
Robust and Probabilistic Failure-Aware Placement

Madhukar Korupolu
Google Research

mkar@google.com

Rajmohan Rajaraman∗
Northeastern University
rraj@ccs.neu.edu

ABSTRACT

Motivated by the growing complexity and heterogeneity of
modern data centers, and the prevalence of commodity com-
ponent failures, this paper studies the failure-aware place-
ment problem of placing tasks of a parallel job on machines
in the data center with the goal of increasing availability.
We consider two models of failures: adversarial and prob-
abilistic. In the adversarial model, each node has a weight
(higher weight implying higher reliability) and the adver-
sary can remove any subset of nodes of total weight at most
a given bound W and our goal is to find a placement that
incurs the least disruption against such an adversary. In the
probabilistic model, each node has a probability of failure
and we need to find a placement that maximizes the proba-
bility that at least K out of N tasks survive at any time.

For adversarial failures, we first show that (i) the prob-
lems are in Σ2, the second level of the polynomial hierarchy,
(ii) a basic variant, that we call RobustFAP, is co-NP-
hard, and (iii) an all-or-nothing version of RobustFAP is
Σ2-complete. We then give a PTAS for RobustFAP, a key
ingredient of which is a solution that we design for a frac-
tional version of RobustFAP. We then study fractional Ro-
bustFAP over hierarchies, denoted HierRobustFAP, and
introduce a notion of hierarchical max-min fairness and a
novel Generalized Spreading algorithm which is simultane-
ously optimal for allW . These generalize the classical notion
of max-min fairness to work with nodes of differing capaci-
ties, differing reliability weights and hierarchical structures.
Using randomized rounding, we extend this to give an algo-
rithm for integral HierRobustFAP.

For the probabilistic version, we first give an algorithm
that achieves an additive ε approximation in the failure
probability for the single level version, called ProbFAP,
while giving up a (1+ε) multiplicative factor in the number
of failures. We then extend the result to the hierarchical ver-
sion, HierProbFAP, achieving an ε additive approximation

∗Supported in part by NSF grants CNS-1217981, CCF-
1422715, and CCF-1535929, and a Google Research Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935802

in failure probability while giving up an (L+ ε) multiplica-
tive factor in the number of failures, where L is the number
of levels in the hierarchy.

1. Introduction
Modern datacenters are becoming increasingly complex

and heterogeneous [3, 6, 11, 36]. Machines, racks, network
switches, storage drives and other hardware equipment of
different generations and capabilities often co-exist in the
data center – leading to heterogeneity both in capacities as
well as failure characteristics. The use of commodity hard-
ware and the large scale of these data centers makes failures
a common occurence and software systems need to plan and
design for them [3, 38, 41].

In fact, the book on warehouse scale computing [3] devotes
a whole chapter to failure and fault tolerance. Machines in
the data center are often arranged in hierarchies [2, 6, 39] –
with racks and top-of-rack (ToR) switches which are then
inter-connected via network and power hierarchies. The
components of these hierarchies are also prone to failure –
due to hardware defects, planned and unplanned outages.

Several recent systems papers address the question of fail-
ures and the need to improve reliability in the presence of
failures. [16, 34, 37] analyze failures in large disk drive and
distributed installations. [17, 38, 42, 44] analyze failures of
machines and network elements in large data centers, includ-
ing Microsoft data centers over the course of a year. [6, 39,
40] study correlated failures in data centers due to failure
of common nodes such as network and power domains. De-
creased availability due to failures causes service downtimes
and also hurts reputation for cloud service providers.

In recent work, [6, 39] addressed the problem of placing
tasks of a parallel job (such as MapReduce [10], Spark [45])
among machines in a hierarchical data center so as to in-
crease availability. However the treatment is informal and
the proposed heuristics are evaluated experimentally with-
out theoretical analysis.

Given this increasingly important context, in this paper,
we initiate the formal definition of failure-aware placement
problem and study its theoretical complexity and approx-
imation algorithms. This models the common scenario in
modern data centers where a job (such as MapReduce [10],
Spark [45]) arrives with multiple identical tasks that need
to be placed on machines in the data center. These can be
either batch jobs that perform computations over large data
sets and terminate when finished or service jobs that run
indefinitely serving user requests [8, 36, 41]. The tasks of
the job can be executed in parallel among machines in the

data center. Both the machines and the hardware domains
that connect them (racks, switches, busducts, power nodes)
are prone to failure. Jobs have availability requirements –
such as a minimum number of tasks that need to be up and
running at any time – to make quick progress and also to
meet service level agreements. When a job arrives, the goal
of the failure aware placement system is to allocate its tasks
among machines so as to improve availability.

While we present our results in the context of tasks and
machines, the concepts are general and apply to storage and
other contexts as well. From a storage point of view, failure
rates and disk drive characteristics have been studied in [34,
16, 37]. Error correcting codes are often used to store data
among nodes in such a way that as long as k of n chunks are
available, the original data can be reconstructed [18, 25, 35].
However, the related problem of how to place the n chunks
among the available nodes so as to maximize the probability
of k chunks surviving has received little attention [27]. A
good failure-aware placement algorithm can increase data
availability and thereby reduce the amount of redundant
storage required.

1.1 Problem Setup

We formulate two classes of problems for failure-aware
placement: robust (adversarial) and probabilistic. The first
class of problems focuses on robustness by associating each
domain with a weight representing its reliability (higher weight
implies higher reliability), and allowing an adversary to re-
move (i.e., cause failures in) a subset of domains with total
weight bounded by a given failure budget W . The goal is to
determine a placement of N tasks among machines such that
the maximum number of tasks that fail, taken over all adver-
sary’s choices of failing domains, is minimized. The second
class of failure-aware problems considers probabilistic fail-
ures by associating a failure probability with each domain.
The goal here is to determine a placement of N tasks among
machines such that the probability that more than a given
number F of tasks fail is minimized.

We study several variants of failure-aware placement un-
der the above two classes. In addition to differences in the
nature of failures (adversarial or probabilistic), these vari-
ants differ in the organization of the failure domains (single-
level or hierarchical), the kind of adversary (fractional or
integral), and the kind of placement (fractional or integral).
In all of these variants, we focus on the case where all the
tasks have the same size. Many of the modern data par-
allel batch processing systems (such as MapReduce [10],
Spark [45]) have jobs with multiple (tens to thousands of)
tasks of the same size running on different machines [36, 41].
They are launched using a config file which specifies the re-
source requirements for each task and the number of tasks
(e.g., see [41], Section 2.3). User-facing jobs also often have
multiple instances of the same size running on different ma-
chines, and they use a load balancer in front to distribute
load evenly among them.

1.2 Overview of results and techniques

We now formally define the specific problems we study,
and summarize our results and techniques. In each formu-
lation, we have a set F of failure domains which includes
machines and internal nodes in case of a hierarchy, and a
job with N identical tasks that just arrived and needs to be
placed. We have a capacity Ci for each domain, represent-

ing the number of tasks of the job that can be placed in the
domain. We define a placement as a map P : F → N with
0 ≤ P (i) ≤ Ci for each domain i, 0 ≤ i ≤ |F|. For a subset
D of disjoint domains, we define P (D) =

∑
i∈D P (i).

Adversarial failures. We first consider the robust variants
with adversarial failures.

Definition 1. (Placement against adversarial fail-
ures) Given a nonnegative integer W , and for each i in F
an integer weight wi, the goal of RobustFAP is to place N
tasks subject to capacity constraints so as to minimize the
maximum number of tasks placed on any subset of domains
with total weight at most W .

For a given set S of domains, let w(S) denote the sum
of the weights of the domains in S. Formally, the goal
of RobustFAP is to find a placement P that optimizes
minP maxS:w(S)≤W

∑
i∈S P (i).

Hardness of RobustFAP and related problems. As
formulated, it is unclear whether RobustFAP is in NP be-
cause the inner maximization is an NP-complete integer
knapsack problem. Since the decision version of Robust-
FAP is of the form ∃P∀S, where P refers to a placement,
and S to the choice of an adversary, the problem is in Σ2, the
second level of the polynomial hierarchy [32, Chapter 17].

Theorem 1. The decision version of RobustFAP is co-
NP-hard. (Section 2)

To better understand the complexity of RobustFAP, we
consider a variant which we call AllOrNoneRobustFAP,
which is identical to RobustFAP, except that we require
that the placement P be whole: for any domain i, P (i) = 0
or P (i) = Ci; i.e., we either use the entire capacity of a
domain or do not use it at all. AllOrNoneRobustFAP
belongs to the class of bilevel knapsack problems, which have
gathered interest in recent work [7, 14, 15].

