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Abstract In modern data centers and cloud computing systems, jobs often
require resources distributed across nodes providing a wide variety of services.
Motivated by this, we study the Coupled Placement problem, in which we
place jobs into computation and storage nodes with capacity constraints, so
as to optimize some costs or profits associated with the placement. The coupled
placement problem is a natural generalization of the widely-studied generalized
assignment problem (GAP), which concerns the placement of jobs into single
nodes providing one kind of service. We also study a further generalization,
the k-Sided Placement problem, in which we place jobs into k-tuples of nodes,
each node in a tuple offering one of k services.

For both the coupled and k-sided placement problems, we consider min-
imization and maximization versions. In the minimization versions (MinCP
and MinkSP), the goal is to achieve minimum placement cost, while incurring
a minimum blowup in the capacity of the individual nodes. Our first main
result is an algorithm for MinkSP that achieves optimal cost while increas-
ing capacities by at most a factor of k + 1, also yielding the first constant-
factor approximation for MinCP. In the maximization versions (MaxCP and
MaxkSP), the goal is to maximize the total weight of the jobs that are placed
under hard capacity constraints. MaxkSP can be expressed as a k-column
sparse integer program, and can be approximated to within a factor of O(k)
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factor using randomized rounding of a linear program relaxation. We consider
alternative combinatorial algorithms that are much more efficient in prac-
tice. Our second main result is a local search based combinatorial algorithm
that yields a 15-approximation and O(k2)-approximation for MaxCP and
MaxkSP respectively. Finally, we consider an online version of MaxkSP and
present algorithms that achieve logarithmic competitive ratio under certain
necessary technical assumptions.

1 Introduction

The data center has become one of the most important assets of a modern
business. Whether it is a private data center for exclusive use or a shared pub-
lic cloud data center, the size and scale of the data center continues to rise.
As a company grows, so too must its data center to accommodate growing
computational, storage and networking demand. However, the new compo-
nents purchased for this expansion need not be the same as the components
already in place. Over time, the data center becomes quite heterogeneous [23].
This complicates the problem of placing jobs within the data center so as to
maximize performance.

Jobs often require resources of more than one type: for example, compu-
tation and storage. Modern data centers typically separate computation from
storage and interconnect the two using a network of switches. As such, when
placing a job within a data center, we must decide which computation node
and which storage node will serve the job. If we pick nodes that are far apart,
then communication latency may become too prohibitive. On the other hand,
nodes are capacitated, so picking nodes close together may not always be pos-
sible.

Most prior work in data center resource management is focussed on plac-
ing one type of resource at a time: e.g., placing storage requirements assuming
job computation location is fixed [14,3] or placing computation requirements
assuming job storage location is fixed [4,11]. One sided placement methods
cannot suitably take advantage of the proximities and heterogeneities that
exist in modern data centers. For example, a database analytics application
requiring high throughput between its computation and storage elements can
benefit by being placed on a storage node that has a nearby available compu-
tation node.

In this paper, we study Coupled Placement (CP), which is the problem of
placing jobs into computation and storage nodes with capacity constraints, so
as to optimize costs or profits associated with the placement. Coupled place-
ment was first addressed in [20] in a setting where we are required to place all
jobs and we wish to minimize the communication latency over all jobs. They
show that this problem, which we call MinCP, is NP-hard and investigate the
performance of heuristic solutions. Another natural formulation is where the
goal is to maximize the total number of jobs or revenue generated by the place-
ment, subject to capacity constraints. We refer to this problem as MaxCP.
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We also study a generalization of Coupled Placement, the k-Sided Placement
Problem (kSP), which considers k ≥ 2 kinds of resources.

1.1 Problem definition

In the coupled placement problem, we are given a bipartite graph G = (U, V,E)
where U is a set of compute nodes and V is a set of storage nodes. We have
capacity functions C : U → R and S : V → R for the compute and storage
nodes, respectively. We are also given a set T of jobs, each of which needs to be
allocated to one compute node and one storage node. Each job may prefer some
compute-storage node pairs more than others, and may also consume different
resources at different nodes. To capture these heterogeneities, we have for each
job j a function fj : E → R, a computation requirement pj : E → R and a
storage requirement sj : E → R.

We consider two versions of the coupled placement problems. For the
minimization version MinCP, we view fj as a cost function. Our goal is
to find an assignment σ : T → E such that all capacities are observed
and our total cost

∑
j∈T fj(σ(j)) is minimized. For the maximization ver-

sion MaxCP, we view fj as a profit function. Our goal is to select a sub-
set A ⊆ T of jobs and an assignment σ : A → E such that all capacities
are observed and our total profit

∑
j∈A fj(σ(j)) is maximized. In both prob-

lems, the constraint that “all capacities are observed” is formally captured
by the requirement that

∑
j∈T :σ(j)∈δ(u) pj(σ(j)) ≤ C(u) for all u ∈ U and∑

j∈T :σ(j)∈δ(v) sj(σ(j)) ≤ S(v) for all v ∈ V , where δ(x) is the set of edges
adjacent to node x in G.

A generalization of the coupled placement problem is k-sided placement
(kSP), in which we have k different sets of nodes, S1, . . . , Sk, each set of
nodes providing a distinct service. For each i, we have a capacity function
Ci : Si → R that gives the capacity of a node in Si to provide the ith service.
We are given a set T of jobs, each of which needs each kind of service; the
exact resource needs may depend on the particular k-tuple of nodes from

∏
i Si

to which it is assigned. That is, for each job j, we have a demand function
dj :

∏
i Si → Rk. We also have another function fj :

∏
i Si → R. As for

coupled placement, we can assume that the capacities are unit, since we can
scale the demands of individual nodes accordingly.

Similar to coupled placement, we consider two versions of kSP, MinkSP
and MaxkSP. In MinkSP, we view fj as a cost function, and the goal is to find
an assignment σ : T →

∏
i Si such that all capacities are observed and the total

cost
∑
j∈T fj(σ(j)) is minimized. In MaxkSP, we view fj as a profit function,

and the goal is to find an assignment σ : T →
∏
i Si such that all capacities

are observed and total profit
∑
j∈A fj(σ(j)) is maximized. In both problems,

“all capacities are observed” is formally captured by the requirement that for
1 ≤ i ≤ k, for all u ∈ Si, we have

∑
j∈T :u=πi(σ(j))

πi(dj(σ(j))) ≤ Ci(u), where

for any k-dimensional vector r, πi(r) is the value of the ith coordinate of r.
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1.2 Our Results

All of the variants of CP and kSP are NP-hard, so our focus is on approxima-
tion algorithms. Our first set of results consist of the first non-trivial approxi-
mation algorithms for MinCP and MinkSP. Under hard capacity constraints,
a reduction from the NP-complete Partition problem shows that it is NP-hard
to determine if there is a feasible solution to the problem; hence, it is NP-hard
to achieve any bounded approximation ratio to cost minimization. So we con-
sider approximation algorithms that incur a blowup in capacity. We say that
an algorithm is α-approximate for the minimization version if its cost is at
most that of an optimal solution, while incurring a blowup factor of at most
α in the capacity of any node.

