
Essentially Optimal Robust Secret Sharing
with Maximal Corruptions

Abstract. In a t-out-of-n robust secret sharing scheme, a secret message
is shared among n parties who can reconstruct the message by combining
their shares. An adversary can adaptively corrupt up to t of the parties,
get their shares, and modify them arbitrarily. The scheme should sat-
isfy privacy, meaning that the adversary cannot learn anything about
the shared message, and robustness, meaning that the adversary cannot
cause the reconstruction procedure to output an incorrect message. Such
schemes are only possible in the case of an honest majority, and here we
focus on unconditional security in the maximal corruption setting where
n = 2t+ 1.
In this scenario, to share an m-bit message with a reconstruction failure
probability of at most 2−k, a known lower-bound shows that the share
size must be at least m+k bits. On the other hand, all prior constructions
have share size that scales linearly with the number of parties n, and the
prior state-of-the-art scheme due to Cevallos et al. (EUROCRYPT ’12)

achieves m+ Õ(k + n).
In this work, we construct the first robust secret sharing scheme in the
maximal corruption setting with n = 2t + 1, that avoids the linear de-
pendence between share size and the number of parties n. In particular,
we get a share size of only m+ Õ(k) bits. Our scheme is computationally
efficient and relies on approximation algorithms for the minimum graph
bisection problem.

1 Introduction

Secret sharing, originally introduced by Shamir [Sha79] and Blakely [Bla79], is
a central cryptographic primitive at the heart of a wide variety of applications,
including secure multiparty computation, secure storage, secure message trans-
mission, and threshold cryptography. The functionality of secret sharing allows a
dealer to split a secret message into shares that are then distributed to n parties.
Any authorized subset of parties can reconstruct the secret reliably from their
shares, while unauthorized subsets of parties cannot learn anything about the
secret from their joint shares. In particular, a t-out-of-n secret sharing scheme
requires that any t shares reveal no information about the secret, while any
subset of t+ 1 shares can be used to reconstruct the secret.

Many works (e.g. [RB89,CSV93,BS97,CDF01,CFOR12,LP14,CDD+15,Che15])
consider a stronger notion of secret sharing called robust secret sharing (RSS).
Robustness requires that, even if an adversary can replace shares of corrupted
parties by maliciously chosen values, the parties can still reconstruct the true
secret. In particular, we consider a computationally unbounded adversary who

maliciously (and adaptively) corrupts t out of n of the parties and learns their
shares. After corrupting the t parties, the adversary can adaptively modify their
shares and replace them with arbitrary values. The reconstruction algorithm is
given the shares of all n parties and we require that it recovers the original secret.

It is known that robust secret sharing can only be achieved with an honest
majority, meaning t < n/2. Moreover, for t in the range n/3 ≤ t < n/2, robust
secret sharing cannot be achieved with perfect correctness, meaning that we must
allow at least a small (negligible) failure probability for reconstruction [Cev11].
Furthermore, in the maximal corruption setting with n = 2t + 1 parties, any
robust secret sharing scheme for m-bit messages with failure probability 2−k

must have a share size that exceeds m+ k bits [CSV93,LP14].
On the positive side, several prior works show how to construct robust shar-

ing schemes with n = 2t+ 1 parties. The first such scheme was described in the
work of Rabin and Ben-Or [RB89] with a share size of m+ Õ(nk) bits. Cramer,

Damg̊ard and Fehr [CDF01] showed how to improve this to m+Õ(k+n) bits, us-
ing what later became known as algebraic-manipulation detection (AMD) codes
[CDF+08], but at the cost of having an inefficient reconstruction procedure.
Cevallos et al. [CFOR12] then presented an efficient scheme with share size

m+ Õ(k + n).
Two recent works [CDD+15,Che15] study the setting where the number of

corruptions is below the maximal threshold by some constant fraction; i.e.,
t = (1/2 − δ)n for some constant δ > 0. In this setting, the robustness re-
quirement means that the secret can be reconstructed from n shares of which
t are adversarially modified, but it does not necessarily imply threshold recon-
structibility from t + 1 correct shares (it only implies reconstructibility from
(1/2 + δ)n correct shares). This is often called a ramp setting, where there is
a gap between the privacy threshold t and the reconstructibility threshold. The
above works show that it is possible to achieve robustness in this setting with
a share size of roughly O((m + k)/n) bits. In particular, the share size can be
smaller than the message size and, when n is large, the share size can even be
constant.1 Unfortunately, the techniques in these works do not translate to the
setting of n = 2t+ 1 parties.

In summary, despite intense study since the late 80s and early 90s, there is a
large gap between the lower bound of m+ k bits and the best previously known
upper bound of m+O(n+ k) bits on the share size in the maximal corruption
setting where n = 2t + 1. In particular, prior to this work, it was not known if
the linear dependence between the share size and n is necessary in this setting,
or whether there exist (even inefficient) schemes that beat this upper bound.

Our Result. We present an efficient robust secret sharing scheme in the max-
imal corruption setting n = 2t+ 1, with a share size of only m+ Õ(k) bits, for

1 One could also insist on separately requiring robustness and reconstructibility from
t+ 1 correct share. This could always be achieved by adding a standard non-robust
threshold secret sharing scheme to a robust scheme, at the cost of adding m addi-
tional bits to the share size.

2

security parameter k (reconstruction failure ≤ 2−k) and message size m.2 This
is the first such scheme which removes the linear dependence between the share
size and the number of parties n.

1.1 Our Techniques

Using MACs. Similarly to several prior schemes [RB89,CFOR12,LP14], we
start with the idea of using information-theoretic message authentication codes
(MACs) to help the reconstruction procedure identify illegitimate shares. The
basic premise is to start with a standard (non-robust) t-out-of-n scheme, such
as Shamir’s scheme, and have parties authenticate each others’ Shamir shares
using MACs. Intuitively, this should make it more difficult for an adversary to
present compelling false shares for corrupted parties as it would have to forge
the MACs under unknown keys held by the honest parties.

The original implementation of this idea by Rabin and Ben-Or [RB89] re-
quired each party to authenticate the share of every other party with a MAC
having unforgeability security 2−k. Therefore, the keys and tags added an extra
Õ(nk) overhead to the share of each party. The work of Cevallos et al. [CFOR12]
showed that one can use a MAC with a weaker unforgeability security of only
1
2 since the adversary would have to forge many times to succeed. This reduced

the overhead to Õ(k + n) bits.

Random Authentication Graph. Our core insight is to have each party
only authenticate a relatively small but randomly chosen subset of other parties’
shares. This will result in a much smaller overhead in the share size.

More precisely, for each party we choose a random subset of d = Õ(k) other
parties whose shares to authenticate. We can think of this as a random “authen-
tication graph” G = ([n], E) with out-degree d, having directed edges (i, j) ∈ E
if party i authenticates party j. This graph is stored in a distributed manner
where each party i is responsible for storing the information about its d outgoing
edges. It is important that this graph is not known to the attacker when choosing
which parties to corrupt. In fact, the attacker does not know anything about the
outgoing edges of uncorrutped parties.3

Requirements and Inefficient Reconstruction. As a first step, let’s start
by considering an inefficient reconstruction procedure, as this will already high-

2 The Õ(·) hides factors that are poly-logarithmic in k, n and m. This is justified if
we think of n,m as some large polynomials in the security parameter k. See Section
5.2 for more details on parameters.

3 If the graph were chosen at random but known to the attacker in advance, then the
attacker could always corrupt a set of t parties none of which are being authenticated
by some honest party i and modify their shares. Then the t+1 shares corresponding
to the t corrupted parties along with honest party i would be consistent and the
reconstruction would not be able to distinguish it from the set of t+1 honest parties.
Therefore it is crucial that the graph is random and unknown.

3

light several challenges. The reconstruction procedure does not get to see the
original graph G but a possibly modified graph G′ = ([n], E′) where the cor-
rupted parties can modify their set of outgoing edges. However, the edges that
originate from uncorrupted parties are the same in G and G′. The reconstruc-
tion procedure labels each edge e ∈ E′ as either “good” or “bad” depending on
whether the MAC corresponding to that edge verifies.

Let’s denote the subset of uncorrupted honest parties by H ⊆ [n]. Let’s also
distinguish between corrupted parties where the adversary does not modify the
share, which we call passive corruptions and denote by P ⊆ [n], and the rest
which we call active corruptions and denote by A ⊆ [n]. Assume that we can
ensure that the following requirements are met:

(I) All edges (i, j) ∈ E′ where i, j ∈ H ∪ P are labeled “good”.
(II) All edges (i, j) ∈ E′ where i ∈ H and j ∈ A are labeled “bad”.

In this case, the reconstruction procedure can (inefficiently) identify the set
H∪P by simply finding the maximum self-consistent set of vertices C ⊆ [n] such
that all of the tags corresponding to edges (i, j) ∈ E′ with i, j ∈ C are labeled
“good”. We show that C = H ∪ P is the unique maximum consistent set with
overwhelming probability (see Section 6). Once we identify the set H ∪P we can
simply reconstruct the secret message from the Shamir shares of the parties in
H ∪ P since these have not been modified.

Implementation: Private MAC and Robust Storage of Tags. Let’s
now see how to implement the authentication process to satisfy requirements
(I) and (II) defined above. A naive implementation, along the lines used in
[RB89,CFOR12], would be for each party i to have a MAC key keyi for a d-time
MAC (i.e., given the authentication tags of dmessages one cannot forge the tag of
a new message) and, for each edge (i, j) ∈ E, to create a tag σi→j = MACkeyi(s̃j)
where s̃j is the Shamir share of party j. The tags σi→j would then be stored
with party j. In particular, the full share of party i would be

si = (s̃i, Ei, keyi, {σj→i}(j,i)∈E)

where Ei = {j ∈ [n] : (i, j) ∈ E} are the outgoing edges for party i.
Unfortunately, there are several problems with this. Firstly, if the adversary

corrupts party i, it might modify the values keyi, Ei in the share of party i
but keep the Shamir share s̃i intact. This will keep the edges going from honest
parties to party i labeled “good” but some of the edges going from party i to
honest parties might now be labeled “bad”. Therefore we cannot define such
party as either passive (this would violate requirement I) or active (this would
violate requirement II). Indeed, this would break our reconstruction procedure.

To fix this, when party i authenticates party j, we compute σi→j = MACkeyi((s̃j , Ej , keyj))
where we authenticate the values Ej , keyj along with the Shamir share s̃j . This
prevents party j from being able to modify these components without being
detected. Therefore we can define a party as active if any of the components
s̃j , Ej , keyj are modified and passive otherwise.

4

Unfortunately, there is still a problem. An adversary corrupting party j might
keep the components s̃j , Ej , keyj intact but modify some subset of the tags σi→j .
This will make some of edges going from honest parties to j be labeled “good”and
some “bad”, which violates property I.

To fix this, we don’t store tags σi→j with party j but rather we store all
the tags in a distributed manner among the n parties in a way that guarantees
recoverability even if t parties are corrupted. However, we do not provide any
privacy guarantees for these tags and the adversary may be able to learn all
of them in full after corrupting t parties. We call this robust distributed stor-
age (without privacy), and show that we can use it to store the tags without
additional asymptotic overhead. The fact that the tags are not stored privately
requires us to use a special type of private (randomized) MAC where the tags do
not reveal anything about the authenticated messages even given the secret key.
With this implementation, we can guarantee that requirements I, II are satisfied.

Efficient Reconstruction using Graph Bisection. To get an efficient re-
construction procedure, we need to solve the following graph identification prob-
lem. An adversary partitions vertices V = [n] into three sets H,P,A. We know
that the out-going edges from H are chosen randomly and that the edges are
labeled as either “good” or “bad” subject to requirements (I), (II) above. The
goal is to identify H ∪ P . We know that, with overwhelming probability, H ∪ P
is the unique maximal consistent set having no bad edges between its vertices,
but its not clear how to identify it efficiently.