Theorem 2. AllOrNoneRobustFAP is Σ2-complete,
and NP-hard if input weights are unary. (Section 2)

Algorithms for RobustFAP and related variants. As
a step toward an approximation algorithm for RobustFAP,
we first consider a fractional variant.

Definition 2 (Fractional RobustFAP). The prob-
lem FracRobustFAP is identical to RobustFAP, except
that the actions of both the placement algorithm and the ad-
versary can be fractional. Formally, we seek a fractional
placement P : F → R optimizing
minP :P (F)≥N maxx∈[0,1]n:x·w≤W x · P .

Note that the notion of robustness is different in the Ro-
bustFAP and FracRobustFAP problems. In Robust-
FAP, an adversary can take down any subset of domains
with total weight bounded by W . In FracRobustFAP,
an adversary can take down any fraction (say x(i)) of any
domain i, as a result of which the number of failed tasks
in the domain is x(i) times the number of tasks allocated
to i; the sole constraint is that the total fractional weight
of the failed domains,

∑
i x(i)wi, is bounded by W . We

show that the classic notion of weighted max-min fair allo-
cation [19, 28, 33] is simultaneously optimal for all weights
W for FracRobustFAP.

Theorem 3. The weighted max-min fair allocation is si-
multaneously optimal for all W for FracRobustFAP. (Sec-
tion 3)

Our main result here is a PTAS for RobustFAP that com-
bines the algorithm for FracRobustFAP with a careful
enumeration of placements according to how allocations are
made to domains. We also present a PTAS for AllOrNoneR-
obustFAP, which places it alongside the bilevel knapsack
problem DNEG [7] in the class of Σ2-complete problems that
surprisingly admit polynomial-time approximation schemes.

Theorem 4. There exist PTASes for RobustFAP and
AllOrNoneRobustFAP. (Section 3)

Failure domain hierarchies. Thus far, we have assumed a
flat organization of the failure domains. We next generalize
the problem to failure domain hierarchies, in which we have
a failure domain tree T , with machines at the leaves and
internal nodes of the tree representing failure domains. Each
node v has a weight wv representing its reliability, and a
capacity Cv representing the maximum number of tasks that
can placed in the subtree rooted at that node. Failure of an
internal node v causes the whole subtree rooted at v and the
tasks placed in that subtree to be unavailable.

Definition 3. (Fractional placement against ad-
versarial failures in hierarchies) The goal of Hier-
FracRobustFAP is to compute a fractional placement of
N tasks among machines in a hierarchy such that the ca-
pacity constraints are satisfied and the maximum number of
tasks that can fail due to a fractional adversary with weight
bound W is minimized.

Our second main result is a new placement algorithm for
HierFracRobustFAP, which computes a placement that
is simultaneously optimal for all weight budget bounds W .
Our algorithm, which we call Generalized Spreading, in-
troduces the concept of hierarchical max-min fairness that
applies to nodes of different capacities, different reliability
weights and a hierarchical structure, and could be useful in
other domains.

Theorem 5. The Generalized Spreading algorithm is op-
timal for all W for HierFracRobustFAP. (Section 4)

We then consider the integral problem HierRobustFAP,
and show in Section 4, that a randomized rounding of the
Generalized Spreading algorithm solution yields a solution
for HierRobustFAP with performance guarantees against
oblivious adversaries.
Probabilistic failures in domain hierarchies. The next
class of failure-aware placement problems we study is with
probabilistic failures: where we model failures by having, for
each domain, a probability of failure for that domain.

Definition 4. (Placement under probabilistic fail-
ures) In ProbFAP, we are given a set of N tasks, and a set
of domains F , and for each domain i, a probability pi of the
domain failing. The goal is to find a placement of tasks to
machines subject to capacity constraints so as to minimize
the probability that the number of tasks that fail exceeds a
given failure bound of F .

The probability that the number of tasks failing in a given
placement exceeds F is given by

PrP (F) =
∑

D⊆F:P (D)≥F

∏
i∈D

pi
∏

i∈F−D

(1− pi).

where D is the set of domains that fail and the summation
is over all possible subsets D of F . The goal of ProbFAP
then is to find a placement P that minimizes PrP (F).

We then extend the problem formulation to hierarchies of
domains. In HierProbFAP, we have a failure domain tree
T , each node v of which has a probability pv of failing, and a
capacity Cv representing the maximum number of tasks that
can placed in the subtree rooted at that node. If a domain v
fails, then the entire subtree under it is unavailable, implying
that all the tasks placed in the domain fail. Given a bound F
on the number of failed tasks, the goal of HierProbFAP is
to allocate N tasks to the machines in the hierarchy subject
to capacity constraints so as to minimize the probability that
the number of failed tasks exceeds F .

Our main result here is a bicriteria approximation algo-
rithm for ProbFAP and HierProbFAP. Our solution ap-
proach builds on the stochastic knapsack framework of Li
and Yuan [24] to handle dependencies among knapsack items
and hierarchical constraints on the allocations.

Theorem 6. There exists a polynomial-time algorithm for
HierProbFAP, which computes, for any given constant ε >
0, a placement of N tasks such that the probability that the
number of failed tasks is at most (L+ε)F is at least OPT−ε
where OPT is the maximum achievable probability for the
given failure bound F , and L is the number of levels in the
hierarchy. (Section 5)

The remainder of the paper is organized as follows. Sec-
tion 1.3 reviews related work. Section 2 contains hardness
results. Section 3 presents PTASes for RobustFAP and Al-
lOrNoneRobustFAP. Section 4 presents results for Hier-
FracRobustFAP and HierRobustFAP. Section 5 presents
results for ProbFAP and HierProbFAP. Section 6 closes
with open problems stemming from our work. Due to space
constraints, we have omitted many of the proofs in this pa-
per. We refer the reader to the full paper for missing proofs
and details [21].

1.3 Related work

To the best of our knowledge, our specific formulations
for failure-aware placement are new. We now review related
results in the theory, operations research, and systems com-
munities, and highlight the differences between our work and
past work.
Max-min fairness. The notion of max-min fairness and
its generalizations, including weighted max-min fairness and
generalized processor sharing, have been used in network-
ing [19, 28, 33]. The basic idea is to allocate resources among
multiple players such that any attempt to further increase
the allocation of one player necessarily results in the de-
crease in allocation of some other player with an equal or
smaller allocation. Max-min fairness and its variants are
used in process and network schedulers to allow multiple
packet flows to share bandwidth fairly [12]. We show in Sec-
tion 3.1 that the optimal placement for FracRobustFAP
is a weighted max-min fair one. For hierarchies the problem
is more involved due to the corelations among the different
levels of the hierarchy. To address this, we introduce the
concept of hierarhical max-min fairness in the Generalized
Spreading algorithm of Section 4.
Bilevel knapsack. The AllOrNoneRobustFAP prob-
lem has similarities to the bilevel knapsack problems which
model decision makers at multiple levels [13, 43]. A bilevel
knapsack problem has two players: a leader and a follower.

First, a leader fixes the values of their variables with the
aim of optimizing their objective. Next, the follower reacts
by setting their variables with the aim of optimizing their
objective, under the constraints imposed by the leader. The
variants studied earlier differ in the objective functions and
variables under control of the leader and follower [14, 15,
26]. Dempe and Richter [14] study a variant in which the
leader controls the capacity of the knapsack while the fol-
lower decides which items are packed in the knapsack. In
the variant labeled DNeg [15], both players have a knapsack
of their own, and the follower can only choose from items
that the leader did not pick. Our AllOrNoneRobustFAP
problem has similarity to DNeg [15], however the particular
combination of constraints and objective functions are dif-
ferent and as a result the complexity results for one do not
directly translate to the other. Our Σ2-completeness and
PTAS for AllOrNoneRobustFAP build on ideas from [7].
The RobustFAP problem has a different structure and uses
additional ideas.
Stochastic knapsack and chance-constrained optimiza-
tion. The placement problem under probabilistic failures re-
sembles the category of chance-constrained optimization [29,
30], which involves constraints and objectives determined
by probability of certain events. One consequence of hav-
ing such chance constraints is that they define a non-convex
set, making it difficult to apply general optimization tech-
niques [29]. This challenge applies to ProbFAP and Hi-
erProbFAP as well. A number of algorithms have been
developed for chance-constrained optimization [1, 4, 20, 30,
31], however, these do not yield any provable approxima-
tions for our problems of interest. Our solution approach
for ProbFAP and HierProbFAP builds on the stochas-
tic optimization framework of Li and Yuan [24] which uses a
Poisson approximation technique [22]. Other recent work on
stochastic knapsack and related problems includes [5, 23].