– We present a (k+ 1)-approximation algorithm for MinkSP using iterative
rounding, yielding a 3-approximation for MinCP.

We note that in recent independent work, Harris and Srinivasan have devel-
oped a novel algorithmic framework for certain generalized scheduling prob-
lems, using the Lovász Local Lemma [16–18]. Their framework also applies
to MinkSP, yielding an O(log k/ log log k)-approximation algorithm for the
problem [7].

We next consider the maximization version. MaxkSP can be expressed as
a k-column sparse integer packing program (k-CSP), i.e., an integer program
in which each column in the constraint matrix has at most k non-zero en-
tries. From this, it is immediate that MaxkSP can be approximated to within
an O(k) approximation factor by applying randomized rounding to a linear
programming relaxation [8]. An Ω(k/ log k)-inapproximability result for k-set
packing due to [19] implies the same hardness result for MaxkSP. Our second
main result is a simpler approximation algorithm for MaxCP and MaxkSP
based on local search.

– We present local search based approximation algorithms for MaxCP and
MaxkSP, obtaining 15- and O(k2)-approximations, respectively.

The local search result applies directly to a version where we can assign jobs
fractionally but only to a single pair of machines. We then describe a simple
rounding scheme to obtain an integral version. The rounding technique involves
establishing a one-to-one correspondence between fractional assignments and
machines. This is much like the cycle-removing rounding for GAP; there is a
crucial difference, however, since coupled placements assign jobs to pairs of
machines.

Finally, we study the online version of MaxCP and MaxkSP, in which
jobs arrive online and must be irrevocably assigned or rejected immediately
upon arrival.

– We extend the techniques of [5] designed for competitive on-line routing and
scheduling to our scenario where the resource requirement for a job can be
arbitrarily machine-dependent. Under two necessary technical assumptions
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– one about profit values of jobs, relative to their resource requirements,
and the other about maximum resource requirements of a job – we design
online algorithms that achieve optimal logarithmic competitive ratios for
MaxCP and MaxkSP.

1.3 Related Work

The coupled and k-sided placement problems are natural generalizations of
the Generalized Assignment Problem (GAP), which can be viewed as a 1-
sided placement problem. In GAP, which was first introduced by Shmoys and
Tardos [24], the goal is to assign items of various sizes to bins of various ca-
pacities. A subset of items is feasible for a bin if their total size is no more
than the bin’s capacity. If we are required to assign all items and minimize
our cost (MinGAP), Shmoys and Tardos [24] give an algorithm for computing
an assignment that achieves optimal cost while doubling the capacities of each
bin. Our (k+ 1)-approximation for MinkSP can be viewed as a generalization
of the result for MinGAP, which corresponds to the case k = 1. A previ-
ous result by Lenstra et al. [22] for scheduling on unrelated machines show
it is NP-hard to achieve optimal cost without incurring a capacity blowup
of at least 3/2. On the other hand, if we wish to maximize our profit and
are allowed to leave items unassigned (MaxGAP), Chekuri and Khanna [12]
observe that the (1, 2)-approximation for MinGAP implies a 2-approximation
for MaxGAP. This can be improved to a ( e

e−1 )-approximation using LP-based
techniques [15]. It is known that MaxGAP is APX-hard [12], though no specific
constant of hardness is shown.

On the experimental side, most prior work in data center resource manage-
ment focusses on placing one type of resource at a time: for example, placing
storage requirements assuming job computation location is fixed (file alloca-
tion problem [14], [1–3]) or placing computation requirements assuming job
storage location is fixed [4,11]. These in a sense are variants of GAP. The only
prior work on Coupled Placement is [20], where they show that MinCP is
NP-hard and experimentally evaluate heuristics: in particular, a fast approach
based on stable marriage and knapsacks is shown to do well in practice, close
to the LP optimal.

The concept of k-sided placement problem also generalizes the concept
of scheduling multidimensional jobs on unrelated machines: each dimension
corresponds to a side, and for each machine in the multidimensional scheduling
instance, we can associate a tuple of machines in the MinkSP instance, one
machine from each side, and stipulate that each job can only be placed in
one of these tuples. On the other hand, there is no straightforward reduction
from k-sided placement to k-dimensional scheduling since the number of ways
of placing job in k-sided placement can significantly exceed the number of
machines. For the minimization version of k-dimensional scheduling problem,
Azar and Epstein present a (k + 1)-approximation algorithm by essentially
reducing the problem to a single-dimensional case [6].
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The MaxkSP problem is related to the recently studied hypermatching
assignment problem (HAP) [13], and special cases, including k-set packing,
and a uniform version of the problem. A (k + 1 + ε)-approximation is given
for HAP in [13], where other variants of HAP are also studied. While the
MaxkSP problem can be viewed as a variant of HAP, there are critical dif-
ferences. For instance, in MaxkSP, each job is assigned at most one tuple,
while in the hypermatching problem each client (or job) is assigned a subset
of the hyperedges. Hence, the MaxkSP and HAP problems are not directly
comparable. The k-set packing can be captured as a special case of MaxkSP,
and hence the Ω(k/ log k)-hardness due to [19] applies to MaxkSP as well.

2 The minimization version

Next, we consider the minimization version of the Coupled Placement problem,
MinCP. We write the following integer linear program for MinCP, where xtuv
is the indicator variable for the assignment of t to pair (u, v), u ∈ U , v ∈ V .

Minimize:
∑
t,u,v

xtuvft(u, v)

Subject to:
∑
u,v

xtuv ≥ 1, ∀t ∈ T,∑
t,v

pt(u, v)xtuv ≤ cu, ∀u ∈ U,∑
t,u

st(u, v)xtuv ≤ dv, ∀v ∈ V,

xtuv ∈ {0, 1}, ∀t ∈ T, u ∈ U, v ∈ V.

We refer the first set of constraints as satisfaction constraints, the second and
third set as capacity constraints (computation and storage). We consider the
linear relaxation of this program which replaces the integrality constraints
above with 0 ≤ xtuv ≤ 1,∀t ∈ T, u ∈ U, v ∈ V . Without loss of generality, we
assume that pt(u, v) ≤ cu and st(u, v) ≤ dv for all t, and (u, v); otherwise, we
can set xtuv to 0 and eliminate such triples from the linear program.

2.1 A 3-approximation algorithm for MinCP

We now present algorithm IterRound, based on iterative rounding [21], which
achieves a 3-approximation for MinCP. We start with a basic algorithm that
achieves a 5-approximation by identifying tight constraints with a small num-
ber of variables. Each iteration of this algorithm repeats the following round
until all variables have been rounded.

