A Space Lower Bound for Name-Independent

Compact Routing in Trees™

Kofi A. Laing®*

aComputer Science Department, Tufts University, Medford, MA 02155

Rajmohan Rajaraman®

b College of Computer and Information Science, Northeastern University, Boston,

MA 02115

Abstract

Given a rooted n-node tree with arbitrary positive edge weights, and arbitrarily
assigned node names, what is the minimum amount of space that a single-source
compact routing algorithm could use in its largest routing table while achieving
stretch 37 We show that the space requirement is {2(1/n) bits in a port model that
is more general than the fixed-port model, and note that this result also applies for

all-pairs routing in trees.

Key words: Compact Routing, Lower bounds, Stretch, Space Complexity,

Distributed Lookup Tables

Preprint submitted to Elsevier Science 2 February 2006

1 Introduction

Given a network with arbitrary positive costs on its edges, the routing prob-
lem is to design routing tables that are stored at each node, as well as a local
algorithm for incrementally determining the path from any source to any des-
tination. At any node, the local algorithm’s incremental step is to compute,
for a given packet, the next edge on the path to its destination as a function
of the packet’s header and the current node’s routing table. The quality of a
path is given by its stretch, namely the ratio between the length of the path,
and the shortest distance between its endpoints. The stretch of a routing al-
gorithm is the worst-case stretch over all possible source-destination pairs in

all possible input graphs.

A compact routing algorithm is one which uses sublinear sized routing tables
and polylogarithmic sized headers while achieving constant stretch. The de-
sign of compact routing algorithms was originally motivated by the need for
scalable routing in communication networks, and has recently been evaluated
for routing in Internet-like graphs [16]. Compact routing has also recently

gathered interest in the contexts of efficient searching of DHTSs, distributed

* A Brief Announcement of this result appeared in the Proceedings of the 17th

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2005.
* Corresponding author. Supported in part by the Mellon Foundation, and the

Faculty Research Awards Committee of Tufts University. This work was done while

the author visited Northeastern University.
Email addresses: laing@cs.tufts.edu (Kofi A. Laing), rraj@ccs.neu.edu

(Rajmohan Rajaraman).
URLs: http://www.cs.tufts.edu/"laing/ (Kofi A. Laing),

http://www.ccs.neu.edu/home/rraj/ (Rajmohan Rajaraman).

dictionaries and peer-to-peer systems [1].

The algorithmic solutions obtained for compact routing vary significantly de-
pending on what assumptions are made about the naming of nodes in the
graph. In the name-dependent model the algorithm designer is permitted to
reassign (topologically convenient) node names to the nodes in the graph. In
that case a packet enters the network with the modified name of its destina-
tion. On the other hand, the name-independent model assumes that the node
names are arbitrarily (and uniquely) assigned from the range {1,...,n}'. A
packet enters the network with a header that only contains the “arbitrary”
name of the destination. In such cases all topological information about the
position of the destination node in the graph has to be discovered inside the
network subsystem. The consideration of name-independence as a design cri-
terion permits the location of arbitrarily named resources, not just nodes, in

a network.

An orthogonal model classification is based on the naming scheme for the edges
incident on a node. In the fized-port model (terminology due to Fraigniaud &
Gavoille [12]), the edges at each node are named arbitrarily but uniquely with
names from the range {1,..., A}, where A is the degree of the node. In the
designer-port model [12], the algorithm designer is permitted to rename the
edges as a part of the problem solution, still using the range {1,..., A}, and

to describe the algorithm in terms of the renamed edges.

It is well known [9] that there are tradeoffs between the amount of mem-

ory a compact routing algorithm uses, and the stretch obtained. Many upper

! Previous papers including [4,3] have shown how to generalize this range using

hash functions.

bounds for these tradeoffs have been obtained in the literature for different
models [5,6,22,21,12,4,17,18,1]. In this paper we consider the following prob-
lem about lower bounds: given a rooted n-node tree 7" with arbitrary positive
edge weights, what is the minimum amount of space Q(f(n, k)) that a com-
pact routing algorithm needs in its largest routing table while achieving stretch
2k — 1 in the name-independent model? We consider this question by estab-
lishing the following result for £ = 2: any single-source algorithm for trees
which achieves stretch 3 is constrained to use Q(y/n) space in at least one
node of the tree, in a port model which is more general than the fixed port

model — we introduce this in Section 32.

