals by Riemann sums.

3

that
AREA(Σ?) = max

Σ a schedule for G
AREA(Σ)

def
= AREA(G).

We refer to the quest for A-M schedules as the AREA-MAX problem.
Streamlining the metric. The following lemma technically simplifies AREA-MAX.

Lemma 1 ([5]). Every DAG G admits an A-M schedule Σ that executes G’s sinks only after executing all of its non-
sinks.

Focus on a DAG G that has n nonsinks, N nonsources, s sources, and S sinks (so that NG = s+N = S + n).
1. If a schedule Σ for G honors Lemma 1, then the last S entries in Π(Σ) are: S − 1, . . . , 1, 0. We can, therefore,

maximize AREA(Σ) by maximizing

Area(Σ)
def
=

n∑
i=0

EΣ(i) = AREA(Σ) −
(
S

2

)
. (2)

2. Let eΣ(t) denote the number of nodes of G that are rendered eligible by the node-execution at step t ∈ [1, NG]
of Σ. By (2), EΣ(t) = s− t+

∑t
j=1 eΣ(j), so that

Area(Σ) =

n∑
t=0

t∑
j=1

eΣ(j) + (n+ 1)s −
(
n+ 1

2

)
,

which exposes

area(Σ)
def
=

n∑
t=0

t∑
j=1

eΣ(j) = n · eΣ(1) + (n− 1) · eΣ(2) + · · ·+ 1 · eΣ(n) (3)

as the only portion of Area(Σ) that actually depends on choices made by Σ.

3 The NP-Completeness of AREA Maximization and a
√
n-Approximation Algorithm

It is clear that the (decision version of the) AREA-MAX Problem lies within the class NP. Given a DAG G and integer k,
one can “guess” a topological sort T of G and determine whether AREA(Σ) ≤ k for the schedule Σ embodied in T .
We show now that AREA-MAX is also NP-hard, so that the problem is NP-complete. Our proof is via reduction from
the 0-1 Minimum Weighted-Completion-Time problem for a class of bipartite DAGs. This problem, which we refer to
as (0, 1)-MWCT, is defined as follows.

One is given a bipartite DAG G, with one set of the partition consisting of source nodes, and the other set consisting
of sink nodes. Thus, G is a bipartite DAG of type (S → T), where S is a set of s sources and T is a set of S sinks.
Every source u ∈ S has computation time Cu = 1 and weight wu = 0, while every sink v ∈ T has computation time
Cv = 0 and weight wv = 1. Under this model, the makespan when we execute G is not affected by when we execute
any sink v—as long, of course, as v is eligible. For definiteness, we will execute each sink “greedily,” i.e., as soon as
it becomes eligible, and we will henceforth view a schedule as an ordering of G’s s sources. The weighted completion
time for G associated with schedule Σ is

WΣ
def
=

∑
j∈NG

wjCj = 1 · eΣ(1) + 2 · eΣ(2) + · · ·+ s · eΣ(s). (4)

Our challenge is to find a scheduleΣ for G that has minimalWΣ . It is shown in [33] that (0, 1)-MWCT is NP-Complete.
Employing standard job-scheduling notation, we refer to the preceding problem as a 1|prec|

∑
wjCj problem,

meaning that it involves a computation by a single processor (1), permits inter-job precedences (prec), and strives to
minimize the expression

∑
wjCj .

The reduction from (0, 1)-MWCT to AREA-MAX resides in the following lemma.

4

Lemma 2. Any AREA-maximizing schedule for the 0-1 bipartite DAG G solves the 1|prec|
∑
wjCj problem for G: it

minimizes G’s weighted completion time.

Proof. Let Σ be an arbitrary schedule for the 0-1 bipartite DAG G. For definiteness, let Σ execute G’s s sources in the
order u1, . . . , us. Then, we have

WΣ =

s∑
k=1

keΣ(k). (5)

Adding Eqs. (3) and (5), we obtain

Area(Σ) +WΣ = (S + 1)s−
(
s+ 1

2

)
+ (s+ 1)

s∑
k=1

eΣ(k) = (S + 1)s−
(
s+ 1

2

)
+ (s+ 1)S,

since each of the S sinks becomes eligible exactly once. It thus follows that any schedule that any AREA-maximizing
schedule also minimizes the weighted completion time, whence the result.