1 Extreme point: Compute an extreme point solution x to the current LP.
2 Eliminate variable or constraint: Execute one of these two steps. By

Lemma 3, one of these steps can always be executed if the LP is nonempty.



Coupled and k-Sided Placements: Generalizing Generalized Assignment? 7

a Remove from the LP all variables xtuv that take the value 0 or 1 in x.
If xtuv is 1, then assign job t to the pair (u, v), remove the job t and its
associated variables from the LP, and reduce cu by pt(u, v) and dv by
st(u, v).

b Remove from the LP any tight capacity constraint with at most 4 vari-
ables.

Fix an iteration of the algorithm, and an extreme point x. Let nt, nc, and
ns denote the number of tight job satisfaction constraints, computation con-
straints, and storage constraints, respectively, in x. Note that every job satis-
faction constraint can be assumed to be tight, without loss of generality. Let
N denote the number of variables in the LP. Since x is an extreme point, if
all variables in x take values in (0, 1), then we have N ≤ nt + nc + ns.

Lemma 1 If all variables in x take values in (0, 1), then nt ≤ N/2.

Proof Since a variable only occurs once over all satisfaction constraints, if
nt > N/2, there exists a satisfaction constraint that has exactly one variable.
But then, this variable needs to take value 1, a contradiction.

Lemma 2 If nt ≤ N/2, then there exists a tight capacity constraint that has
at most 4 variables.

Proof If nt ≤ N/2, then ns + nc ≥ N − nt ≥ N/2. Since each variable occurs
in at most one computation constraint and at most one storage constraint, the
total number of variable occurrences over all tight storage and computation
constraints is at most 2N , which is at most 4(ns + nc). This implies that at
least one of these tight capacity constraints has at most 4 variables.

Using Lemmas 1 and 2, we can argue that the above algorithm yields a 5-
approximation. Step 2a does not cause any increase in cost or capacity. Step 2b
removes a constraint, hence cannot increase cost; since the removed constraint
has at most 4 variables, the total demand allocated on the relevant node is
at most the demand of four jobs plus the capacity already used in earlier
iterations. Since each job demand is at most the capacity of the node, we
obtain a 5-approximation with respect to capacity.

Studying the proof of Lemma 2 more closely, one can separate the case nt <
N/2 from the nt = N/2; in the former case, one can, in fact, show that there
exists a tight capacity constraint with at most 3 variables. Together with a
careful consideration of the nt = N/2 case, one can improve the approximation
factor to 4. We now present an alternative selection of tight capacity constraint
that leads to a 3-approximation. One interesting aspect of this step is that the
constraint being selected may not have a small number of variables. We replace
step 2b by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most two more than the sum of the values of the variables.

Lemma 3 If all variables in x take values in (0, 1), then there exists a tight
capacity constraint in which the number of variables is at most two more than
the sum of the values of the variables.
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Proof Since each variable occurs in at most two tight capacity constraints,
the total number of occurrences of all variables across the tight capacity con-
straints is 2N − s for some nonnegative integer s. That is, s equals 2N minus
the total number of occurrences of all the variables in the tight capacity con-
straints. If we let v0, v1, and v2 denote the number of variables that appear
zero times, once, and twice, respectively, in the tight capacity constraints, then
N equals v0 + v1 + v2 while s equals v1 + 2v0.

Adding over all the tight satisfiability constraints, and doubling each side
yields twice the sum of the values of the distinct variables on one side and 2nt
on the other. Since v1 variables appear once and v0 variables do not appear
in the tight capacity constraints, and each variable takes on value less than
1, twice the sum of the values of the distinct variables is at most the sum of
all variables, with multiplicity, in tight capacity constraints and s. We thus
obtain that the sum of all variable values in tight capacity constraints is at
least 2nt − s.

Therefore, the sum, over all tight capacity constraints, of the difference
between the number of variables and their sum is at most 2(N − nt). Since
there are N−nt tight capacity constraints, for at least one of these constraints,
the difference between the number of variables and their sum is at most 2.

Lemma 4 Let u be a node with a tight capacity constraint, in which the num-
ber of variables is at most 2 more than the sum of the variables. Then, the
sum of the capacity requirements of the jobs partially assigned to u is a most
the current available capacity of u plus twice the capacity of u.

Proof Let ` be the number of variables in the constraint for u, and let the
associated jobs be numbered 1 through `. Let the demand of job j for the
capacity of node u be dj . Then, the capacity constraint for u is

∑
j djxj = ĉ(u),

where ĉ(u) is the available capacity of u in the current LP.
We know that `−

∑
i xi ≤ 2. Since di ≤ C(u), the capacity of u:∑

j

dj = ĉ(u) +
∑̀
j=1

(1− xj)dj ≤ ĉ(u) + (`−
∑̀
j=1

xj)C(u) ≤ ĉ(u) + 2C(u).

Theorem 1 IterRound is a polynomial-time 3-approximation algorithm for
MinCP.

Proof By Lemma 3, each iteration of the algorithm removes either a variable
or a constraint from the LP. Hence the algorithm is polynomial time. The
elimination of a variable that takes value 0 or 1 does not change the cost.
The elimination of a constraint can only decrease cost, so the final solution
has cost no more than the value achieved by the original LP. Finally, when a
capacity constraint is eliminated, by Lemma 4, we incur a blowup of at most
3 in capacity.

We note that our proof actually establishes a tighter upper bound on the
capacity blowup, in terms of the maximum size of a job. In particular, our
algorithm needs the capacity at any node to be at most its original capacity
plus twice the largest requirement of a job that can be allocated to the node.
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2.2 A (k + 1)-approximation algorithm for MinkSP

It is straightforward to generalize the algorithm of the preceding section to
obtain a k + 1-approximation to MinkSP. We first set up the integer LP for
MinkSP. For a given element e ∈

∏
i Si, we use ei to denote the ith coordinate

of e. Let xte be the indicator variable that t is assigned to e ∈
∏
i Si.

Minimize:
∑
t,e

xteft(e)

Subject to:
∑
e

xte ≥ 1, ∀t ∈ T,∑
t,e:ei=u

(dt(e))ixte ≤ Ci(u), ∀1 ≤ i ≤ k, u ∈ U,

xte ∈ {0, 1}, ∀t ∈ T, e ∈ E

The algorithm, which we call IterRound(k), is identical to IterRound of
Section 2.1 except that step 2b is replaced by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most k more than the sum of the values of the variables.

We now analyze IterRound(k). Fix an iteration of the algorithm, and an
extreme point x. Let nt denote the number of tight satisfaction constraints,
and ni denote the number of tight capacity constraints on the ith side. Since
x is an extreme point, if all variables in x take values in (0, 1), then we have
N = nt +

∑
i ni.