2 Related Work

There have been a number of recent studies on lower bounds for compact
routing. Eilam, Gavoille and Peleg show that no loop-free (referring to the use
of acyclic routes) routing schemes can achieve a space bound of /n bits per
node for all networks, no matter what the stretch of the algorithm may be[9].
Gavoille and Peleg [15] subsequently consider a particular compact routing
algorithm called the interval routing model, and show that there exists an
n-node graph which has compactness n/4 — o(n) (compactness is analogous

to memory requirement in that model) [15].

In the name-dependent and name-independent models, Gavoille and Gengler
[14] show that any algorithm with stretch strictly less than 3 must use Q(n?)

bits in total. This implies a lower bound of Q(n) for the local space require-

2 We note that independently of our preliminary result [19], this been solved by

Abraham et al.[2] in the fixed port model. This is discussed further in Section ?7.

ment, and also that any algorithm with sublinear space must have stretch at

least 3. We note that their construction is for general graphs.

Thorup and Zwick [22] also obtain some lower bounds that hold under the
assumption of a widely-believed conjecture of Erdds [10] which, as yet, has
only been proved for k € {1,2,3,5}. Erdds conjectured the existence of an
n-vertex graph with Q(n'*'/*) edges and girth greater than 2k 4 1 for every
k > 1. Thorup and Zwick show that provided the conjecture holds, Q(n!'*'/¥)
space is required in total for some subgraph of these graphs of high girth
by any compact routing algorithms of stretch at most 2k. In particular, this
means that on arbitrary graphs any stretch below 5 requires €2(y/n) space per
node in the worst case (in the name-dependent model, but the same bounds

also apply to the name-independent model).

Fraigniaud and Gavoille also consider the case of name-dependent routing in
trees and show a space lower bound of Q(log”n/loglogn) bits for optimal
routing, where the space in this case consists of both the routing table and
address size [13]. For trees, it can be trivially shown that when k£ = 1, then

the minimum amount of space required in the root is Q(nlogn) [1,17].

To contrast our result with previous work (in particular, the result of [22]),
we note that our lower bound applies for trees in the name-independent case

(and, thus, also for general graphs).

In recent work, Abraham et al [2] have independently and concurrently studied
lower bounds for compact routing on trees. They have shown that any single-
source name-independent compact-routing algorithm requires Q(nl/ k) space
in order to achieve a stretch less than 2k + 1 in the fixed port model. We note

that their result applies for all £, and is stronger and more general than ours, if

we consider the fixed-port model. On the contrary, our lower bound applies for
the topological port model, which is more general than the fixed-port model,
as discussed in Sections 3 and 5. From a technical standpoint, our results and
the work of [2] also suggest a new approach that may help yield much stronger
lower bounds for all-pairs name-independent routing, without invoking Erdos’

conjecture.

3 The Topological Port Model

In its most general form, our result applies in a port model which may be
regarded as a hybrid of the designer port model and the fixed port model. For
name-independent routing, we introduce the topological port model as one in
which the compact routing algorithm designer must assign, for each node, a
number for each port in the range from {1,..., A}, where A is the degree of
the node, on the basis of the edge weights and graph topology, but without
knowing the node names. In other words, the port numbers assigned to the
edges (in each direction) are only a function of the topology of the network

and independent of the node names.

More formally, the compact routing algorithm is considered to operate in
two phases. In the first phase, the input graph topology is presented. The
deterministic algorithm assigns port numbers for each edge at each node. In
the second phase, the final node names are assigned to the graph, and the
compact routing algorithm’s tables and routing function must be specified in
terms of the port numbers assigned during the first phase. Lower bounds for

the topological port model apply to the fixed port model.

The topological port model is applicable in scenarios in which the network
designer can assign port numbers for edges incident to each node with knowl-
edge of the global topology of the network. The model is also theoretically
significant because on some classes of graphs, the lower bound for the fixed
port model is different from that for the topological port model. Similarly
there are classes of graphs for which the lower bound in the topological port
model differs from the lower bound for the designer port model. In Section 5,

these differences are discussed in further detail.

4 Our Lower Bound

Our main result is the following theorem:

Theorem 4.1 Any single-source name-independent topological port compact
routing algorithm for trees that achieves a stretch of 3 must, for at least one

input tree, assign a compact routing table in at least one node which is of size

Q(y/n) bits.