A
√
n-approximation algorithm for AREA maximization. Given the NP-completeness of the problem, it is unlikely

that AREA maximization is computationally tractable in general. We have been seeking provable approximation al-
gorithms for the problem. Since the AREA of every schedule is at least n and at most n(n + 1)/2, we have a trivial
(n + 1)/2-approximation to the problem. We have been exploring different approaches with the hope of achieving a
much better approximation, say O(1) or polylogarithmic factor in the number of jobs.

The best approximation factor we are able to show is an 2
√
n-approximation, which we now present.

1. Using a maximum flow algorithm, find the largest antichain of the DAG G; i.e., a maximum-size set S of nodes
such that there is no path in the dag between any pair of nodes in S.

2. Decompose G into three DAGs: (i) G1 is the DAG induced by all nodes that have a nonempty path to some node in
S; (ii) G2 is the DAG induced by S (note it has no edges); (iii) and G2 is the DAG induced by all nodes that have
no path to any node in S.

3. LetΣ1,Σ2, andΣ3 denote arbitrary topological sorted orders of G1, G2, and G3, respectively. Return the schedule
Σ, which is the concatenation of Σ1, Σ2, and Σ3 in order.

Lemma 3. The above algorithm computes a schedule with area at least 1/(2
√
n) of the optimal.

Proof. Let w be the size of the largest antichain of G (also referred to as width of G). Since the set of eligible jobs at
any instant of any schedule is an antichain, the AREA of any schedule for G is at most nw. We consider two cases
depending on the value of w. If w ≤

√
n, then since the AREA of any schedule is at least n, it is at least 1/sqrtn of

the maximum area. If w >
√
n, then we have:

AREA(Σ) = AREA(Σ1) +AREA(Σ2) +AREA(Σ3)

≥ n− w +AREA(Σ2)

= n− w + w(w + 1)/2.

So the ratio of AREA(Σ) and the optimum is at least

n+ w2/2− w/2
nw

≥ w2

2nw
≥ 1

2
√
n
.

We have thus shown that the above algorithm yields a 2
√
n-approximation to the AREA maximization problem.

5

4 Two New Heuristics

4.1 A DAG-Scheduling Heuristic Based on the Sidney Decomposition

This section is devoted to developing the SIDNEY scheduling heuristic. The heuristic builds on a transformation of
the input DAG G into a modified DAG G′. We show that finding an AREA-maximizing schedule for G is equivalent to
finding a schedule that minimizes the weighted completion time

∑
v∈NG′ wvCv for G′. Here, we reduce the AREA-

MAX problem to the Minimum Weighted Completion Time problem, and use a known approximation algorithm for
the latter problem to derive a heuristic for area maximization. (See Section 3 for notation and terminology.)

Given a DAG G, we construct its 0-1 version G0,1 as follows. The nodes of G0,1 are obtained by splitting every
node v ∈ N G into two nodes, v0 and v1. Each node of G0,1 with a 0 subscript (we call these the zero-nodes) has a
processing time of 0 and a weight of 1: pv0 = 0 and wv0 = 1; each node of G0,1 with a 1 subscript (the one-nodes)
has a processing time of 1 and a weight of 0: wv1 = 0 and pv1 = 1. Finally, we give G0,1 an arc (u1 → v0) for each
arc (u→ v) of G and an arc (u0 → u1) for each node u of G.

Let Σ be a schedule for G, and let Σ′ be a schedule for G0,1. We call Σ′ a 0-1 version of Σ if its ordering of G0,1’s
one-nodes is consistent with Σ’s ordering of G’s nodes. Thus if Σ executes G’s nodes in the order v1, v2, . . . , vNG ,
then Σ′ executes G0,1’s nodes in the order v1,1, v2,1, . . . , vNG ,1.

Lemma 4. Let G be any DAG and let G0,1 be its 0-1 version. If a schedule Σ is AREA-maximizing for G, then any 0-1
version of Σ minimizes weighted completion time for G0,1.

Proof. Because every zero-node has processing time 0, any WCT schedule for G0,1 will execute each zero-node as
soon as it is eligible. Therefore, the WCT time for any 0-1 version of schedule Σ is given by

WΣ′ =
∑
i∈NG

wi · max
j a parent of i

C(j) =
∑
i∈NG

wi · E(i), (6)

where C(j) denotes the time when node j’s execution completes, and E(i) denotes the time when node i becomes
eligible. By similar reasoning, we can represent AREA(Σ) as follows.