Lemma 5 If all variables in x take values in (0, 1), then there exists a tight
capacity constraint in which the number of variables is at most k more than
the sum of the variables.

Proof Since each variable occurs in at most k tight capacity constraints, the to-
tal number of occurrences of all variables across the tight capacity constraints
is kN − s for some nonnegative integer s. If we let vi denote the number of
variables that appear i times, 0 ≤ i ≤ k, in the tight capacity constraints, then
N equals

∑
i≥0 vi while s equals

∑
i<k(k − i)vi.

Adding over all the tight satisfiability constraints, and multiplying each
side by k yields k times the sum of the values of the distinct variables on
one side and knt on the other. Since vi variables appear i times in the tight
capacity constraints, and each variable takes on value less than 1, k times the
sum of the values of the distinct variables is at most the sum of all variables,
with multiplicity, in tight capacity constraints and s. We thus obtain that the
sum of all variable values in tight capacity constraints is at least knt − s.

Therefore, the sum, over all tight capacity constraints, of the difference
between the number of variables and their sum is at most k(N − nt). Since
the number of tight capacity constraints is N − nt, for at least one of these
constraints, the difference between the number of variables and their sum is
at most k.
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Lemma 6 Let u be a side-i node with a tight capacity constraint, in which the
number of variables is at most k more than the sum of the variables. Then,
the sum of the capacity requirements of the jobs partially assigned to u is at
most the available capacity of u plus kCi(u).

Proof Let ` be the number of variables in the constraint for u, and let the
associated jobs be numbered 1 through `. Let the demand of job j for the
capacity of node u be dj . Then, the capacity constraint for u is

∑
j djxj = ĉ(u).

We know that m−
∑
i xi ≤ k. We also have di ≤ Ci(u). Letting ĉ(u) denote

the current capacity of u, we now derive∑
i

di = ĉ(u) +

m∑
j=1

(1− xi)di

≤ ĉ(u) + (m−
m∑
j=1

xi)Ci(u)

≤ ĉ(u) + kCi(u).

Theorem 2 IterRound(k) is a polynomial-time k + 1-approximation algo-
rithm for MinkSP.

Proof By Lemma 5, each iteration of the algorithm removes either a variable
or a constraint from the LP. Hence the algorithm is polynomial time. The
elimination of a variable that takes value 0 or 1 neither changes cost nor
incurs capacity blowup. The elimination of a constraint can only decrease cost,
so the final solution has cost no more than the value achieved by the original
LP. Finally, by Lemma 6, we incur a blowup of at most 1 + k in capacity.

As we observed for MinCP, our proof actually establishes a tighter upper
bound on the capacity blowup, in terms of the maximum size of a job. In
particular, our algorithm needs the capacity at any node to be at most its
original capacity plus k times the largest requirement of a job that can be
allocated to the node.

Integrality gap. A natural question to ask is whether a linear approximation
factor for MinkSP is unavoidable for polynomial time algorithms. We now
show that the MinkSP linear program has an integrality gap that grows as
Ω(log k/ log log k). Determining the best efficiently achievable approximation
factor for MinkSP is an open problem.

We recursively construct an integrality gap instance Γ`,t with `t sides, for
parameters ` and t, with two nodes per side one with infinite capacity and the
other with unit capacity, and t jobs, such that any integral solution has t jobs
on the unit-capacity node on some side, while there is a fractional solution
with load of at most t/` on the unit-capacity node of each side. Setting t = `
and k = ``, we obtain an instance in which the capacity used by the fractional
solution is 1, while any integral solution has load ` = Θ(log k/ log log k). Our
construction is illustrated in Figure 1.
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Fig. 1 (a) The construction Γ`,t for t = 1 and ` = 2. The first side consists of two circle
nodes, the small circle with unit capacity and the large circle with infinite capacity. The
second side consists of two square nodes, the small square with unit capacity and the large
square with infinite capacity. Job 1 can be placed on either the tuple consisting of the small
circle and the large square or the large circle and the small square. (b) The construction Γ`,t
for t = 2 and ` = 2. One copy of the construction with 2 sides is unshaded, and the second
copy is shaded. Small circles and squares have unit capacity, and large circles or squares
have infinite capacity. There are two jobs. The first job can be placed according to one of
two tuples, as indicated by the two ovals. The second job can be placed according to one
of two tuples, as indicated by the two polygons. Any integral solution will incur a capacity
blowup of at least two on some unit capacity node, while there exists a fractional solution
(each job is placed half on each of its two tuples) that satisfies all capacity constraints.

Each job can be placed on one tuple from a subset of tuples; for a given
tuple, the demand of the job on each side of the tuple is one. As induction
base, we start with the construction for t = 1. We introduce a job that has
` choices, the ith choice consisting of the unit-capacity node from side i and
infinite capacity nodes on all other sides. Clearly, in any integral solution the
entire capacity of one unit-capacity node will be used, while there is a fractional
solution (1/` for each choice) in which only 1/` fraction of each unit capacity
node will be used.

Given a construction Γ`,t with `t sides satisfying the desired properties, we
show how to extend to a construction Γ`,t+1 with `t+1 sides using ` identical
copies of Γ`,t. In Γ`,t+1, let us suppose without loss of generality that side
i`t + r with 0 ≤ i < ` and 1 ≤ r ≤ `t refers to side r of copy i+ 1 (where the
copies are numbered 1 through `). The construction Γ`,t has t associated jobs.
The construction Γ`,t+1 has the t jobs from Γ`,t and an additional job that we
introduce below. Informally, we combine the tuples for each of the t jobs in
the different copies of Γ`,t in such a way that for any integral placement, for
any 1 ≤ r ≤ `t, the nodes in side r (of each copy) on which j is placed are
identical copies of one another. Formally, consider a job j in Γ`,t. Suppose j
can be placed in an `t-dimensional tuple v in which the entry for side r is node
vr. Then, in Γ`,t+1, j can be placed in an `t+1-dimensional tuple w where for
0 ≤ i < ` and 1 ≤ r ≤ `t, wi`t+r equals the node vr in the copy i+ 1 of Γt.

Finally, we add job t + 1 which can be placed in one of ` tuples: unit
capacity node on all sides of copy i and infinite capacity node on all other
sides, for each 1 ≤ i ≤ `. We are ready to establish the integrality gap. By our
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construction of Γ`,t (our induction hypothesis), any integral placement of the
t jobs places a load of t on a unit-capacity node of some side, in each copy of
Γ`,t. Irrespective of which tuple we assign job t+1 to, any integral solution will
have to add job t+ 1 to a unit-capacity node of a side that already has load t,
yielding a load of t+ 1 on some node. On the other hand, a fractional solution
assigns each job fractionally to the extent of 1/` to each of the ` tuples. This
incurs a load of at most t/` to the unit-capacity nodes of each side, yielding
the desired integrality gap.