4.1 Construction of a Tree Family

Let [n] = {1,...,n}. For an arbitrary value of n, let 7" be a tree with a root
node 0 that has n leaf children. The n edges have weights 1 + ie, 1 < i < n,
for a fixed value of € such that 0 < e < % We refer to the edge of weight 14 1¢
as the edge of rank 7 and the adjacent leaf as the node of rank 7. This tree
topology is provided to the compact routing algorithm in the first phase, and

the algorithm may assign port numbers to each edge in the tree.

In the second phase, node names are assigned. We assume that the root is
always named 0 and the leaves are assigned names from [n|. Let 7 = {7, |
r is a permutation on [n|} where each T, has the same topology as T, with a
node labeling determined by an extra permutation r : [n] — [n], where r(d)

is the rank of the leaf-node with name d. Clearly |7 | = nl.

4.2 Algorithmic Assumptions Without Loss Of Generality

We assume that header size is unbounded in order to obtain a lower bound on
the size of compact routing tables which is independent of header size. We also
assume unbounded computation time for processing each header and routing

table in order to determine the next header and outgoing edge.

In the name-independent model, the first packet header is required to be a
name-independent node name of [logn| bits. Thus the absence of a bound on
header size implies that any algorithm A with a given set of compact routing
tables can be imitated by an equivalent algorithm A’ in which each packet in
the network carries in its header a complete history of all the distinct compact
routing tables it has ever seen (for all nodes visited), together with a history
of the node-ids seen in the order visited. We call such an algorithm a mazimal-
header algorithm. Note that a maximal-header algorithm does not need to also
store the headers that A would store, because the headers of A can always be

recomputed on the fly from the headers of A’ if needed.

Clearly if an arbitrary algorithm A requires [bits in at least one routing table,
then the maximal-header algorithm A’ can also use at most [bits of space to

achieve the same stretch. Therefore if A’ can not use less than I’ bits (in all

nodes) for compact routing, then neither can A. So it suffices to restrict our
attention to maximal-header algorithms for the purposes of establishing our

lower bound.

Secondly suppose a maximal-header algorithm A reads the compact routing
table in the root node while visiting the root for the second time (after visiting
one leaf). Since A is a maximal-header algorithm, it already has a copy of the
root routing table by the time it arrives at the first leaf node. Therefore the
determination of the next edge appropriate for leaving the root node on the
delivery hop can be made within the first leaf visited. Without loss of generality

we assume that A in fact does this.

4.8 Preliminaries

Let A be any deterministic maximal-header name-independent topological
port single-source algorithm that achieves a stretch of three on all trees and
which uses no more than c¢y/nlogn bits in any node’s compact routing tables,
where ¢ € N is constant, for sufficiently large n.® By assuming this upper
bound on the space used in each node’s compact routing tables, we will show
that the root node is constrained to use 2(y/n) bits in its compact routing

table.

Let 7'(d) be the rank of the first leaf node visited by a packet with destination
d. From the construction, a packet intended for destination d may only visit
at most one leaf prior to being delivered to its final destination d. Moreover in

the case when one leaf b (distinct from d) is visited first from the root, the rank

3 In this paper, all logarithms are base two unless otherwise stated.

of b must be less than the rank of d in order to achieve a stretch of 3. So in
general, whether or not d is the first node visited by a packet with destination
d, we have '(d) < r(d). When a packet with destination d is initially routed
to a leaf node b from the root, we say d is premapped to node b (whether or
not b = d). Let g(i) be the port number assigned by A in the first phase to
the edge of rank i, and let p(d) = g(r(d)) for all destinations d. Similarly we

define p' = gor'.

Recall our assumption without loss of generality that the algorithm can deter-
mine the correct port number out of the root at the first leaf node visited, so
we say the pair (d, p(d)) is stored in b (whether or not this is stored as a literal
representation or it is computed somehow or obtained from a decompression
process of some sort). Observe that p’ is the premapping function which indi-

cates the port that a packet should be premapped to — (d, p(d)) is stored in

node p~ (p'(d))-

We now proceed to find a lower bound L for the number of distinct premapping
functions p’ that A needs to use for the entire set 7. The number of bits
required in the root is bounded below by log, (L). In this proof, we achieve
this by distinguishing two types of permutation: a permutation r is hard if,
given T,, the number of destinations that A will “lookup” in (or premap to)
each leaf node is bounded above by 8cy/n. Otherwise the permutation is soft.
We then count the number L' of distinct p' required (for a fixed function g)
for handling just the hard permutations in 7. Clearly L' < L. In order to
determine L', we will find an upper bound M for the maximum number of
different hard permutations that a single choice of p' could possibly handle.
We will also determine a lower bound N for the number of hard permutations.