AREA(Σ) =
∑
i∈NG

(
(C(i)− 1)− E(i)

)
=

(
n+ 1

2

)
−
∑
i∈NG

E(i). (7)

It follows from equations (6) and (7) that if one could replace Σ′ by a schedule Σ′′ for G0,1 such that WΣ′′ < WΣ′ ,
then there would exist Σ̂ for G such that AREA(Σ̂) > AREA(Σ). But schedule Σ̂ would contradict Σ’s assumed
AREA-maximality. The lemma follows.

The duality between AREA(G) and WG0,1 for any DAG G enables us to invoke a known approximation algorithm
for minimum weighted completion time to G0,1 to obtain a heuristic algorithm for AREA maximization. We proceed
by invoking an algorithm introduced by Sidney [31] and later reused in [4]. We provide only an overview of the process
here, referring the reader to the cited papers for details.

In Sidney’s work, each node of a DAG G to be decomposed using Sydney’s algorithm, each node/task i has a
processing time pi and a weight wi. The rank of node i is the quotient ri = pi/wi; the rank of a set S of nodes is
r(S) =

∑
i∈S pi/wi. Following [4], we say that a sub-DAG G′ of G is precedence-closed if for each node i of G′, every

ancestor of i is also in G′. Additionally, G∗ denotes a precedence-closed subgraph of G of minimum rank. Finally, a
segment in a schedule Σ is any set of nodes that are scheduled consecutively by Σ. It is proved in [31]—and was
rediscovered in [4]—that there is a generalization of Smith’s rule for precedence-constrained graphs:

Lemma 5. There exists an optimal schedule for DAG G in which an optimal schedule for G∗ occurs as a segment that
starts at time zero.

In other words, in an optimal schedule Σ for G, an optimal ordering of the nodes of the minmum-rank precedence-
closed subgraph G∗ appears as the first segment of the schedule. The goal in [4] is to exhibit a polynomial-time
algorithm A that (1) recursively finds the set of nodes of G∗ (on the residual graph G −G∗), and then (2) schedules the

6

nodes within each set in any feasible schedule, such that A finds a schedule Σ for G whose weighted completion time
is at most double the optimal minimum weighted completion time for G. The polynomial-time algorithm A works with
the Sidney decomposition of G in a manner we outline here.

Rather than specifically looking for the minimum-rank precedence-closed sub-DAG G∗, algorithm A finds a sub-
DAG whose rank is at most a constant λ > 0 specified as an input to the algorithm. It accomplishes this by constructing
an associated capacitated graph Gλ, with the following properties:

– The nodes of Gλ consist of the nodes of G along with a source s and a sink t.
– The arcs of Gλ are: {(s→ t), (i→ t)|i ∈ N (G)}

⋃
{(i→ j)|j is an ancestor of i}.

We further associate a capacity c(e) for every arc, as follows:

c(e) =

pi, if e = e(i, t)

λwi, if e = (s, i)

∞, otherwise

Finding a subgraph G∗ is thus reduced to finding a (s, t)-minimum cut for Gλ with cut value at most λw(G). Lemma
3 in [4] guarantees that if (A,B) is such a cut, then the rank of A − {s} is less than λ, and A − {s} is precedence-
closed in G. Hence, to find G∗, one can perform a binary search on λ to find G∗, and then recurse on the residual
DAG G − G∗ until the entire DAG has been decomposed. Alternatively, one can use an algorithm such as that de-
scribed in [12] to find all points λ in a single max-flow computation (making use of a variable of the push-relabel
algorithm), thereby decomposing the entire DAG G in a single pass. This alternative provides an efficient running time
of O(min (n2/3,m1/2)m log(n2/m) logU), where n is the number of nodes in the DAG, m is the number of arcs, and
U the maximum (finite) capacity, which is at most n in our case. Thus, for sparse dags (m = O(n)), the running time
is O(n5/3 log2 n), while for dense dags (m = Θ(n2)), the running time is O(n5/2 log2 n).