3 The maximization problems

We present approximation algorithms for the maximization versions of coupled
placement and k-sided placement problems. We first observe, in Section 3.1,
that these problems reduce to column sparse integer packing. We next present,
in Section 3.2, an alternative combinatorial approach based on local search.

3.1 An LP-based approximation algorithm

One can write a positive integer linear program for MaxCP. Let xtuv be the
indicator variable for assigning job t to (u, v), u ∈ U , v ∈ V .

Maximize:
∑
t,u,v

xtuvft(u, v)

Subject to:
∑
u,v

xtuv ≤ 1, ∀t ∈ T,∑
t,v

pt(u, v)xtuv ≤ cu, ∀u ∈ U,∑
t,u

st(u, v)xtuv ≤ dv, ∀v ∈ V,

xtuv ∈ {0, 1}, ∀t ∈ T, u ∈ U, v ∈ V.

The above LP can be easily extended to MaxkSP.

Maximize:
∑
t,e

xteft(e)

Subject to:
∑
e

xte ≤ 1, ∀t ∈ T,∑
t,e

(dt(e))ixte ≤ Ci(ei), ∀i ∈ {1, . . . , k},

xte ∈ {0, 1}, ∀t ∈ T, e ∈
∏
i Si.

These linear programs are 3- and k-column sparse packing programs, re-
spectively; that is, each column in the constraint matrices of the linear pro-
grams has at most 3 and k non-zero entries, respectively. The 3- and k-column
sparse packing integer linear programs can be approximated to within a factor
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of 15.74 and ek + o(k), respectively using a clever randomized rounding ap-
proach [8]. As mentioned in Section 1, an Ω(k/ log k)-inapproximability result
is known for MaxkSP.

3.2 Approximation algorithms based on local search

We now present a combinatorial approach for MaxCP based on local search,
which is likely to be much more efficient than the above LP-based approxi-
mation algorithm in practice. Our approach also extends to MaxkSP, but we
omit the details. The local search is somewhat unusual in that it is based on
a fractional solution. Let xtuv represent the fractional assignment of task t
to nodes (u, v). The local search will maintain all linear program constraints,
and will also maintain that xtuv > 0 for at most one (u, v). Note that this last
constraint is much more restrictive than the linear program.

A local step moves a single task t to (u, v). This can be thought of as
first setting all the variables for t to zero (removing it from its current assign-
ment, if any), and then gradually increasing xtuv while possibly decreasing
the fractional values for other tasks to insure that the capacity constraints at
u and v are not violated. Supposing that increasing xtuv would violate the
constraint at u, we will decrease the value of xt′uv′ such that the density value
ft′(u, v)/pt′(u, v) is minimimized (lowest value per unit capacity task t′). We
continue until we have xtuv = 1, or until increasing xtuv further would actually
reduce the objective (because of the need to decrease other tasks t′ to maintain
the constraints).

The local search algorithm starts with all xtuv = 0 and proceeds by deter-
mining whether there exists any local step which would improve the objective
value by at least εµ,where µ is defined as µ = 1

4n maxt,u,v ft(u, v). It continues
making such local steps until none exists.

Lemma 7 The local search algorithm satisfies all linear program constraints,
and additionally guarantees that for each t, xtuv > 0 for at most one pair
(u, v).

Proof The local step first dropped all variables for t to zero, which cannot
violate any linear program constraint. Then while increasing xtuv we were
careful to always decrease some other xt′uv′ if the constraint for u would be
violated (and similarly to decrease some other xt′u′v if the constraint for v
would be violated). It follows that no constraints are violated. The statement
that for each t, xtuv > 0 for at most one (u, v) is clear from the local step
definition.

Theorem 3 The local search algorithm produces a 3+ε approximate fractional
solution.

Proof When the algorithm terminates, consider a task t which has xtuv =
1 in the optimum solution. Consider the local step which would move t to
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(u, v); how much would this increase the objective? We would lose the current
objective value for t and obtain instead ft(u, v). However, we may also need
to remove some other tasks from one or both of u and v in order to prevent
violating the constraints. Let Fu = ΣtΣvft(u, v)xtuv be the total value of
tasks assigned to u. Then Fu/cu is the average density of tasks assigned to u.
Since we will always reduce the fraction of the lowest-density task assigned to
u (when we must remove a task in order to prevent violating the constraints),
the total value of tasks we need to remove from u in order to get t to fit
cannot exceed pt(u, v)Fu/cu. Similarly the total value fo tasks we need to
remove from v in order to get t to fit cannot exceed st(u, v)Fv/dv. The total
increase in objective is at least:

∆t ≥ ft(u, v)− pt(u, v)
Fu
cu
− st(u, v)

Fv
dv
−Σu′,v′ft(u′, v′)xtu′v′

Note that while it’s possible the algorithm would actually halt early when
moving t to (u, v), it would only do so if the objective is decreasing, so ∆t would
be even large than the expression above (which was assuming we fully set
xtuv = 1. Since the local search algorithm terminated, we must have ∆t < εµ.
We combine inequalities and rearrange so everything is positive:

ft(u, v) > pt(u, v)
Fu
cu

+ st(u, v)
Fv
dv

+Σu′,v′ft(u
′, v′)xtu′v′ + εµ

We now sum over all t, u, v with xtuv = 1 in the optimum solution. The
lefthand side will sum to the objective value of optimum. We observe that
ΣuFu and ΣvFv are each the total objective found by the algorithm (measured
by summing on one type of node only). Combined with the definition of µ and
of the objective function, this gives us the approximation bound.

We remark that we can extend the above local search procedure to MaxkSP
if we increase the approximation factor to k + 1 + ε.

Theorem 4 The local search algorithm runs in polynomial time.

Proof Each local step increases the objective by at least εµ. The optimum
solution is at most 4n2µ (from the definition of µ, any single task attains
value at most 4nµ to the objective), so the algorithm terminates in at most
4n2/ε local steps. It’s straightforward that a single local step can be executed
in polynomial time (at most polynomially many tuples (t, u, v) to consider, at
most polynomial time for each local step).

Rounding Phase: When the local search algorithm terminates, we have
a fractional solution for MaxCP where each task t has at most one non-zero
xtuv. The next phase of the algorithm is to round the fractional solution re-
turned by local search. Applying the randomized rounding approach of [8], we
obtain an O(k2)-approximation for MaxkSP, and a (47.22+ε)-approximation
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for MaxCP. The preceding approach does not take advantage, however, of
the properties of the fractional solution returned by our local search algo-
rithm. For MaxCP, we present a different rounding scheme that exploits the
local search invariants satisfied by the fractional solution and obtains a 15 + ε
approximation.