Finally, the recent work of [9] studies a distributed storage
problem, which is a stochastic knapsack problem in which
the unknown variables that are being determined are real-
valued. Using structural results from the study of linear
threshold functions, they give a unicriterion additive PTAS
for their storage problem. In contrast, we focus on the dis-
crete version of the related placement problem, and obtain
a bicriteria additive PTAS for constant-depth network hier-
archies with probabilistic failures.

2. Hardness of placement under adver-
sarial failures

In this section, we establish the hardness of RobustFAP
and AllOrNoneRobustFAP: Theorems 1 and 2.

2.1 Hardness of RobustFAP

Recall that, in the decision version of RobustFAP, our
goal is to decide if there exists a placement such that for
any subset S of domains with weight at most W , the total
number of tasks allocated to the domains in S is at most F .
Proof of Theorem 1: Our co-NP-hardness proof is by
a reduction from the NP-hard partition problem. Let I be
an instance of the partition problem consisting of a set S
of n integers {ai : 1 ≤ i ≤ n} such that

∑
i ai equals an

even number 2W . The goal of the partition problem is to
determine if there exists a subset T of S such that the sum
of the elements in T equals W .

Given I, we construct the following instance I ′ of Ro-
bustFAP. We have one domain for each element of S, with
the capacity Ci and the reliability weight w(i) of the ith do-
main both equal to ai, for 1 ≤ i ≤ n. We set (i) N , number
of tasks we need to place, to 2W , (ii) the adversary’s weight
budget to W , and (ii) F , the maximum number of allowed
failures, to W − 1.

We now show that I ′ has a placement with maximum
failures W − 1 if and only if I cannot be partitioned into
two sets of equal size. First note that there is exactly one
feasible placement of N tasks: place ai tasks in domain i.
Also for each subset X of domains, the number of tasks
allocated as well as the weight are both equal to

∑
i∈X ai.

Therefore, a placement with maximum failures W −1 exists
if and only if I cannot be partitioned into two sets of equal
size thus establishing the co-NP-hardness.

2.2 Hardness of AllOrNoneRobustFAP

We now establish Theorem 2, the hardness of AllOrNoneR-
obustFAP. Clearly, AllOrNoneRobustFAP is in Σ2. We
show that it is Σ2-hard via a reduction from the Σ2-complete
problem SubsetSumInterval. Our proof is similar to the
proof given in [7], that establishes this result for DNEG, a
different variant of bilevel knapsack which is incomparable
to AllOrNoneRobustFAP. We refer the reader to [21] for
the proof.

3. Polynomial-time approximation schemes
for RobustFAP and AllOrNoneRo-
bustFAP

We first consider the fractional variant FracRobustFAP
and show in Section 3.1 that it can be solved optimally using
weighted max-min fair allocations. We then present PTASes
for RobustFAP and AllOrNoneRobustFAP, using the
solution to FracRobustFAP for the former.

3.1 FracRobustFAP: Weighted max-min fair allo-
cations

We begin with FracRobustFAP, as defined in Defini-
tion 2. Consider the weighted max-min fair allocation, a
fractional placement that satisfies the following fairness prop-
erty: if a domain i gets less than its “fair share” compared to
another domain j, it is only because i is full. More formally,
for any i and j, if P (i)/wi < P (j)/wj , then P (i) = Ci. Such
a placement can be computed by the following algorithm.

1. Set N ′ = N , and for each domain i, C′i = Ci.

2. Repeat the following until N ′ = 0:

1. Let D = {i : C′i > 0} and w(D) =
∑
i∈D wi

2. For each domain i inD: place ai = min{C′i, N ′wi/w(D)}
tasks on i and set C′i = C′i − ai

3. Set N ′ = N ′ −
∑
i ai

Note that the above allocation is a fractional placement.
We show that the weighted max-min fair allocation is in fact
simultaneously optimal for all weight bounds W . This result
is somewhat implicit in previous fair allocation works [28,
33]. In the full paper [21], we include detailed proofs for
the sake of completeness, and to place the results in our
failure-aware placement context.

Lemma 1. For any FracRobustFAP instance with weight
bound W , there exists an optimal allocation that satisfies
max-min fairness.

Proof. For any placement P not satisfying the fairness
property, we define the low-ratio as the mini ki/wi over all
i such that ki < Ci, yet there exists a j for which kj/wj >
ki/wi. Suppose, for the sake of contradiction, that there
does not exist any optimal allocation satisfying the fairness
property. Let P be an optimal allocation for the weight
bound W , with the highest low-ratio.

Let i denote the arg-min for the low-ratio minimization,
and let j be such that ki/wi < kj/wj and yet ki < Ci.
Consider an alternative placement P ′ that is identical to P
except that P ′(i) = P (i) + ε and P ′(j) = P (j) − ε, for a
sufficiently small ε > 0 satisfying (P (i) + ε)/wi < (P (j) −
ε)/wj . Let s′ be any knapsack of weight W and value v′

built from P ′. Consider the knapsack s that is identical
to s′ except that si = s′i − ε and sj = s′j + δwi(P (j) −
ε)/(wj(P (i)+ε)), where δ = min(s′i, wj(P (i)+ε)/(wi(P (j)−
ε)). By construction, s has the same weight as s′. By our
assumption on ε, wi(P (j)−ε)/(wj(P (i)+ε)) is at least δ, so
the value of s is at least that of s′. Finally, either δ = s′i or
δ ≥ ε, and δwi(P (j)−ε)/(wj(P (i)+ε)) ≤ ε, which together
imply that s is a knapsack that can be built from P . Thus,
for every knapsack of weight W and value v in P ′, we have
a knapsack of weight W and value at least v in P , implying
that P ′ is a placement that is also optimal and has a higher
low-ratio than P . This contradicts our assumption that P
had the higher low-ratio, completing the proof.

Lemma 2. For any FracRobustFAP instance, there is
a unique weighted max-min fair allocation.

Lemmas 1 and 2 establish the following Theorem.

Theorem 7. For a single level of failure domains with
weight vector (w1, . . . , wm) and capacity vector (C1, . . . , Cm),
the weighted max-min fair allocation is simultaneously opti-
mal for all weight bounds W for FracRobustFAP.

3.2 RobustFAP and AllOrNoneRobustFAP

For RobustFAP one can easily construct instances to
show that no (integral) placement can be simultaneously op-
timal for all weight bounds [21]. Given the “universal” opti-
mality of the weighted max-min fair allocation for Frac-
RobustFAP, it is natural to explore its integer variants
for RobustFAP. One integer variant of RobustFAP that
we consider is the rounded fair placement: (i) compute the
weighted max-min fair allocation Pf ; (ii) let D be the set of
domains that have a non-integer assignment, and k < |D|
equal to the integer

∑
i∈D(Pf (i) − bPf (i)c); (iii) set new

placement P ′f as follows: P ′f (i) = dPf (i)e for i belonging to
an arbitrary k-size subset of D, and P ′f (i) = bPf (i)c for all
other i. We immediately observe that P ′f (i) < Pf (i) + 1 for
all i. Though the rounded fair placement does not directly
yield a PTAS, it plays a central role in our PTAS construc-
tion below.

We now describe our PTAS for RobustFAP. Recall that
the goal of RobustFAP is to determine a placement P that
minimizes the maximum of P (T), over all subsets T of F
with total weight at most W , such that (i) P (F) = N , and
(ii) for each i ∈ F , P (i) ≤ Ci. Consider the decision version
of RobustFAP: does there exist a placement such that for

any subset T of domains whose weight is at most W , the
sum of tasks assigned to domains in T is at most F? We
give a poly-time algorithm that either determines that there
does not exist any such placement, or returns a placement
such that for any subset T of F whose weight is at most W ,
the sum of tasks placed in T is at most (1 + ε)F . We then
obtain a PTAS for RobustFAP via a binary search over F ,
invoking the above decision algorithm at each step.

Grouping of capacities and allocations. We constrain
the placements to only allocate for each domain i a number
of tasks that is either at most d1/εe, or the floor of an integer
power of (1 + ε), or Ci. We say that an allocation to a
particular domain is small if it is at most d1/εe, large if it is
not small and at least εF , and medium otherwise. We say
that a placement P is monotonic if for any two domains i
and j, if wi < wj and P (j) < Cj , then P (i) ≤ P (j).

Lemma 3. There exists a monotonic placement, optimal
for RobustFAP.

Proof. For any placement P , we define the number of in-
versions of P as the number of pairs (i, j) such that wi < wj ,
P (j) < Cj , and P (i) > P (j). The number of inversions lies
between 0 and n(n−1)/2, where n is the number of domains.
A monotonic placement has no inversions. Let P be an op-
timal placement that has the least number of inversions. If
this number is 0, we are done. Otherwise, we will derive a
new optimal placement that has fewer inversions, thus con-
tradicting the assumption and establishing the lemma.