As the final ingredient for creating the desired SIDNEY heuristic, we recall the DYNAMIC-GREEDY scheduling
heuristic from [5].

The DYNAMIC-GREEDY heuristic schedules a DAG G by maintaining a MAX-priority queue of the eligible nodes,
(partially) ordered by their yields.

The yield of an eligible node v ∈ N G at step t of a schedule’s execution of G is the number of nodes that
would be rendered eligible if the schedule were to execute v at that step.

At each step, a maximal-yield node is selected for execution. When a node completes executing, all newly eligible
nodes are inserted into the priority queue, in random order. (The heuristic thus makes an optimal choice for this step,
but it ignores future ramifications of this choice.)

Finally, we are ready to specify the SIDNEY heuristic for computing a large-AREA DAG-schedule:

The SIDNEY heuristic
Given a DAG G:
1. Construct the associated 0-1 DAG G0,1.
2. Use a max-flow computation to perform a Sidney decomposition of G0,1.
3. Let S1, . . . , Sk be the node-sets computed in the Sidney decomposition:

(a) Remove all 0-nodes from each task-set Si.
(b) For each task-set Si, use the DYNAMIC-GREEDY heuristic to produce a schedule Σi for the nodes in Si.

4. Output schedule Σ = Σ1Σ2 . . . Σk, the concatenation of the k subschedules.

4.2 A DAG-Scheduling Heuristic Based on Linear Programming

Because the AREA-MAX Problem involves maximizing a sum of rather simple terms, it is not surpising that it can be
formulated as a Linear Program (LP). We present such a formulation that serves two purposes in our study. First, the
(unrounded) solution produced by the LP for any DAG G provides an upper bound on the maximal Area of G under
any schedule. Second, if one rounds the solution to yield integer values, one obtains a valid schedule for G. This (solve

7

LP)-(then round) procedure comprises the LP heuristic for scheduling DAG G. Of course, the problem of obtaining
optimal integer solutions from an LP is the well-known ILP problem, which is NP-hard in general, hence likely
computationally intractable [13]. However, there may be ways to simplify the ILPs that arise in AREA-maximization,
at least for large classes of DAGs, so as to either simplify the problem computationally or to have access to approximate
solutions via the unrestricted (non-integer) form of the Linear Program. Even lacking such simplification, the solution
to the LP formulation for DAG G provides us with an upper bound on the Area achievable via any DAG schedule.

Let DAG G have n nodes. Our LP-formulation of the AREA-MAX problem employs three classes of indicator (i.e.,
0-1 valued) variables, each of size roughly n2. For i ∈ [1, n] and t ∈ [0, n]:

Variable Interpretation
xi,t Task/node i is executed at step t of schedule Σ.
yi,t Task/node i is eligible at step t of schedule Σ.
zi,t Task/node i has been executed prior to step t of schedule Σ.

Since any schedule for G executes one eligible node per step, the AREA-MAX problem can now be formulated as
follows; cf. (2).

maximize
n∑
t=0

n∑
i=0

yi,t subject to: (8)

n∑
t=0

xi,t = 1 for all i ∈ N G (9)

n∑
i=0

xi,t = 1 for all t ∈ [0, n] (10)

zi,T =
∑
t<T

xi,t for all i ∈ N G and T ∈ [1, n] (11)

yi,T = 1− zi,T for all i ∈ (Sources of G) and T ∈ [1, n] (12)
yi,T ≤ zj,T − zi,T for all T ∈ [0, n] and j ∈ (ancestors of i) (13)

zi,T+1 ≤ zj,T for all T ∈ [0, n] and j ∈ (ancestors of i) (14)
xi,t, yi,t, zi,t ∈ {0, 1} for all i ∈ N G and t ∈ [0, n] (15)

Constraints (9,10) ensure, respectively, that each node/task is completed and that no processor is idle at any time
step. Constraint (11) ensures that the cumulative-execution variable z equals the sum of work done on each node prior
to time T . Constraint (12) ensures that the eligibility of a source node is 1 minus (the work already completed in prior
time steps). Constraint (13) ensures that for each precedence constraint (j must be executed before i), the eligibility
of a node is bounded by the work already done on it minus the work already done on all of its ancestors. Finally,
constraint (14) ensures that for each precedence constraint (j must be executed before i), the work done on node i is
no greater than the work done on all of its ancestors.