We will then conclude that N/M < L' < L.

10

4.4 Lower Bounding the Number of Hard Permutations

By a counting argument from basic Kolmogorov Complexity based on an al-
gorithm C}y (derived from A) for compressing soft permutations, we show that

only a tiny fraction of permutations can be soft, regardless of choice of A.

Consider the following “representation” algorithm C'4 for encoding permuta-
tions of n nodes. In practice it compresses soft permutations while increasing
the length of the best possible representation of a hard permutation by one.

The formalization follows:

Let E be an effective algorithm for enumerating all permutations on n items
which enumerates each permutation exactly once in a deterministic and there-
fore repeatable sequence. We implement the representation algorithm C'4 in
terms of A and FE as follows. A permutation r is represented as a bitstring de-
noted by (r). In a hard permutation, the first bit in (r) is set to ’1’ to indicate
that it is a hard permutation, and that is followed by log, (n!) ~ nlogn bits

which represent the index into the enumeration of E of the permutation 7.

We say a permutation r is consistent with a partial permutation # if whenever
7 is defined, 7(d) = r(d). A soft permutation is represented by C4 as follows

(in this exact order):

e The first bit in (r) is set to ’0’ to indicate that it is a soft permutation.

e The next 2[logn]| + 1 bits are used for a self-delimiting representation? of
4 Recall that a self-delimiting representation of a bitstring b is one which can be
embedded in another bitstring such that if we start reading from the beginning of
the self-delimiting representation the representation tells us where to stop reading in

order to accurately recover the original bitstring. A simple approach which suffices

11

n.

e The next 3[logn| bits are used for 3 fields for representing
- the port number j to the node in which A stores more than 8¢y/n pairs.
- the size in bits of each of the following two blocks:

e Two blocks of length at most ¢\/nlogn bits each are used to store the literal
contents of the compact routing tables stored by A at the root as well as at
the node across port j.

e All remaining bits store an index into a list of permutations which are
consistent with the routing table stored at node p~'(j) and at the root
node. Note that since at least 8cy/n pairs are represented in node p~*(j),
the number of bits required for storing consistent permutations (given the

previously specified fields) is at most log, ((n — 8¢cy/n)!).

Recovering a literal representation of r (meaning a literal listing of the pairs)
from (r) = 1¢ when r is hard, is done by enumerating with E until the ¢

output is obtained, and this is returned as the answer.

To recover a literal representation of r from (r) = 0¢, we obtain the values of
n and j and also extract the compact routing tables of the root node and the
node across port j. In a first pass, we obtain the partial permutation 7 from
p which is stored in the node across port j, by running algorithm A for each
destination d and then computing 7# = ¢g~! o p. For a particular destination d,
if A premaps d to j (that is, if p'(d) = j), then we obtain p(d) by running
A again as it would run in the leaf p~'(j), and thereby obtain p(d). Let the

partial permutation p consist of the set of pairs that may be determined this

for our purposes is to encode bitstring b as 110, which is of the required length

2[logn] + 1. See [20], page 13 for more discussion.

12

Yop, where g~ ! is obtained by

way. We then translate p into 7 by composing g~
effectively constructing the input tree topology 7" and then running the first
phase of algorithm A on 7" in order to obtain g. Since A is deterministic and
must always create the same g, g is correctly recovered. In the next phase,
we extract the the last field in (r), which is the index value — let this be y.
Then we fill out the missing pairs as follows: we run algorithm E, and every
permutation r,,, output by F is compared to the partial permutation 7. If it is
not consistent, it is simply discarded. If it is consistent, we subtract one from
the index value (which is originally y) and continue enumerating. When we
obtain the 3 permutation r,,, among those that are consistent with #, that

is considered to be the one represented by (r), and we use it to fill out the

missing pairs in the uncompressed representation of r.

Lemma 4.2 The algorithm C4 saves Q2(y/nlogn) bits in representing a soft

permutation.

Proof: Since the algorithm A determines the correct ports for at least m; >
8cy/n destinations in the node across port j, the number of permutations

consistent with this partial permutation is bounded above by (n — 8¢y/n)!.

