
Multicommodity Facility Location under Group Steiner Access Cost

Laura J. Poplawski∗ Rajmohan Rajaraman†

Abstract
Motivated by publish-subscribe mechanisms in networks, we
introduce a new class of multicommodity facility location
problems: Multicommodity Group Steiner Facility Location
(MGSFL). The input to MGSFL consists of a metric space
over a given set of locations, a cost function which provides
a building cost for each commodity at each location, a set of
clients located at various points in the metric, and the set
of commodities that each client is interested in reaching. A
solution to MGSFL consists of (a) for each commodity, the
locations where facilities are built, and (b) for each client,
a tree connecting the client to at least one facility for each
commodity in its interest set. The goal is to minimize the
sum of the total facility building costs and the metric cost
of the client trees.

MGSFL is a natural generalization of the well-studied
Group Steiner Tree problem, which is equivalent to the
special case of MGSFL in which every building cost is either
0 or ∞ and there is only one client. We also note that
given the facility locations, the best client tree is an optimal
solution to an appropriate Group Steiner Tree instance.
Since the Group Steiner Tree problem is hard to approximate
to within a factor of Ω(log2−ε m) times optimum unless
NP has quasi-polynomial Las Vegas algorithms, where m
is the number of commodities, the same hardness result
immediately extends to MGSFL.

Our main result is a randomized 2O(
√

log n log log n)-

approximation algorithm for MGSFL, where n is the num-

ber of clients. We also present deterministic poly-logarithmic

approximations for three special cases. We give an O(log n)-

approximation algorithm when the facility building costs

differ only by commodity, not by location. We present an

O(log4 n log m)-approximation algorithm when the interest

sets are laminar — i.e., for each pair of clients, either their

interest sets do not intersect or else one client’s interest set

is contained within the other client’s interest set. We end

with an O(log n)-approximation algorithm when there are

no building costs but each commodity must be built exactly

once.

1 Introduction

Facility location is one of the oldest and most well-
studied algorithmic problems, applicable in widely di-
verse areas such as business operations, network man-
agement, and graph theory. Most existing multicom-
modity facility location variants apply to cases in which
the clients are physically moving between the facilities
to obtain the various commodities. We are concerned

∗Raytheon BBN Technologies.
†Northeastern University.

instead with a situation in which clients simply want to
connect to facilities serving various commodities. This
is applicable, for instance, in the case of a publish-
subscribe network in which clients are subscribers in
the network and commodities are content sources to be
published. Each subscriber (a node in the network) is
willing to pay for only the least expensive set of edges
required to connect it to a source for each item of rele-
vant published content. Content distribution networks
(CDNs) give another real-world application: the CDN
controls a set of links and wants to minimize both the
cost of creating data caches and the link usage by its
end users. We can estimate the link usage by an end
user as the sum of the costs of the links necessary to
connect the user to its required caches.

These network-design applications lead to a fairly
concrete problem definition which is a variation of
multicommodity facility location. We are given a set
of nodes (or clients) located in a network, plus a set of
content types (or commodities) that must be placed (a
facility must be built) at nodes in the network. Each
client is interested in some subset of the commodities,
which we refer to as the interest set of the client.
The interest graph is the bipartite graph of clients
and commodities with an edge from each client to the
commodities in its interest set. We are given the cost
for each commodity to build a facility at each location
(which may differ by commodity and by location). We
must pay separately to build each commodity, even if
multiple commodities are built at the same location.
Each client will choose the minimum cost set of edges
that connect it to some facility for each commodity in
its interest set. In other words, each client will choose
the minimum Group Steiner Tree [18] that connects it
to its interest set. Our goal is an algorithm to decide
where to build each commodity to minimize the total
building cost plus the total Group Steiner Tree costs
for the clients. We call this the Multicommodity Group
Steiner Facility Location problem (MGSFL).

From a theoretical perspective, MGSFL is partic-
ularly interesting as a generalization of two distinct
NP-complete problems: Facility Location (equivalent
to MGSFL with one commodity) and Group Steiner
Tree (equivalent to MGSFL with a single client and
with each building cost set to either 0 or ∞). It is

already known that Group Steiner Tree cannot be ap-
proximated to within a factor of Ω(log2−ε m) (where m
is the number of commodities), even on trees, unless NP
has quasi-polynomial Las Vegas algorithms [11]. Any
approximation algorithm for MGSFL will also give an
algorithm for solving Group Steiner Tree.

1.1 Our Results Because we are working within an
Ω(log2−ε m) bound on the hardness of approximating
MGSFL (where m is the number of commodities),
we concentrate on a poly-logarithmic approximation
ratio. Our approach is to attempt a poly-logarithmic
approximation ratio on trees, and then apply the results
from [7] to get an approximation algorithm for general
metrics. In the following, we use n to represent the
number of clients and m to represent the number of
commodities.

• Building costs vary by commodity, not by
location. (Section 3) We consider MGSFL on
trees when the cost of building each commodity is
the same regardless of where the facility is built.
For this special case, which we show is APX-hard,
we give a 9-approximation algorithm, implying an
O(log n) approximation for general metrics.

• General MGSFL. (Section 4) Our main result
is a randomized 2O(

√
log n log log n)-approximation al-

gorithm for general MGSFL. Our algorithm is a
natural generalization of the Group Steiner Tree
algorithm of Garg, Konjevod, and Ravi [8] using a
dependent rounding method, whose analysis may
be of independent interest.

Since we were unable to obtain a poly-logarithmic ap-
proximation ratio for the general problem, we also ex-
amine a version of MGSFL with specialized interest
sets. Content and information sources are often orga-
nized hierarchically; consequently, client interests can
often be represented together as a laminar graph. We
consider the special case where the interest sets of the
clients are laminar: given any two clients, either the in-
terest sets do not intersect or else one client’s interest
set is contained within the other client’s interest set.
This version still has the same approximation hardness
bound, but it has nice properties that make the problem
more approachable.

• Laminar clients. (Section 5) We give an
O(log3 n log m)-approximation algorithm for tree
metrics when the interest graph is laminar by client,
implying an O(log4 n log m) approximation for gen-
eral metrics.

Often, k-median problems go hand-in-hand with fa-
cility location problems, since this is the same problem

restricted to a certain number of buildings per commod-
ity (instead of allowing unlimited buildings with a cost
per building). We consider only the 1-median version.

• 1-Median. (Section 6) We give an optimal de-
terministic algorithm for the 1-median variant of
MGSFL on tree metrics with no building costs, im-
plying an O(log n) approximation for general met-
rics. This is the equivalent to the problem with
building costs varying only by commodity if all
building costs are very high compared to the edge
lengths.

We conclude with some open problems in Section 7.

1.2 Related Work Variants of Facility Location
have been studied for years. Single commodity versions
include uncapacitated ([19], [9], [14], [13], [15]), capaci-
tated ([6], [16]), and k-median, in which at most k facil-
ities can be built ([4], [1]). In [17], the first well-known
multicommodity version, multiple commodities may be
built at the same facility with decreasing marginal cost.
[17] gives an O(log t) approximation algorithm and a
matching hardness result, where t is the maximum num-
ber of commodities allowed at each facility. The results
from [17] apply to the k-median version as well.

A Facility Location variant closely related to
MGSFL — Group Facility Location — is discussed in
[12]. In Group Facility Location, the goal is to open
a set of facilities for each commodity, and each com-
modity will build a Steiner forest (a set of trees rooted
at the open facilities) connecting itself to all interested
clients. The goal is to minimize the sum over all com-
modities of (1) the building costs plus (2) the cost of the
Steiner forest for the commodity. This is different from
MGSFL because the commodities are building Steiner
forests rather than the clients. Since a Group Facility
Location algorithm chooses the locations for the com-
modities, building forests around the commodities al-
lows the algorithm to choose the roots of the forests. In
MGSFL, however, the roots are fixed and an algorithm
determines the leaves, yielding a different problem from
a technical standpoint.

Since each of our clients is solving the Group
Steiner Tree problem, introduced in [18], our results also
build on previous work related to Group Steiner Tree.
[8] gives a randomized O(log n log m)-approximation
algorithm for Group Steiner Tree on a tree, where n is
the number of nodes and m is the number of groups.
[3] derandomizes the algorithm from [8]. [10] gives
an Ω(log2 m) lower bound on the integrality ratio of
Group Steiner Tree, even on trees, and this is extended
to an Ω(log2−ε m) approximation lower bound in [11].
[5] provides a combinatorial algorithm with a poly-

logarithmic approximation ratio.
MGSFL is also a generalization of the multicast

“push-pull” data dissemination problem introduced in
[2]. In fact, one problem discussed in [2] is precisely
a 1-Median version of MGSFL in which exactly two
clients are interested in each commodity. [2] also
considers a number of other problem variations that
differ significantly from MGSFL.

2 Formal Definition

An instance of MGSFL is defined by a tuple
〈V,E, M, I, d, c〉, in which V is the set of nodes, E is the
set of edges, M is the set of commodities, I : V → Z
is the interest set function, d : E → Z is the length
function, and c : M × V → Z is the building cost func-
tion. The interest set of v, I(v), represents the set of
commodities in which node v is interested. The length
of edge e = (u, v) is d(e) or d(u, v). The cost of building
a facility for commodity t at node v is c(t, v). We will
use n = |V | and m = |M | for notational convenience.
We refer to any node with a nonempty interest set as a
client. Our formulation allows at most one client at any
node. This is without loss of generality since multiple
clients at a node can be modeled by simply creating a
new node for each client connected by 0 length edges.