To create a Linear Program (LP) from this ILP, we can replace the integrality constraints 15 with the following:

0 ≤ yi,t ≤ 1 for all i, t (16)
0 ≤ xi,t ≤ 1 for all i, t (17)

This transition from the ILP formulation to the LP formulation preserves almost all of the qualities of the ILP version
of AREA-MAX. The major difference is that the LP formulation allows fractional execution (and eligibility) of tasks—
which is equivalent to allowing preemption in schedules. The LP thus provides an upper bound for the optimal value
of AREA(G).

The preceding development leads us naturally to the following DAG-scheduling heuristic.

The LP heuristic
Given a DAG G:

8

1. Construct the LP from G.
2. Solve the LP
3. For each node i ∈ N fg , calculate a completion time Ci as the first time step T such that

∑T
t=0 xi,t = 1

4. Sort the list of completion times {Ci}ni=0, breaking ties arbitrarily. The resulting ordering of N fg is schedule Σ.
5. Output Σ as the schedule for G.

5 Simulation Experiments

5.1 Experimental Procedure

Overview of the experiment. To test the AREA quality of our SIDNEY and LP heuristics, we generated synthetic
DAGs that share structural characteristics with a variety of “real” computation-DAGs, especially those encountered in
scientific computing. For most experiments, we constructed schedules for each DAG using three heuristics: the SID-
NEY heuristic of Section 4.1 and the two “best” known heuristics (described below) as determined by the experiments
described in [6]. We then compared, for each DAG, the AREA of the three generated schedules. For some small DAGs
(having 100 nodes or fewer), we were able to consider also the AREAs of the schedules produced by the LP heuristic
of Section 4.2. While LP is a polynomial-time heuristic, its current implementation is prohibitively computationally in-
tense, certainly moreso than the SIDNEY heuristic. We are continuing to seek avenues to accelerate the LP computation
since its specification for a DAG G exactly reflects the definition of AREA(G).
The DAGs we tested. We generated random DAGs from the following families for our experiment.

1. Random n-node DAGs. We ordered n nodes for our DAG into a random sequence 1, 2, . . . , n. We designates the
last five nodes in the sequence as sinks and then, for each node i ∈ {1, . . . , n − 5}, we randomly selected five
children, j1 > i, . . . , j5 > i and generated arcs (i→ jk).

2. Random n-node LEGO R©-DAGs. We tested LEGO R©-DAGs (so named for the toy), as defined in [25]. These DAGs
are built from a repertoire of Bipartite Building Block DAGs (BBBs), that represent (parallel) steps in a compu-
tation. As in [25] (q.v.), we employed BBBs that reflect a single: expansive step (as in an out-tree), reductive
step (as in an in-tree), group step (as encountered in computations exemplified by convolutions or parallel-prefix
operations). We selected BBBs, randomized according to both size and structure, and composes them to create
multi-step, multi-level computations; we continued selecting and composing BBBs until the resulting LEGO R©-
DAG reached the desired size range. We created two classes of LEGO R©-DAGs, one using BBBs whose sizes are
drawn from a uniform distribution in the range [2, 20] and another using BBBs whose sizes are drawn from a
harmonic distribution that produces building blocks of expected size 10.

The heuristics we tested. The three schedulers we used to generate schedules were

1. The SIDNEY HEURISTIC scheduler, whose structure is described in Section 4.1.
2. The AOSPD scheduler. In brief, this scheduler which is developed in [8], takes the input DAG G and (if G is

not already a series-parallel DAG) invokes the algorithm found in [15] to convert G to a series-parallel DAG
σ(G) (while retaining much of G’s parallel structure). The AOSPD scheduler then generates an AREA-maximizing
schedule for σ(G), using the algorithm developed in [8]. We have chosen the AOSPD scheduler as a competitor for
the SIDNEY scheduler because AOSPD has experimentally been shown to generate larger-AREA schedules than
all tested heuristics that are oblivious, in the sense that they do not exploit any characteristics of the platform on
which G is to be executed.

3. The DYNAMIC GREEDY scheduler, whose structure is described in Section 4.1. We include this heuristic in the
competiton because it achieves the second-best AREA performance (after AOSPD) in the experiments in [6, 8].