Let’s consider two cases of the above problem depending on the size of the
passive set P . If P is of size Ω(n/ log n), then we can distinguish between vertices
in A and H ∪ P by essentially counting the number of incoming bad edges of
each vertex. In particular, the vertices in H ∪ P are likely to have noticably
fewer in-coming good edges (only from A of size (1/2−Ω(1/ log n))n) than the
vertices in A (which have in-coming bad edged from H of size n/2). 4

On the other hand, if P is sufficiently small, of size ≤ cn/ log n for some
chosen constent c, then the graph can be bisected into components H and A∪P
(whose sizes only differ by 1) with only cnd/ log n good edges crossing from H
to A ∪ P (only the edges from H to P). We use the fact that there exists an
efficient O(log n) approximation algorithm to the minimum bisection problem.
This is a classic NP-hard optimization problem [GJS76,FK02], and the best
known polynomial-time algorithm is an O(log n)-approximation algorithm due
to [Räc08]. In particular, if c is chosen small enough, this allows us to bisect the
graph it into two components X0, X1 with only (say) a .1nd good edges crossing
from X0 to X1. This must mean that one of X0 or X1 contains .9 fraction of the
vertices in H (otherwise, if the H vertices were split more evenly, there would

4 This is an oversimplification; for example it may be the case that many actively
corrupted parties point a bad edge at an honest party to make it look bad. Our
full solution is more complex, but essentially relies on the fact that this type of
mis-classification cannot happen too often.

5

be many more edges crossing) and this is sufficient to then completely identify
all of H ∪ P .

There are many details to fill in for the above high-level description, but
one major issue is that we only have efficient approximations for the graph
bisection problem in undirected graphs. However, in the above scenario, we are
only guaranteed that there are few good edges from H to A ∪ P but there
may be many good edges in the reverse direction. To solve this problem, we
need to modify the scheme so that, for any edge (i, j) ∈ E corresponding to
party i using its key to authenticate the share of party j with a tag σi→j , we
also add a “reverse-authentication” tag σi←j where we authenticate the share
of party i under the key of party j. This ensures that edges from active parties
to honest parties are bad. Therefore, when P is small, there are very few good
edges between H and A∪P in either direction and we can use an algorithm for
the undirected version of the graph bisection problem.

Parallel Repetition and Parameters. A naive instantiation of the above
scheme would require a share size of m + Õ(k2) since we need O(k) tags per
party and each tag needs to have length O(k). To reduce the share size further,
we rely on a variant of the idea of Cevallos et al. [CFOR12] where it sufficed to
pick the MAC parameters so as to only provide weak security. However, we do
this more abstractly. We pick the parameters for our entire scheme so as to only
provide weak security so that the correct message is recovered with probability
(say) ≥ 3/4. We then use O(k) parallel copies of this scheme to amplify security.
The reconstruction outputs the majority value. One subtlety is that all of the
copies needs to use the same underlying Shamir shares since we don’t want a
multiplicative blowup in the message size m. We show that this does not hurt
security.

2 Notation and Preliminaries

Foe n ∈ N, we let [n] := {1, . . . , n}. If X is a distribution or a random variable, we
let x← X denote the process of sampling a value x according to the distribution
X. If A is a set, we let a ← A denote the process of sampling a uniformly at
random from A. If f is a randomized algorithm, we let f(x; r) denote the output
of f on input x with randomness r. We let f(x) be a random variable for f(x; r)
with random r.

Sub-Vector Notation. For a vector s = (s1, . . . , sn) and a set I ⊆ [n], we let
sI denote the vector consisting only of values in indices i ∈ I; we will represent
this as sI = (s′1, . . . , s

′
n) with s′i = si for i ∈ I and s′i = ⊥ for i 6∈ I.

Graph Notation. For a (directed) graph G = (V,E), and sets X,Y ⊆ V ,
define EX→Y as the set of edges from X to Y ; i.e. EX→Y = {(v1, v2) ∈ E | v1 ∈
X, v2 ∈ Y }.

6

2.1 Chernoff Bounds

We rely on an extension of the standard Chernoff bounds to variables with nega-
tive correlation [PS97]. For example, this models sampling without replacement.
The following definition and theorem are taken from [AD11].

Definition 1 (Negative Correlation). Let X1, . . . , Xn be binary random vari-
ables. We say that they are negatively correlated if for all I ⊆ [n]:

Pr

[∧
i∈I
{Xi = 1}

]
≤
∏
i∈I

Pr [Xi = 1] and Pr

[∧
i∈I
{Xi = 0}

]
≤
∏
i∈I

Pr [Xi = 0] .

Theorem 1 ((Variant of) Chernoff-Hoeffding). Let X1, . . . , Xn be inde-
pendent or negatively correlated binary random variables, let X =

∑n
i=1Xi and

let µ = E[X]. Then for any 0 < δ < 1:

Pr [X < (1− δ)µ] ≤ e−δ
2µ/2 , Pr [X ≥ (1 + δ)µ] ≤ e−δ

2µ/3.

2.2 Hash Functions, Polynomial Evaluation

Definition 2 (Universal Hashing). Let H = {Hk : U → V}k∈K be family
of hash functions. We say that H is ε-universal if for all x, x′ ∈ U with x 6= x′

we have Prk←K[Hk(x) = Hk(x′)] ≤ ε.

Polynomial Evaluation. Let F be a finite field. Define the polynomial evalu-
ation function PEval : Fd × F→ F as PEval(a, x) =

∑d
i=1 aix

i. We rely on two
properties of this hash.

In appendix A.1 we analyze some useful properties of this function.

2.3 Graph Bisection

Let G = (V,E) be an undirected graph. Let (V1, V2) be a partition of its edges.
The cross edges of (V1, V2) are the edges in EV1→V2

.
Given an undirected graph G = (V,E) with an even number of vertices

|V | = 2t a graph bisection for G is a partition (V1, V2) of V such that |V1| =
t = |V2|. We also extend the notion of a graph bisection to graphs with an odd
number of vertices |V | = 2t + 1 by defining a bisection to be a partition with
|V1| = t, |V2| = t+ 1.

Definition 3 (Approximate Graph Bisection Algorithm). Let G = (V,E)
be an undirected graph with n vertices. Assume that G has a graph bisection with
m cross edges. An algorithm Bisect that takes as input G and outputs a bisec-
tion U1, U2 with at most δm cross edges is called δ-approximate graph bisection
algorithm.

We remark that standard definitions of graphs bisection only consider the
case where n = 2t is even. However, given any δ-approximate graph bisection

7

algorithm that works in the even case, we can generically adapt it to also work in
the odd case n = 2t+1. In particular, given a graph G = (V,E) with |V | = 2t+1
vertices, we can construct a graph G′ = (V ∪ {⊥}, E) with an added dummy
vertex ⊥ that has no outgoing or incoming edges. We then run the δ-approximate
graph bijection algorithm that works for an even number of vertices on G′ to get
a bisection U ′1, U

′
2 where, without loss of generality, we assume that U ′1 contains

the vertex ⊥. By simply taking U1 to be U ′1 with ⊥ removed and U2 = U ′2 we
get a δ-approximate bijection for the graph G.

Theorem 2 ([Räc08] (Section 3, “Min Bisection.”)). There exists a polynomial-
time O(log(n))-approximate graph bisection algorithm, where n is the number of
vertices.

3 Definition of Robust Secret Sharing

Throughout the rest of the paper, we use the following notation:

– t denotes the number of players that are arbitrarily corrupt.
– n = 2t+ 1 denotes the number of players in the scheme.
– M is the message space.

Definition 4 (Robust Secret Sharing). A t-out-of-n, δ-robust secret sharing
scheme over a message space M and share space S is a tuple (Share,Rec) of
algorithms that run as follows:

Share(msg)→ (s1, . . . , sn): This is a randomized algorithm takes as input a mes-
sage msg ∈M and outputs a sequence of shares s1, . . . , sn ∈ S.

Rec(s1, . . . , sn)→ msg′: This is a deterministic algorithm takes as input n shares
(s1, . . . , sn) with si ∈ S ∪ ⊥ and outputs a message msg′ ∈M.

We require perfect correctness, meaning that for all msg ∈M: Pr[Rec(Share(msg)) =
msg] = 1. Moreover, the following properties hold:

Perfect Privacy: Any t out of n shares of a secret give no information on the
secret itself. More formally, for any msg,msg′ ∈ M, any I ⊆ [n] of size
|I| = t, the distributions Share(msg)I and Share(msg′)I are identical.

Perfect Reconstruction with Erasures: The original secret can be recon-
structed from any t+ 1 correct shares. More formally, for any msg ∈M and
any I ⊆ [n] with |I| = t+ 1 we have Pr[Rec(Share(msg)I) = msg] = 1.

Adaptive δ-Robustness: An adversary that modifies up to t shares can cause
the wrong secret to be recovered with probability at most δ. We consider
an adaptive version where the adversary can choose which shares to cor-
rupt adaptively. More formally, we define the experiment Exp(msg,Adv) with
some secret msg ∈M an interactive adversary Adv.
Exp(msg,Adv): is defined as follows:

E.1. Sample s = (s1, . . . , sn)← Share(msg).
E.2. Set I := ∅. Repeat the following while |I| ≤ t.

8

– Adv chooses i ∈ [n] \ I.
– Update I := I ∪ {i} and give si to Adv.

E.3. Adv outputs modified shares s′i : i ∈ I and we define s′i := si for
i 6∈ I.

E.4. Compute msg′ = Rec(s′1, . . . , s
′
n).

E.5. If msg′ 6= msg output 1 else 0.
We require that for any (unbounded) adversary Adv and any msg ∈ M we
have

Pr[Exp(msg,Adv) = 1] ≤ δ.

Remarks. We note that since privacy and correctness are required to hold
perfectly (rather than statistically) there is no difference between defining non-
adaptive and adaptive variants. In other words, we could also define adaptive
privacy where the adversary gets to choose which shares to see adaptively, but
this is already implied by our non-adaptive definition of perfect privacy. We
also note that when n = 2t + 1 then robustness implies a statistically secure
reconstruction with erasures. However, since we can even achieve perfect recon-
struction with erasures, we define it as a separate property.

Definition 5 (Non-Robust Secret Sharing). We will say that a scheme is
a non-robust t-out-of-n secret sharing scheme, if it satisfies the above definition
with δ = 1.

Using Shamir secret sharing, we get a non-robust t-out-of-n secret sharing for
any t < n where the share size is the same as the message size.

4 The Building Blocks

In this section we introduce the building blocks of our robust secret sharing
scheme: Robust Distributed Storage, Private MACs, and Graph Reconstruction.

4.1 Robust Distributed Storage

A robust distributed storage scheme allows us to store a public value among
n parties, t of which may be corrupted. There is no secrecy requirement on
the shared value. However, we require robustness: if the adversary adaptively
corrupts t of the parties and modifies their shares, the reconstruction procedure
should recover the correct value with overwhelming probability. In some sense,
we can think of this as an error-correcting code where shares correspond to
codeword symbols. However, the encoding procedure can be randomized and
the adversary only sees the t corrupted positions when deciding on the errors.
These restrictions allow us to achieve better parameters than what is normally
possible with error-correcting codes.

Definition 6. A t-out-of-n, δ-robust distributed storage over a message space
M is a tuple of algorithms (Share,Rec) having the same syntax as robust secret

9

sharing, and satisfying the δ-robustness property. However, it need not satisfy
the privacy or perfect reconstruction with erasures properties.

We would like to construct such schemes for n = 2t+ 1 and for a message of
size m so that the share of each party is only O(m/n) bits. These parameters
are already beyond the reach of error-correcting codes for worst-case errors. We
construct a simple robust distributed storage scheme by combining list-decoding
and universal hashing.

List Decoding. In list-decoding, the requirement to decode to a unique code-
word is relaxed, and it is only required to obtain a polynomially sized list of
potential candidates that is guaranteed to include the correct codeword. We can
simply use Reed-Solomon codes and the list-decoding algorithm provided by
Sudan [Sud97] (better parameters are known but this suffices for our needs):

Theorem 3 ([Sud97]). A Reed-Solomon code formed by evaluating a degree d
polynomial on n points can be efficiently list-decoded to recover from e < n−

√
2dn

errors with a list of size L ≤
√

2n/d.

Setting d = bn/8c, we can then therefore recover from t out of n = 2t + 1
errors and obtain a list of size L ≤

√
2n/d = O(1).

Construction of Robust Distributed Storage. Let t be some parameter,
let n = 2t + 1, and let F be a field of size |F| = 2u with |F| > n. Let H =
{Hk : Fd+1 → F}k∈F be an ε-universal hash function. For concreteness we can
use polynomial evaluation Hk(a) = PEval(a, k)) which achieves ε = (d + 1)/2u

(see Claim A.1). We use list-decoding for Reed Solomon with degree d = bn/8c
which allows us to recover from t out of n errors with a list size L = O(1). We
construct a δ-robust distributed storage scheme with message spaceM = Fd+1,
meaning that the messages have bit-size m = u(d + 1) = O(un), and with
robustness δ = nLε = O(n2)/2u and share size 3u.