A solution to an MGSFL instance consists of a
collection of location sets {Lt : t ∈ M} and a collection
of trees {Sv : v ∈ V }; Lt specifies the nodes at which a
facility for commodity t will be built, and Sv connects
v to at least one node in Lt for each t ∈ I(v). When the
tree Sv successfully includes a node at which a facility
for t ∈ I(v) has been built, we say that client v meets
commodity t. We extend the length function d and
define d(Sv) to be the sum of lengths of the edges in Sv.
An optimal solution to the MGSFL instance minimizes
the following. ∑

v∈V

d(Sv) +
∑
t∈M

∑
v∈Lt

c(t, v)

In the special case where there is only one client and
each building cost is set to be either 0 or ∞, MGSFL is
equivalent to the well studied Group Steiner Tree prob-
lem [18, 8, 3, 10, 5], in which we are given m groups of
nodes and want to find the minimum cost tree connect-
ing a given root node to at least one node from each of
these groups. It is known that even when the underlying
graph is a tree, Group Steiner Tree cannot be approx-
imated to within Ω(log2−ε m) (where m is the number
of groups) unless NP has quasi polynomial Las-Vegas
algorithms [11]. Thus, our focus in this paper is on
poly-logarithmic approximations for MGSFL. We use a
standard approach toward this goal: we concentrate on
solving MGSFL on trees, and invoke metric embedding

machinery [7] to derive results for general metrics. From
[7], there is a randomized embedding from any metric
into a tree with maximum distortion O(log n) (where
n is the number of nodes in the metric), so any solu-
tion on a tree with approximation ratio R will achieve
approximation ratio O(R log n) on an arbitrary metric.

Henceforth, we concentrate on algorithms for
MGSFL when the underlying graph is a tree T =
(V,E). We add the following additional notation. Let
h(T) be the height of a tree T , Puv be the unique path
connecting nodes u and v in T , auv be the least common
ancestor of nodes u and v in T , Te be the subtree of T
rooted at and including edge e, and Tu be the subtree of
T rooted at node u. We also assume that all clients are
located at the leaves, and that all commodities must be
built at leaves. This does not restrict our problem, since
we can always add an edge of length 0 to each node in
the graph, effectively converting our non-leaf nodes into
leaves.

For the benefit of the reader, Table 1 summaries the
above notation.

T = (V,E) A tree consisting of nodes (V)
and edges (E)

n The number of nodes (|V |).
Te, Tu The subtree of T rooted at edge

e, node u.
h(T) The height of tree T .
Puv The set of edges along the unique

path in T from node u to node v.
auv The least common ancestor of

nodes u and v in T .
d(e), d(u, v) The length of edge e = (u, v).
M , m The set of all commodities (M)

and the number of commodities
(m).

I(v) The subset of commodities in
which the client at node v is in-
terested.

c(t, v) The cost of building a facility for
commodity t at node v.

Sv The group Steiner tree used for
client v to connect it to all com-
modities t ∈ I(v).

Table 1: Notation

Linear Program for MGSFL. Many of our algo-
rithms use the following linear program, which gives
a fractional solution to MGSFL on a tree, assuming
without loss of generality that we may only build com-
modities at the leaves.

In the LP, the variable ytu represents the amount
commodity t is built at node u, xjtu represents the
amount client j meets commodity t at node i, and zje

represents the amount client j crosses edge e.
minimize∑

j,e

zje · d(e) +
∑
u,t

ytu · c(u, t)

subject to

zje ≥
∑

u:e∈Pju

xjtu for all j, t, e

(2.1)

∑
u

xjtu ≥1 for all j, t ∈ I(j)
(2.2)

ytu ≥xjtu for all j, t, u
(2.3)

ytu =0 for all t, for all u not at a leaf
ytu ≥0 for all t, u

xjtu ≥0 for all j, t, u

zje ≥0 for all j, e

In addition, we want to set the following, which will
be used in the algorithms. Notice that wjte and wjtv are
each at most 1 for any j, t, e, v.

• wjtu =
∑

v∈Tu
xjtv

• wjte =
∑

v∈Te
xjtv

• Ytu =
∑

v∈Tu
ytv

Since the LP gives a fractional solution to MGSFL,
we may describe the fractional solution with such
phrases as “client j meets commodity t at least 1

4 in
subtree Te” or “commodity t is built at most 1

2 at node
v.” A fractional meeting of amount δ between j and t at
v means that mine∈Pjv

zje ≥ δ and ytv ≥ δ. A fractional
building amount δ for t at v means ytv ≥ δ.

It is worth noting that the same linear program,
appropriately specialized, has been used to solve the
Group Steiner Tree problem [8, 3, 10, 5]. Therefore the
integrality ratio of this LP is at least Ω(log2 m) in the
general case, as proved in [10].

We close this section with the following Theorem
proved in [5], and an immediate Corollary, which we
use later in this paper. For a given tree T , let h(T)
denote the height of T and let dT (u, v) represent the
distance between nodes u and v in T .

Theorem 2.1. Chekuri, Even, Kortsarz [5, Section 4]
Then, we can find another tree T ′ such that h(T ′) ≤
3 · logα n, and for any u, v, dT (u, v) ≤ dT ′(u, v) ≤
α · dT (u, v).

Corollary 2.1. Given a tree T with n nodes, we can
find a tree T ′ with h(T ′) ≤ O(

√
log2 n), and for any u,

v, dT (u, v) ≤ dT ′(u, v) ≤ O(2
√

log2 n) · dT (u, v).

3 Building costs vary by commodity, not by
location

In this section, we restrict the building cost function
so that c(t, v) = c(t, v′) for all t, v, v′ 6= v. For this
special case, we present a polynomial-time O(log n)-
approximation algorithm. We achieve this by develop-
ing a 9-approximation algorithm for tree metrics, and
then invoking the metric embedding machinery. Be-
fore we present our algorithm for the tree, we show that
MGSFL problem is APX-hard, even for the special case
when all building costs are uniform and the underlying
network is a tree. This implies, our approximation for
trees is within a constant factor of the best achievable
unless P 6= NP.

Theorem 3.1. When building costs are uniform,
MGSFL is APX-hard even for tree networks.

Proof. The proof is by reduction from set cover. Let
S be a set cover instance with U being the universe
of n elements, and S being the collection of sets. We
assume furthermore that each set consists of at most B
elements, and the number of sets an element belongs
to is at most B. We construct an MGSFL instance
〈V,E, M, I, d, c〉 as follows. The set V equals S ∪ {r}
where r is a special root node. The set E of edges
equals {(r, s) : s ∈ S}. We have a commodity for each
element, so M equals U . The length of every edge is 1
and the cost of building any commodity at any location
is C (C > 1). At every leaf node s, for every commodity
t ∈ s, we have k clients each with interest set equal to
{s}, where k is chosen to be larger than 2Cn2. Finally,
we have one client at the root with interest set equal to
U .

We now consider solutions to the MGSFL instance.
One solution X is to build a facility for commodity t
at leaf s whenever t is in s, and for the client tree of
the client at root r to be formed by connecting the
root to the leaf nodes in a subset S′ of S that forms
the minimum set cover solution to S. The cost of X
equals opt(S) + C

∑
s∈S |s|, where opt(S) is the cost of

a minimum set cover. opt(S) < n, since the n nodes
include |S| leaves plus one root, while opt(S) includes
at most all |S| sets. C

∑
s∈S |s| ≤ C|S|B < Cn2.

Consider any solution Y . If there exists a leaf node
s and a commodity t ∈ s such that no facility for t is
built at s, then the cost incurred by the k clients to
meet commodity t is at least k. Since k > 2Cn2 (which
exceeds the cost of X), Y is optimal only if at every leaf

s a facility is built for every commodity in s; otherwise,
we can replace Y by another solution that has smaller
cost and satisfies this property. Furthermore, we can
assume without loss of generality that no facility is built
at the root since any such facility can be removed, and
at most one edge added to the root client tree while
saving at least C − 1 > 0 cost. Thus, the set T of
leaves where the root client meets the commodities in
U \R is a valid set cover solution. The cost of Y equals
C
∑

s∈S |s| + cost(T), where cost(T) is the cost of the
set cover solution T .

Suppose we obtain an α-approximation to the
MGSFL instance. Then, we obtain a solution to the
set cover instance of cost at most (α − 1)C

∑
s∈S |s| +

αopt(S), which is at most (α − 1)CBn + αopt(S).
Since opt(S) is at least n/B, we obtain that we have
a solution to the set cover instance with cost at most
((α− 1)CB2 + α)opt(S). Since C and B are constants,
we can set α+(α−1)CB2 to be a constant strictly bigger
than 1 by setting α sufficiently close to 1. Given that the
set cover problem, even with the restriction of bounded
set sizes and bounded number of occurrences for each
element, is APX-hard, it follows that the MGSFL prob-
lem with the restriction that the underlying network is
a tree and building costs are uniform, is APX-hard.

We next present our algorithm. We round a solution
to the LP using Algorithm 1. Algorithm 1 builds three
“types” of facilities. Examining one commodity at a
time, we skim down the tree in a depth-first search
order, starting at the root. We built the first type of
commodity, Type A, at some node u if there are two
subtrees rooted at children of u such that the LP built
the commodity at least 1

3 in each of these subtrees. As
we skim down the tree, each time we’ve accumulated
another unused 1

3 of built facility for the commodity,
we build a Type B facility. If we hit a point where no
subtree has at least 2

3 total building for the commodity,
then we build a facility of Type C and stop building this
commodity down this path.

Theorem 3.2. Algorithm 1 gives a 9-approximation
to MGSFL on a tree, when for any t, v, v′, c(t, v) =
c(t, v′).

Proof. Lemmas 3.1 and 3.2 together prove Theorem
3.2.

Lemma 3.1. After an execution of Algorithm 1, each
client j meets each commodity t ∈ I(j) at least once.

Proof. Consider client j interested in commodity t.
Consider some subtree (say it is rooted at r0) such that
wjtr0 ≥ 1

3 in the LP solution, and such that for any child

Algorithm 1 Approximation algorithm for the version
of MGSFL with no budget and with building costs
varying only by commodity, not by location.
1: Solve the LP.
2: for each commodity t do
3: for each node r0 in the tree, in a depth-first-

search order do
4: Let (r0, r1, r2, . . . , rf) = the nodes along the

path from r0 to the root of the tree (rf).
5: if Ytr0 ≥ 1

3 then
6: if there are no“Type C” buildings for com-

modity t along path (r1, r2, . . . , rf) then
7: if there are two children c1 and c2 of r0

such that Ytc1 ≥ 1
3 and Ytc2 ≥ 1

3 then
8: build a Type A facility for commodity t

at r0

9: else
10: Let ri be the closest node to r0 in

the path (r0, r1, . . . , ri, . . . , rf) such that
we’ve built a Type B facility for com-
modity t at ri. If we have not built any
Type B facilities, let i = f + 1.