Let (i, j) be any inversion in P . We define a new place-
ment P ′ which is identical to P except that P ′(j) equals
min{Cj , P (i)}, and P ′(i) = P (i)− (P ′(j)− P (j)). By con-
struction, all capacity constraints are maintained. It is not
hard to see, that the number of inversions of P ′ is less than
that of P . We now show that P ′ is also optimal. Let T ′ de-
note the set of domains selected by the adversary against P ′.
Clearly, wT ′ ≤ W . If either T ′ has both i and j or has nei-
ther i nor j, then the adversary can select exactly the same
set T ′ against P and achieve the same value. If T ′ has i but
not j, then the adversary can select exactly the same set T ′

against P and achieve a value of F ′ − P ′(i) + P (i) > F ′.
Finally, if T ′ has j but not i, then the adversary can select
the set T ′−{j}∪{i}, with weight at most W+wi−wj ≤W ,
against P and achieve a value of F ′ − P ′(j) + P (i) ≥ F ′.
Thus, the value achieved by the adversary against P is at
least that against P ′, thus completing the proof.

Controlling large allocations. Since a large allocation
is at least εF and at most F , it follows from our grouping
of allocations that there are at most g(ε) = log1+ε(1/ε) =
O(ln(1/ε)/ε) values to choose from for a large allocation.
Since we are restricting to monotonic placements, there are
at most ng(ε) different ways in which large allocations can be
assigned to the domains, where n is the number of domains.
Each way yields a partial placement: it specifies the exact
allocation for all domains that have large allocations, while
the small and medium allocations are undetermined. Given
one such partial monotonic solution J , the adversary selects
a subset of at most d1/εe domains with large allocations,
subject to the weight constraint. Thus, for a given J , the
set K(J) of choices for the adversary has size at most n1/ε+1.

Enumerating small allocations. Restricting to mono-
tonic placements allows us to bound the number of ways in

which we can make small allocations. Suppose we sort the
domains in nondecreasing order of weights: i.e., w1 ≤ . . . ≤
wn. Then, the small allocations are completely character-
ized by t = d1/εe + 1 indices 0 = i0 ≤ i1 ≤ . . . ≤ it−1 ≤ n
such that every domain in the interval (ij−1, ij) has exactly
min{Ci, j} tasks. Clearly, the number of ways we can de-

termine these small allocations is nO(1/ε). In the remainder,
we fix one choice S of the small allocations.

Determining medium allocations. Thus far, we have
fixed a partial placement that assigns large allocations to
some domains, and small allocations to others, and the ad-
versary has selected a subset of the domains with large allo-
cations. It remains to assign medium allocations. Let N ′

denote the number of tasks that remains to be assigned, and
let F ′ denote the set of domains for which an allocation has
not been determined. Note that the weight of each domain
in F ′ is at most that of each domain that has already been
assigned a large allocation. We need to consider the value
achieved by an adversary that selects domains with medium
and small allocations. Since all these domains have at most
εF tasks, an adversary can achieve a value within an εF
additive amount of the optimal by ordering the domains in
increasing order of their density, and selecting a prefix of this
sequence until no more domains can be added. We refer to
this adversary as the prefix adversary.

Since we are restricting to medium allocations, we first
place d1/εe tasks in each domain in F ′, and set the capacity
of each domain i in F ′ to be min{εF,Ci}. If the number
of tasks already placed exceeds N ′, then the current par-
tial assignment is not part of an (1 + ε)-optimal solution.
Otherwise, we assign the remaining tasks using the rounded
fair placement, which assigns to each domain in F ′ at most
one more task than the weighted max-min fair allocation.
Since the number of tasks in any medium allocation is at
least d1/εe, this additional task per domain with a medium
allocation can cause only an extra ε fraction task failures, as
compared with the weighted max-min fair allocation, which
is optimal against all fractional adversaries. As we argued
above, the prefix adversary is within an additive εF of an
optimal fractional adversary. Consequently, for medium al-
locations, the value achieved by the rounded fair placement
is within an additive εF of optimal against any adversary.

Putting it together. We enumerate over partial mono-
tonic placements J in which the large allocations are fixed,
an adversarial choice from the set K(J) that determines
which domains with large allocations to fail, a small alloca-
tion S, and run the rounded fair placement procedure for
medium allocations. For each of these choices, we calculate
the number of tasks failed by a weight W -bounded adver-
sary, and determine if there exists a solution with at most
(1 + ε)F failures. Given the polynomial size of J , K(J),
and the number of small allocations, we obtain a PTAS for
RobustFAP.
PTAS for AllOrNoneRobustFAP. Recall that in Al-
lOrNoneRobustFAP we have a set F of failure domains,
a weight wi and capacity Ci for each domain i, and an integer
N . The goal of AllOrNoneRobustFAP is to determine
a subset S of domains whose capacity is at least N such
that the maximum, over any subset T of S whose weight
is at most W , of the sum of capacities of domains in T is
minimized. As in Section 3.2, we give a polynomial-time ap-
proximate algorithm for the decision problem and then give

a PTAS for the optimization problem by doing a binary
search. Due to space constraints, we defer the algorithm
description and proofs to the full paper [21].

4. Hierarchical RobustFAP
We now present the Generalized Spreading algorithm for

HierFracRobustFAP in Sections 4.1 and 4.2. We then
use the Generalized Spreading algorithm to develop a ran-
domized algorithm for HierRobustFAP in Section 4.3.

4.1 HierFracRobustFAP: Hierarchical max-min fair-
ness

Recall that in HierFracRobustFAP we have a failure
domain tree, with machines at the leaves and internal nodes
representing failure domains. We now develop a hierarchical
notion of max-min fairness. Given a fractional placement P
and node v, let P (v) denote the number of tasks placed by
P in the subtree rooted at v. Given a placement P , for any
leaf u, and any subtree T containing u, let pu(T, P) denote

max
ancestor v of u in T

P (v)/wv.

We refer to pu(T, P) as the vulnerability of u in T . Note
that this definition generalizes the analogous ratio used for
defining fairness in the single-level case in Section 3.1. We
say that a placement P is hierarchical max-min fair if for any
pair of leaf nodes i and j, and any subtree T containing i
and j, if pi(T, P) < pj(T, P), then P (i) = Ci. By definition,
any hierarchical max-min fair placement, when restricted to
any subtree, is also hierarchical max-min fair.

In the following lemmas, we show that a hierarchical max-
min fair optimal solution exists for every weight bound, and
establish the existence of a unique hierarchical max-min fair
placement for a given number of tasks; this solution is hence
simultaneously optimal for all weight bounds. We defer
the proofs of the lemmas to Section 4.4 after we present a
polynomial-time algorithm to compute the hierarchical max-
min fair placement in Section 4.2.

Lemma 4. For any instance of HierFracRobustFAP
and weight bound W , there exists a hierarchical max-min
fair optimal solution.

Lemma 5. For any instance of HierFracRobustFAP,
there exists a unique hierarchical max-min fair allocation.

4.2 Generalized spreading for HierFracRobustFAP

We now present an algorithm for computing the hierarchi-
cal max-min fair allocation for HierFracRobustFAP. Our
algorithm incrementally allocates tasks to the leaf nodes,
while always maintaining the fairness property. The intu-
ition is best captured by thinking of directing fluid (tasks)
into each of the leaf nodes in such way that the next infinites-
imal unit goes to that node which has the least vulnerability.
Since vulnerability increases with the assignment of tasks,
that node will soon have more vulnerability than some of the
other nodes, in which case the next infinitesimal unit goes to
another node. Repeating this process will yield the desired
allocation. How do we convert the above intuition into a fi-
nite efficient procedure? The key challenge in implementing
this algorithm is that the rate of increase for different leaf
nodes is different, depending on their vulnerability, and not
even constant for any given node.

An iteration of Generalized Spreading. Let P be a
given current hierarchical max-min fair allocation, and we
would like to add more tasks. We proceed in a bottom-
up manner, and compute the following for each node j: (i)
vector vj giving the relative rates for the leaves in the sub-
tree rooted at j by which we can increment their allocation
(subject to capacity constraints); (ii) a scalar upper bound
uj > 0 indicating the (fractional) number of tasks that we
can allocate using the relative rates vj ; and (iii) maxrj(x),
a linear function over a scalar variable x yielding the maxi-
mum vulnerability in the subtree rooted at j. We show how
to compute the above three quantities for a node j, given
the same for the children of j.