The idea behind the rounding scheme is to label each task which has a
fractional assignment 0 < xtuv < 1 with one of the nodes u, v to which it
is assigned in such a way that each label is allocated to at most one task.
However, this requires a post-processing step after the local-search algorithm
completes. Once this is done, we construct three integer solutions and argue
that one of them must be 15 + ε approximate. We will first prove a quick
lemma about the structure of a graph based on node degrees.

Lemma 8 Given a graph where every node has degree at least two and some
node has degree at least three, we can find two cycles C1 and C2 in the graph.
These cycles need not be disjoint, but they are distinct (so at least one edge
must be in C1 − C2).

Proof Consider only a single connected component of the graph, which in-
cludes at least one node with degree more than two. Start at this node, and
traverse edges in sequence until we cannot do so without traversing an edge
for the second time. This must halt since there are a finite number of edges.
Since all nodes have degree at least two, at least one node in this traversal
must be encountered twice. Select a part of this traversal where only one node
is encountered twice; this gives us a simple cycle. Now consider deleting the
edges of this cycle. Since the cycle includes at most two edges adjoining any
node and there is a node of degree more than two, we have not removed all
edges of the original connected component. If the remaining edges of the orig-
inal component include a cycle, these two cycles can be C1 and C2 (and they
are in fact edge-disjoint). If the remaining graph is acyclic, it must include a
node of degree one (else we can find a cycle by the same traversal described
above). Consider a traversal starting at such a node, where we again traverse
the remaining edges one at a time until we can no longer do so. Since the
graph is acyclic, this must end at another node of degree one. So we have a
cycle C along with a path P which is edge-disjoint to C, with the endpoints
of the path having degree one when we delete the nodes of C. Since all nodes
originally had degree at least two, it follows that the endpoints of P must be
nodes of C, say u, v. Cycle C includes a path from u to v (call it Cuv) and an
edge-disjoint path from v back to u (call it Cvu). We can then set C1 = Cuv+P
and C2 = Cvu + P , both of which are cycles since P also connects u, v and is
edge-disjoint from C. Since Cuv, Cvu, P are each edge-disjoint and non-empty,
we must have at least on edge in Cuv = C1 − C2.

We are now ready to prove the main lemma in the analysis of our local
search algorithm.

Lemma 9 Given any fractional solution where each t has at most one non-
zero assignment, we can produce an alternative fractional solution (with the
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same property and only larger objective) along with a labeling of each job t
with 0 < xtuv < 1, with either u or v, guaranteeing that each node is the label
for at most one job.

Proof We can remove the variables xtuv which are zero or one in the local
search solution. The remaining linear program has only the constraints at u
and v (along with all variables between 0 and 1). It follows that there must
exist a basic solution to this modified linear program with at least the objective
obtained in the local search. This solution has the property described (via a
simple flow argument between the variables and constraints). The remainder
of this section discusses a combinatorial way to find a basic solution in the
case where all variables appear in at most two equations (this will be the case
here for k = 2).

Consider a multi-graph where the nodes are the storage and computation
nodes. The edges (u, v) correspond to tasks where 0 < xtuv < 1. If any node
(whether storage or computation) v has degree zero or one, we remove it and
any adjoining edge, relabeling the edge with v. We continue this process until
all remaining nodes have degree at least two. If all nodes have degree exactly
two, then the graph is a simple cycle, and we label each edge with one of its
endpoints (clockwise around the cycle).

Suppose there is a node of degree at least three. Then we can apply
Lemma 8 to find two cycles C1 and C2 from the same connected compo-
nent. Since the cycles are connected, we can find the shortest path P (fewest
edges) between any node in C1 and node in C2 (this will be zero edges if the
cycles are not node disjoint); let P connect u1 ∈ C1 to u2 ∈ C2 (it doesn’t
really matter if the nodes here are storage or computation nodes; the rest of
the proof is identical).

We now show how to adjust the fractional assignments corresponding to
the edges in the two cycles and the connecting path such that all capacity
constraints are maintained and at least one more assignment becomes integral.
We traverse the edges of C1 one at a time, starting at node u1. For the first
edge, (u, v) we consider increasing xtuv by ε. For the next edge (w, v), we select
an ε′ such that the total capacity used in the common node v is unchanged.
Continuing around C1, only the capacity used at the starting node u1 will
change. Suppose we use δ1 additional capacity. If δ1 = 0 we can scale up all
the ε values until some edge becomes integral. We perform the same operation
on C2, such that only the capacity used at the starting node u2 will change,
here by some value δ2. The only case where we have not been able to make
another assignment integral is when both δ1 and δ2 are non-zero. Now we
traverse the edges of P , starting from u1 and modifying the value of x on
the first edge so that u1 capacity will decrease by δ1. We continue until we
reach u2, with capacity increasing by δ′2. We now combine the adjustment to

C1 with the adjustment to P , and scale the adjustment to C2 by − δ
′
2

δ2
. The

overall effect is that all capacity constraints are maintained, and we can scale
the changes on the edges until some task becomes integrally assigned.
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The above process decreases the number of fractional variables by one
whenever there exists a node with degree greater than two. Combined with
the labeling approach described when all nodes have degree at most two, we
can produce the labeling described in the lemma.

Theorem 5 There exists a polynomial-time algorithm based on local search
that achieves a 15 + ε approximation for MaxCP.

Proof Given the labeled fractional solution of 9, we consider three possible
solutions. Let AI consist of all the integral assignments, AU consist of the
fractional assignments labeled with nodes of U , and AV consist of the fractional
assignments labeled with nodes of V . Clearly AI + AU + AV ≥ 1

3OPT is the
value of the algorithm’s solution. Of course, AI is integral, but AU , AV will
not be.

We can construct a solution SU as follows. We consider the fractional so-
lution corresponding to AU . These are tuples (t, u, v) which are labeled with
their node u ∈ U . Since at most one task has any label, each u ∈ U appears
at most once here; graphically this looks like a set of disjoint stars centered at
the nodes v ∈ V . We select a suitable subset of tasks from the star centered
at v such that we obtain at least half the value of the fractional solution for
this star. This can always be done by selecting either the maximum density
(ft(u, v)/st(u, v)) tasks until we would overflow capacity dv, or by selecting the
maximum value single task. We repeat this for each v to obtain an integral
solution SU with value at least AU/2. Similarly we can obtain solution SV
with value at least AV /2. Thus we can get any of AI , AU/2, AV /2 whichever
has highest value. One of these must exceed OPT/15.

4 Online MaxCP and MaxkSP

We now study the online version of MaxCP, in which jobs arrive in an online
fashion. When a job arrives we must irrevocably assign it or reject it. Our
goal is to maximize our total profit at the end of the instance. We apply the
techniques of [5] to obtain a logarithmic competitive online algorithm under
certain assumptions. The online MaxCP differs from the model considered in
[5] in that a job’s computation/storage requirements need not be the same,
and may vary from one node to another. We note that the algorithm of [5] as
well as our adaptation can also be cast within the elegant online primal-dual
framework pioneered by Buchbinder and Naor [9,10].