– (s1, . . . , sn) ← Share(msg). Encodes msg ∈ Fd+1 using the Reed-Solomon
code by interpreting it as a degree d polynomial and evaluating it on n
points to get the Reed-Solomon codeword (ŝ1, . . . , ŝn) ∈ Fn. Choose random
values k1, . . . , kn ← F and define the shares si = (ŝi, ki, Hki(msg)) ∈ F3.

– msg′ ← Rec(s′1, . . . , s
′
n). Parse s′i = (ŝ′i, k

′
i, y
′
i). Use list-decoding on the code-

word (ŝ′1, . . . , ŝ
′
n) ∈ Fn to recover a list of L = O(1) possible candidates

msg(1), . . . ,msg(L) ∈ Fd+1 for the message. Output the first value msg(j)

that agrees with the majority of the hashes:

|{i ∈ [n] : Hk′i
(msg(j)) = y′i}| ≥ t+ 1.

Theorem 4. The above scheme is a t-out-of-n, δ-robust distributed storage scheme
for n = 2t+ 1 where, for any u ≥ log n we have messages of length m = bn/8cu,
shares of length 3u and robustness δ = O(n2)/2u.

We prove 4 in appendix B.1.

10

4.2 Private Labeled MAC

As a tool in our construction of robust secret sharing schemes, we will use a new
notion of an information-theoretic message-authentication code (MAC) that has
additional privacy guarantees.

The message authentication code σ = MACkey(lab,msg, r) takes as input a
label lab, a message msg, and some additional randomness r. The randomness
is there to ensure privacy for the message msg even given key, σ.

Definition 7 (Private Labeled MAC). An (`, ε) private MAC is a family of
functions {MACkey : L ×M×R → T }key∈K with key-space K, message space
M, label space L, randomness space R, and tag space T . It has the following
properties:

Authentication: For any ` values (labi,msgi, ri, σi) ∈ L ×M×R× T : i =
1, . . . , ` such that the labels labi are distinct, and for any (lab′,msg′, r′, σ′) ∈
L ×M×R× T such that (lab′,msg′, r′) 6∈ {(labi,msgi, ri)}i∈[`] we have:

Pr
key←K

[MACkey(lab′,msg′, r′) = σ′ | {MACkey(labi,msgi, ri) = σi}i∈[`]] ≤ ε.

This implies that even after seeing the authentication tags σi for ` tuples
(labi,msgi, ri) with distinct labels labi, an adversary cannot come up with a
valid tag σ′ for any new tuple (lab′,msg′, r′).

Privacy Over Randomness: For any ` distinct labels lab1, . . . , lab`, any keys
key1, . . . , key` ∈ K, and any msg ∈M, the ` values σ1 = MACkey1(lab1,msg, r), . . . , σ` =
MACkey`(lab`,msg, r) are uniformly random and independent in T over the
choice of r ← R.
This says that the tags σi do not reveal any information about the mes-
sage msg, or even about the labels labi and the keys keyi, as long as the
randomness r is unknown.

Privacy Over Keys: Let (labi,msgi, ri) ∈ L×M×R : i = 1, . . . , ` be ` values
such that the labels labi are distinct. Then the ` values σ1 = MACkey(lab1,msg1, r1), . . . , σ` =
MACkey(lab`,msg`, r`) are uniformly random and independent in T over a
random key← K.
This says that the tags σi do not reveal any information about the values
(labi,msgi, ri) as long as key is unknown.

Construction. Let F and F′ be finite fields such that |F′| ≥ |L| and |F| ≥
|F′| · |L|. We assume that we can identify the elements of L as either a subset
of F′ or F and we can also efficiently identify tuples in F′ × L as a subset of F.
LetM = Fm, R = F`, K = F`+1× (F′)`+1, T = F. Define MACkey(lab,msg, r) as
follows:

– Parse key = (key1, key2) where key1 ∈ (F′)`+1, key2 ∈ F`+1.
– Compute keylab

1 := PEval(key1, lab), keylab
2 := PEval(key2, lab) by identifying

lab ∈ L as an element of F′ and F respectively.

11

– Output σ := PEval((r,msg) , (lab, keylab
1)) + keylab

2 . Here we interpret
(r,msg) ∈ R × M = F`+m as a vector of coefficients in F and we iden-
tify (lab, key1lab) ∈ L × F′ as an element of F.

Theorem 5. The above construction is an (`, ε) private MAC, where ε = m+`
|F′| .

We prove theorem 5 in appendix B.2

4.3 Graph Identification

Here, we define an algorithmic problem called the graph identification problem.
We then prove that this problem can be solved efficiently.

Definition 8 (Graph Challenge). A graph challenge GenAdv(n, t, d) is a ran-
domized process that outputs a directed graph G = (V = [n], E), where each
vertex v ∈ V has out-degree d, along with a labeling L : E → {good, bad}. The
process is parameterized by an adversary Adv and proceeds as follows:

Adversarial Components. The adversary Adv(n, t, d) does the following:

1. It partitions V = [n] into three disjoint sets H,A, P such that V =
H ∪A ∪ P and |A ∪ P | = t.

2. It chooses the set of edges EA∪P→V that originate from A∪P arbitrarily
subject to each v ∈ A ∪ P having out-degree d and no self-loops.

3. It chooses the labels L(e) arbitrarily for each edge e ∈ EA→(A∪P) ∪
E(A∪P)→A.

Honest Components. The procedure Gen chooses the remaining edges and la-
bels as follows:

1. It chooses the edges EH→V that originate from H uniformly at random
subject to each vertex having out-degree d and no self-loops. In particular,
for each v ∈ H it selects outgoing edges to a set of d vertices chosen
uniformly at random (without replacement) from V \ {v}.

2. It sets L(e) := bad for all e ∈ EH→A ∪ EA→H .

3. It sets L(e) := good for all e ∈ E(H∪P)→(H∪P).

Output. Output (G = (V,E), L,H,A, P).

Theorem 6. There exists an polynomial time algorithm GraphID, called the
graph identification algorithm, that takes as input a directed graph G = (V =
[n], E) a labeling L : V → {good, bad} and outputs a set B ⊆ V , such that for
any Adv, and any t, n = 2t+ 1, and any d we have

Pr[B = H∪P : B ← GraphID(G,L), (G,L,H,A, P)← GenAdv(n, t, d)] ≥ 1−2−Ω(d/(log2 n))

In Section 7, we prove Theorem 6 by providing an algorithm GraphID with
the required properties.

12

5 Construction of Robust Secret Sharing

Let t, n = 2t+1 be parameters that are given to us, and letM be a message space.
Let d be a parameter such that the t-out-of-n graph reconstruction problem with
degree d has robustness δgi.

Let (Sharenr,Recnr) be a t-out-of-n non-robust secret sharing scheme with
message space M and share space Snr =M (e.g., Shamir secret sharing).

Let {MACkey : L×Mmac×R → T }key∈K be an (`, εmac) private MAC with
label space L = [n]2 × {0, 1} and message space Mmac =M× [n]d × K, where
` ≥ 3d.

Finally, let (Sharerds,Recrds) be a t-out-of-n robust distributed storage (no
privacy) with message spaceMrds = T 2dn, share space Srds and with robustness
δrds.

Our robust secret sharing scheme (Share,Rec) is defined as follows.

Share(msg). On input a message msg ∈M, the sharing procedure proceeds as
follows:

S.1. Choose (s̃1, . . . , s̃n) ← Sharenr(msg) to be a non-robust secret sharing of
msg.

S.2. Choose a uniformly random directed graph G = ([n], E) with out-degree d,
in-degree at most 2d and no self-loops as follows:

(a) For each i ∈ [n] choose a random set Ei ⊆ [n] \ {i} of size |Ei| = d. Set

E := {(i, j) : i ∈ [n], j ∈ Ei}.

(b) Check if there is any vertex in G with in-degree > 2d. If so, go back to
step (a). 5

S.3. For each i ∈ [n], sample a random MAC key keyi ← K and MAC randomness
ri ← R.
For each j ∈ Ei define

σi→j := MACkeyi((i, j, 0), (s̃j , Ej , keyj), rj) , σi←j := MACkeyj ((i, j, 1), (s̃i, Ei, keyi), ri).

where we treat (i, j, 0), (i, j, 1) ∈ L as a label, and we treat (s̃j , Ej , keyj) ∈
Mmac as a message.

S.4. For each i ∈ [n] define tagsi = {(σi→j , σi←j)}j∈Ei
∈ T 2d and define tags =

(tags1, . . . , tagsn) ∈ T 2nd. Choose (p1, . . . , pn) ← Sharerds(tags) using the
robust distributed storage scheme.

S.5. For i ∈ [n], define si = (s̃i, Ei, keyi, ri, pi) to be the share of party i. Output
(s1, . . . , sn).

5 This happens with negligible probability. However, we include it in the description
of the scheme in order to get perfect rather than statistical privacy.

13

Rec(s′1, . . . , s
′
n). On input s′1, . . . , s

′
n with s′i = (s̃′i, E

′
i, key

′
i, r
′
i, p
′
i) do the follow-

ing.

R.0. If there is a set of exactly t+ 1 values W = {i ∈ [n] : s′i 6= ⊥} then output
Recnr((s̃

′
i)i∈W). Else proceed as follows.

R.1. Reconstruct tags′ = (tags′1, . . . , tags
′
n) = Recrds(p

′
1, . . . , p

′
n). Parse tags′i =

{(σ′i→j , σ′i←j)}j∈E′i .
R.2. Define a graph G′ = ([n], E′) by setting E′ := {(i, j) : i ∈ [n], j ∈ E′i}.
R.3. Assign a label L(e) ∈ {good, bad} to each edge e = (i, j) ∈ E′ as follows. If

the following holds:

σ′i→j = MACkey′i
((i, j, 1), (s̃′j , E

′
j , key

′
j), r

′
j) and σ′i←j = MACkey′j

((i, j, 1), (s̃′i, E
′
i, key

′
i), r

′
i)

then set L(e) := good, else set L(e) := bad.
R.4. Call the graph identification algorithm to compute B ← GraphID(G′, L).
R.5. Choose a subsetB′ ⊆ B of size |B′| = t+1 arbitrarily and output Recnr((s̃

′
i)i∈B′).

Lemma 1. The scheme (Share,Rec) satisfies perfect privacy.

Proof. Let I ⊆ [n] be of size |I| = t and let msg,msg′ ∈ M be any two values.
We define a sequence of hybrids as follows:

Hybrid 0: This is Share(msg)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).
Hybrid 1: In this hybrid, we change the sharing procedure to simply choose all

tags σi→j and σj←i for any j 6∈ I uniformly and independently at random.
This is identically distributed by the “privacy over randomness” property of
the MAC. In particular, we rely on the fact that the adversary does not see
rj and that there are at most ` = 3d tags of the form σi→j and σj←i for any
j 6∈ I corresponding to the total degree of vertex j. These are the only tags
that rely on the randomness rj and they are all created with distinct labels.

Hybrid 2: In this hybrid, we choose (s̃1, . . . , s̃n)← Sharenr(msg′).
This is identically distributed by the perfect privacy of the non-robust secret
sharing scheme. Note that in this hybrid, the shares si : i ∈ I observed by
the adversary do not contain any information about s̃′j : j 6∈ I.

Hybrid 3: This is Share(msg′)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).
This is identically distributed by the “privacy over randomness” property of
the MAC, using same argument as going from Hybrid 0 to 1.

Lemma 2. The scheme (Share,Rec) satisfies perfect reconstruction with era-
sures.

Proof. This follows directly from the fact that the non-robust scheme (Sharenr,Recnr)
satisfies perfect reconstruction with erasures and therefore step R.0 of recon-
struction is guaranteed to output the correct answer when there are exactly t
erasures.

Lemma 3. The scheme (Share,Rec) is δ-robust for δ = δrds + δgi + dnεmac +
n2−d/3.

14

The formal proof is given in appendix B.3; here, we give a high-level overview.
For simplicity, let’s consider a non-adaptive robustness experiment where the
adversary has to choose the set I ⊆ [n], |I| = t of parties to corrupt at the
very beginning of the game (in the full proof, we handle adaptive security). Let
si = (s̃i, Ei, keyi, ri, pi) be the shares created by the sharing procedure and let
s′i = (s̃′i, E

′
i, key

′
i, r
′
i, p
′
i) be the modified shares submitted by the adversary (for

i 6∈ I, we have s′i = si). Let us define the set of actively modified shares:

A = {i ∈ I : (s̃′i, E
′
i, key

′
i, r
′
i) 6= (s̃i, Ei, keyi, ri)}.