Computation at the leaves. For any leaf l, we set vl
(which is simply a scalar) to be 1, ul to be the remaining
capacity of l, and maxrl(x) to be (P (l) + x)/wl.

Recursive computation of vj, uj, and maxrj . Fix an
internal node j and let Hj denote the set of children of j. We
first define function ri(x) to be the ratio (P (j)+x)/wj . Fix a
child i in Hj . If rj(0) > maxri(0), then this implies that the
vulnerability at j exceeds that inside the subtree rooted at i.
So we set r∗i (x) = rj(x) and u∗i to be the minimum of ui and
the smallest xi such that rj(xi) ≤ maxri(xi) (the point at
which the ratios switch); otherwise, we set r∗i (x) = maxri(x)
and u∗i to be ui.

Let i be an arbitrary child of j that is not full. Consider
equating r∗i (xi) with r∗l (xl) for all non-full children l in Hj .
By the fairness of the current placement and the definition
of fairness from Section 4.1, if i and l are both not full,
then r∗i (0) = r∗l (0). Since these equations are linear, we can
obtain a solution to the set of equations such that xl for each
l is a scalar multiple of xi. We now set vj to be the vector
obtained by the putting together xlvl, over all children l of
j, scaled so that the sum of the values equals 1. We next set
uj to be the minimum of the remaining capacity at j and
the minimum, over all l, of u∗l /vj(l), where vj(l) is the sum,
over all leaf nodes ml in the subtree rooted at l, of (vj)ml .
Finally, we set maxrj(x) = r∗i (x).

Updating the placement. Using the above computation
in a bottom-up manner, we compute for the root node t: vt,
ut, and maxrt(x). We set P to be the new allocation given
by the vector sum P +vt min{ut, N−|P |}, where we use |P |
here to denote the number of tasks allocated in P .

We repeat the above process until the required number of
tasks have been allocated. By design, the algorithm main-
tains the fairness property. In each iteration, either a node
reaches capacity or a new node achieves the maximum vul-
nerability bound. This leads to a polynomial bound on the
number of iterations. Combining this with Lemmas 5 and 4
yields the theorem.

Theorem 8. The generalized spreading algorithm com-
putes in polynomial time a fractional placement that is si-
multaneously optimal for all W for HierFracRobustFAP.

4.3 Randomized algorithm for HierRobustFAP

Though the generalized spreading algorthm is inherently
“continuous”it suggests natural algorithms for HierRobust-
FAP. One discrete version of generalized spreading for Hier-
RobustFAP is to execute the same high-level incremental
procedure, but allocating units of tasks in each iteration,
as opposed to fractions. An analysis of this algorithm is an

open problem. We now present a basic randomized rounding
of generalized spreading that offers performance guarantees
against oblivious adversaries.

Suppose P is the fractional placement returned by gen-
eralized spreading. We number the machines in the hier-
archy in order (say left to right in appearance in the do-
main tree) so that all the machines belonging to a domain
appear contiguously. With machine i, we associate the in-
terval I(i) = [

∑i−1
j=1 P (j),

∑i
j=1 P (j)). We select a num-

ber ρ uniformly at random from [0, 1]. Consider the set
K = {k + ρ : k ∈ Z}. In our solution, the number of tasks
we place in machine i equals the size of the intersection
I(i) ∩K.

We now analyze the guarantee provided by the above ran-
domized algorithm. For any machine i, the expected number
of tasks placed on i equals the number of tasks P (i) since it
exactly equals the length of the interval I(i). By linearity of
expectation, the expected number of tasks placed on any set
S of domains is P (S). Therefore, for any weight bound W , if
the optimal solution to HierFracRobustFAP achieves an
objective of A∗W , then for any subset S of domains of weight
at most W , the expected number of tasks placed by the
randomized algorithm on the domains in S is at most A∗W .
Furthermore, for any domain, the number of tasks placed
on the domain is within one of that placed by the optimal
fractional solution. This yields the following lemma.

Lemma 6. For any weight bound W , let A∗W denote the
objective value achieved by the optimal solution to Hier-
FracRobustFAP. There exists a randomized algorithm for
computing a placement for HierRobustFAP such that for
any W and any subset S of domains of total weight W , the
expected number of tasks placed in S is at most A∗W .

4.4 Proofs for Lemmas 4 and 5

We start with characterizing an optimal adversary. The
adversary’s maximization problem for a given placement P
is given in Equation 1 below, where P (u) denotes the number
of tasks placed by P in the subtree rooted at u.

A(P) = max
∑
u

xuP (u) (1)∑
u

xuwu ≤ W∑
u∈anc(v)

xu ≤ 1 for every machine v

xu ≤ 1 for every domain u

xu ≥ 0 for every domain u

The following two lemmas provide insight into a solution to
the adversary’s maximization problem.

Lemma 7. Given any placement P , there exists an op-
timal solution x for the adversary in which there exists at
most one node v such that xv is not 0 and the sum of xu,
over all ancestors u of v, is in (0, 1).

Proof. Let x be an optimal extreme point solution to the
LP (an optimal vertex of the associated polytope). For any
u, if xu is 0 we remove xu from the LP and u from the hier-
archy; for any xu that is 1, we add P (u) as a constant into
the LP objective and constraints, and remove the subtree
rooted under u. We thus have an LP with number of vari-
ables equal to the number of nodes in the resulting forest,

and the number of constraints equal to one more than twice
the number of nodes. Since the number of tight constraints
in an extreme point solution equals the number of variables
and none of the range constraints are tight, it follows that
all but at most one of the sum constraints are tight, thus
completing the proof of the desired claim.

Lemma 8. Given any placement P , there exists an op-
timal solution x for the adversary in which there exists at
most one node v such that xv is in (0, 1).

Proof. By Lemma 7, there exists an optimal solution x
for the adversary in which there is at most one node v such
that xv is not 0 and the sum of xu, over all ancestors u of
v, is in (0, 1). We refer to such as node v, if it exists, as an
outlier. Let S be the set of nodes such that for each s in S,
xs ∈ (0, 1). Fix an s in S. If there exists an ancestor s′ of
s such that xs′ is non-zero, then s′ is an outlier; otherwise,
s is an outlier. Given that there is at most one outlier, if
|S| > 1, then there exists a unique node t in S such that
(a) t is an outlier and an ancestor for all nodes in S, (b) no
node in S − t is an ancestor of any other node in S − t, and
(c) for every s in S − t, xs equals 1− xt.

We now argue that x can be transformed into another op-
timal solution x′ for the adversary which satisfies the claim
of the corollary. We consider three cases. In the first case
wt < w(S − t), where w(S − t) is the sum of the weights
of the nodes in S − t. In this case, we set x′t to be xt + ε
and x′s to be xs − ε′, where ε > ε′ > 0 is a real made suf-
ficiently small. The weight constraint is maintained by the
adversary by making ε′ and ε sufficiently small, while the
objective values increases, yielding a contradiction. In the
second case, we have wt > w(S − t). Let εt = δ/wt and
εs = δ/w(S − t). If P (t)/wt ≥ P (S − t)/w(S − t), then we
set x′t = xt+εt and x′s = xs−εs for all s ∈ S−t. Otherwise,
we set x′t = xt−εt and x′s = xs+εs for all s ∈ S− t. By the
setting of εs and εt, the weight constraint for the adversary
is satisfied. And in either of the two subcases, the objective
value of the adversary improves, yielding a contradiction.

We are finally left with the case wt = w(S − t). In this
case, we set xt = 1 and xs = 0 for all s ∈ S− t. Clearly, the
weight constraint is satisfied, and the objective value of the
adversary remains the same, establishing the desired claim
of the corollary.

Lemma 9. Given any placement P and any weight bound
W , in every optimal adversarial solution x, for any two
leaf nodes i and j and any subtree T containing i and j,
if pi(T, P) > pj(T, P), then yi(T, x) ≥ yj(T, x).

Proof. The proof is by contradiction. Let i and j be
two leaves and T be a subtree containing them such that
pi(T, P) > pj(T, P) and yi(T, x) < yj(T, x). Since yi(T, x) <
yj(T, x), there must exist an ancestor r of j in T such
that xr > 0. Let q denote the ancestor of i that is the
argmax of max ancestor l of i in T

P (l)/wl. Then, we have
P (q)/wq = pi(T, P) > pj(T, P) ≥ P (r)/wr. We also have
xq ≤ yi(T, x) < yj(T, x) ≤ 1. Consider an alternative
adversarial solution x′ that is identical to x except that
x′r = xr − ε, x′q = xq + wr/wq, for ε ≤ min{1 − xq, xr}.
The difference between the total value of the knapsack x′

and that of x equals εwrkq/wq− εkr, which is positive since
kq/wq > kr/wr. This contradicts the assumption that x is
optimal, thus completing the proof of the lemma.