As demonstrated in [5] certain assumptions have to be made to achieve
competitive ratios of any interest. We extend these assumptions for the MaxCP
model as follows:

Assumption 1 (Proportional profit) There exists F such that for all t, u, v

either ft(u, v) = 0 or 1 ≤ ft(u, v) ≤ F min(pt(u,v)cu
, st(u,v)dv

).

Assumption 2 (Small size) For ε = min( 1
2 ,

1
ln(2F+1)+1 ), for all t, u, v: pt(u, v) ≤

εcu and st(u, v) ≤ εdv.
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It is not hard to show that they (or some similar flavor of these assump-
tions) are in fact necessary to obtain any interesting competitive ratios.

Theorem 6 No deterministic online algorithm for MaxCP or MaxkSP can
be competitive over classes of instances where either one of the following is
true: (i) job size is allowed to be arbitrarily large relative to capacities, or (ii)
job profits and resource requirements are completely uncorrelated.

Proof We first show that if resource requirements are large compared to ca-
pacities, profit functions ft are exactly equal to the total amount of resources
and each job requires the same amount over all resources (but different jobs
can require different amounts), then no deterministic online algorithm can be
competitive.

Consider a graph G with a single compute node and a single data storage
node. Each node has compute/storage capacity of L. A job arrives requesting
1 unit of computing and storage and will pay 2. Clearly, any competitive
deterministic algorithm must accept this job, in case this is the only job.
However, a second job arrives requesting L units of computing and storage
and will pay 2L. In this case, the algorithm is L-competitive, and L can be
arbitrarily large.

Next, we show that if resource requirements are small relative to capacities,
profit functions ft are arbitrary and resource requirements are identical, then
no deterministic online algorithm can be competitive. This instance satisfies
Assumption 2 but not Assumption 1.

Consider again a graph G with a single compute node and single data
storage node, each with unit capacity. We will use up to k + 1 jobs, each
requiring 1/k units of computing and storage. The i-th job, 0 ≤ i ≤ k, will
pay M i for some large profit M . Now, consider any deterministic algorithm.
If it fails to accept any job j < k, then if job j is the last job, it will be
Ω(M)-competitive. If the algorithm accepts jobs 0 up through k − 1 then it
will not be able to accept job k and will be Ω(M)-competitive. In all cases it
has competitive ratio Ω(M) and M and k can be arbitrarily large.

Similarly, if resource requirements are small relative to capacities, profit
functions ft are exactly equal to the total amount of resources requested and
resource requirements are arbitrary, then no deterministic online algorithm
can be competitive.

Consider once more a graph G with a single compute node and single
data store node. However, this time the compute capacity will be 1 and the
storage capacity will be some very large L. We will use up to k + 1 jobs,
each requiring 1/k units of computing. The i-th job, 0 ≤ i ≤ k, will require
the appropriate amount of storage so that its profit is M i for very large M .
Assuming L = O(kMk), all these storage requirements are at most 1/k of L.
Note that storage can accommodate all jobs, but computing can accommodate
at most k jobs. Any deterministic algorithm will have competitive ratio Ω(M)
and k, M and L can be suitably large.

Thus, it follows that some flavor of Assumptions 1 and 2 are necessary to
achieve any interesting competitive result.
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Algorithm 1 Online algorithm for MaxCP.
1: λu(1)← 0, λv(1)← 0 for all u ∈ U, v ∈ V
2: for each new job j do

3: costu(j)← 1
2

(e
λu(j)

ln(2F+1)
1−ε − 1)

4: costv(j)← 1
2

(e
λv(j)

ln(2F+1)
1−ε − 1)

5: For all uv let Zjuv =
pj(u,v)

cu
costu(j) +

sj(u,v)

dv
costv(j)

6: Let uv maximize fj(u, v) subject to Zjuv < fj(u, v)
7: if such uv exist with fj(u, v) > 0 then
8: Assign j to uv

9: λu(j + 1)← λu(j) +
pj(u,v)

cu

10: λv(j + 1)← λv(j) +
sj(u,v)

dv
11: For all other u′ 6= u let λu′ (j + 1)← λu′ (j)
12: For all other v′ 6= v let λv′ (j + 1)← λv′ (j)
13: else
14: Reject job j
15: For all u let λu(j + 1)← λu(j)
16: For all v let λv(j + 1)← λv(j)
17: end if
18: end for

We now present an O(logF )-competitive and an O(log(kF ))-competitive
algorithm for online MaxCP and MaxkSP, respectively. Moreover, the lower
bounds established in [5, Theorem 4.2] and [5, Theorem 4.3] yield matching
lower bounds to online MaxCP and MaxkSP, respectively.

Theorem 7 There exists a deterministic O(logF )-competitive algorithm for
online MaxCP under Assumptions 1 and 2. For MaxkSP, this can be ex-
tended to a O(log(kF ))-competitive algorithm.

We establish the upper bound in Theorem 7 by adapting the framework of [5].
This framework uses an exponential cost function to place a price on remaining
capacity of a node. If the profit obtained from a job can cover the cost of the
capacity it consumes, we admit the job.

Our algorithm is given in Algorithm 1. In the description, e is the base
of the natural logarithm. We first show that our algorithm will not exceed
capacities. Essentially, this occurs because the cost will always be sufficiently
high.

Lemma 10 Capacity constraints are not violated at any time in Algorithm 1.

Proof Note that λu(n+ 1) will be 1
cu
Σt,vpt(u, v)xtuv, since any time we assign

a job j to uv we immediately increase λu(j + 1) by the appropriate amount.
Thus if we can prove λu(n+ 1) ≤ 1 we will not violate capacity of u.

Initially we had λu(1) = 0 < 1, so suppose that the first time we exceed
capacity is after the placement of job j. Thus we have λu(j) ≤ 1 < λu(j + 1).
By applying assumption 2 we have λu(j) > 1 − ε. From this it follows that
costu(j) > 1

2 (eln(2F+1)−1) = F , and since these costs are always non-negative

we must have had Zjuv >
pj(u,v)
cu

F ≥ fj(u, v) by applying assumption 1. But
then we must have rejected job j and would have λu(j + 1) = λu(j)
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An identical reasoning applies to v ∈ V .

Next, we bound the profit of our algorithm from below using the sum of
the node costs.

Lemma 11 Let A(j) be the total objective value Σt,u,vxtuvft(u, v) obtained
by the algorithm immediately before job j arrives. Then (3e ln(2F + 1))A(j) ≥∑
u∈U costu(j) +

∑
v∈V costv(j).

Proof The proof will be by induction on j; the base case where j = 1 is
immediate since no jobs have yet arrived or been scheduled and costu(1) =
costv(1) = 0 for all u and v.