11: if
∑i−1

x=0

∑
children r of rx such that Ytr< 1

3
Ytr ≥

1
3 then

12: build a Type B facility for commodity
t at r0

13: else if there is no child c of r0 such that
Ytc ≥ 2

3 then
14: build a Type C facility for commodity

t at r0

15: For each client j, let Sj = the set of all edges e such
that zje ≥ 1

3 .

r of r0, wjtr < 1
3 . Say (r0, r1, . . . , rf) is the path from

r0 to the root of the tree. Then any node in (r0, . . . , rf)
satisfies the condition on line 1 by definition of r0. We
will show that j must meet t at some ri.

Claim 3.1. If we built a facility of Type C for com-
modity t at any node ri in (r0, . . . , rf), then our tree for
client j must include ri.

Proof. Suppose there is a Type C facility at node ri(0 <
i ≤ f). Since the condition on line 1 was true (we built
a Type C facility), Ytri−1 < 2

3 . Therefore, j meets t less
than 2

3 in the subtree rooted at ri−1. If j is a descendant
of ri−1, the LP solution for j must include edge (ri−1, ri)
with weight at least 1

3 in order for j to meet t at least
once in the tree. Therefore, our solution tree for client j
must include ri. If j is not a descendant of ri−1, the LP
solution for j must include edge (ri, ri−1) at least 1

3 in
the LP solution to get to r0 (by definition of r0), so our

solution tree for client j will still include ri. Therefore,
j meets t at ri.

Claim 3.2. Suppose there is a facility for commodity t
at node ri(0 < i ≤ f), and there are no facilities for t
built at any rg, 0 ≤ g < i. Then, our tree for client j
must include ri.

Proof. Since we didn’t build a facility at any rg, 0 ≤
g < i, we could not have built a Type B facility
at any of these nodes. Therefore, since we didn’t
build a Type B facility specifically at r0, then by line
1,
∑i−1

x=0

∑
children r of rx:Ytr< 1

3
Ytr < 1

3 . Furthermore,
since we didn’t build a Type A facility at any rg, 0 <
g < i, the condition on line 1 must also be false for
these nodes, so Ytc < 1

3 for all children c of rg, c 6= rg−1

(by definition of r0, we know that all nodes c on the
path r0, r1, . . . , rf have Ytc ≥ 1

3). We also didn’t build
a Type A facility at r0, so at most one child c of r0 has
Ytc ≥ 1

3 . We didn’t build a Type B facility at r0, so
there must be one child, say r−1 of r0 with Ytr−1 ≥ 1

3 .
By definition of r0, j meets t < 1

3 under each child of
r0, including r−1. This gives:

∑
children r 6=r−1 of r0

Ytr +∑i−1
x=1

∑
children r of rx,r 6=rx−1

Ytr < 1
3 , so j meets t less

than 1
3 under any children of this path other than r−1,

and j meets t less than 1
3 under r−1. So j meets t less

than 2
3 under ri−1.

If j is a descendant of ri−1, the tree for j in the
LP solution must include edge (ri−1, ri) at least 1

3 , so
our tree for j will include ri. If j is not a descendant of
ri−1, it must pass through ri at least 1

3 to get to r0 (by
definition of r0). So j meets t at ri.

If there is any facility for commodity t built at r0, j
will meet t there, since j passes through r0 by definition
of r0. Therefore, if there is a facility for commodity t
built at any node in (r0, . . . rf), j will meet t.

If no facility is built at any node in (r0, . . . rf), then
t must be built ≥ 1

3 in at most one child of r0 (but meets
j there less than 1

3), and other than this subtree under
r0, t is built a total of < 1

3 under rf . So j meets t < 2
3

under rf , a contradiction since rf is the root of the tree.
Thus there must be some facility for t built at a

node in (r0, . . . rf) which is part of our tree for j.

Lemma 3.2. The cost from Algorithm 1 is at most 9
times the cost of the solution to the LP.

Proof. The client costs incurred by Algorithm 1 are at
most 3 times the LP client cost, since the client values
zje are either rounded down to 0 or multiplied by 3.

We will analyze the building costs for a single
commodity, t, according to the type of facilities built.

Type A facilities: If X is the number of lowest level
subtrees Tu in which the LP solution gives Ytu ≥ 1

3
(“lowest level” means that although the LP builds t
at least 1

3 in the subtree Tu, the LP builds t less
than 1

3 under each subtree rooted at a child of u), we
may build at each intersection of two such subtrees.
The maximum number of such intersections equals
the maximum number of non-leaf nodes with at least
2 children in a tree with X leaves. Therefore, the
maximum number of such intersections is less than X.
This gives us a cost less than 3 times the LP cost for
building facilities.

Type B facilities: These are paid for by
the“gathered” costs from the subtrees in which the com-
modity is built < 1

3 by the LP. In other words, we are
consolidating the cost of tiny fractions of built facilities
over a number of subtrees and using each of these tiny
fractions only towards a single facility. Since each frac-
tional building in the LP is used to build at most one
Type B facility, and since we must have at least 1

3 of a
building for each type B facility we build, this cost is at
most 3 times the LP cost for building facilities.

Type C facilities: These are paid for by the > 1
3

building below the node at which the Type C facility is
built. Again, we pay at most 3 times the LP cost for
building facilities.

We now bound the total cost. The fractional
building cost at a node u in the LP may be used to
build a Type C facility only at ancestors of u. No other
facility will be built at any node whose ancestor contains
a Type C facility (according to the condition at line 1
of the algorithm). Therefore, if the same cost at u is
also used towards a Type B facility, the Type B facility
must be located at an ancestor of the Type C facility.
By the condition at line 1, facilities of any type are only
built at the root of a subtree in which there is > 1

3 built
by the LP, so the LP must build the commodity > 1

3 in
the subtree rooted at the Type C facility. However, the
cost of a Type B facility comes entirely from subtrees
with < 1

3 built by the LP. Therefore, the fractional
building at u cannot be used towards both a Type C
and a Type B facility. This means that our building
costs are at most the LP building costs times [the cost
for building Type A facilities times the maximum of
(Type B building costs, Type C building costs)] ≤ 9
times the LP building costs.

We can use the probabilistic embedding technique
from [7] to convert the problem on general metrics to the
problem on trees, adding only a factor O(log n) to the
approximation ratio. Therefore, this algorithm gives an
O(log n)-approximation on general metrics.

4 General MGSFL

In this section, we give a 2O(
√

log n log log n) approxima-
tion algorithm for the general MGSFL problem. Our
algorithm uses a generalization of the elegant random-
ized rounding algorithm of [8] for Group Steiner Tree
that may be of independent interest.
Height reduction. First, we will convert the input
tree into a tree with at most

√
log n levels. This can be

done as in Corollary 2.1, giving up a factor of 2
√

log n in
the approximation ratio.
Solving LP and preprocessing. Next, we solve
the LP applied to the tree of reduced height. Before
rounding, we ensure that each of our variables has a
value ≥ 1

2n , and each xjtu variable has a value < 1
8 . To

make sure all values are at least 1
2n , we will (a) set any

value below 1
2n to 0, and (b) double all remaining values.

All LP constraints still hold after each of these steps
except for Constraint 2.2, which will break after step
(a). However, we’ve only removed at most n · 1

2n = 1
2

from the left hand side, so by doubling the values in
step (b), we get back to a valid (although non-optimal)
solution. We have at most doubled the value of the
objective function, and we are now assured that each
value is at least 1

2n . To ensure that each xjtu < 1
8 , we

proceed as follows. For any j, t such that there exists
some xjtu ≥ 1

8 , pick one such u. Set xjtv = 0 for all v,
set ytu = 1, and set xje = 1 for all e ∈ Pju. Now we
have guaranteed that j and t will meet at node u, and
we have at most multiplied the objective function by an
additional 8.
Rounding. The core of the algorithm is the following
randomized rounding procedure. We set new variables
w′

jte, x′jtu, y′tu, and z′je (each will be 0 or 1). Initially,
set w′

jte = 0. Follow the steps below.

1. For each edge e, assign a random value re ∈ [0, 1].

2. For each client j, commodity t ∈ I(j), and edge
e . Assume the path from the root to e is
e1, e2, . . . , ep = e. Set w′

jte = 1 if and only if
wjte1 ≥ re1 and wjteα

wjteα−1
≥ reα

for all α ∈ 2, . . . p.

3. For each client j, commodity t ∈ I(j), leaf u: set
x′jtu = 1 if and only if w′

jte = 1 for e adjacent to
leaf u.

Finally, set y′tu = 1 if and only if ytu = 1 or there is some
j such that x′jtu = 1. Set z′je = 1 if and only if zje = 1
or e is on the path from j to some u with x′jtu = 1.

The above algorithm does not guarantee that each
client meets all commodities in its interest set (or even
that all commodities have been built). Therefore, we
will repeat the algorithm, including the union of the
results, until all requirements are met.

Our analysis proceeds as follows. We will start
in Lemma 4.1 by analyzing the expected cost of our
solution. Then, in Lemma 4.2, we show that there is
a high probability that a given client will meet a given
commodity in its interest set. Finally, we compute how
many times we can expect to repeat the algorithm to
achieve an arbitrarily high probability that each client
meets all commodities in its interest set. Our total
expected cost is the expected cost of a single iteration
times the number of iterations.