Experimental methodology. DAG sizes. For the DAGs having random structure, we generates DAGs of sizes n =
{100, 200, 300, 500}. For the LEGO R©-DAGs, we generated DAGs of approximate sizes n = 200k where k ∈ [1, 20].
We generated 100 DAGs of each size for each of: random DAGs, uniform-LEGO R©-DAGs, and harmonic-LEGO R©-
DAGs. For each generated DAG, we constructed a schedule associated using each of the three heuristics and computed
the resulting AREA.

9

5.2 Experimental Results

The SIDNEY heuristic. The plots in Fig. 1 illustrate that, for the range of DAG-classes and -sizes tested, the Areas
of the schedules generated by the SIDNEY heuristic far exceed those of the schedules generated by both the previous
“champion” AOSPD heuristic of [8, 6] and the best “one-step-optimal” DYNAMIC GREEDY heuristic of [5].

1. The advantage of the SIDNEY heuristic is particularly remarkable when executing both classes of LEGO R©-DAGs
(constructed using, respectively, a uniform and a harmonic distribution of BBBs). For these DAGs, the Areas
of the SIDNEY heuristic’s schedules have an advantage that is a factor of 2.3 over the schedules produced by
DYNAMIC-GREEDY and a factor of nearly 1.5 over the schedules produced by the AOSPD heuristic. These numbers
are particularly heartening because of the structural similarity of LEGO R©-DAGs with DAGs encountered in real
applications.

2. The SIDNEY heuristic exhibited a notable Area-advantage over the competing heuristics when executing random
DAGs also, albeit with a somewhat smaller amplitude: roughly a factor of 1.3. We do not yet know how to interpret
this decreased advantage, but it is conceivably related to the fact that random DAGs often exhibit pathological
structure (by, e.g., having high expansion). We note with interest that the AOSPD heuristic’s schedules exhibit a
negligible Area-advantage over those of the DYNAMIC-GREEDY heuristic when executing random DAGs.

The preceding evidence suggests that the SIDNEY heuristic can find large-Area schedules for a broader class of DAGs
than the scheduling policies studied in [8, 6].

The LP heuristic. Our experience, thus far, with the LP heuristic has led us to classify it as an auxiliary scheduler
rather than a primary one (such as the SIDNEY and AOSPD heuristics). We justify this assessment.

The cons. We have yet to find an LP solver that can efficiently handle DAGs of even moderate size, because the
associated LPs are enormous. For example, DAGs of size n = 400 yield LPs with ≈ 5 × 105 variables and more
than ≈ 106 (mostly non-sparse) constraints. Due to this computational density, we were only able to generate
multiple schedules for only small random DAGs, having n ≤ 100 nodes.

The pros. The experiments we have performed with the LP heuristic lead us to believe that it is a legitimate competitor
for the SIDNEY heuristic, in terms of the Areas of its schedules. Specifically, the means of the Areas of the
schedules produced by the LP heuristic were roughly equal to the mean AREAs of the SIDNEY schedules for the
same DAGs; see Fig. 2.

This experience suggests that the LP heuristic might be a valuable “auxiliary” scheduler for small DAGs. For instance:

We conjecture that the SIDNEY heuristic will produce even better schedules if we use the LP heuristic, rather
than the DYNAMIC-GREEDY heuristic, to schedule its sub-DAGs.

Testing this conjecture is high on our to-do list, as we note in Section 6. At least as importantly is the direct application
of the LP formulation of AREA-MAX:

When we construct an LP for a DAG G, the objective value of the LP serves as a (possibly unachievable) upper
bound on Area(G), the maximum possible Area of any schedule for G.

Some perspective. We illustrate the use of the LP formulation of AREA-MAX as an idealized bound on DAG-Area in
Fig. 2 in conjunction with our comparison of the Areas of schedules for small random DAGs produced by the SIDNEY
and LP heuristics. As noted earlier, the computational intensiveness of computing the LP has restricted us to small
test DAGs, but we do note in the figure that, on the tested DAGs: (a) the SIDNEY and LP heuristics are very close
in performance, with a slight advantage to the SIDNEY heuristic; (b) both heuristics produce schedules whose Areas
achieve an average of 85% of the LP objective value, hence achieve at least that fraction of Area(G).