These are the shares where something was modified beyond (only) the pi com-
ponent. Define H = [n] \ I and P = I \ A. To prove robustness, we show that
the choice of H,P,A and the labeling created by the reconstruction procedure
follow the same distribution as in the graph identification problem. Therefore
the graph identification procedure outputs B = H∪P . We show this by defining
a sequence of “hybrid” distributions.

1. During reconstruction process, instead of recovering tags′ = Recrds(p
′
1, . . . , p

′
n)

we just set tags′ = tags to be the correct value chosen by the sharing proce-
dure. By the security of the robust-distributed storage scheme, this modifi-
cation only changes the experiment with probability δrds.

2. During the sharing procedure, we can change all of the tags σi→j , σj←i with
j ∈ [n] \ I to uniformly random values. This is identically distributed by
the “privacy over randomness” property of the MAC with ` = 3d since the
adversary does not see rj for any such j, and there are at most 3d such tags
corresponding to the total degree of the vertex j. In particular, this means
that such tags do not reveal any (additional) information to the adversary
about Ej , keyj for j 6∈ I.

3. During the reconstruction process, when the labeling L is created, we auto-
matically set L(e) = bad for any edge e = (i, j) or e = (j, i) in E′ such that
i ∈ H, j ∈ A (i.e., one end-point honest and the other active). The only time
this changes things is if the adversary manages to create a forged tag of a
new value under the key keyi which was used to create at most ` = 3d tags
with distinct labels. Therefore, by the authentication security of the MAC,
the probability of this happening for any fixed edge e is εmac. By taking a
union bound over all edges, we get ≤ dnεmac total probability of an incorrect
labeling. Note that, by the definition of the labeling, we are also ensured that
L(e) = good for any edge (i, j) where i, j ∈ H ∪ P .

4. During the sharing procedure, we can change all of the tags σi→j , σj←i with
i ∈ [n] \ I to uniformly random values. This is identically distributed by the
“privacy over keys” property of the MAC with ` = 3d since the adversary
does not see keyi for any such i, and there are at most 3d such tags corre-
sponding to the total degree of the vertex i. In particular, this means that
the adversary does not learn anything about the edges Ei for i ∈ [n] \ I.

5. When we choose the graph G = ([n], E) during the sharing procedure, we no
longer require that every vertex has in-degree ≤ 2d. Instead, we just choose
each set Ei ⊆ [n] \ {i}, |Ei| = d uniformly at random. Since the expected

15

in-degree of every vertex is d, by a Chernoff bound and a union bound over
all vertices, the probability that there is some vertex with in-degeee > 2d is
< n2−d/3.

6. During reconstruction, instead of computing B ← GraphID(G′, L) we set
B = H ∪ P . We notice that, in the previous hybrid, the distribution of

G′, L,H,A, P is exactly that of the graph reconstruction game GenAdv′(n, t, d)
with some adversary Adv′. In particular, the out-going edges from the honest
set H are chosen uniformly at random and the adversary does not see any
information about it. Furthermore, the labeling satisfies the properties of the
graph identification game. Therefore, by the correctness of the graph iden-
tification algorithm, the above modification can only change the outcome of
the experiment with probability δgi.

In the last hybrid, the last step of the reconstruction procedure runs msg′ =
Recnr((s̃

′
i)i∈B) where B = [n] \ A is of size |B| ≥ t + 1 and s̃′i = s̃i for i ∈ B.

Therefore msg′ = msg by the Perfect Reconstruction with Erasures property of
the non-robust secret sharing scheme.

5.1 Parameters of Construction

Let M = {0, 1}m and t, n = 2t + 1 be parameters. Furthermore, let λ be a
parameter which we will relate to the security parameter k. We choose the degree
of the graph d = λ log2 n, which gives δgi = 2−Ω(λ).

We instantiate the non-robust secret scheme (Sharenr,Recnr) using t-out-of-n
Shamir secret sharing over a binary field of size 2max{m,blognc+1} = 2m+O(logn).

We instantiate the MAC using the construction from Section 4.2. We choose
the field F′ to be a binary field of size 2max{2dlogne+1,λ} = 2O(λ+logn) which is
enough to encode a label in L = [n]2 × {0, 1}. We choose the field F to be of
size |F| = |F′|22dlogne+1 = 2O(λ+logn) which is enough to encode an element of
F′ ×L. We set ` = 3d = O(λ log2 n). This means the randomness and keys have
length logR, logK = O(λ log2 n(λ + log n)) and the tags have length log T =
O(λ+log n). We set the message space of the MAC to beMmac = Fmmac which
needs to be large enough to encode the Shamir share, edges, and a key and
therefore we set mmac = d(m+ logK+d log n)/λe = O(m/λ+λ log2 n+ log3 n).
This gives security εmac = mmac+`

|F′| = 2−Ω(λ+logm+log logn).

Finally, we instantiate the robust distributed storage scheme using the con-
struction from Section 4.1. We need to set the message spaceMrds = T 2dn which
means that the messages are of length mrds = 2dn log T = O(nλ log n(λ+log n)).
Since we set mrds = bn/8cu we get share length 3u = O(λ log n(λ+ log n)) and
we get security δrds = O(n2)/2u ≤ 2−λ.

With the above we get security

δ ≤ δrds + δgi + dnεmac + n2−d/3 = 2Ω(−λ+logm+logn)

By choosing a sufficiently large λ = O(k+logm+log n) we get security δ = 2−k

and share size

m+O(λ log2 n+ λ2 log n) = m+O(k2 · polylog(n+m)) = m+ Õ(k2).

16

We show how to improve the above to m+ Õ(k) in the next section.

5.2 Improved Parameters via Parallel Repetition

We saw how to achieve robust secret sharing with security δ = 2−k at the cost
of having a share size m+ Õ(k2). We now show how to improve this. We do so
by instantiating the scheme from the previous section with smaller parameters
that only provide weak robustness, say δ = 1

4 . We then use parallel repetition of
q = θ(k) independent copies of this weak scheme. The q copies of the recovery
procedure recover q candidate messages, and we simply output the majority vote.
A naive implementation of this idea, using q completely independent copies of the
scheme, would result in share size O(km) + Õ(k) since we would have q = Θ(k)
copies of the non-robust (e.g., Shamir) share which is as large as the message
size m. However, we notice that we can reuse the same shares of the non-robust
secret sharing scheme (s̃1, . . . , s̃n) ← Sharenr(msg) across all q copies. This is
because the robustness security held even for a worst-case choice of such shares,
only over the randomness of the other components. Therefore, we only get a
share size of m+ Õ(k).

Construction. In more detail, let (Share,Rec) be our robust secret sharing
scheme construction from above. For some random coins coinsnr of the non-
robust secret sharing scheme, we let Sharecoinsnr (msg) denote the execution of
the sharing procedure Share(msg) where step S.1 uses the randomness coinsnr to
select the non-robust shares (s̃1, . . . , s̃n)← Sharenr(msg; coinsnr) but steps S.2 –
S.5 use fresh randomness. In particular, Sharecoinsnr

(msg) remains a randomized
algorithm.

We define the q-wise parallel repetition scheme (Share′,Rec′) as follows:

Share′(msg): The sharing procedure proceeds as follows

– Choose uniformly random coins coinsnr.
– For j = 1, . . . , q: sample (sj1, . . . , s

j
n) ← Sharecoinsnr (msg) with sji =

(s̃i, E
j
i , key

j
i , r

j
i , p

j
i), where s̃i is the same in all q iterations. Let ŝji =

(Eji , key
j
i , r

j
i , p

j
i) be the fresh components.

– For i ∈ [n], define si = (s̃i, ŝ
1
i , . . . , ŝ

q
i) and outputs (s1, . . . , sn).

Rec′(s1, . . . , sn): The reconstruction procedure proceeds as follows

– For i ∈ [n], parse si = (s̃i, ŝ
1
i , . . . , ŝ

q
i). For j ∈ [q], define sji := (s̃i, ŝ

j
i).

– For j ∈ [q], let msgj := Rec(sj1, . . . , s
j
n). If there is a majority value msg

such that |{j ∈ [q] : msg = msgj}| > q/2 then output msg, else output
⊥.

Theorem 7. Assume that the parameters of (Share,Rec) are chosen such that
the scheme is δ-robust for δ ≤ 1

4 . Then the q-wise parallel repetition scheme

(Share′,Rec′) is a δ′-robust secret sharing scheme with δ′ = e−
3

128 q.

We prove theorem 7 in appendix B.4.

17

Parameters. We choose the parameters of the underlying scheme (Share,Rec)
to have security δ = 1

4 . This corresponds to choosing a sufficiently large λ =
O(logm+log n). The overhead on the share size (ingnoring the m bit share of the
non-robust scheme) is then polylog(n+m). By choosing a sufficiently large q =
O(k) and setting (Share′,Rec′) to be the q-wise parallel repetition, we therefore
get a scheme with robustness δ′ = 2−k and share size m+O(kpolylog(n+m)) =

m+ Õ(k).

6 Inefficient Graph Identification via Self-Consistency

We begin by showing a simple inefficient algorithm for the graph identification
problem. In particular, we show that with overwhelming probability the set H∪P
is the unique largest self-consistent set of vertices, meaning that there are no
bad edges between vertices in the set.

Definition 9 (Self-Consistency). Let G = (V,E) be a directed graph and let
L : V → {good, bad} be a labeling. We say that a subset of vertices S ⊆ V is
self-consistent if for all e ∈ ES→S we have L(e) = good. A subset S ⊆ V is max
self-consistent if |S| ≥ |S′| for every self-consistent S′ ⊆ V .

Note that there may not be a unique max self-consistent set in G. However,
the next therorem shows that if the components are sampled as in the graph
challenge game GenAdv(n, t, d), then with overwhelming probability there is a
unique max self-consistent set in G and it is H ∪ P .

Lemma 4. For any Adv, and for the distribution (G,L,H,A, P)← GenAdv(n, t, d),
the set H ∪P is the unique max self-consistent set in G with probability at least
1− 2−Ω(d−logn).

Proof. We know that the set H∪P is self-consistent by the definition of the graph
challenge game. Assume that it is not the unique max self-consistent set in G,
which we denote by the event BAD. Then there exists some set S 6= H∪P of size
|S| = |H ∪ P | such that S is self consistent. This means that S must contain at
least q ≥ 1 elements from A and at least t+1−q elements from H. In other words
there exists some value q ∈ {1, . . . , t} and some subsets A′ ⊆ S∩A ⊆ A ⊆ A∪P
of size |A′| = q and H ′ ⊆ S ∩H ⊆ H of size t + 1 − q such that EH′→A′ = ∅.
This is because, by the definition of the graph challenge game, every edge in
EH′→A′ ⊆ EH→A is labeled bad and so it must be empty if S is consistent. For
any fixed q,H ′, A′ as above, if we take the probability over the random choice
of d outgoing edges for each v ∈ H ′, we get:

Pr[EH′→A′ = ∅] =

((
n−1−q

d

)(
n−1
d

))t+1−q

≤
(

1− q

n− 1

)d(t+1−q)

≤ e−
d(t+1−q)q

n .

18

By taking a union bound, we get

Pr[BAD] ≤ Pr

∃
 q ∈ {1, . . . , t}

A′ ⊆ A ∪ P : |A|′ = q
H ′ ⊆ H, |H ′| = t+ 1− q

 : EH′→A′ = ∅


≤

t∑
q=1

(
t+ 1

t+ 1− q

)
·
(
t

q

)
· e−

d(t+1−q)q
n ≤

t∑
q=1

(
t+ 1

t+ 1− q

)
·
(
t+ 1

q

)
· e−

d(t+1−q)q
n

≤ 2

(t+1)/2∑
q=1

(
t+ 1

q

)2

· e−
d(t+1−q)q

n

(symmetry between q and t+ 1− q)

≤ 2

(t+1)/2∑
q=1

(t+ 1)
2q · e−

d(t+1−q)q
n

≤ 2

(t+1)/2∑
q=1

eq(2 loge(t+1)− d(t+1−q)
n)

≤ 2

(t+1)/2∑
q=1

eq(2 loge(t+1)− (t+1)d
2n) (since q ≤ (t+ 1)/2)

≤ 2

(t+1)/2∑
q=1

eq(2 loge(t+1)−d/4) (since t+ 1 > n/2)

≤ (t+ 1)e(2 loge(t+1)−d/4) ≤ 2−Ω(d−logn)

As a corollary of the above lemma, we get an inefficient algorithm for the
graph identification problem, that simply tries every subset of vertices S ⊆ V ,
checks if S is self-consistent, and outputs the max consistent set.