Lemma 4.1. From the above rounding steps 1 to 3, we
get

E

∑
j,e

z′je · d(e) +
∑
t,u

y′tu · c(u, t)

]
≤

2O(
√

log n log log n) ·
∑
j,e

zje · d(e) +
∑
t,u

ytu · c(u, t)

Proof. We start by analyzing this for a single y′tu.
Suppose the path to u is made up of edges e1, . . . , ep.
For ease of notation, let vj1 = wjte1 , and vjα = wjteα

wjteα−1

(for each client j interested in commodity t). With this
modified notation, y′tu = 1 if and only if there exists
some j such that vjα ≥ reα for all α. Furthermore,∏p

α=1 vjα ≤ ytu, since wjtep is the only term that does
not cancel (which is exactly xjtu), and by LP Constraint
2.3, xjtu ≤ ytu. We will artificially increase the final
value (vjp) for each client so that each client has exactly∏p

α=1 vjα = ytu. This will only increase the expected
value of y′tu.

Now we are looking at a series of p-dimensional
points {Vj = (vj1, . . . , vjp)} that each satisfy∏p

α=1 vjα = ytu, plus one randomly chosen p-
dimensional point R = (re1 , . . . rep). y′tu = 1 if and
only if there exists some j just that R ≤ Vj in each di-
mension. We can upper bound this probability by the
probability that R will lie underneath the p-dimensional
curve

∏p
α=1 xα = ytu where each variable ranges from

ytu to 1. This is illustrated for a 2-hop path in Figure
1.

The area above the curve is given by the following

Figure 1: Analyzing the probability that a commodity y
will be built at some leaf of a tree with depth 2. For the
data plotted in this graph, ytu = 1

8 . Each client meets
t with probability ytu in the LP solution. Any possible
values of vj1 and vj2 for clients j meetings commodity t
at this node are represented by points along this curve. t
will be built here only if our random point R = (R1, R2)
lies in the gray area under this curve.

integration.∫ 1

ytu

∫ 1

ytu
xp

∫ 1

ytu
xpxp−1

. . .

∫ 1

ytu
xpxp−1...x3

∫ 1

ytu
xpxp−1...x3x2

dx1dx2 . . . dxp−1dxp

= 1− ytu −
p∑

i=1

(−1)i
(ytu

i!

)
lni

(
1

ytu

)

= 1− ytu −
p∑

i=1

(ytu

i!

)
lni

(
1

ytu

)
Subtracting the above expression from 1 will give

the area under the curve, so our actual upper bound on
the expectation of building commodity t at node u is

ytu +
p∑

i=1

(ytu

i!

)
lni

(
1

ytu

)

= ytu ·

1 +
p∑

i=1

lni
(

1
ytu

)
i!


≤ ytu ·

1 +
p∑

i=1

lni
(

1
ytu

)
i!


After solving the LP, we took steps to ensure that

all ytu values were at least 1
2n , so lni(1/ytu)/i! is at

most lni(2n)/i!, which by Stirling’s approximation is at
most ((e lnn)/i)i. Since 1 ≤ i ≤ p, and p is the height
of the tree which is at most O(

√
log n), lni(1/ytu)/i!

is maximized at i = p yielding an upper bound of
(e
√

log n)
√

log n. We thus have the following upper
bound on the expected cost of building commodity t
at node u.

E[y′tu] ≤ ytu ·

1 +
p∑

i=1

lni
(

1
ytu

)
i!


≤ (p + 1)

(
e
√

log n
)√log n

· ytu

= 2O(
√

log n log log n) · ytu

We next bound E[z′je] in terms of zje. First, assume
e is an edge adjacent to a leaf u, and assume the part
of the path from j to u is made up of edges e1, . . . , ep.
As above, let vt1 = wjte1 and vtα = wjteα

wjteα−1
(for each

commodity t in which client j is interested). Then,
z′je = 1 if and only if there exists some t such that
vtα ≥ reα for all α.

∏p
α=1 vtα ≤ zje (as above), since

wjtep is the only term that is not cancelled (which is
exactly xjtu), and by LP Constraint 2.1, xjtu ≤ zje.
We will artificially increase the final value (vtp) for
each commodity so that each commodity has exactly∏p

α=1 vtα = zje. Now we can solve the same integral as
above to get E[z′je] = 2O(

√
log n·log log n) · zje.

Now we need to consider an edge e that is not
adjacent to a leaf, and may therefore be on the path
to more than one leaf. Assume the edges on the path
from j to e are e1, . . . , ep = e. We set z′je = 1 if and
only if e is on the path to some u with x′jtu = 1. In
order for any one of these x′jtu to be 1, it must be
the case that wjte1 ≥ re1 , and wjteα

wjteα−1
≥ reα for all

α = 2 . . . p. For any commodity t, the product of these
values is exactly wjtep = wjte ≤ zje (by definition of
w). Now we can apply the same logic as before to show
E[z′je] = 2O(

√
log n·log log n) · zje

Adding these together and applying linearity of
expectation, we complete the proof of the theorem.

E

∑
j,e

z′je · d(e) +
∑
t,u

y′tu · c(u, t)


≤ 2O(

√
log n log log n) ·

∑
j,e

zje ·

(
d(e) +

∑
t,u

ytu · c(u, t)

)
Next, we will use Janson’s inequality to bound the

probability that a given client-commodity pair does not

meet in the rounded solution. This probability is low
enough that we can bound the number of expected
iterations before all requirements are met. We start by
defining Janson’s inequality. We borrow the following
notation from [8]. Let Ω be a universal set, and R ⊆ Ω
determined by the experiment in which each element
r ∈ Ω is independently included in R with probability
pr. Let Ai be subsets of Ω, and denote by Bi the
event that Ai ⊆ R. Write i ∼ j if Bi and Bj are not
independent. Define ∆ =

∑
i∼j Pr[Bi ∩Bj] (the sum is

over ordered pairs). Let µ =
∑

i Pr[Bi], and ε be such
that Pr[Bi] ≤ ε for all i.

Theorem 4.1. (Janson’s inequality) With the no-
tation as above, if ∆ ≥ µ(1 − ε), then Pr[∩iBi] is at
most e−µ2(1−ε)/(2∆).

The proof of the next lemma is adapted from [8].

Lemma 4.2. For a given client j and commodity t ∈
I(j), assuming xjtu < 1

8 for all u, the above steps 1
to 3 will set x′ values that satisfy LP Constraint 2.2
(
∑

u xjtu ≥ 1) with probability at least 1− e
−7

16
√

log n .

Proof. We will set the variables defined above for use
with Janson’s inequality. First find the first edge f
along the path from j to the root with zjf = 0. Ω
will be the set of all edges (not on the path from j to
f) in the subtree rooted at f . For each edge e ∈ Ω we
will define pe as follows. Assume e has parent edge e′

(e′ is the next edge along the path from e to f). If e is
adjacent to aue, pe = wjte. Else, pe = wjte

wjte′
.

Define a subset Au for each node u that has xjtu >
0: Au is the set of all edges along the path from aju to
u. By definition of Au and w, wjte > 0 for all e ∈ Au.
Then Bu (the event that Au ⊆ R) is the event that for
node u (with xjtu > 0) we included all of the edges from
aju to u.

Next, in Claim 4.1, we will show that the bound
we’ll get from Janson’s inequality will be useful. Specif-
ically, Janson’s inequality will bound Pr

[⋂
i Bi

]
, and

we want to bound the probability that a given client-
commodity pair will fail to meet, or Pr

[⋂
u(x′jtu = 0)

]
.

Claim 4.1. The probability of event Bu is exactly the
probability that x′jtu = 1. This immediately implies that
Pr
[⋂

u Bu

]
= Pr

[⋂
u(x′jtu = 0)

]
.

Proof. First, if there is some edge e in Bu with wjte = 0,
then (by definition of w) there is no u in the subtree
rooted at e with xjtu > 0. This contradicts our selection
of Bu. Therefore, we can assume that wjte > 0 for all
e ∈ Bu.

Next, recall that x′jtu = 1 if an only if wjte1 ≥ re1

and wjteα

wjteα−1
≥ reα for all α ∈ 2, . . . p (where e1 . . . ep

are the edges in Bu, sorted by the distance from the
root). Therefore, Pr[x′jtu = 1] = wjteq ·

∏p
α=2

wjteα

wjteα−1
.

Similarly, the probability that each edge is included
in Bu is the product of the pe values, which is also
wjteq ·

∏p
α=2

wjteα

wjteα−1
.

In order to apply Janson’s inequality, we need to
show ∆ ≥ µ(1 − ε). Therefore, we will bound ∆ and µ
in the next two claims. Recall, ∆ =

∑
u∼v Pr[Bu ∩Bv],

and µ =
∑

u Pr[Bu].

Claim 4.2. ∆ = Θ(
√

log n)

Proof. For this proof, let Te be the subtree rooted at
edge e. Recall that Puv is the path from u to v, and auv

is the least common ancestor of u and v.
For each ordered pair u ∼ v, if edge eu is the edge

adjacent to u and ev is the edge adjacent to v, we have
Pr[Bu ∩ Bv] = wjteu wjtev

wjte
where e is the root-side edge

adjacent to auv. We know that such an edge exists
because u ∼ v. By definition of w and the fact that
u and v are leaves, this gives Pr[Bu ∩ Bv] = xjtuxjtv

wjte
.

We can write ∆ =
∑

u

∑
v

xjtuxjtv

wjte
. But for any e,∑

(v∈Te) xjtv = wjte (by definition of w). This gives
(since the tree has depth at most O(

√
log n))

∆ ≤
∑

u

xjtu

∑
(e∈Puaju

)

1
wjte

∑
(v∈Te)

xjtv

=
∑

u

xjtu

∑
(e∈Puaju

)

1

≤
∑

u

xjtuO(
√

log n)

= O(
√

log n)

Claim 4.3. µ = 1

Proof. For a given Bu with edges e1, . . . ep on the path
from aju to u,

Pr[Bu] = wjte1 ·
p∏

α=2

wjteα

wjteα−1

= wjtep
= xjtu

By LP Constraint 2.2,
∑

u xjtu = 1. Therefore,
µ = 1.