Proof of Lemma 4: Let P be an optimal (fractional)
placement for the weight bound W . Suppose, for the sake of
contradiction, that there does not exist any optimal hierar-
chical max-min fair allocation. We consider any linear order
< of all of the subtrees of the hierarchy in which T1 < T2

whenever T1 is a subtree of T2. For any allocation P , let
muf(P) denote the minimum subtree, according to this lin-
ear order, such that P is not hierarchical max-min fair within
that subtree. By our assumption, such a subtree exists. Let
lvs(P) denote the number of leaves i in muf(P) such that
pi(muf(P), P) equals max

j∈muf(P)
pj(muf(P), P).

Let P denote an optimal allocation with lexicographically
minimum with respect to the triple

(muf(P), max
j∈muf(P)

pj(muf(P), P), lvs(P)).

Let T equal muf(P). We thus have two leaf nodes i and j
of T such that j has the maximum vulnerability in T and
pi(T, P) < pj(T, P) and yet, P (i) < Ci. We argue now by
contradiction that i and j belong to two different proper
subtrees of T . If i and j belong to the same proper subtree,
say T ′, of T , then since P is hierarchical max-min fair within
T ′, pi(T

′, P) ≥ pj(T ′, P), which also implies that pi(T, P) ≥
pj(T, P) leading to a contradiction.

Let i and j belong to proper subtrees rooted at say u and
v, respectively; we refer to these trees as Tu and Tv, respec-
tively. By our assumption the allocations within both Tu
and Tv are hierarchical max-min fair. Consider an alterna-
tive allocation P ′ that is identical to k except that an ε > 0
amount of tasks are added to the tree rooted at u, and an
amount decreased from the tree rooted at v. We do this
following the algorithm defined above; this is feasible since
the allocation P , restricted to u (or v), is hierarchical max-
min fair and hence produced by the algorithm (following our
assumption about T being muf(P)). The amount is chosen
sufficiently small such that (P (u) + ε)/wu < (P (v) + ε)/wv,
and P ′(l) ≤ Cl for all l in the tree rooted at u, and P ′(l) ≥ 0
for all l in the tree rooted at v. Clearly, P ′ is a valid alloca-
tion. Furthermore, since j has maximum vulnerability in P ,
P ′ has either a smaller maximum vulnerability than P or P ′

has fewer leaf nodes with the maximum vulnerability value.
In either case, P ′ is lexicographically smaller with respect
to the metric given above. We now derive a contradiction
by arguing that P ′ is also an optimal allocation.

Let s′ be an optimal knapsack of weight W and value v′

built from P ′. Note that j has the largest vulnerability in
the tree rooted at v and i has the largest vulnerability in the
tree rooted at u. Since j has higher vulnerability than u, we
obtain from Lemma 9 that s′ will select at least as much
fraction of j and the other leaves in Tv with the highest
vulnerability than of i and the other leaves in Tu with the
highest vulnerability. Since the amount of the former is less
in P ′ than in P by ε, while that of the latter is more in P ′

than in P by ε, we obtain that the value of the knapsack s′

against allocation P is at least that of s′ against P ′. Thus,
for any weight W , an optimal weight-W knapsack against
P has at least as much value as an optimal weight-W knap-
sack against P ′. Hence, P ′ is optimal and lexicographically
smaller than P , contradicting our assumption about P . This
completes the proof of the lemma.

For any leaf u and subtree T containing u, and knap-
sack solution x to the adversarial maximization problem, let

yu(T, x) denote the sum, over all ancestors v of u in T , of
xv.
Proof of Lemma 5: The proof is by induction on the
height of the hierarchy. For the induction basis (hierarchies
of height 1), the claim follows from the single-level case.
For the induction step, consider any hierarchy of height h.
For a given number N , let, if possible, there be two dis-
tinct hierarchical max-min fair solutions P and P ′. Since
the claim is true for hierarchies of height smaller than h, it
follows that there exist two children u and v of the root
such that P (u) > P ′(u) while P (v) < P ′(v). So there
must exist an incomplete leaf node, say i, under P in the
tree rooted at v, and an incomplete leaf node, say j, un-
der P ′ in the tree rooted at u. We thus have pi(v, P) ≥
pj(u, P

′) and pi(v, P
′) ≤ pj(u, P). But since P (v) < P (v)

and P (u) > P ′(u), and the unique hierarchical max-min fair
allocations for the two hierarchies rooted at v and u, respec-
tively, have the property that the vulnerability of an incom-
plete leaf node only increases with the number of tasks, we
have pi(v, P

′) > pi(v, P) and pj(u, P) > pj(u, P
′). These

inequalities together yield a contradiction, completing the
induction step and the proof of the lemma.

5. Probabilistic failures: Bicriteria ap-
proximations

We now present bicriteria polynomial-time approxima-
tions for ProbFAP and HierProbFAP. In particular, our
algorithm for ProbFAP achieves an ε additive approxima-
tion in the failure probability, while giving up a (1 + ε)
multiplicative factor in the number of failures. We next
extend the result to hierarchies by giving an algorithm for
HierProbFAP, which achieves an ε additive approximation
in failure probability, while giving up a (L + ε) multiplica-
tive factor in the number of failures, for L-level hierarchies,
where L is a constant.

5.1 Single-level case: ProbFAP

Our solution approach here builds on the stochastic opti-
mization framework of Li and Yuan [24]. For each domain
i and integer b in [0, Ci], we introduce an item (i, b) with
associated random variable X(i, b), capturing the fraction
of failed tasks if domain i fails, that has the following distri-
bution:

X(i, b) =

{
0 with probability 1− pi
b
N

with probability pi

Define U as the universe of all items; i.e., U = {(i, b) : i ∈
F , 0 ≤ b ≤ Ci}. We define a subset S of U as feasible if (a)
for each i ∈ F , there is exactly one item of the form (i, b) in
S; and (b)

∑
(i,b)∈S b = N .

For a feasible solution S, define X(S) =
∑

(i,b)∈S X(i, b).
ProbFAP is then exactly the threshold probability maxi-
mization problem where we aim to maximize Pr[X(S) ≤
F/N]. Li and Yuan show that a PTAS for an associated
multi-dimensional exact version of the problem implies an
approximation scheme for the threshold probability maxi-
mization problem. Their framework, however, assumes that
the random variables X() are mutually independent. This
is not true for our problem since while X(i, b) is indepen-
dent of X(j, b′) for any i 6= j, b, b′, the variables X(i, b) and
X(i, b′) are not independent of each other. Fortunately, in
our problem any feasible set of items consists of at most
one item of the form (i, b) for any given i; so, the random

variables associated with the items in any feasible set are
all mutually independent. We use this fact to extend the
Li-Yuan framework for the single-level case.

We now present the mechanism of classifying items as light
or heavy, discretizing the size distributions of light items,
enumerating all possible heavy item sets, and signatures of
light item sets.

Item classification. Call an item (i, b) light if E[X(i, b)] ≤
ε10, and heavy otherwise.

Discretization. For item (i, b), we define variable X̃(i, b)
that takes values in {sj = jε5 : 0 ≤ j ≤ b1/ε5c}. We map

X(i, b) to X̃(i, b) as follows. If X(i, b) > ε4, then X̃(i, b) =
bX(i, b)/ε5cε5. For X(i, b) ≤ ε4, we find a d such that ε4 ·
Pr[X(i, b) ≥ d|X(i, b) ≤ ε4] = E[X(i, b)|X(i, b) ≤ ε4], and

set X̃(i, b) = 0 for 0 ≤ X(i, b) < d and X̃(i, b) = ε4 for
d ≤ X(i, b) ≤ ε4. It is easy to show that for any feasible
set of items, the distribution of the sum of the discretized
variables for the set is close to that for the original variables.

Lemma 10 ([24, Lemma 2.2]). For any set S of items
such that E[X(S)] ≤ 3/ε, for any k, we have

|Pr[X(S) ≤ k]− Pr[X̃(S) ≤ k]| = O(ε).

Enumeration of heavy item sets. We enumerate all
possible heavy item sets H with E[X(H)] < 3/ε. Each
heavy item set is of constant cardinality, hence the number
of such sets is polynomial. In the remainder, we can assume
a fixed heavy item set H.