Corollary 1. There exists an inefficient algorithm GraphIDineff such that for any
Adv, and any t, n = 2t+ 1, and any d we have

Pr[B = H∪P : B ← GraphIDineff(G,L), (G,L,H,A, P)← GenAdv(n, t, d)] ≥ 1−2−Ω(d−logn)

7 Efficient Graph Identification

In this section, we prove Theorem 6 and given an efficient graph identification
algorithm. We begin with an intuitive overview before giving the technical de-
tails.

7.1 Overview and Intuition

A Simpler Problem. We will reduce the problem of identifying the full set
H ∪ P to the problem of only identifying a small set Y ⊆ H ∪ P such that

19

Y ∩ H is of size at least εn for ε = 1/Θ(log n). If we are given such a Y , we
can consider a larger set S defined as all vertices in [n] with no bad incoming
edge originating in Y . We observe that every vertex in H ∪ P is included in S,
as there are no bad edges from H ∪ P to H ∪ P . Since Y ∩ H is big enough,
it is unlikely that a vertex in A could be included in S, as every vertex in A
likely has an incoming edge from |Y ∩H| that is labeled as bad. There is a bit
of subtlety involved in applying this intuition, as it is potentially complicated
by dependencies between the formation of the set Y and the distribution of the
edges from Y to A. We avoid dealing with such dependencies by “splitting”
the graph into multiple independent graphs and building Y from one of these
graphs while constructing S in another. Ultimately, we obtain that with high
probability, we will have S = H ∪ P .

Now the task becomes obtaining such a set Y in the first place. We consider
two cases depending on whether the set P is small (|P | ≤ εn) or large (|P | > εn).

Small P . In this case, there is only a small number of good edges crossing
between H and A ∪ P (only edges between H and P). Therefore there exists a
bisection of the graph into sets H and A∪P of size t+1 and t respectively, where
the number of good edges crossing this bisection is approximately εdn. By using
an efficient O(log n)-approximation algorithm for the graph bisection problem
(on the good edges in G) we can get a bisection X1, X2 with only (say) .1nd edges
crossing between X1 and X2. This means that, with overwhelming probability,
one of X1 or X2 has (say) .9 fraction of the honest vertices, as otherwise we’d
expect more edges crossing this partition. We can then refine such an X to get
a suitable smaller subset Y which is fully contained in H ∪P similarly as above.

Large P . In this case, the intuition is that every active vertex is likely to have
at least d/2 in-coming bad edges (from the honest vertices), but honest/passive
vertices will have only at most d(1/2− ε) in-coming bad edges on average from
the active vertices. So we can differentiate the two cases just by counting. This
isn’t precise since many active vertices can point bad edges at a single honest
vertex to make it “look bad”. However, intuitively, this cannot happen too often.

To make this work, we first start with the full set of vertices [n] and disqualify
any vertices that have more than d/2 out-going bad edges (all honest vertices
remain since they only have d(1/2−ε) outgoing bad edges on expectation). This
potentially eliminates some active vertices. Let’s call the remaining smaller set of
vertices X. We then further refine X into a subset Y of vertices that do not have
too many incoming bad edges (more than d/2−ε/2) originating in X. The active
vertices are likely to all get kicked out in this step since we expect d(1/2 − ε)
incoming bad edges. On the other hand, we claim that not too many honest
vertices get kicked out. The adversary has at most (1/2− ε)nd/2 out-going bad
edges in total under his control in the set X ∩ A and has to spend d/2 − ε/2
edges to kick out any honest party . Therefore there is a set of at least εn/2 of
the honest parties that must survive. This means that Y ⊆ H ∪ P and that Y
contains Θ(n/ log n) honest parties as we wanted.

20

Unknown P . Of course, our reconstruction procedure will not know a priori
whether P is relatively large or small or, in the case that P is small, which one of
the bisection sets X1 or X2 to use. So it simply tries all of these possibilities and
obtains three candidate sets Y0, Y1, Y2, one of which has the properties we need
but we do not know which one. To address this, we construct the corresponding
sets Si for each Yi as described above, and we know that one of these sets Si is
H ∪ P . From the previous section (Lemma 4), we also know that H ∪ P is the
unique max self-consistent set in G. Therefore, we can simply output the largest
one of the sets S0, S1, S2 which is self-consistent in G and we are guaranteed
that this is H ∪ P .

7.2 Graph Splitting

Here, we describe a procedure GraphSplit that takes as input a directed graph
G = (V,E) with out-degree d for each vertex and outputs three directed graphs
(Gi = (V,Ei))i=1,2,3 such that Ei ⊂ E and the out-degree of each vertex in each
graph is d/3. Furthermore for vertex v in G whose d-outgoing edges Ev→V were
uniformly random in G, the three sets Eiv→V are distributed like 3 independently
sampled sets of d′ = d/3 outgoing edges each.

The procedure GraphSplit is defined as follows:

1. On input a labeled directed graph G = (V,E, L) with d outgoing edges for
each vertex, for each v ∈ V :

(a) define Vv := {w ∈ V | (v, w) ∈ E}, the set of neighbors of v

(b) sample three uniform and independent subsets {Siv}i=1,2,3 of V \ {v}
with the constraint |Siv| = d/3.

(c) sample a uniformly random injective function πv : ∪i=1,2,3S
i
v → Vv

2. define Ei := {(v, w) ∈ E | w ∈ πv(Siv)},
3. for all e ∈ Ei, define Li(e) := L(e).

Lemma 5. Let G = (V,E) be a distribution over graphs with out-degree d =
3d′. Let (Gi = (V,Ei))i=1,2,3 ← GraphSplit(G). For each v ∈ V such that the
distribution of

Vv := {w ∈ V | (v, w) ∈ E}

is a uniform subset over V \ {v} of size d and independent of Vv′ for all v′ 6= v,
we have that for each i = 1, 2, 3:(

V iv := {w ∈ V | (v, w) ∈ Ei}
)

is a uniform subset of V \{v} of size d′ and independent of V i
′

v′ for any (v′, i′) 6=
(v, i).

21

Proof. Let Ri (i = 1, 2, 3) be an arbitrary subset of V \{v} of size d/3. We want
to study the probability that V iv = Ri for all i. We proceed as follows:

Pr[∀i : V iv = Ri] = Pr[∀i : V iv = Ri | ∀i : Ri ⊂ Vv] · Pr[∀i : Ri ⊂ Vv]+
+ Pr[∀i : V iv = Ri | ∀i : Ri 6⊂ Vv] · Pr[∀i : Ri 6⊂ Vv]

(2nd summand equals zero)

= Pr[∀i : V iv = Ri | ∀i : Ri ⊂ Vv] · Pr[∀i : Ri ⊂ Vv]
= Pr[∀i : πv(S

i
v) = Ri | ∀i : Ri ⊂ Vv] · Pr[∀i : Ri ⊂ Vv]

(πv bijective)

= Pr[∀i : Siv = π−1v (Ri) | ∀i : Ri ⊂ Vv] · Pr[∀i : Ri ⊂ Vv]

Now, we use the fact that the Si’s are independent, and that, given Vv, S
i
v is a

uniform subset of π−1v (Vv) of size d/3. Therefore, we have:

Pr[∀i : V iv = Ri] =

(
d/3

d

)3

· Pr[∀i : Ri ⊂ Vv]

=

(
d/3

d

)3

·
(

d

n− 1

)3

=

(
d/3

n− 1

)3

This shows that the V iv ’s constitute a tuple of uniform and independent subsets
of V \ {v} of size d/3, which concludes the proof of lemma 5

7.3 Our Algorithm

We now define the efficient graph identification algorithm B ← GraphID(G,L).

Usage. Our procedure GraphID(G,L) first runs an initialization phase Initial-
ize, in which some parameters are generated, and the graph edges are par-
titioned into three sets. After that, it runs two procedures Small P and
Large P sequentially, and uses the data these two procedures return to run
the output phase Output.

Initialize.
1. Let b be a constant such that there exists a polynomial-time b log n-

approximate graph bisection algorithm Bisect, such as the one provided
in [Räc08]. Let c = 800

9 b, and let ε = 1/(c · log(n)).
2. Run (G1, G2, G3)← GraphSplit(G). This produces three graphs having V

as set of vertices, with the property that the out-degree of every vertex in
each graph is d′ = d/3, and the neighbors of honest nodes in each graph
are distributed independently and uniformly at random (see section 7.2
for more details).

Small P .
1. Run (X0, X1) ← Bisect(G∗), where G∗ is the undirected graph induced

by the good edges of G1,

22

2. For i = 0, 1: contract Xi to a set of candidate good vertices Yi whose
vertices have fewer than 0.4d′ incoming bad edges in the graph G2.

Yi := {v ∈ Xi | |{e ∈ E2
Xi→{v} | L(e) = bad}| < 0.4d′}.

3. For i = 0, 1: return Yi.
Large P .

1. Define a set of candidate legal vertices X2 as the set of vertices having
fewer than d′/2 outgoing bad edges in G1.

X2 := {v ∈ V | |{e ∈ E1
{v}→V | L(e) = bad}| < d′/2}.

2. Contract X2 to a set of candidate good vertices Y2, defined as the set of
vertices in X2 having fewer than d′ (1/2− ε/2) incoming bad edges from
legal vertices in the graph G1.

Y2 := {v ∈ X2 | |{e ∈ E1
X2→{v} | L(e) = bad}| < d′ (1/2− ε/2)}.

3. Return Y2.
Output. This subprocedure takes as input the sets Y0, Y1 (generated by Small

P), and Y2 (generated by Large P) and outputs a single set B, according
to the following algorithm.
1. For i = 0, 1, 2: define Si as the set of vertices that only have incoming

good edges from Yi in G3. Formally,

Si := {v ∈ V | ∀e ∈ E3
Yi→v : L(e) = good}

2. For i = 0, 1, 2: if L(e) = good for all e ∈ ESi→Si
, define Bi := Si;

otherwise, define Bi = ∅. This is a self-consistency check that rejects Si
if the subgraph induced by Si contains at least one bad edge.

3. Output a set B defined as any of the largest sets among B0, B1, B2.

7.4 Analysis of Correctness

In this section, we establish Theorem 6. We first fix an arbitrary adversary Adv
and then define a sufficient event :

O := “there exists i ∈ {0, 1, 2} such that |Yi ∩H| ≥ ε · n/2 and Yi ⊆ H ∪ P”

Our analysis is summarized in figure 1.
The three subsections below establish the following three lemmas, respec-

tively.

Lemma 6. The conditional probability that set B output by GraphID equals H ∪
P , given the occurrence of event O, is 1− 2−Ω(d/ logn).

Lemma 7. If |P | is at most ε · n, then the probability that O occurs is at least
1− 2−Ω(d/ logn).

23

|P | ≤ ε · n

Section 7.4

''

|P | > ε · n

Section 7.4

ww
O

Section 7.4

��
B = H ∪ P

Fig. 1. Structure of our analysis: arrows denote logical implications (happening with
high probability).

Lemma 8. If |P | is greater than ε · n, then the probability that O occurs is at

least 1− 2−Ω(d/ log2 n).

In Lemma 6, the probability is over the random edge selection in G3, while
in Lemmas 7 and 8, the probability is over the random edge selections in G1

and G2. Note that the set P is selected by the adversary arbitrarily prior to the
construction of the graph G. We now complete the proof of Theorem 6.

Proof of Theorem 6. By Lemmas 7 and 8, we obtain that the event O occurs
with probability at least 1 − 2−Ω(d/ log2 n). Putting together with Lemma 6, we
obtain that the probability that the set B returned by the algorithm equals
H ∪ P is at least 1− 2−Ω(d/ log2 n) completing the proof of the theorem.

Given the Sufficient Event O, H ∪ P is recovered

In this section, we prove Lemma 6. Assume that event O occurs. That is, there
exists i ∈ {0, 1, 2} such that |Yi ∩H| ≥ ε · n/2 and Yi ⊆ H ∪ P .

First we show that Si = H ∪ P with high probability, and later show that
B = Si. Note that the event O only depends on G1, G2 but is independent of
the edges E3

H→V . All probabilities below are only taken over these edges.