Now, if we set ε = 1
8 , then Pr[Bu] ≤ ε for all

u by the stipulations of Lemma 4.2. We also know
∆ ≥ 7

8 = µ(1 − ε) for large enough n, so Janson’s
inequality gives us:

Pr

[⋂
u

Bu

]
≤ e

−µ2(1−ε)
2∆

Or in terms of our problem:

Pr

[⋂
u

(x′jtu = 0)

]
≤ e

−7
16
√

log n

Thus, given some pair j, t, the probability that
they don’t meet is at most e

−7
16
√

log n . If we repeat the
algorithm X times, the probability that the pair won’t

meet in any iteration is at most
(
e

−7
16
√

log n

)X

. Therefore,
in order ensure that after X iterations the probability
that any pair fails to meet is less than ε, we set X so
that

ε > nm
(
e

−7X
16
√

log n

)
≥
∑

j

∑
t∈I(j)

e
−7X

16
√

log n

X ≥ 16
√

log n

7 log e
(log(nm)− log ε)

Thus, we can set X, the number of iterations, to
anything larger than

16
√

log n

7 log e
(log(nm)− log ε)

< 3
√

log n log(nm) + 2
√

log n log
(

1
ε

)
= O(

√
log n

(
log(nm) + log

(
1
ε

))
Our number of iterations is thus poly-logarithmic in

the size of the input (and in ε), and our approximation
ratio is computed as follows.

• We lost a factor 2O(
√

log n) by converting the tree
to one with at most O(

√
log n) levels.

• We lost a factor of 16 by using only LP values that
were between 1

2n and 1
8 .

• Our expected cost was at most 2O(
√

log n log log n)

times the cost of the optimal LP solution on the
converted tree (ignoring the very large and very
small values from the LP solution).

This gives a final approximation ratio
2O(

√
log n log log n) on trees. We can apply the re-

sults from [7] to convert any metric into a tree
metric with distortion O(log n), so this also gives an
approximation ratio 2O(

√
log n log(

√
log n)) on general

metrics.
As noted earlier, our goal for MGSFL was an al-

gorithm with a poly-logarithmic approximation ratio,
since this would be close the known Ω(log2−ε m) hard-
ness result from [11]. 2O(

√
log n log log n) does not achieve

this goal, but it is possible that a more refined algo-
rithm could obtain a tighter bound. Our algorithm and
analysis does not take all properties of the LP solution
into account. For instance, although a commodity may
have significantly higher expected building cost for a
specific client at a single node then the LP cost, this
would only occur if the LP built the same commodity
some amount at each of many other nearby nodes. We
may be able to account for the higher expected building
cost by carefully considering why this commodity was
built at a variety of nearby locations.

5 Laminar Client Interest Sets

In this section, we examine another special case of
MGSFL. Instead of restricting the building cost or
distance functions, we consider the general problem
with restrictions on the interest sets. Specifically, we
require that the interest sets form a laminar collection;
that is, given any two clients j and j′ with |I(j)| ≤
|I(j′)|, either I(j) ⊆ I(j′) or else I(j) ∩ I(j′) =
∅. Since the hardness result for Group Steiner Tree
applies to MGSFL even with a single client, MGSFL
with laminar interest sets is also Ω(log2−ε m)-hard to
approximate.

For MGSFL with laminar interest sets, our approx-
imation algorithm consists of these high-level steps.

1. Convert the original tree into a tree of depth at
most O(log n).

2. Solve the LP on the new tree.
3. Use the LP solution to convert the problem into a

series of revised problems in which all clients are
located at the root of the input tree.

4. Solve each revised problem.

Step 1 can be done using Theorem 2.1, giving up
only a constant factor in the approximation ratio. Step
2 will then give us a fractional solution which has cost
at most a constant times the cost of the original optimal
solution. In Lemma 5.1, we show that, at the expense
of a factor proportional to the height of the tree, we
can reduce to the case where all the clients are located
at the root. Step 3 will thus cost us an extra factor
O(log n) in the approximation ratio. In the remainder
of this section, we focus on step 4 of the algorithm,
which will cost an extra factor O(log2 n log m) in the
approximation ratio, as shown in Theorem 5.1. This
yields an O(log3 n log m)-approximation for MGSFL
with laminar interest sets on tree metrics.

Lemma 5.1. If we can find a solution to MGSFL when
all clients are located at the root which costs at most
R times the optimal cost of a fractional solution to
the same problem, then we can find an O(h(T) · R)

approximation to MGSFL, where h(T) is the height of
the tree, in which each client may be located at any leaf.

Proof. Our algorithm proceeds as follows.

1. Solve the LP.

2. For each client j, consider the set of edges e on the
path from the root to the location of j. Find the
closest such edge e to the root such that xje ≥ 1

2 .
Set the location of j to the root endpoint of e.

3. For each internal node v, find an R-approximation
for MGSFL for the subtree rooted at v (call this
Tv), for only the clients now located at v, and only
the commodities in the interest sets of clients now
located at v.

Consider some level l of the tree, and the set of
subtrees Tl1, Tl2, . . . Tld rooted at the nodes at level
l. Now, consider the same linear program with the
following additional constraints for any client j which
has been restricted to subtree Tli

xjtu = 0 for all u not in Tli, for all t ∈ I(j)
zje = 0 for all e not in Tli

Now, if we take the solution to the original LP,
multiply all values by 2, and set the appropriate xjtu

and zje values to 0 as required by the extra constraints,
we claim that (a) we have a valid solution to the LP
with the extra constraints, and (b) the cost of our new
solution is at most twice the cost of the original solution.

We note that (b) is true because∑
j,e

2 · zje · d(e) +
∑
u,t

2 · ytu · c(u, t)

= 2 ·

∑
j,e

zje · d(e) +
∑
u,t

ytu · c(u, t)


For (a), we will check each constraint. The extra

constraints are obeyed by construction, and the non-
negativity constraints from the original LP clearly still
hold, since we are not increasing any values that were
previously set to 0, and we are not decreasing any values
beyond 0. For Constraint 2.1, if e ∈ Tli, then we have in-
creased xje by a factor 2, and we have at most increased
each xjtu by a factor of 2, so the constraint still holds.
If e /∈ Tli, then we have set zje = 0. However, if e ∈ Pju,
and e /∈ Tli, then u /∈ Tli, so all applicable xjtu have also
been set to 0. Next we’ll examine Constraint 2.2. In the
original LP solution, xje < 1

2 for the edge e that crosses
out of sli towards the root. Therefore, by Constraint

2.1,
∑

u/∈Tli
xjtu < 1

2 , so
∑

u∈Tli
xjtu ≥ 1 − 1

2 = 1
2 (by

Constraint 2.2). We have multiplied all xjtu for u ∈ Tli

by 2, so we now have
∑

u∈Tli
xjtu ≥ 1. Finally, check

Constraint 2.3. We have not dropped any ytu down to
0, and we multiplied all values by 2, so this constraint
still holds.

If we were to solve this modified LP restricted to
only the clients now located at roots of the subtrees
sl1, . . . sld, this would be a (fractional) solution to our
revised MGSFL instance for level l, and would cost at
most 2 times the optimal cost of the original instance.

Summing over all levels gives:∑
v

cost(optimal fractional solution for revised

problem on Tv)

=
h(T)∑
l=1

cost(optimal fractional solution for revised

problem at level l)

≤
h(T)∑
l=1

2 · cost(optimal fractional solution for original

problem)
= 2·h(T) · cost(optimal fractional solution for original

problem)
≤ 2·h(T) · cost(optimal solution for original problem)

Since we are assuming we can find a solution to the
revised problem that costs at most R times the cost of
the optimal fractional solution to the revised problem,
this gives∑

v

cost(our solution for the revised problem on Tv)

≤ R·
∑

v

cost(optimal fractional solution for revised

problem on Tv)
≤ 2·h(T) · cost(optimal solution for original problem)

Theorem 5.1. Given an instance of MGSFL on a tree
in which (a) all clients are located at the root, and
(b) the interest sets are laminar, we can achieve an
O(log2 n log m) approximation in polynomial time.

Proof. In this proof, we refer to the laminar forest L of
clients. By our restriction on the interest sets, any two
clients j and j′ with |I(j)| ≤ |I(j′)| have I(j) ⊆ I(j′) or
I(j) ∩ I(j′) = ∅. First, define an arbitrary ordering of
the clients, j ≺ j′. Now, we place the clients as nodes
in the laminar forest such that j is a descendant of j′ in

the forest if and only if |I(j) ⊂ I(j′)| OR [I(j) = I(j′)
AND j ≺ j′]. Given the order ≺, this forest is unique.

We will assume the following lemma, to be proved
later.

Lemma 5.2. We can decompose the laminar forest L
of clients into groups G1, G2, . . . , Ga, S1, S2, . . . Sa (for
some a) that obey the following rules:

1. For each commodity t, at most O(log n) clients in⋃
i Gi are interested in t.

2. There is some mapping π from all clients in Si

to clients in Gi−1 ∪ Si−1 such that (a) π(u) is an
ancestor of u, and (b) |{v : π(v) = u}| ≤ 2 for each
u.

3. There is some mapping ϕ from each client in Si to
some client in Gi−1 such that ϕ(u) is a descendant
of π(u) and an ancestor of u.

Assuming Lemma 5.2, we use the Group Steiner
Tree algorithm of [8] to independently solve for each
node in

⋃
i Gi. The Group Steiner Tree problem does

not include building costs. In order to account for the
fact that our building costs depend on the location
as well as on the commodity, we solve the problem
on a slightly adjusted tree. For each t, v for which
c(t, v) < ∞, we add a leaf from v with length c(t, v), and
we allow t at the new leaf instead of at v. Since we are
solving for a single client, the additional cost to include
the new edge is exactly the same as the cost of building
the facility. The algorithm of [8] achieves an R =
log n log m approximation with respect to the optimal
fractional solution. We now prove that our algorithm
yields an O(R log n) = O(log2 n log m)-approximation
to the MGSFL instance.