Signatures. For an item (i, b), we define its signature to be
the vector (πi,b(s1), . . . , πi,b(sz−1)), where

πi,b(s) =
ε6

n

⌊ n
ε6
· Pr[X̃(i, b) = s]

⌋
for all s in {s1, s2, . . . , sz−1}. We define the signature of
a set of items to be the coordinate-wise sum of the signa-
tures of the individual items in the set. A key claim [24,
Lemma 2.3] shows that it is sufficient to consider signatures
whose components add up to at most 3/ε, and enumerate
signatures for set of light items. The proof of this lemma
relies on the Poisson approximation theorem for sums of
independent random variables [22]. Since we apply the Pos-
sion approximation theorem for random variables associated
with the items in any feasible set, the independence of these
variables continues to hold, the same lemma holds.

Lemma 11. Let S1 and S2 be two sets of light items, with
the same signature, and E[X̃(S1)] ≤ 3/ε, E[X̃(S2)] ≤ 3/ε.
Then, the total variation distance between X(S1) and X(S2)
is O(ε).

Using Lemmas 10 and 11, we then obtain the equivalent of
Theorem 1.1 of [24]: If there is a pseudopolynomial algo-
rithm for determining whether, for a given weight bound
W, there is a feasible solution of weight W for a given in-
stance of ProbFAP where individual elements have weights,
then there is a polynomial-time approximation algorithm
for ProbFAP that finds a feasible solution S such that
Pr[X(S) ≤ (1 + ε)F/N] ≥ OPT − ε, where OPT is the
maximum value achieveable for Pr[X(S) ≤ F/N], for any
feasible S.

Algorithm for an exact version of ProbFAP. In the
exact version of ProbFAP, each element (i, b) of U is as-
sociated with a weight ωi,b, where the weight will represent

the item signature we have defined above. We are given a
weight constraint W and we would like to determine if there
is a feasible solution S such that

∑
(i,b)∈S ωi,b = W. Note

thatW represents the overall signature we desire for the set
of light items. We define Π(X,M, j) to be a predicate that
is true if it is possible to assign tasks to domains 1 through
j so that the total weight of the assignment is exactly X.
We set up a dynamic program as follows: Π(0, 0, 0) is true;
Π(X,M, j) is true if Π(X − w(i, b),M − b, j − 1) is true for
any 0 ≤ b ≤ Cj , and false otherwise. It can be seen that the
above can be computed in time polynomial in the number
of tasks N , the number of possible weight values, and the
number of domains n. Furthermore, the algorithm extends
to the scenario where the weights are constant-dimensional
vectors, as is the case with the signatures; the exponent in
the polynomial time grows with the dimension of the weight
vectors. Finally, note that our algorithm as presented is
polynomial in N , not the size of N . We apply the standard
method of restricting b values in the items (i, b) to rounded
powers of (1 + ε). This causes us another factor of (1 + ε)
loss in the number of failed tasks, and yields the following
single-level special case of Theorem 6.

Theorem 9. For any ε > 0, there exists a polynomial
time algorithm that runs in time npoly(1/ε) and returns a
feasible placement of N tasks such that

Pr[number of failed tasks ≤ (1 + ε)F] ≥ OPT− ε,

where OPT is the maximum probability, over any placement
of N tasks, that the number of failed tasks is at most F .

5.2 Hierarchical case: HierProbFAP

We next consider the hierarchical version, HierProbFAP.
For each node i, we define an item (i, b) for each 0 ≤ b ≤ Ci.
As before, we have the associated random variable X(i, b),
that takes value 0 with the probability that at least one of its
ancestor domains fails, and b/N otherwise. The X(i, b) vari-
ables are no longer independent, even for different i. This is
because nodes share ancestor domains.

One approach to this problem is to solve multiple stochas-
tic knapsack problems, one for each of the L levels, using the
single-level algorithm of Section 5.1 and then select the best
of all the solutions. This approach is unlikely to yield any
useful approximation guarantees, however, since the solution
for any one level may perform poorly for other levels. We
present an approximation algorithm that considers the mul-
tiple level problems in an integrated manner and identifies
a single solution that performs close to the optimal at each
level. Let P`(E) denote the probability of event E, over the
failure events of domains at level `; that is,

P`(E) = Pr[E| no domain at any level i 6= ` fails].

For subproblem at level `, we enumerate a polynomial num-
ber of solutions to find all feasible solutions S` such that
P`(X(S`) ≤ (1 + ε/L)F/N) ≤ OPT` − ε/L, where OPT` is
the maximum probability, over any placement of N tasks,
that the number of failed tasks due to failures exclusively at
level ` is at most F . By our enumeration of the solutions,
we will identify a single solution S such that P`(X(S) ≤
(1 + ε)F/N) ≥ OPT` − ε/L for each `. By combining the
bound over all the levels, we will establish that S satisfies

Pr[X(S) ≤ (L+ ε)F/N] ≥ OPT− ε.

For each level, as in Section 5.1, we classify items as light or
heavy based on their expected size, discretize the size dis-
tributions for light items, and enumerate all possible heavy
item sets and signatures for light item sets. The item clas-
sification and discretization is the same as in Section 5.1.
The heavy item sets and the dynamic program we set up to
process the light item sets across all levels in an integrated
manner are described below.

Enumeration of heavy item sets. We enumerate all
possible heavy item sets H with E[X(H)] < 3/ε at each
level. Each heavy item set is of constant cardinality, hence
the number of distinct heavy sets at each level is polynomial.
Since the number of levels is constant, there is a polynomial
number of ways to select a heavy item set at each level.

Dynamic programming. Fix a heavy item set H` for each
level ` of the hierarchy. Fix a signature σ` for each level
` of the hierarchy. Recall that each signature is a vector
with O(ε−5) coordinates, and the value of each coordinate
is bounded by O(n).

Our goal now is to determine whether there is a selection
of items so that L` is the set of light items selected at level
`, H` ∪ L` is feasible for each `, and Sg(L`) = σ` for each
`; here, Sg(I) of a set I of light items denotes the signature
of the set. We set up a dynamic program that determines
if there is a feasible selection of light items satisfying the
preceding condition. Let λ(v) denote the level of node v
in the hierarchy. For a given node v, positive integer i at
most the number of children of v, and sequence of signature
vectors σ1, σ2, . . . , σλ(v), we define Φ(v, i, σ1, . . . , σλ(v)) to be
true if there exists a feasible selection of light items for the
subtree consisting of v, the first i children of v, and their
descendants such that the signature of the set of light items
at level `, 1 ≤ ` ≤ λ(v), equals σ`. We compute Φ() using
the following dynamic program. For a leaf node v we set

Φ(v, 0, σ) =

{
true if σ = (0, 0, . . .) or ∃b : Sg({(v, b)}) = σ
false otherwise.

For an internal node v, let d(v) denote the number of chil-
dren of v, and let vi denote the ith child of v, numbered in
an arbitrary order. For internal node v, we compute that
for i > 0 Φ(v, i, σ1, . . . , σλ(v)) equals∨
σ′1,...,σ

′
λ(v)−1

(
Φ(v, i− 1, σ1 − σ′1, . . . , σλ(v)−1 − σ′λ(v)−1, σλ(v))

∧Φ(vi, d(vi), σ
′
1, . . . , σ

′
λ(v)−1)

)
,

where we note that λ(vi) = λ(v)−1. Finally, Φ(v, 0, σ1, . . . , σλ(v))
is exactly the single-level problem for node v in which we
determine if there exists an selection of light items for the
domains v1 through vd(v) such that the heavy items selected
for this subset of domains, together with the light items form
a feasible solution for this set of domains, and the signature
of the light item set matches σλ(v).

Final output. We have written the above dynamic pro-
gram as a predicate; it is straightforward to extract an ac-
tual solution that satisfies the condition desired in Φ. Thus,
after solving the dynamic program, for any combination of
signatures σi at level i, for i ≤ `, if there exists a solution
that has the signature σi at level i, for i ≤ `, we obtain
one such solution. Among these, we select one solution that
has the highest product

∏
l P`(X`(S) ≤ (1 + ε)F/N), which

we can estimate using the signatures, as in the single-level
subproblem.

Analysis of the algorithm. Since the number of different

signature values is polynomial (nO(ε−5)) and the number of
levels is a constant, the total number of different inputs for
which Φ is being computed is polynomial in n. This ensures
that in polynomial time, we determine a feasible solution S
of items such that at each level `, the signature of S matches
that of a globally optimal solution, say S∗. If X`(S) (resp.,
X`(S

∗) denotes the number of failed tasks in S (resp., S∗)
due to failures in level `, then Lemma 11 implies that at each
level ` the variation distance between X̃`(S) and X̃`(S

∗) is
O(ε). Together with Lemma 10, we get

P`(X`(S) ≤ (1 + ε)F/N) ≥ OPT` −O(ε) (2)

where OPT` is the maximum probability, over any place-
ment of N tasks, that the number of failed tasks due to
failures exclusively at level ` is at most F . Since the failure
events at each of the failure domains are independent of one
another,

∏
`OPT` is an upper bound on maximum proba-

bility OPT, over any placement of N , that the number of
failed tasks due to failures at all levels is at most F . Here
we have used the fact that for the total number of failures
to be at most F , the number of failures at each level need
to be at most F . We thus obtain

Pr[X(S) ≤ (L+ ε)F/N] ≥
∏
`

P`(X`(S) ≤ (1 + ε/L)F/N)

≥
∏
`

(OPT` −O(ε/L))

≥ OPT−O(ε),

where in the second step, we invoke Equation 2, with ε re-
placed by ε/L. This gives us Theorem 6, restated below.