Since Yi ⊆ H ∪ P , we have that Si ⊇ H ∪ P , because L(e) = good for each
e ∈ EH∪P→H∪P . This means that we just need to prove that A ∩ Si = ∅ with

24

high probability. We have

Pr[A ∩ Si 6= ∅] ≤
∑
v∈A

Pr[v ∈ Si] (definition of Si)

=
∑
v∈A

Pr[∀e ∈ E3
Yi→v : L(e) = good] (relaxing a constraint)

≤
∑
v∈A

Pr[∀e ∈ E3
Yi∩H→v : L(e) = good]

(L(e) = bad for e ∈ EH→A)

=
∑
v∈A

Pr[E3
Yi∩H→v = ∅] (uniformity of E3

Yi∩H→v)

≤
∑
v∈A

(
1− d′

n

)|Yi∩H|

(by assumption on O)

≤ t ·
(

1− d′

n

)εn/2
≤ t · e−ε·d

′/2 = 2−Ω(εd)

Now, we need to show that no set Sj (j 6= i) is larger than H ∪ P : this
immediately follows from lemma 4, which guarantees that H ∪ P is the largest
self-consistent subset of vertices with probability 1− 2−Ω(d−logn). We thus have
that conditioned on O, the probability that B is H∪P is at least 1−2−Ω(d/ logn).

Reaching the Sufficient Event O, if |P | ≤ ε · n

Assume that |P | ≤ ε · n. We prove Lemma 7 by combining three claims.

Claim. The probability that either |X0 ∩H| ≥ 9|H|/10 or |X1 ∩H| ≥ 9|H|/10
is at least 1− e−Ω(εd).

Proof. Let’s first analyze the number of (non-directed) cross edges |E∗P∪A,H | of

the partition (P ∪A,H) for G∗. We claim that with probability 1− 2−Ω(εd), we
have

|E∗P∪A,H | = |E∗P,H | = |E∗P→H |+ |E∗H→P | ≤ εnd′ + 2εnd′ = 3εnd′.

In the above derivation, the first equality holds because there are no good edges
from A to H (and vice versa), and the inequality follows from the facts that any
vertex in P has at most d outgoing edges to H, and the number of outgoing edges
from H to P is at most 2εnd′ with probability 1− 2−Ω(εd) by applying lemma 9
(with H ′ = H, V ′ = P , and δ such that (1 + δ)|H||P |d′/(n− 1) = 2εnd′).

Since Bisect is b log n-approximate for some constant b, we obtain that with
probability 1− 2−Ω(εd)

|E∗X0,X1
| ≤ b · log n · 3ε · n · d′ =

3b log n

c log n
· n · d′ ≤ 9

800
· n · d′, (7.1)

where we use the fact that c is at least 800
9 b.

25

Let Li denote the event that |Xi ∩ H| is less than 9|H|/10. We will show
that Pr[L1 and L2] is at most e−Ω(d). We first consider the event that L1 holds,
L2 holds, and |E∗X0,X1

| < 9nd′/800. For this event to happen, it must be the
case that there exists a set S of honest vertices of size s in (|H|/10, |H|/2] such
that the number of edges (all of which are labeled good) between S and H − S
is less than 9nd′/800. The expected number of edges between S and H − S is
s · (t+ 1− s) · d′/(n− 1), which is at least 9(t+ 1)2d′/(100(n− 1)) ≥ 9nd′/400.
For a given set S of size s, invoking lemma 9 with H ′ = S, V ′ = H − S, and
δ = 1/2, it follows that

Pr
[
|E∗S,H−S | < 9nd′/800

]
≤ Pr

[
|E∗S,H−S | < s · (t+ 1− s) · d′/(2(n− 1))

]
≤ e−s(t+1−s)d′/(8(n−1)).

By taking a union bound, we get

Pr
[
L1 and L2 and |E∗X0,X1

| < 9nd′/800
]

≤ Pr

[
∃
{
s ∈ (|H|/10, |H|/2)
S ⊆ H : |S| = s

}
: E∗S,H−S < 9nd′/800

]

≤
b(t+1)/2c∑

s=d(t+1)/10e

(
t+ 1

s

)
e−s(t+1−s)d′/8(n−1) ≤

b(t+1)/2c∑
s=d(t+1)/10e

ts · e−Ω(sd′) (t ≥ n/2)

≤
b(t+1)/2c∑

s=d(t+1)/10e

es ln t−Ω(sd′) ≤ e−Ω(t). (d is Ω(log n))

We are now ready to show that Pr[L1 and L2] is at most 2−Ω(εd).

Pr[L1 and L2] ≤ Pr
[
|E∗X0,X1

| ≥ 9nd′/800
]

+ Pr
[
L1 and L2 and |E∗X0,X1

| < 9nd′/800
]

≤ e−Ω(εd) + e−Ω(t) (Equation 7.1)

= 2−Ω(εd).

Claim. If |Xi ∩H| ≥ 9|H|/10, then |Yi ∩H| ≥ ε|H|.

Proof. The set Yi consists of all vertices in Xi that have fewer than 0.4d′ bad
edges from Xi. The number of active vertices in Xi is at most t+1−9(t+1)/10 =
(t+ 1)/10. Therefore, the total number of bad edges into vertices in Xi ∩H is at
most d′(t+ 1)/10. By an averaging argument, the number of vertices in Xi ∩H
that have at least 0.4d′ bad edges is at most d′(t + 1)/(0.4d′ · 10) ≤ (t + 1)/4.
This implies that Yi ∩H has at least (t+ 1)(9/10− 1/4) ≥ ε|H|.

Claim. If |Xi∩H| ≥ 9|H|/10, then Yi∩A = ∅ with probability at least 1−2−Ω(d).

Proof. Consider an active vertex v in Xi. By invoking Lemma 9 with H ′ =
Xi ∩H, V ′ = {v} and δ = 1/9, the number of edges from Xi ∩H into v is less
than 0.4d′ with probability at most 2−Ω(d). Taking a union bound over all active
vertices in Xi ∩H and noting that d is Ω(log n), we obtain that the probability
that any active vertex is in Yi is at most 2−Ω(d), yielding the desired claim.

26

By Claims 7.4, 7.4, and 7.4, we obtain that when |P | ≤ εn,

Pr [∃i : |Yi ∩H| ≥ εn/2 and Yi ⊆ H ∪ P] ≥ 1− 2−Ω(εd),

which proves Lemma 7.

Reaching the Sufficient Event O, if |P | > ε · n

Assume that |P | > ε · n. We prove Lemma 8 by combining the following three
claims. All probabilities in this analysis are only over the random choice of the
edges E1

H→V .

Claim. Pr[H ⊆ X2] ≥ 1− 2−Ω(ε2d+logn)

Proof. If it does not hold that H ⊆ X2 then there exists some u ∈ H such that
u has ≥ d′/2 outgoing bad edges in E1, which means that |E1

u→A| > d′/2. By
applying Lemma 9 with H ′ = {u}, |V ′| = |A| of size |V ′| ≤ t − εn ≤ (1

2 − ε)n,

and δ = (n− 1)/(2|V ′|)− 1 so that (1 + δ)|H ′||V ′| d
′

n−1 = d′/2 we get

Pr
[
|E1
u→A| > d′/2

]
≤ Pr

[
|E1
u→A| > (1 + δ)|H ′||V ′| d′

n− 1

]
≤ e−δ

2|V ′| d′
3(n−1) ≤ e−Ω(ε2d)

where we rely on the fact that δ > (2εn− 1)/(2|V ′|) to do the last calculation.
Finally, by taking a union bound, we get

Pr[¬(H ⊆ X2)] ≤
∑
u∈H

Pr
[
|E1
u→A| > d′/2

]
≤ e−Ω(ε2d+logn)

which proves the claim.

Claim. Whenever H ⊆ X2 occurs then |Y2 ∩H| ≥ εn/2.

Proof. Let us assume H ⊆ X2 occurs. Define the set K = H \ Y2 to be the
honest vertices that were “killed off” in the contraction from X2 to Y2. Define
E1
BAD to be the set of edges e ∈ E1 with L(e) = bad.

Every vertex in K must have d′(1/2 − ε/2) incoming bad edges from X2.
Furthermore, since K ⊆ H, the only incoming bad edges can from A and there-
fore it must have d(1/2 − ε/2) incoming bad edges to K can from A ∩ X2.
Therefore for each k ∈ K, we have E1

A∩X2→k ∩ E
1
BAD ≥ d′(1/2 − ε/2) and

E1
A∩X2→K ∩ E

1
BAD ≥ d′(1/2 − ε/2)|K|. However, since the way that we define

X2 ensures that each vertex in A ∩X2 has only d′/2 outgoing bad edges total,
we have E1

A∩X2→K ∩ E
1
BAD ≤ |A ∩X2|d′/2 ≤ |A|d′/2. Putting this together we

get:
d′(1/2− ε/2)|K| ≤ E1

A∩X2→K ∩ E
1
BAD ≤ |A|d′/2

and therefore |K| ≤ |A|/(1− ε) ≤ (1/2− ε)n/(1− ε) ≤ (1/2− ε/2)n.
Therefore |Y2 ∩H| ≥ |H| − |K| ≥ n/2− (1/2− ε/2)n ≥ εn/2.

27

Claim. Pr[Y2 ∩A 6= ∅] ≤ 2−Ω(ε2d+logn)

Proof. Firstly, note that if the following two events occur:

1. H ⊆ X2

2. for every v ∈ A we have |E1
H→v| ≥ d′(1/2− ε/2)

then Y2 ∩ A = ∅. This is because, together, the above events imply that for
every v ∈ A |E1

H∩X2→v| ≥ d
′(1/2− ε/2), and by definition all of these edges are

labeled bad. By construction, this means that v 6∈ Y2. Therefore

Pr[Y2 ∩A 6= ∅] ≤ Pr[¬(H ⊆ X2)] + Pr[∃v ∈ A : |E1
H→v| < d′(1/2− ε/2)]

≤ 2−Ω(ε2d+logn) +
∑
v∈A

Pr[|E1
H→v| < d′(1/2− ε/2)]

where the first summand comes from Claim 7.4. To bound the second summand
we rely on Lemma 9 with H ′ = H and V ′ = {v}, where we set δ = 1 − (1/2 −
ε/2)(n− 1)/|H| so that (1− δ)|H|d′/(n− 1) = d′(1/2− ε/2). We get:

Pr[|E1
H→v| < d′(1/2− ε/2)] ≤ e−δ

2|H|d′/(2n−1) ≤ 2−Ω(ε2d)

where we use the fact that δ > ε in the last step. Combining the above, we get
the claim.

By combining Claims 7.4, 7.4, 7.4 we get that, when |P | > ε · n, then

Pr[|Y2 ∩H| ≥ εn/2 and Yi ⊆ H ∪ P] ≥ 1− 2−Ω(ε2d+logn)

which proves Lemma 8.

A Useful Chernoff Type Bound on Edges

Several of the preceding lemmas make use of the following Chernoff type bounds
on the number of edges crossing a cut of the graph.

Lemma 9. Let H ′ ⊆ H and V ′ ⊆ V be arbitrary sets of vertices. Then for any
i ∈ {1, 2, 3} and for any δ > 0 we have:

Pr

[
|EiH′→V ′ | ≥ (1 + δ)|H ′||V ′| d′

n− 1

]
≤ e−δ

2|H′||V ′| d′
3(n−1)

Pr

[
|EiH′→V ′ | ≤ (1− δ)|H ′|(|V ′| − 1)

d′

n− 1

]
≤ e−δ

2|H′|(|V ′|−1) d′
2(n−1)

Furthermore if H ′ ∩ V ′ = ∅ then

Pr

[
|EiH′→V ′ | ≤ (1− δ)|H ′||V ′| d′

n− 1

]
≤ e−δ

2|H′||V ′| d′
2(n−1)

where the probability is only over the choice of the edges EiH→V and independent
of Ej for j 6= i.

28

Proof. For u ∈ H ′, v ∈ V ′ define

∆u,v =

{
1 if (u, v) ∈ Ei
0 else

Define ∆ := |EiH′→V ′ | =
∑
u∈H′,v∈V ′ ∆u,v. Since the expected value E[∆u,v] =

d
n−1 for any u 6= v, and E[∆u,u] = 0 we have E[∆] =

∑
u∈H′,v∈V ′ E[∆u,v] ∈

[|H ′|(|V ′|−1) d
n−1 , |H

′||V ′| d
n−1]. Furthermore, it’s easy to check that the variables

∆u,v are negatively correlated due to sampling without replacement (Definition
1) and therefore the lemma follows from the Chernoff bounds (Theorem 1).

8 Conclusion

We constructed an efficient robust secret sharing scheme for the maximal cor-
ruption setting with n = 2t+ 1 parties with nearly optimal share size of m+ k̃
bits, where m is the length of the message and 2−k is the failure probability of
the reconstruction procedure with adversarial shares.

One open question would be to optimize the poly-logarithmic terms in our
construction. Indeed, it should be relatively easy to improve on these terms
which we did not analyze carefully, but it seems challenging and interesting to
attempt to go all the way down to m + O(k) or perhaps even just m + k bits.
We leave this as a challenge for future work.