By Requirement 1 for the groups Gi, we build
each commodity at most O(log n) times. Since any
solution (including any optimum fractional solution)
must build each commodity at least once, and since each
Group Steiner Tree iteration finds an R approximation
including the building cost edges, this gives a building
cost ≤ O(R log n) times the optimal building cost.

Each client in
⋃

i Gi is paying at most R times its
optimal fractional cost if it were the only client, since
MGSFL with a single client is exactly equivalent to
Group Steiner Tree. It cannot do better than this when
adjusting for other clients, so the total client cost for⋃

i Gi is at most the optimal fractional client cost.
Now consider the cost for a client u ∈ Si for some

i. Since ϕ(u) is an ancestor of u in L, u is interested in
a subset of the commodities in which ϕ(u) is interested.
Therefore, we can handle u by sending it to the same
places as ϕ(u) and pay at most the same cost we spent
for ϕ(u). Since ϕ(u) ∈ Gi−1, the cost we spend for

u is at most R times the optimal fractional cost for
ϕ(u). Since ϕ(u) is a descendant of π(u) in L, π(u)
needs to access a superset of the commodities required
for ϕ(u), so the optimal fractional cost for π(u) is at
least the optimal fractional cost for ϕ(u). This gives us
the following cost analysis for clients in

⋃
i Si. “opt”

refers to the optimal fractional cost, “opt(u)” refers to
the optimal fractional cost for Group Steiner Tree with
client u, and “cost” refers to our cost.

cost(
⋃
i

Si) =
∑

i

∑
u∈Si

cost(u)

≤
∑

i

∑
u∈Si

cost(ϕ(u))

≤
∑

i

∑
u∈Si

R · opt(ϕ(u))

≤ R ·
∑

i

∑
u∈Si

opt(π(u))

≤ R ·
∑

i

∑
v∈Gi−1∪Si−1

2 · opt(v)

≤ 2R ·
∑

i

∑
v∈Gi−1∪Si−1

opt(v)

≤ 2R · opt

Proof of Lemma 5.2. Start with S1 = ∅, G1 = the roots
of the forest. To create Si+1, start with the leaves of
Si∪Gi and move backwards up the tree. Following this
order, for each node u ∈ Si∪Gi, look at all of the nearest
remaining descendants of u, and include in Si+1 the two
that have the most descendants (as long as u has any
remaining descendants). Once we have included two
nodes (if available) for each node in Si ∪Gi to become
part of Si+1, let Gi+1 be the set of all (not yet included)
children of nodes in Gi ∪ Si ∪ Si+1.

An example of this partitioning procedure is illus-
trated in Figure 2. Assuming the nodes in the box in
the figure are part of Si∪Gi, the figure shows the order
in which nodes are included into Si+1 along with the
choice of π. The function π maps each non-boxed node
numbered i to the boxed node numbered i. Each node
marked with an x will be included in Gi+1.

We now show that the above partitioning proce-
dure, together with π and ϕ to be defined, obeys all of
the desired requirements.

Requirement 2 is obeyed by construction and by the
following definition of π. When we pick a node u ∈ Si

explicitly as a descendant of some node v ∈ Si−1∪Gi−1,
let π(u) = v. We pick at most two such nodes for each
v ∈ Si−1 ∪Gi−1, so |{u : π(u) = v}| ≤ 2.

Requirement 3 is obeyed by construction and by
the following definition of ϕ. We picked the set of all

Figure 2: This figure shows how the partitioning algo-
rithm described in the proof of Lemma 5.2 would choose
Si+1, Gi+1, and π given Si∪Gi. Assuming the nodes in
the box are part of Si ∪Gi, this figure shows the order
in which nodes are included into Si+1 along with the
choice of π. The function π maps each non-boxed node
numbered i to the boxed node numbered i. Each node
marked with an x will be included in Gi+1.

unpartitioned children of nodes in Si to become the
set Gi. Therefore, any descendant of a node in Si (in
particular, the nodes chosen to become part of Si+1)
will certainly have an ancestor in Gi. In particular, for
any u ∈ Si+1, consider the path from π(u) to u. Let
ϕ(u) = the node along this path that is part of Gi.

To show that we obey Requirement 1, we must
show that there are most O(log n) members of

⋃
i Gi

along any path from a root to a leaf. Consider any
path P from a root to a leaf. Each time we create
a group Gi, it must contain at least one node in P ,
since we always add the next children to the current
partitions. Each time we create a group Si (before we’ve
completely partitioned P), either Si ∩ P must contain
at least 2 · |(Si ∪ Gi) ∩ P | nodes or else some node in
(Si ∪ Gi) ∩ P has another child (not in P) with more
descendants than the next node in P . We will first
analyze how often this second scenario may occur.

Suppose there are x times when a node in (Si∪Gi)∩
P has a child not in P with more descendants than the
next node in P . Let U = u1, . . . ux represent the nodes
in (Si ∪Gi)∩P , where ui is a descendant of uj if i < j.
Let DP (ui) refer to the descendants of ui via its child
in P , and let DN (ui) refer to the descendants of ui via
the other child (not in P) which has more descendants

than the next node in P .
Since we are only counting occurrences before

we’ve completely partitioned P , it must be true that
DP (u1) ≥ 1, so DN (u1) ≥ 1. Since u1 is a descendant of
u2, DP (u2) ≥ DP (u1)+DN (u1)+1 ≥ 3, so DN (u2) ≥ 3.
Similarly, DN (ui) ≥ DP (ui) ≥ 2DP (ui−1) + 1.

We know that the total number of nodes in the
graph is n, so we can solve the recurrence relation
n ≥ DP (ui) ≥ 2DP (ui−1) + 1 to find that x ≤ dlog ne.
Therefore, there are at most dlog ne times when some
node in (Si ∪Gi)∩P has another child (not in P) with
more descendants than the next node in P , and the rest
of the time Si ∩P must contain at least 2|(Si ∪Gi)∩P |
nodes.

Now, we can separate the nodes in P into k ≤
log n + 2 sections, P1, . . . Pk divided by the at most
dlog ne nodes in U described above. Let xj denote
|(
⋃

i Gi) ∩ Pj | for all j. Within each of these sections,
|Si ∩ P | ≥ 2 · |(Si ∪ Gi) ∩ P |. Therefore, |Pj | ≥∑xj

a=1

∑a
b=1 2i. After each section, we have one of the

nodes in U , which has at least as many descendants of
some child not in P as of some child in P . This means
that there are at least j times as many nodes as the
number of nodes in section Pj , since at least as many
nodes exist under each node in U that is a descendant
of the section Pj . This gives us the following bound for
any j:

n ≥ j

xj∑
a=1

a∑
b=1

2i > j2xj > 2xj

Thus log n > xj . Since we already bounded the
number of Pj as at most log n + 2, this gives a total
bound

∑
j xj < log2 n.

We thus have an O(log3 n log m) approximation al-
gorithm for MGSFL with laminar interest sets on tree
metrics. As in the previous versions, we can apply the
metric embeddings from [7] to get an O(log4 n log m)
approximation bound on this version for general met-
rics.

6 1-Median Variant

We also consider a simple variant of MGSFL in which
each commodity may only be built once. This is
the equivalent of saying c(t, v) = c(t, u) for all v, u,
and c(t, v) > n2 · max(e∈E) d(e) for all t, v, so that
although we must build each commodity once in a
feasible solution, it would always be better to send
all interested clients to this one location than to build
the commodity a second time. We show how to
optimally solve the problem on a tree in which all
clients are located at the leaves, which gives an O(log n)

approximation for general metrics. We note that this
algorithm is a generalization of an algorithm from [2]
for solving the multicast push-pull data dissemination
problem with aggregation.

We will require the following notation for our algo-
rithm definition.

• Let Sv for each client v denote the tree that v
will use to reach all of its commodities. When
the algorithm begins, these trees are empty. When
the algorithm completes, these trees will define the
solution, since each commodity may be built at any
intersection of the trees of all interested clients.

• Let S−t for each commodity t denote the minimum
tree needed to connect the client trees of all clients
interested in t. When the algorithm begins, each
S−t is just the tree connecting all clients interested
in t. When the algorithm completes, each of
these trees consists of a single node at which the
commodity can be built.

We solve this version using Algorithm 2. Each
iteration of Algorithm 2 will consider some edge e
which is a leaf edge of at least one commodity tree
(say it is a leaf for all commodities in set C) and will
decide some (possibly empty) set of commodities C∗

e

that will definitely be built on the tree side of the edge.
We choose these commodities by noting that either all
interested clients located on the leaf-side of the edge (we
call this set L(e, C) in the algorithm) or all interested
clients on the tree-side of the edge (N(e, C)) will have
to cross the edge. All clients in L(e, C) must have trees
that are adjacent to e (by definition of the commodity
trees), so if it is cheaper to add e to the trees for clients
in L(e, C) than it would be to add e to the trees for
clients in N(e, C) (regardless of what other edges might
also have to be added for clients in N(e, C)), then we can
certainly add e for the clients in L(e, C). We show that
at all times, at least once leaf edge has a non-empty set
C∗

e , so we will chip away at the commodity trees until
each tree consists of a single node.

Before analyzing the algorithm, we make a note
about line 2. Here, we examine each edge e = (l, u)
connecting a leaf of a commodity tree to the commodity
tree. Notice that when a commodity tree consists of only
a single edge, this edge will be counted twice: once with
each node as the leaf. An edge may also be counted
twice (once in each direction) if two commodity trees
intersect at only this edge.

Figure 3 shows the state of the client and commod-
ity trees at some point during the execution of the algo-
rithm for a small example. The client trees are circled.
The dashed line represents a commodity t1 which is in

Algorithm 2 Algorithm for optimal solution to the 1-
Median version on a tree.
1: For each client v, initialize tree Sv = {v}.
2: For each commodity t, initialize tree S−t = the

minimum tree that connects all clients interested
in t.