6 Conclusion

The past. The notion of the Area of a schedule for DAGs was introduced in [5], as a proposed mechanism for achiev-
ing high performance on the dynamically heterogeneous platforms that are becoming increasingly important. That

10

areaplots_fixed.pdf

Fig. 1. The Area-quality of our heuristic-generated DAG-schedules

lp_plots.pdf

Fig. 2. Comparing the LP and SIDNEY heuristics via the areas of schedules they produce for random DAGs. The ideal value from
the unrounded LP provides perspective.

11

source developed the basic properties of the quality metric and provided evidence, via simulations, of performance
benefits in DAG-schedules that have higher Areas. This evidence, coupled with the apparent complexity of computing
Area-optimal DAG-schedules, motivated the development, in [8], of the easily computed AOSPD heuristic, which (1)
produced schedules with large Areas and (2) retained much of the performance benefit of Area-optimal schedules [6].
The present. The current paper has followed up on two aspects of the earlier studies of Area-oriented DAG-scheduling.
(1) We have shown that the observed computational intractability of Area-oriented scheduling is likely inevitable, be-
cause achieving Area-optimality is NP-complete (Section 3). (2) We have introduced two new polynomial-time Area-
oriented scheduling heuristics, the SIDNEY heuristic and the LP heuristic (Section 4). Both produce DAG-schedules
whose Areas are, based on extensive simulations, significantly larger than the Areas of schedules produced by the
AOSPD heuristic (Section 5).
The future. We are actively working on two avenues for extending the work reported here. (1) We are exploring the
design of provably good approximation algorithms for finding an AREA-maximum schedule. (2) We are pursuing
ways to improve both of our new heuristics, in terms of the efficiency with which they produce DAG-schedules and
Areas of the schedules produced. (3) We are initiating studies of the performance benefits of our new heuristics.

Acknowledgments. This research was supported in part by US NSF Grant CSR-1217981. The authors are grateful to
the following for helpful conversations and valuable advice: Gennaro Cordasco, regarding experimental issues; Greg
Malewicz, regarding the LP formulation of AREA-MAX; Michela Taufer and her team, regarding experimental issues.

References

1. M.A. Bender and C.A. Phillips (2007): Scheduling DAGs on asynchronous processors. 19th ACM Symp. on Parallel Algorithms
and Architectures, 35–45.

2. S.-S. Boutammine, D. Millot, C. Parrot (2006): An adaptive scheduling method for grid computing. 10th Int’l Conf. on Parallel
Computing. In Lecture Notes in Computer Science 4128, Springer, Heidelberg, 188–197.

3. H. Casanova, F. Dufossé, Y. Robert, F. Vivien (2011): Scheduling parallel iterative applications on volatile resources. 25th
IEEE Int’l Parallel and Distributed Processing Symp.

4. C. Chekuri, R. Motwani (1999): Precedence constrained scheduling to minimize sum of weighted completion times on a single
machine. Discrete Applied Math. 98(1), 29–38.

5. G. Cordasco, R. De Chiara, A.L. Rosenberg (2012): On scheduling DAGs for volatile computing platforms: Area-maximizing
schedules. J. Parallel and Distributed Computing 72, 1347-1360.

6. G. Cordasco, R. De Chiara, A.L. Rosenberg (2013): An AREA-oriented heuristic for scheduling DAGs on volatile computing
platforms. Submitted for publication. See also, Assessing the computational benefits of Area-Oriented DAG-scheduling. 17th
Intl Conf. on Parallel Computing. In Lecture Notes in Computer Science 6852, Springer, Heidelberg (2011) pp. I180-I192.

7. G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Applying IC-scheduling theory to some familiar computations. Wkshp. on
Large-Scale, Volatile Desktop Grids (PCGrid’07).

8. G. Cordasco, A.L. Rosenberg (2013): On scheduling series-parallel DAGs to maximize AREA. Submitted for publication. See
also, AREA-optimal schedules for series-parallel DAGs. 16th Int’l Conf. on Parallel Computing (EURO-PAR’10). In Lecture
Notes in Computer Science 6272, Springer, Heidelberg (2010) pp. II380–II392.

9. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to Algorithms (2nd Edition). MIT Press, Cambridge,
Mass.

10. F. Dong, S.G. Akl (2006): Scheduling algorithms for grid computing: state of the art and open problems. Tech. Rpt. 2006-504,
Queen’s Univ. School of Computing.