References

AD11. Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics:
Foundations and Recent Developments. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 2011.

Bla79. George Robert Blakley. Safeguarding cryptographic keys. In Managing
Requirements Knowledge, International Workshop on, pages 313–317. IEEE
Computer Society, 1979.

BS97. Carlo Blundo and Alfredo De Santis. Lower bounds for robust secret sharing
schemes. Inf. Process. Lett., 63(6):317–321, 1997.

CDD+15. Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and
Gabriele Spini. Linear secret sharing schemes from error correcting codes
and universal hash functions. In Elisabeth Oswald and Marc Fischlin, edi-
tors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057
of Lecture Notes in Computer Science, pages 313–336. Springer, 2015.

CDF01. Ronald Cramer, Ivan Damg̊ard, and Serge Fehr. On the cost of reconstruct-
ing a secret, or VSS with optimal reconstruction phase. In Joe Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 503–
523. Springer, 2001.

29

CDF+08. Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel
Wichs. Detection of algebraic manipulation with applications to robust se-
cret sharing and fuzzy extractors. IACR Cryptology ePrint Archive, 2008:30,
2008.

Cev11. Alfonso Cevallos. Reducing the share size in robust secret sharing. http:

//www.algant.eu/documents/theses/cevallos.pdf, 2011.

CFOR12. Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani.
Unconditionally-secure robust secret sharing with compact shares. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237
of Lecture Notes in Computer Science, pages 195–208. Springer, 2012.

Che15. Mahdi Cheraghchi. Nearly optimal robust secret sharing. Cryptology ePrint
Archive, Report 2015/951, 2015. http://eprint.iacr.org/.

CSV93. Marco Carpentieri, Alfredo De Santis, and Ugo Vaccaro. Size of shares
and probability of cheating in threshold schemes. In Tor Helleseth, editor,
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and
Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages
118–125. Springer, 1993.

FK02. Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of
the minimum bisection. SIAM J. Comput., 31(4):1090–1118, 2002.

GJS76. M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
np-complete graph problems. Theor. Comput. Sci., 1(3):237–267, 1976.

Gol98. Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudoran-
domness, volume 17 of Algorithms and Combinatorics. Springer, 1998.

IK10. Russell Impagliazzo and Valentine Kabanets. Constructive proofs of con-
centration bounds. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and
José D. P. Rolim, editors, Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, 13th International Work-
shop, APPROX 2010, and 14th International Workshop, RANDOM 2010,
Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302 of Lecture
Notes in Computer Science, pages 617–631. Springer, 2010.

LP14. Allison Bishop Lewko and Valerio Pastro. Robust secret sharing schemes
against local adversaries. IACR Cryptology ePrint Archive, 2014:909, 2014.

PS97. Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge
coloring via an extension of the chernoff-hoeffding bounds. SIAM J. Com-
put., 26(2):350–368, 1997.

Räc08. Harald Räcke. Optimal hierarchical decompositions for congestion mini-
mization in networks. In Cynthia Dwork, editor, Proceedings of the 40th An-
nual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 255–264. ACM, 2008.

RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In David S. John-
son, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73–85. ACM,
1989.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

Sud97. Madhu Sudan. Decoding of reed solomon codes beyond the error-correction
bound. J. Complexity, 13(1):180–193, 1997.

30

http://www.algant.eu/documents/theses/cevallos.pdf
http://www.algant.eu/documents/theses/cevallos.pdf
http://eprint.iacr.org/

A Additional Material

A.1 Properties of Polynomial Evaluation

Here, we list some useful properties of the polynomial evaluation defined in
section 2.2

Claim (`-wise Independence.). For any ` ≤ d, any d− ` values a`+1, . . . , ad ∈ F,
any ` distinct values x1, . . . , x` ∈ F∗, and any y1, . . . , y` ∈ F we have:

Pr[PEval(a, x1) = y1, . . . ,PEval(a, x`) = y` : (a1, . . . , a`)← F`,a = (a1, . . . , ad)] =
1

|F|`

In other words, the values PEval(a, x1), . . . ,PEval(a, x`) are uniformly random
and independent when the first ` components of a are chosen at random.

Proof. There is a unique choice of a1, . . . , a` such that PEval(a, x1) = y1, . . . ,PEval(a, x`) =
y`. In particular, a0 = 0, a1, . . . , a` are the coefficients of unique degree ` poly-
nomial p(x) =

∑`
i=0 aix

i such that p(0) = 0 and p(xi) = yi −
∑d
i=`+1 aix

i.

Claim ((XOR) Universality). Let K ⊆ F. Then for any a 6= a′ ∈ Fd and any
y ∈ F we have Prx←K[PEval(a, x) − PEval(a′, x) = y] ≤ d

|K| .
6 In particular,

the hash family H = {Hx : Fd → F}x∈F defined by Hx(a) = PEval(a, x) is
ε = d

|F| -universal.

Proof. The event PEval(a, x)−PEval(a′, x) = y occurs iff x is a root of the non-

zero degree ≤ d polynomial
∑d
i=1(ai − a′i)xi − y = 0. Since there are at most d

roots of this polynomial, the probability of the above happening over a random
choice of x← K is at most ε = d

|K| .

B Proofs

B.1 Proof of Theorem 4

Proof. Let Adv be any unbounded adversary and msg ∈ M be some value.
Consider the robustness game Exp(msg,Adv) from Definition 4. We show that
Pr[Exp(msg,Adv) = 1] ≤ δ. Let (s1, . . . , sn) be the original shares created by the
sharing algorithm in step E.1 of the experiment with si = (ŝi, ki, yi). Let I ⊆ [n],
|I| = t be the set of corrupted parties at the end of step E.2 of the experiment,
and let s′i = (ŝ′i, k

′
i, y
′
i) be the modified shares at the end of step E.3 of the

experiment. Let msg(1), . . . ,msg(L) be the list of recovered messages in step E.4
of the experiment. By the correctness of list-decoding with t errors we know that
msg = msg(j

∗) for some j∗ and that we have |{i ∈ [n] : Hk′i
(msg(j

∗)) = y′i}| ≥
|[n]\I| ≥ t+1. Therefore, the only way that the wrong message is recovered is if
there exists some j ∈ [L], j 6= j∗ such that |{i ∈ [n] : Hk′i

(msg(j)) = y′i}| ≥ t+1.

6 We can think of this as a generalization of XOR universality over a an arbitrary field
F.

31

This only happens if there exists some i ∈ [n]\I such that Hki(msg(j)) = yi (note
that for i 6∈ I, k′i = ki, y

′
i = yi). The key ki for i 6∈ I is random and independent

of the adversary’s view in the experiment and therefore also of the message
msg(j) which is completely determined by the adversary’s view. Therefore, by
the ε-universality of the hash, the probability of the above happening for any
i ∈ [n] \ I, j ∈ [L] \ {j∗} is at most ε. By a union bound over all such i, j the
probability that the wrong message is recovered is Pr[Exp(msg,Adv) = 1] ≤
nLε = δ.

B.2 Proof of Theorem 5

Proof. We prove the three properties separately.

Authentication. Let (labi,msgi, ri, σi) : i = 1, . . . , ` be such that the la-
bels labi are distinct, and let (lab′,msg′, r′, σ′) be such that (lab′,msg′, r′) 6∈
{(labi,msgi, ri)}i∈[`]. We consider two cases:

Case 1: lab′ 6∈ {labi}i∈[`]. In this case keylab′

1 , keylab′

2 are random and inde-

pendent of {keylabi
1 , keylabi

2 }i∈[`]. This follows by the (`+ 1)-wise indepdnence of
PEval(key, ·) from Claim A.1. Therefore:

Pr
key←K

[MACkey(lab′,msg′, r′) = σ′ | {MACkey(labi,msgi, ri) = σi}i∈[`]]

≤ Pr
key←K

[keylab′

2 = σ′ − PEval((r′,msg′) , (lab′, keylab′

1)) | {MACkey(labi,msgi, ri) = σi}i∈[`]]

≤ 1/|F| ≤ ε.

where the last line relies on the fact that the values MACkey(labi,msgi, ri) only

depend on {keylabi
1 , keylabi

2 }i∈[`].
Case 2: lab′ = labi for some i ∈ [`]. In this case keylabi

1 , keylabi
2 are random and

independent of key
labj

1 , key
labj

2 for j ∈ [`] \ {i}. This follows by the (` + 1)-wise
indepdnence of PEval(key, ·) from Claim A.1. Therefore:

Pr
key←K

[MACkey(lab′,msg′, r′) = σ′ | {MACkey(labi,msgi, ri) = σi}j∈[`]]

≤ Pr
(key

labi
1)←F′

[
PEval((r′,msg′) , (labi, key

labi
1))

−PEval((ri,msgi) , (labi, key
labi
1))

= σ′ − σi
]

≤ m+ `

|F′|
= ε

where the second line follows since the events {MACkey(labi,msgi, ri) = σi}j∈[`]
are independent of keylabi

1 and the third line follows from Claim A.1 where the
value (labi, key

labi
1) ∈ F is uniformly random over a subset of size |F′|.

Privacy over Keys. Let (labi,msgi, ri) ∈ L ×M × R : i = 1, . . . , ` be `
fixed values such that the labels labi are distinct. Then the ` values {keylabi

2 =

32

PEval(key2, labi)}i∈[`] are `-wise independent (Claim A.1) over the random choice

of key2. Therefore so are the ` values σi = MACkey(labi,msgi, ri) = PEval((ri,msgi) , (labi, key
labi
1))+

keylabi
2 .

Privacy over Randomness. Fix any msg ∈M, any ` distinct labels lab1, . . . , lab`,
and any keys key1, . . . , key` ∈ K with keyi = (keyi,1, keyi,2). Let keylabi

1 =

PEval(keyi,1, labi), key
labi
2 = PEval(keyi,2, labi). Let σi = MACkeyi(labi,msg, r) =

PEval((r,msg) , (labi, key
labi
1)) + keylabi

2 for i = 1, . . . , ` be random variables
over the choice of r ← R. Then {σi}i∈[`] are random and independent by the

`-wise independence of PEval((r,msg) , (labi, key
labi
1)) over the random choice

of r (Claim A.1) and the fact that the labels labi are distinct.

B.3 Proof of Lemma 3

Proof. Let Adv be any unbounded adversary in the robustness game (Definition
4). We show that Pr[Exp(msg,Adv) = 1] ≤ δ. Our proof follows by defining
several hybrid distributions.

Hybrid 0: This is the original robustness game Exp(msg,Adv) with a message
msg and an adversary Adv as in Definition 4.

Hybrid 1: This is a modified game Exp(1)(msg,Adv) which is the same as
Exp(msg,Adv) except that we modify how the shares are reconstructed in
step E.4 of the experiment. In particular, instead of running step R.1 of
reconstruction to compute tags′ = Recrds(p

′
1, . . . , p

′
n) we now set tags′ := tags

to be the original value chosen by the sharing procedure in step E.1 of the
experiment. By the security of the robust distributed storage, it’s easy to
see:

Pr[Exp(1)(msg,Adv)] ≥ Pr[Exp(msg,Adv)]− δrds.

Hybrid 2: This is a modified game Exp(2)(msg,Adv) which is the same as

Exp(1)(msg,Adv) except that we modify how the shares are created in step
E.1 of the experiment. In particular, we modify step S.3 of the sharing pro-
cedure to do the following:
– For each i ∈ [n] choose keyi ← K.
– For each (i, j) ∈ E choose (σi→j) ← T and (σi←j) ← T uniformly at

random.
– For each i ∈ [n] choose ri uniformly at random from R conditioned on{

∀(j, i) ∈ E : MACkeyj ((j, i, 0), (s̃i, Ei, keyi), ri) = σj→i
∀(i, j) ∈ E : MACkeyj ((i, j, 1), (s̃i, Ei, keyi), ri) = σi←j

}
(B.1)

We claim that the joint distribution of keys, tags, and randomness:

{keyi}i∈[n] , {σi→j , σi←j}(i,j)∈E , {ri}i∈[n] (B.2)

is identical in Hybrid 1 and 2, and therefore the Hybrids are altogether
identical.