3: for each edge e = (l, u) such that (a) l is a leaf of
some commodity tree S−t and (b) u is a non-leaf
node of S−t do

4: Define Ce = the set of commodities t such that
(a) l is a leaf of S−t , (b) there exists some client a
with t ∈ I(a), l ∈ Sa, u /∈ Sa, and (c) there exists
some client b with t ∈ I(b), l /∈ Sb (notice that we
do not require u ∈ Sb).

5: Define L(e, C) for any subset C ⊆ Ce to be the
set of clients a with l ∈ Sa, u /∈ Sa, a interested
in some commodity in C.

6: Define N(e, C) for any subset C ⊆ Ce to be
the set of clients b with l /∈ Sb, b interested in
some commodity in C (again, we do not require
u ∈ Sb).

7: Find the subset C∗
e ⊆ Ce that minimizes

|L(e, C∗
e)|+ |N(e, Ce − C∗

e)|.
8: For all clients c ∈ L(e, C∗

e), set Sc = Sc ∪ {u}.
9: For each commodity t ∈ C∗

e , set S−t = S−t − {l}.
If S−t = a single node v: t will meet at v, and we
are finished with t.

the interest set of each of v2, v3, v4, v5 and v6. The dot-
ted line represents a commodity t2 which is in the in-
terest set of v1 and v3. If we look at edge e, Ce includes
both of these commodities. The set C∗

e that minimizes
|L(e, C∗

e)|+ |N(e, Ce − C∗
e)| includes both t1 and t2, so

both clients v2 and v3 will cross edge e in the final so-
lution.

Now we must show the following:

1. Algorithm 2 terminates. For this, it will suffice to
show that in any iteration, there is some leaf l (edge
e = (l, u)) such that C∗

e 6= ∅ (see Lemma 6.1 below).
As long as some C∗

e is non-empty, some commodity
tree will shrink (and some corresponding client
trees will grow). Since the algorithm terminates
when all commodity trees are empty, this leads to
termination in less than m · |E| iterations.

2. Algorithm 2 returns a correct solution (each client
meets all commodities in its interest set, each
commodity meets at a single node). This follows
from the definition of the algorithm, since each
client tree always intersects each commodity tree
for commodities in the client interest set, and from
termination, since the algorithm only terminates

Figure 3: An example of Algorithm 2. This shows
the state of the client and commodity trees at some
point during the execution of the algorithm for a small
example. The client trees are circled. The dashed
line represents a commodity t1 which is in the interest
set of each of v2, v3, v4, v5 and v6. The dotted line
represents a commodity t2 which is in the interest
set of v1 and v3. If we look at edge e, Ce includes
both of these commodities. The set C∗

e that minimizes
|L(e, C∗

e)| + |N(e, Ce − C∗
e)| includes both t1 and t2,

so both clients v2 and v3 will cross edge e in the final
solution.

when each commodity meets at a single node.

3. Algorithm 2 returns an optimal solution. We will
show in Lemma 6.2 that there exists an optimal
solution with the same client trees as those chosen
by Algorithm 2.

4. Algorithm 2 can be implemented to run in poly-
nomial time. If the algorithm terminates in less
than m · |E| iterations, and each iteration consists
of finding C∗

e for each of the (at most) 2|E| leaf
edges (each edge can be a leaf edge twice per it-
eration – once in each direction), we only need to
show that we can find C∗

e for an edge e in polyno-
mial time. We show this in Lemma 6.3.

Lemma 6.1. Algorithm 2 terminates.

Proof. As stated above, it will suffice to show that in
any iteration, there is some leaf l (edge e = (l, u)) such
that C∗

e 6= ∅.
First we will show

(6.4)
∑

e=(l,u)

|N(e, Ce)| ≥
∑

e=(l,u)

|L(e, Ce)|

where e = (l, u) is an edge connecting a commodity leaf
to the rest of the commodity tree, as defined in Line 3
of Algorithm 2.

Consider how many times an arbitrary client c
contributes to each side of Equation (6.4). c will be
counted on the right hand side once for each distinct
edge (l1, u1), (l2, u2), . . . (lk, uk) such that li ∈ Sc, ui /∈
Sc, li is a leaf of S−ti

for some commodity ti ∈ I(c),
ui ∈ S−ti

. We can specify some such commodity ti for
edge (li, ui) causing c to appear once on the right hand
side.

For each of these commodities ti, c will also appear
at least once on the left hand side, since each S−ti

must
have at least one other leaf l′i (connected to S−ti

by
edge e′i, or else we would have removed ti at Line 9
of Algorithm 2. Since ui /∈ Sc, it must also be true that
l′i /∈ Sc, so c will count as part of N(e′, Ce′).

Suppose we have two of these “other leaves” with
l′i = l′j (i 6= j). By construction, (li, ui) 6= (lj , uj). Also,
l′i ∈ S−ti

, ui ∈ S−ti
, l′i = l′j ∈ S−tj

, uj ∈ S−tj
, (li, ui) ∈ Sc,

and (lj , uj) ∈ Sc. Now, since S−ti
, S−tj

and Sc are all
trees, there exists a cycle from lj across the edge to uj ,
then through S−tj

to l′j (= l′i), then through S−ti
to ui,

along its edge to li, then through Sc back to lj . However,
our original graph was a tree, so there cannot be such a
cycle. Therefore, each client will appear as many times
on the left hand side of Equation (6.4) as on the right
hand side, and Equation (6.4) holds.

Because each side of Equation (6.4) contains a sum
over all e = (l, u), there must be some such single e
with |N(e, Ce)| ≥ |L(e, Ce)|. For this e, |L(e, ∅)| +
|N(e, Ce)| ≥ |L(e, Ce)| + |N(e, ∅)|, so C∗

e (the set that
minimizes |L(e, C∗

e)|+ |N(e, Ce−C∗
e)|) is not empty, as

desired.

Lemma 6.2. There exists an optimal solution with the
client trees chosen by Algorithm 2.

Proof. We will prove that there exists an optimal solu-
tion whose client trees are supersets of the client trees
chosen by Algorithm 2. Clearly, an optimal solution
will not have trees strictly larger than those chosen by
Algorithm 2, so this is sufficient to prove the lemma.

The proof is by induction on the iterations of
Algorithm 2. At the start of the algorithm, the client
trees are empty. Any optimal solution has client trees
that are a superset of empty trees. Now, we will assume
that after some iteration of the algorithm, there is an
optimal solution that includes the partial client trees
created so far by the algorithm, and show that the next
iteration of the algorithm does not add non-optimal
edges to the client trees.

Consider any edge e = (l, u) examined in the next
iteration (l is the leaf of a commodity tree S−t , u ∈ S−t).
We have defined set Ce = the set of commodities t
such that there exists client a with t ∈ I(a), l ∈ Sa,

u /∈ Sa and there exists client b with t ∈ I(b), l /∈ Sb.
In any solution, each commodity in Ce must meet on
one side or the other of edge e. Suppose there is an
optimal solution such that the commodities in COPT ⊆
Ce meet on the u side of e, and the commodities in
Ce − COPT meet on the l side of e. (In fact, by the
inductive assumption and the fact that l is a leaf of
each commodity in Ce, all commodities in Ce − COPT

meet exactly at l.) If C∗
e ⊆ COPT , then our new client

trees are still a subset of the same optimal solution. So
assume C∗

e −COPT 6= ∅. We will show that moving the
meeting points of the commodities in C∗

e − COPT from
l to u does not increase the cost of the optimal solution.

Before the change to the optimal solution, com-
modities in COPT met on the u side of e, those in
Ce − COPT met on the l side. After the change, com-
modities in C∗

e meet on the u side, and those in Ce−C∗
e

meet on the l side. The new cost is equal to

optimal cost + d(e)
(
|L(e, C∗

e)− L(e, COPT)|

(6.5)

− |N(e, Ce − COPT)−N(e, Ce − C∗
e)|
)

= optimal cost + d(e)
(
|L(e, C∗

e)|

(6.6)

− |L(e, C∗
e) ∩ L(e, COPT)| − |N(e, Ce − COPT)|

+ |N(e, Ce − COPT) ∩N(e, Ce − C∗
e)|
)

= optimal cost + d(e)
(
|L(e, C∗

e)|

(6.7)

− |L(e, C∗
e) ∩ L(e, COPT)|

− |N(e, Ce − COPT)|+ |N(e, Ce − C∗
e)|

− |N(e, Ce − C∗
e)−N(e, Ce − COPT)|

)

= optimal cost + d(e)
(
|L(e, C∗

e)|+ |N(e, Ce − C∗
e)|

(6.8)

− |L(e, C∗
e) ∩ L(e, COPT)| − |N(e, Ce − COPT)|

− |N(e, Ce − C∗
e)−N(e, Ce − COPT)|

)

≤ optimal cost + d(e)
(
|L(e, C∗

e)|+ |N(e, Ce − C∗
e)|

(6.9)

−
(
|L(e, C∗

e ∩ COPT)|+ |N(e, Ce − (COPT ∩ C∗
e))|

))

≤ optimal cost(6.10)

Line 6.5 is because we add the cost for clients who have
to cross from l to u to reach commodities in C∗

e but
didn’t have to cross to meet any commodities in COPT ,
while we subtract the cost for clients who had to cross
from u to l to meet commodities in Ce−COPT but don’t
have to cross to meet commodities in C − C∗

e .
Line 6.6 is true because the set of clients interested

in C∗
e but not interested in anything in COPT is the

same as the set of clients interested in C∗
e minus the

set of clients interested both in something in C∗
e and

in something in COPT (similarly with C − C∗
e and

C − COPT).
Line 6.7 is true because the set of clients interested

in something other than C∗
e and in something other than

COPT is the same as the set of all clients interested
in something other than C∗

e minus the set of clients
interested in something other than C∗

e but not in
something other than COPT .