Consider what happens when job j arrives. If this job is rejected, neither
side of the inequality changes and the induction holds. Otherwise, suppose job
j is assigned to uv. We have:

A(j + 1) = A(j) + fj(u, v)

We can bound the new value of the righthand side by observing that since
costu has derivative increasing in the value of λu, the new value will be at
most the new derivative times the increase in λu. It follows that:

costu(j + 1) ≤ costu(j) +
1

2
(λu(j + 1)− λu(j))

(
ln(2F + 1)

1− ε

)
e
λu(j+1) ln(2F+1)

1−ε

= costu(j) +
1

2

pj(u, v)

cu

ln(2F + 1)

1− ε
e
λu(j) ln(2F+1)

1−ε e
pj(u,v) ln(2F+1)

cu(1−ε)

≤ costu(j) +
1

2

pj(u, v)

cu

ln(2F + 1)

1− ε
e
λu(j) ln(2F+1)

1−ε e
ε ln(2F+1)

1−ε

≤ costu(j) +
epj(u, v)

cu

ln(2F + 1)

1− ε

(
costu(j) +

1

2

)
≤ costu(j) + 2e ln(2F + 1)

(
pj(u, v)

cu
costu(j) +

1

4

)
For the second step, we use the fact that λu(j + 1) = λu(j) + pj(u, v)/cu. For
the third step, we apply pj(u, v) ≤ εcu from Assumption 2. For the fourth
step, we use the definition of costu(j) and the fact that ε

1−ε ≤
1

ln(2F+1) . For

the final step, we again invoke pj(u, v) ≤ εcu from Assumption 2 and note that
ε ≤ 1/2.

An identical reasoning can be applied to costv, allowing us to show that
the increase in the righthand side is at most:

2e ln(2F + 1)

(
pj(u, v)

cu
costu(j) +

sj(u, v)

du
costv(j) +

1

2

)
Since j was assigned to uv, we must have fj(u, v) >

pj(u,v)
cu

costu(j) +
sj(u,v)
dv

costv(j); from assumption 1 we also have fj(u, v) ≥ 1 so we can conclude
that the increase in the righthand side is at most:
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(3e ln(2F + 1))fj(u, v) ≤ (3e ln(2F + 1))(A(j + 1)−A(j))

Now, we can bound the profit the optimum solution gets from jobs which
we either fail to assign, or assign with a lower value of ft(u, v). The reason we
did not assign these jobs was because the node costs were suitably high. Thus,
we can bound the profit of jobs using the node costs.

Lemma 12 Suppose the optimum solution assigned j to u, v, but the online al-
gorithm either rejected j or assigned it to some u′, v′ with fj(u

′, v′) < fj(u, v).

Then
pj(u,v)
cu

costu(n+ 1) +
sj(u,v)
dv

costv(n+ 1) ≥ fj(u, v)

Proof When the algorithm considered j, it would find the u, v with maximum
fj(u, v) satisfying Zjuv < fj(u, v). Since the algorithm either could not find
such u, v or else selected u′, v′ with fj(u

′, v′) < fj(u, v) it must be that Zjuv ≥
fj(u, v). The lemma then follows by inserting the definition of Zjuv and then
observing that costu and costv only increase as the algorithm continues.

Lemma 13 Let Q be the total profit of jobs which the optimum offline algo-
rithm assigns, but which Algorithm 1 either rejects or assigns to a uv with
lower profit of ft(u, v). Then Q ≤ Σu∈Ucostu(n+ 1) +Σv∈V costv(n+ 1).

Proof Consider any job q as described above. Suppose offline optimum assigns
q to uq, vq. By applying lemma 12 we have:

Q = Σqfq(uq, vq) ≤ Σq
pq(uq, vq)

cu
costuq (n+ 1) +

sq(uq, vq)

dv
costq(n+ 1)

The lemma then follows from the fact that the offline algorithm must obey
the capacity constraints.

Finally, we can combine Lemmas 11 and 13 to bound our total profit. In
particular, this shows that we are within a factor 1 + 3e ln(2F + 1) of the
optimum offline solution, where the additive unit factor accounts for the total
profit that the optimum solution obtains from jobs j assigned to (u, v) by the
optimum and (u′, v′) by the algorithm such that fj(u, v) ≤ fj(u′, v′). We have
an O(logF )-competitive algorithm, thus completing the proof of Theorem 7.

We can extend the result to k-sided placement, and can get a slight im-
provement in the required assumptions if we are willing to randomize. The
results are given below:

Theorem 8 For the k-sided placement problem, we can adapt algorithm 1
to be O(log(kF ))-competitive provided that assumption 2 is tightened to ε =
min( 1

2 ,
1

1+ln(kF+1) ).
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Proof We modify the definition of cost to the following.

costu(j) =
1

k

(
e
λu(j) ln(kF+1)

1−ε − 1
)

.
The rest of the proof follows the k = 2 case. The competitive ratio increases

to O(log(kF )) because we need to assign the first job to arrive (otherwise after
this job our competitive ratio would be unbounded). This job potentially uses
up space on k machines while obtaining a profit of only 1. So as k increases,
the ratio of “best” to “worst” job increases as well.

Theorem 9 If we select z ∈ [1, F ] to be a random power of two and then
reject all placements with ft(u, v) < z or ft(u, v) > 2z, then we can obtain
a competitive ratio of O(logF log k) while weakening assumption 2 to ε =
min( 1

2 ,
1

ln(2k+1) ). Note that in the specific case of two-sided placement this is

O(logF )-competitive requiring only that no single job consumes more than a
constant fraction of any machine.

Proof Once we make our random selection of z, we effectively have F = 2 and
can apply the algorithm and analysis above. The selection of z causes us to
lose (in expectation) all but 1

logF of the possible profit, so we have to multiply
this into our competitive ratio.

5 Concluding remarks

We introduce minimization and maximization versions of the k-sided place-
ment, a generalization of the generalized assignment problem (GAP). For the
minimization version, MinkSP, we present a k + 1 approximation using it-
erative rounding, thus generalizing the 2-approximation result for the min-
imization version of GAP. The best lower bound on inapproximability for
MinkSP is a constant factor, derived from GAP. Finding the best polynomial-
time approximation achievable for MinkSP is an interesting open problem.
We also show that the particular linear program we use for MinkSP has an
integrality gap that grows as Ω(log k/ log log k). The maximization version of
k-sided placement, MaxkSP, can be approximated to within a factor of O(k)
by applying randomized rounding to a k-column sparse LP relaxation [8]. We
present simpler combinatorial algorithms based on local search for MaxkSP
and MaxCP (MaxkSP with k = 2) that yield O(k2) and 15 + ε approxima-
tions, respectively. Future research directions include developing combinatorial
algorithms with better approximations and finding the best polynomial-time
approximations achievable for the two problems.
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