33

Firstly, let’s only consider the joint distribution over only the keys and tags:

{keyi}i∈[n] , {σi→j , σi←j}(i,j)∈E (B.3)

In Hybrid 1, the tags are the output of the MAC whereas in Hybrid 2 they
are uniformly random. However, for every i ∈ [n] there are at most 2d tags of
the form σj→i (corresponding to the in-degree of i) and exactly d tags of the
form σi←j (corresponding to the out-degree of i). In Hybrid 1, all of these
tags are created by computing the MAC using distinct labels and these are
the only tags that rely on the randomness ri. Therefore by the “privacy over
randomness” of the MAC with ` = 3d, these tags are uniformly random and
independent over the choice of ri (for any choice of keys). This shows that
the distribution of keys and tags (B.3) is identical in Hybrid 1 and 2.
Once we fix any choice of keys, tags the values ri then follows the same
conditional distribution in Hybrids 1 and 2. In particular in both cases they
are uniformly random over R subject to satisfying (B.1). This shows that the
distribution of (B.2) is identical in Hybrid 1 and 2. Therefore the experiments

Exp(2)(msg,Adv) and Exp(1)(msg,Adv) are identically distributed and we
have:

Pr[Exp(2)(msg,Adv)] = Pr[Exp(1)(msg,Adv)]

Hybrid 3: This is a modified game Exp(3)(msg,Adv) which is the same as

Exp(2)(msg,Adv) except that we modify how the shares are reconstructed in
step E.4 of the experiment. Let I ⊆ [n] be the set of parties corrupted by the
adversary at the end of step E.2. Let s′i = (s̃′i, E

′
i, key

′
i, r
′
i, p
′
i) be the modified

shares submitted by the adversary in step E.3 and let si = (s̃i, Ei, keyi, ri, pi)
be the original shares created by the sharing procedure. Let us define the set
A ⊆ I as:

A = {i ∈ I : (s̃′i, E
′
i, key

′
i, r
′
i) 6= (s̃i, Ei, keyi, ri)}.

We refer to A as the active corruptions. We define P = I \A as the passive
corruptions and H = [n] \ I as the honest parties. In Hybrid 3, we modify
step R.3 of the reconstruction procedure to do the following

– Set L(e) := bad for all edges e ∈ E′A→H ∪ E′H→A. These are the edges
where one end point is honest and the other active.

– Set L(e) := good for all edges e ∈ E′H∪P→H∪P . These are the edges
where neither end-point is actively corrupted.

– For all other edges e compute the labeling L(e) as previously by verifying
the MAC tags.

The only way that Hybrid 2 and 3 could differ is if one of the following ≤ nd
“forgery events” occurs:

– For (i, j) ∈ E′ with i 6∈ I, j ∈ A : Event MACkeyi((i, j, 0), (s̃′j , E
′
j , key

′
j), r

′
j) =

σ′i→j .

– For (j, i) ∈ E′ with i 6∈ I, j ∈ A : Event MACkeyi((j, i, 1), (s̃′j , E
′
j , key

′
j), r

′
j) =

σ′j←i.

34

Note that for each i 6∈ I, the key keyi is uniformly random from the point
of view of the adversary after the corruption stage (step E.2) subject to the
≤ 3d constraints: 7

∀(i, j) ∈ E : MACkeyi((i, j, 0), (s̃j , Ej , keyj), rj) = σi→j

∀(j, i) ∈ E : MACkeyi((j, i, 1), (s̃j , Ej , keyj), rj) = σj←i

Therefore, by the authentication property of the MAC, the probability of
any specific forgery event occurring is at most εmac. By the union bound,
the probability that some such event occurs is at most 2ndεmac.
This shows:

Pr[Exp(3)(msg,Adv) = 1] ≥ Pr[Exp(2)(msg,Adv) = 1]− 2ndεmac.

Hybrid 4: We define Hybrid 4 via the experiment Exp(4)(msg,Adv) which is

the same as Exp(3)(msg,Adv) except that we modify how the shares are
created in step E.1 of the experiment. In particular, we modify steps S.2 and
S.3 of the sharing procedure to do the following:
– In step S.2, we now omit condition (b) and no longer re-sample the graph
G is some vertex has in-degree > 2d. In particular, we now just choose
G = ([n], E) by choosing Ei ⊆ [n] \ {i}, |Ei| = d uniformly at random
and define E = {(i, j) : i ∈ [n], j ∈ Ei}. Let INDEG be the event that
the graph we sample has some vertex with in-degree > 2d.

– If the event INDEG does not occur, then step S.3 proceeds the same way
as before. If INDEG does occur, then we modify step S.3 to choose the
keys, tags, and randomness:

{keyi}i∈[n], {σi→j , σi←j}(i,j)∈E , {ri}i∈[n]

uniformly at random and independently of each other.
Hybrids 3 and 4 can only differ if in Hybrid 4 the event INDEG does occur.
This means that there is some vertex j ∈ [n] with in-degree > 2d. For each
i ∈ [n]\j, the probability that the edge (i, j) is in E is d/(n−1) and therefore
the expected in-degree of vertex j is ≤ d. These events are independent and
therefore, by Chernoff, the probability of vertex j having in-degree > 2d is
< 2−d/3. By the union bound over all j ∈ [n], the probability that there
exists some vertex j ∈ [n] with in-degree > 2d is < n2−d/3. Therefore we
have:

Pr[Exp(4)(msg,Adv) = 1] ≥ Pr[Exp(3)(msg,Adv) = 1]− n2−d/3.

Hybrid 5: We observe that in Hybrid 4, the adversary does not learn anything
about the sets Ei : i 6∈ I during the corruption stage (at the end of step E.2).
In other words, from the point of the adversary, each such set is uniformly

7 For this argument, we can even condition on a worst-case choice of all tags σi→j , σi←j

and the edges E as well as all other keys {keyj : j 6= i}.

35

random over [n] \ {i} subject to |Ei| = d. To see this, note that when the
event INDEG occurs in Hybrid 4 than the adversary truly does not see any
information about Ei : i 6∈ I at the end of step E.2. On the other hand
when the event INDEG does occur then the only information available to the
adversary about each set Ei and key keyi for i 6∈ I at the end of step E.2 in
Hybrid 4 is:8{

∀j ∈ Ei : MACkeyi((i, j, 0), (s̃j , Ej , keyj), rj) = σi→j
∀j s.t. i ∈ Ej : : MACkeyi((j, i, 1), (s̃j , Ej , keyj), rj) = σj←i

}
(B.4)

By the privacy over keys property of the MAC, for any choice of Ei with
|Ei| = d the probability of (B.4) happening over the random choice of keyi
is exactly 1/|T |d′ where d′ ≤ 3d is the total degree of vertex i. In particular,
this probability is the same for every choice of Ei, |Ei| = d. Therefore,
the adversary’s views at the end of step E.2 in Hybrid 4 is independent of
Ei : i 6∈ I.
We formalize this by defining the hybrid experiment Exp(5)(msg,Adv) which

is the same as Exp(4)(msg,Adv) except that we modify how the shares are
reconstructed in step E.4 of the experiment. In step R.2 we re-sample a
completely fresh set E′i ⊆ [n] \ {i} of size |E′i| = d uniformly at random
for each i 6∈ I instead of using the set E′i = Ei that was chosen by the
sharing procedure. We use these freshly re-sampled sets to define the graph
G′ = ([n], E′).
By the above argument

Pr[Exp(5)(msg,Adv) = 1] ≥ Pr[Exp(6)(msg,Adv) = 1]

Hybrid 6. This is a modified game Exp(6)(msg,Adv) which is the same as

Exp(5)(msg,Adv) except that we modify how the shares are reconstructed
in step E.4 of the experiment. In particular, we change step R.4 of the re-
construction procedure so that, instead of outputting B ← GraphID(G′, L),
it sets B = H ∪ P , where the sets A,H,P are defined the same way as in
Hybrid 3.
We observe that the distribution of (G′, L,H,A, P) in Hybrid 5 is exactly

that of GenAdv′(n, t, d) where the adversary Adv′ is defined as follows:

– Run steps E.1, E.2 and E.3 of Exp(5)(msg,Adv). This defines the values
si, s

′
i and the sets A,H,P as described above.

– Let E′A∪P→[n] =
⋃
i∈I E

′
i.

– For each edge e = (i, j) ∈ E′A→A∪P ∪ E′A∪P→A define L(e) = good if

σ′i→j = MACkey′i
((i, j, 1), (s̃′j , E

′
j , key

′
j), r

′
j) and σ′i←j = MACkey′j

((i, j, 1), (s̃′i, E
′
i, key

′
i), r

′
i)

and otherwise L(e) = bad.

8 For this argument, we can even condition on a worst-case choice of all tags and as
well as all other keys and edges except for keyi, Ei.

36

We observe that, in Hybrid 5 just like in the game GenAdv′(n, t, d), the edges
E′H→[n] are chosen uniformly at random subject to the out-degree being d.

Furthermore, in both cases we define L(e) = good for all e ∈ E′H∪P→H∪P
and L(e) = bad for all e ∈ E′A→H ∪ E′H→A. Therefore (G′, L,H,A, P) in

Hybrid 5 has the distribution of GenAdv′(n, t, d). By the guarantee of the
graph identification algorithm we therefore have that, when we execute B ←
GraphID(G′, L) in step R.4 of the reconstruction process in Hybrid 5, then:

Pr[B = H ∪ P] ≤ 1− δgi.

Therefore,

Pr[Exp(6)(msg,Adv) = 1] ≥ Pr[Exp(5)(msg,Adv) = 1]− δgi.

Conclusion. Finally, we observe that in Hybrid 6 we have

Pr[Exp(6)(msg,Adv) = 1] = 0.

This is because, when the shares are reconstructed in step E.5 of the ex-
periment, we are guaranteed that s̃′i = s̃i for i ∈ B. Furthermore, since
B = H∪P , we know that |B| ≥ t+1. Therefore, by the perfect reconstruction
with erasures property of the non-robust secret sharing scheme we are guar-
anteed that for any B′ ⊆ B of size |B′| = t+1 we have Recnr((s̃

′
i)i∈B′) = msg.

Combining the above, we get

Pr[Exp(msg,Adv) = 1] ≤ δrds + δgi + 2dnεmac + n2−d/3

which concludes the proof.

B.4 Proof of Theorem 7

Proof. The fact that the scheme (Share′,Rec′) satisfies perfect privacy follows the
same argument as in Lemma 1, and the fact that it satisfies perfect reconstruction
with erasures follows the same argument as in Lemma 2.

Therefore, we are left to analyze robustness. Let us consider the robust-
ness experiment Exp(msg,Adv) for the original scheme (Share,Rec). Let us de-
fine Expcoinsnr

(msg,Adv) to be the experiment when using some fixed choice of
coinsnr for the non-robust secret sharing scheme in step S.1 of the sharing pro-
cedure. It follows from the proof of Lemma 3 that for any msg ∈M, any choice
of coinsnr and for all adversaries Adv we have Pr[Expcoinsnr

(msg,Adv) = 1] ≤ δ.
In particular, the proof of Lemma 3 did not rely on the randomness of coinsnr
anywhere and works equally well if we fix them to some worst-case value.

Let us define Exp′(msg,Adv′) to be the robustness experiment for the q-wise
parallel repetition scheme defined above. Assume that there exists some adver-
sary Adv′ and message msg ∈M such that Pr[Exp′(msg,Adv′) = 1] = δ′. We can
think of Adv′ as participating in q parallel copies of the game Expcoinsnr

(msg, ·),

37

where coinsnr are chosen randomly once but are re-used in every copy of the
game. The adversary Adv′ has to win in more than q/2 of the copies to win
in Exp′(msg,Adv′). In particular, there must exist some choice of coinsnr such
that Adv′ has probability δ′ in winning in at least q/2 out of q parallel indepen-
dent copies of the interactive game Expcoinsnr

(msg, ·). Therefore, by employing
Chernoff bounds for the parallel-repetition of information theoretic interactive
games (i.e., interactive proofs – see e.g., [Gol98,IK10]) the probability of the

above happening is bounded by δ′ ≤ e− 3
128 q.

38

	Robust Secret Sharing with Essentially Optimal Share Size
	Introduction
	Our Techniques

	Notation and Preliminaries
	Chernoff Bounds
	Hash Functions, Polynomial Evaluation
	Graph Bisection

	Definition of Robust Secret Sharing
	The Building Blocks
	Robust Distributed Storage
	Private Labeled MAC
	Graph Identification

	Construction of Robust Secret Sharing
	Parameters of Construction
	Improved Parameters via Parallel Repetition

	Inefficient Graph Identification via Self-Consistency
	Efficient Graph Identification
	Overview and Intuition
	Graph Splitting
	Our Algorithm
	Analysis of Correctness

	Conclusion
	Additional Material
	Properties of Polynomial Evaluation

	Proofs
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Lemma 3
	Proof of Theorem 7