Line 6.8 is just rearranging terms.
Line 6.9 is true because the set of clients interested

in commodities in both C∗
e and COPT is a subset of the

set of clients interested in some commodity in C∗
e and

some commodity in COPT . The set of clients interested
in any commodity not in C∗

e minus the set of clients
interested in any commodity not in COPT is the same
as the set of clients only interested in commodities
in COPT but not only interested in commodities in
COPT ∩ C∗

e . Adding this to the set of clients interested
in any commodity not in COPT gives the set of clients
interested in any commodity in Ce − (COPT ∩ C∗

e).
Finally, Line 6.10 is true because we chose C∗

e as
the set that minimizes |L(e, C∗

e)|+ |N(e, Ce − C∗
e)|.

Lemma 6.3. We can find C∗
e for an edge e in polyno-

mial time.

Proof. We will solve for an edge e = (l, u) during an
iteration by using a directed minimum cut algorithm.
Create a directed graph with 5 levels of nodes as follows:
Level 1 (source node) = {s}. Level 2 (tree-side client
nodes) = N(e, Ce). Level 3 (commodity nodes) = Ce.
Level 4 (leaf-side client nodes) = L(e, Ce). Level 5 (sink
node) = {t}.

Let M = max(n, m). There is a directed edge of
weight 1 from s to each node in Level 2, and a directed
edge of weight 1 from each node in Level 4 to t. There is
an edge of weight M +1 from each tree-side client node
to each commodity node in the client’s interest set, and
an edge of weight M + 1 from each commodity node to
each interested leaf-side client node.

The directed min s−t cut of this graph will give the
minimum C∗

e . If there is a path from s to a commodity,

it is part of C∗
e . If there is a path from the commodity

to t, it is part of Ce − C∗
e .

Claim 6.1. A directed min s-t cut of this graph with
weight W will give a set C∗

e with |L(e, C∗
e)|+ |N(e, Ce−

C∗
e)| = W

Proof. In a cut, there will be no paths remaining from
s to t. In a min cut, none of the weight M +1 edges will
be cut (since there are at most M nodes in each level).
Therefore, W = the number of cut edges s to Level 2 +
the number of cut edges Level 4 to t.

We set C∗
e = the set of all commodities reachable

from s. Therefore, the edge from each leaf-side client
(interested in a commodity in C∗

e) to t must be part of
the cut. So we’ve cut one edge for each leaf-side client
interested in some commodity in C∗

e , which is exactly
the client set L(e, C∗

e) (by definition of L(e, C∗
e)).

Similarly, if there is a path from a commodity to t
(the commodity is in Ce − C∗

e), each edge from s to a
tree-side client (interested in one of these commodities)
must be cut. So we’ve also cut one edge for each tree-
side client interested in a commodity in Ce −C∗

e , which
is exactly the client set N(e, Ce − C∗

e).
So the number of edges cut (all of weight 1) is

exactly |L(e, C∗
e)|+ |N(e, Ce − C∗

e)|

Claim 6.2. Any C∗
e corresponds to a valid directed cut

of this graph with weight = |L(e, C∗
e)|+ |N(e, Ce −C∗

e)|

Proof. Given C∗
e , cut each edge that goes from s to a

Level 2 node corresponding to a client in N(e, Ce −C∗
e)

and cut each Level 4 to t edge corresponding to a client
in L(e, Ce). Now, consider any path from s to t. It
must pass through the node for some commodity j. We
consider two cases. The first case is when j ∈ C∗

e . In
this case, all interested leaf-side clients are in the set
L(e, C∗

e). Therefore, no matter what edge we follow
from the commodity node to a leaf-side client node, the
edge from the client node to t has been cut. The second
case is when j ∈ Ce − C∗

e . In this case, all interested
tree-side clients are in the set N(e, Ce−C∗

e). Therefore,
there are no un-cut edges from s to a tree-side client
node connected to the commodity. So we have a valid
cut.

Since we can find a minimum cut in polynomial
time, this concludes the proof of the lemma.

Together, Lemmas 6.1, 6.2, and 6.3 prove the
following.

Theorem 6.1. Algorithm 2 is a polynomial time al-
gorithm for optimally solving the 1-Median version of
MGSFL.

Although we give an optimal solution on trees, we
can show that the 1-Median version is NP-hard on
general metrics via a reduction from Steiner Tree.

Given a Steiner Tree instance, create an MGSFL
1-Median instance with the same graph. Create one
commodity tv for each node v to be included in the
Steiner tree, and 2 clients located at v, each interested
in only tv. Also add one client c located at the
root, interested in all commodities. Now, consider the
location of each facility in an optimal MGSFL solution.
The cost of the solution will include the path from the
root to each location as well as twice the path length
from each v to the corresponding facility location. This
cost will naturally be lower if only client c moves, so all
commodities will be built at the Steiner tree locations,
and the solution tree for client c will be the minimum
Steiner tree.

To approximate the 1-Median version of MGSFL
on general metrics, we can use the results from [7] to
embed an arbitrary metric into a tree with distortion at
most O(log n). Solving on the resulting tree will give an
O(log n) approximation for the metric.

7 Concluding Remarks

There is a gap between the upper and lower bounds
we have established for each version of MGSFL. The
major problem left open by our work is whether a
polylogarithmic-approximation ratio is achievable in
polynomial time for general MGSFL; we have achieved
a 2O(

√
log n log log n) approximation, but the best hardness

result is an Ω(log2−ε m)-factor. The same hardness
bound applies for the version with laminar interest sets,
but our ratio O(log4 n log m) is still quite a bit higher.
We give an O(log n) approximation for general metrics
when building costs are uniform across locations, but a
constant approximation may be possible. In general, all
of our approximations for general metrics incur a cost of
O(log n) factor owing to the reduction to tree metrics;
it is unclear whether this gap is inherent. Nevertheless,
we have made significant initial progress on this new
problem.

There are other variants that merit study. First,
just as we considered laminar constraints on client
interest sets, the same problem could be defined with
“laminar commodities”: given any two commodities,
the set of clients interested in them do not intersect or
one set of clients is entirely contained in the other. We
hope to be able to reduce general MGSFL into a small
number of instances with laminar clients or laminar
commodities. Second, instead of using building costs for
commodities, we could place a bound kt on the number
of facilities that need to be built for each commodity
t. The resulting problem is a k-median variant of

MGSFL, an extension of the 1-median variant discussed
in Section 6.

References

[1] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam
Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristic for k-median and facility location
problems. Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 21–29, 2001.

[2] R. C. Chakinala, A. Kumarasubramanian, K. A. Laing,
R. Manokaran, C. Pandu Rangan, and R. Rajaraman.
Playing push vs pull: models and algorithms for dis-
seminating dynamic data in networks. Proceedings of
the eighteenth annual ACM symposium on Parallelism
in algorithms and architectures, pages 244–253, 2006.

[3] Moses Charikar, Chandra Chekuri, Ashish Goel, and
Sudipto Guha. Rounding via trees: deterministic ap-
proximation algorithms for group Steiner trees and k-
median. Proceedings of the 30th Annual ACM Sympo-
sium on Theory of Computing, pages 114–123, 1998.

[4] Moses Charikar, Sudipto Guha, Éva Tardos, and
David B. Shmoys. A constant-factor approximation al-
gorithm for the k-median problem (extended abstract).
Proceedings of the thirty-first annual ACM symposium
on Theory of computing, pages 1–10, 1999.

[5] Chandra Chekuri, Guy Even, and Guy Kortsarz. A
greedy approximation algorithm for the group Steiner
problem. Discrete Applied Mathematics, 154(1):15–34,
2006.

[6] Fabián Chudak and David B. Shmoys. Improved
approximation algorithms for a capacitated facility
location problem. Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms, pages
875–876, 1999.

[7] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by
tree metrics. Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 448–
455, 2003.

[8] Naveen Garg, Goran Konjevod, and R. Ravi. A
polylogarithmic approximation algorithm for the group
Steiner tree problem. Journal of Algorithms, 37(1):66–
84, 2000.

[9] Sudipto Guha and Samir Khuller. Greedy strikes back:
improved facility location algorithms. Proceedings of
the ninth annual ACM-SIAM symposium on Discrete
algorithms, pages 649–657, 1998.

[10] Eran Halperin, Guy Kortsarz, Robert Krauthgamer,
Aravind Srinivasan, and Nan Wang. Integrality ratio
for group Steiner trees and directed Steiner trees. Pro-
ceedings of the fourteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 275–284, 2003.

[11] Eran Halperin and Robert Krauthgamer. Polyloga-
rithmic inapproximability. Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing,
pages 585–594, 2003.

[12] Ara Hayrapetyan, Chaitanya Swamy, and Éva Tardos.
Network design for information networks (extended
abstract). Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 933 –
942, 2005.

[13] Kamal Jain and Vijay V. Vazirani. Approximation
algorithms for metric facility location and k-Median
problems using the primal-dual schema and Lagrangian
relaxation. Journal of the ACM (JACM), 48(2):274–
296, 2001.

[14] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmo-
han Rajaraman. Analysis of a local search heuristic for
facility location problems. Proceedings of the ninth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 1–10, 1998.

[15] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang.
Improved approximation algorithms for metric facility
location problems. Proceedings of the 5th International
Workshop on Approximation Algorithms for Combina-
torial Optimization, pages 229–242, 2002.

[16] Martin Pal, Éva Tardos, and Tom Wexler. Facility lo-
cation with nonuniform hard capacities. Proceedings
of the 42nd IEEE symposium on Foundations of Com-
puter Science, pages 329–338, 2001.

[17] R. Ravi and A. Sinha. Multicommodity facility lo-
cation. Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 342–
349, 2004.

[18] G. Reich and P. Widmayer. Beyond Steiner’s prob-
lem: A VLSI oriented generalization. Proceedings of
the fifteenth international workshop on Graph-theoretic
concepts in computer science, 411:196–210, 1990.

[19] David B. Shmoys, Éva Tardos, and Karen Aardal.
Approximation algorithms for facility location prob-
lems (extended abstract). Proceedings of the twenty-
ninth annual ACM symposium on Theory of comput-
ing, pages 265–274, 1997.