Theorem 10 (Restatement of Theorem 6). For any
ε > 0, there exists a polynomial time algorithm for Hi-
erProbFAP over an L-level hierarchy that runs in time
npoly(L,1/ε) and returns a feasible placement such that

Pr[number of failed tasks ≤ (L+ ε)F] ≥ OPT−O(ε),

where OPT is the maximum probability, over any placement
of N tasks, that the number of failed tasks is at most F .

6. Conclusions and open problems
In this paper, we formulate and initiate the study of failure-

aware placement for hierarchical data centers under adver-
sarial and probabilistic failures. For both classes, we give
hardness results and approximation algorithms for multiple
variants: based on generalized spreading for HierRobust-
FAP and Poisson approximation for HierProbFAP.

One natural question is to improve the approximation
guarantees and design more practical implementations for
some of the variants. In particular, the approximation fac-
tor in the bicriteria PTAS for HierProbFAP grows linearly
in the number of levels. While this is reasonable for current
datacenters (which typically have three to four levels of hi-
erarchy), it would be interesting to see if the approximation
factor can be made sublinear or even independent of number
of levels. Similarly, our PTASes incur high running times
(e.g., for RobustFAP, a standard implementation would

take time O(n(3+ln(1/ε))/ε) time), and it is important to de-
sign practical implementations of PTASes that trade off ap-
proximation guarantees for simplicity.

On a related note, our study here has focused on identical
tasks of the same size. It will be interesting to extend this

to an on-line sequence of jobs of possibly different sizes. A
further extension would be to consider dynamic task migra-
tions to improve availability as jobs finish and leave.

Acknowledgments

We would like to thank Gerhard Woeginger for providing
insights into the results of [7], and sharing a full version of
their paper.

7. References

[1] S. Agrawal, Y. Ding, A. Saberi, and Y. Ye. Price of
correlations in stochastic optimization. Operations
Research, 60:243–248, February 2012.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In ACM SIGCOMM Computer
Communication Review, volume 38, pages 63–74.
ACM, 2008.

[3] Luiz André Barroso and Urs Hölzle. The datacenter as
a computer: An introduction to the design of
warehouse-scale machines. Synthesis lectures on
computer architecture, 4:1–108, 2009.

[4] D. Bertsimas and M. Sim. The price of robustness.
Operations Research, 52, 2004.

[5] A. Bhalgat, A. Goel, and S. Khanna. Improved
approximation results for stochastic knapsack
problems. In SODA, 2011.

[6] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A.
Maltz, and I. Stoica. Surviving failures in
bandwidth-constrained datacenters. In Proceedings of
the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols
for computer communication, 2012.

[7] Alberto Caprara, Margarida Carvalho, Andrea Lodi,
and Gerhard J. Woeginger. A complexity and
approximability study of the bilevel knapsack
problem. In Integer Programming and Combinatorial
Optimization, pages 98–109. 2013.

[8] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A
survey. Mobile Networks and Applications,
19(2):171–209, 2014.

[9] C. Daskalakis, A. De, I. Diakonikolas, A. Moitra, and
R. Servedio. A polynomial-time approximation scheme
for fault-tolerant distributed storage. In SODA, 2014.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51:107–113, 2008.

[11] Christina Delimitrou and Christos Kozyrakis.
QoS-Aware Scheduling in Heterogeneous Datacenters
with Paragon. In ACM Transactions on Computer
Systems (TOCS), 2013.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. SIGCOMM
Comput. Commun. Rev., 19(4):1–12, August 1989.

[13] S. Dempe. Foundations of bilevel programming.
Kluwer Academic Publishers, 2002.

[14] S. Dempe and K. Richter. Bilevel programming with
knapsack constraint. Central European Journal of
Operations Research, 2000.

[15] S. DeNegre. Interdiction and discrete bilevel linear
programming. PhD thesis, Lehigh University, 2011.

[16] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V. A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems. In
Proceedings of Operating Systems Design and
Implementation (OSDI), 2010.

[17] P. Gill, N. Jain, and N. Nagappan. Understanding
network failures in data centers: measurement,
analysis, and implications. In ACM SIGCOMM
Computer Communication Review, 2011.

[18] M. Gribaudo, M. Iacono, and D. Manini. Improving
reliability and performances in large scale distributed
applications with erasure codes and replication. Future
Generation Computer Systems, 2015.

[19] S. Keshav. An Engineering Approach to Computer
Networking: ATM Networks, the Internet, and the
Telephone Network. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997.

[20] O. Klopfenstein and D. Nace. A robust approach to
the chance-constrained knapsack problem. Operations
Research Letters, 36, 2008.

[21] M. Korupolu and R. Rajaraman. Robust and
probabilistic failure-aware placement, 2016.

[22] L. Le Cam. An approximation theorem for the Poisson
binomial distribution. Pacific Journal of Mathematics,
10:1181–1197, 1960.

[23] J. Li and A. Deshpande. Maximizing expected utility
for stochastic combinatorial optimization problems. In
FOCS, 2011.

[24] J. Li and W. Yuan. Stochastic combinatorial
optimization via Poisson approximation. In STOC,
2013.

[25] Florence Jessie MacWilliams and Neil
James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier, 1977.

[26] R. Mansi, C. Alves, J. de Carvalho, and S. Hanafi. An
exact algorithm for bilevel 0-1 knapsack problems.
Mathematical Problems in Engineering, 2012.

[27] K. A. Mills, R. Chandrasekaran, and N. Mittal.
Algorithms for replica placement in high-availability
storage. In ArXiv preprint arXiv:1503.02654, 2015.

[28] J. Nagle. On packet switches with infinite storage.
IEEE Transactions on Communications, 35, 1987.

[29] A. Nemirovski and A. Shapiro. Convex
approximations of chance constrained programs.
SIAM Journal of Optimization, 17, 2006.

[30] E. Nikolova. Approximation algorithms for offline
risk-averse combinatorial optimization. In APPROX,
2010.

[31] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. Sample
average approximation method for chance-constrained
programming: Theory and applications. Journal of
Optimization theory and Applications, 142, 2009.

[32] Christos Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[33] A. Parekh and R. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM
Transactions on Networking, 1, 1993.

[34] Eduardo Pinheiro, Wolf-Dietrich Weber, and
Luiz André Barroso. Failure trends in a large disk
drive population. In FAST, pages 17–23, 2007.

[35] James S Plank et al. A tutorial on reed-solomon
coding for fault-tolerance in raid-like systems. Softw.,
Pract. Exper., 27:995–1012, 1997.

[36] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and
M. Kozych. Heterogeneity and dynamicity at scale:
Google trace analysis. In ACM Symposium on Cloud
Computing, 2012.

[37] B. Schroeder, E. Pinheiro, and W. D. Weber. Dram
errors in the wild: a large-scale field study. In ACM
SIGMETRICS Performance Evaluation Review,
volume 37, pages 193–204, 2009.

[38] Bianca Schroeder and Garth A Gibson. Understanding
failures in petascale computers. In Journal of Physics:
Conference Series, volume 78, page 012022. IOP
Publishing, 2007.

[39] M. Sedaghat, E. Wadbro, J. Wilkes, S. De Luna,
O. Seleznjev, and E. Elmroth. Die-hard: Reliable
scheduling to survive correlated failures in cloud data
centers. In Proceedings of IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2016.

[40] D. Tang and R. K. Iyer. Analysis and modeling of
correlated failures in multicomputer systems. In IEEE
Transactions on Computers, volume 41, pages
567–577, 1992.

[41] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proceedings of
the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

[42] K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In ACM
Symposium on Cloud Computing, SOCC, 2010.

[43] H. von Stackelberg. The theory of market economy.
Oxford University Press, 1952.

[44] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and
Seshan S. Beyond availability: Towards a deeper
understanding of machine failure characteristics in
large distributed systems. In Proceedings of the
Workshop on Real, Large Distributed Systems
(WORLDS âĂŹ04), 2004.

[45] M. Zaharia, M. Chowdhury, M . J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, 2010.