11. T. Estrada, M. Taufer, K.. Reed (2009): Modeling job lifespan delays in volunteer computing projects. 9th IEEE Int’l Symp. on
Cluster, Cloud, and Grid Computing (CCGrid).

12. G. Gallo, M.D. Grigoriadis, and R. Tarjan. A fast parametric maximum flow algorithm and applications. SIAM J. on Comput.,
18:30-55,1989.

13. M.R. Garey and D.S. Johnson (1979): Computers and Intractability. W.H. Freeman and Co., San Francisco.
14. C. Georgiou, D.R. Kowalski (2011): Performing dynamically injected tasks on processes prone to crashes and restarts. 25th

Int’l Conf. on Distributed Computing (DISC’11), 165–180.
15. A. González-Escribano, A. van Gemund, V. Cardeñoso-Payo (2002): Mapping unstructured applications into nested paral-

lelism. High Performance Computing for Computational Science (VECPAR ’02).
16. R. Hall, A.L. Rosenberg, A. Venkataramani (2007): A comparison of †-scheduling strategies for Internet-based computing.

21st IEEE Int’l Parallel and Distr. Processing Symp.

12

17. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg (2009): Quincy: fair scheduling for distributed com-
puting clusters. ACM Symp. on Operating Systems Principles.

18. D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling mechanisms for global computing applications.
16th Int’l Parallel and Distr. Processing Symp.

19. E. Korpela, D. Werthimer, D. Anderson, J. Cobb and M. Lebofsky (2000): SETI@home: massively distributed computing for
SETI. In Computing in Science and Engineering (P.F. Dubois, Ed.) IEEE Computer Soc. Press.

20. Y.-K. Kwok and I. Ahmad (1999): Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM
Computing Surveys 31, 406–471.

21. E.L. Lawler (1978): Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of
Discrete Math. 2, 75–90.

22. M. Lombardi (2013): Robust scheduling of task graphs under execution time uncertainty. IEEE Trans. Computers 62, 98–111.
23. D. Millot (2011): Scheduling on unspecified heterogeneous distributed resources. IEEE Int’l Symp. on Parallel and Distributed

Processing: Workshops and Phd Forum (IPDPSW), 45–56.
24. G. Malewicz, I. Foster, A.L. Rosenberg, M. Wilde (2007): A tool for prioritizing DAGMan jobs and its evaluation.” J. Grid

Computing 5, 197–212.
25. G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006): Toward a theory for scheduling †s in Internet-based computing. IEEE

Trans. Comput. 55, 757–768.
26. D. Nurmi, R. Wolski, J. Brevik (2005): Model-based checkpoint scheduling for volatile resource environments. Cluster’2005.
27. N. Policella (2005): Scheduling with uncertainty: a proactive approach using partial order schedules. AI Communications 18,

165–167.
28. A. Radulescu, A.J.C. van Gemund (1999): On the complexity of list scheduling algorithms for distributed memory systems.

13th Int’l Conf. on Supercomputing, 68–75.
29. A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-based computing. IEEE Trans. Comput. 53,

1176–1186.
30. V. Sarkar (1989): Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, Cambridge, Mass.
31. J.B. Sidney (1975): Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs.

Operations Res. 23(2), 283–298.
32. H. Topcuoglu, S. Hariri, M.Y. Wu (2002): Performance-effective and low-complexity task scheduling for heterogeneous com-

puting. IEEE Trans. Parallel and Distributed Systems 13(3), 260–274.
33. G.J. Woeginger (2003): On the approximability of average completion time scheduling under precedence constraints.

Discr. Appl. Math. 131(1), 237–252.
34. S. Yao and H.-H. S. Lee (2011): Using mathematical modeling in provisioning a heterogeneous cloud computing environment.

IEEE Computer (Aug, 2011) 55–62.
35. M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica (2008): Improving MapReduce performance in heterogeneous

environments. 7th USENIX Symp. on Operating System Design and Implementation.
36. W. Zheng (2012): A monte-carlo approach for full-ahead stochastic DAG scheduling. 26th IEEE Int’l Parallel and Distributed

Processing Symp.: Wkshps. and PhD Forum (IPDPSW), 99–112.

13