Using Stirling’s approximation, we obtain the minimum number of bits re-

quired to index n! distinct permutations:

log (n!) = v27n (%)n
= Llog(2m) + tlogn + nlogn — nloge

Similarly, we can obtain an upper bound on the number of bits required to

index the (at most) (n — 8¢y/n)! permutations which are consistent with 7:

13

log ((+/71 — 86)y/m)!) ~ log [y/2m(v/m — 8¢) /m (W=tav) V]
= 1log(2m) + Llog (v/n — 8¢) + 1 logn
(/7 — 8¢)y/mlog [(vl — 8¢)v/A] — (v — 8¢)y/mloge

= £ log2m + L log (v/n — 8c) + ; logn

+(v/n — 8c)y/nlog (v/n — 8c) + 5(v/n — 8c)y/nlogn

—nloge + 8cy/nloge

The total number of bits used by C'4 to represent a soft permutation is bounded

above by

log (((v/n — 8¢)y/n)!) + 2¢y/nlogn + 5logn + 2

The number of bits saved by using compression algorithm C'y for soft permu-

tations is therefore at least:

14

log (n!) — log (((1/n — 8¢)y/n)!) — 2¢y/nlogn — 5logn — 2
= inlogn + Llogn — Llog (v/n — 8¢)
—(v/n — 8¢)y/nlog (/n — 8c) + 4ey/nlogn
—8c¢y/nloge — 2¢cy/nlogn — 5logn — 2
> 2nlogn + 1logn — Llog\/n
—2nlogn + 2¢y/nlogn
—8cy/nloge — 5logn — 2
= 2¢y/nlogn — 8cy/nloge — 5logn — 2

= Q(y/nlogn) O

From Kolmogorov Complexity theory we know that only a small fraction of
permutations on [n] can be soft, for any A. Theorem 2.2.1 on page 109 of [20]

establishes the following:

Lemma 4.3 (Kolmogorov [20]) For any compact routing algorithm A, and

for every n, the number of hard permutations is at least N = nl(1—1/n%V™).

Proof: Every soft permutation can be encoded by a bitstring of length at
most 4 = logn! — Q(y/nlogn). The number of such bitstrings is >k, 2¢ =
241 1. There are therefore at least n! — 2#*! 4+ 1 hard permutations, which

is nl(1 —1/n%v™). O

15

4.5 Upper Bounding the Number of Hard Permutations Per Root Table

We now focus on a particular premapping function p’ (expressed in terms of g)
for a hard permutation r, and determine an upper bound M on the number of
different permutations r that it could be used for. Note that we do not assume
anything about how p’ is actually represented within the root. We only reason
about p' by analyzing the behavior of A for each possible packet destination

in the case where p’ is stored in the root. Let ¢ = 8c.

Lemma 4.4 An upper bound on the maximum number of hard permutations

that a single premapping function can handle is given by the expression M =

(n— /nje+ NTIZY 2 (n— /nje+2+i— (i + 1)ey/n), where € = 8c.

Proof: For every rank i € [n], let M; be the set of destinations that are
premapped by A to rank ¢, and let m; = |M;|. Recall that r'(d) = r(b), where
b is the node that d is premapped to, and also recall the constraint that for
all destinations d, r'(d) < r(d), since r'(d) > r(d) implies that the edge along
the lookup port has higher weight than the edge along the delivery port, so
the stretch will be greater than 3. Therefore we have m,, <1, m,_; < 2 and

in general m,_; <1+ 1. We also note that Z;’:l m; = n.

Clearly once g is fixed, each p' determines a unique value ' = ¢g~! o p’. Given
the sets M; for all ¢ which were obtained from p’ = g o v’ what is the maxi-
mum possible number of permutations r that can share the same premapping
function p’? In order to share the same p’, we need to satisfy the constraint

that for all destinations d, '(d) < r(d).

16

The number of ways to choose a value r which can share the value p’ is
computed as follows. For each value of 7 from n down to 1, we do the following:
in position ¢, we know a set of destinations M; which perform lookup in the
leaf with rank 7. Each of the destinations in M; has a rank which is at least 3.
We choose a set of ranks which are at least as large as 4, which will be mapped
to by r from M;. There are (n+ 1 —14) ranks which are at least ¢, and of these,

we can expect that >, ; m; of them will already have been used for ranks

j>i
[> 7 in previous iterations, so the number of ranks that can be used for M; is
(n+1—i—3;5;m;). We will choose m; of them for mapping the destinations

in M;, and the number of different ways this can be done is:

my;

For each such choice of a subset of the remaining ranks there are m;! ways
to map the destinations in M; to the chosen subset of ranks. The number of

permutations that can share the value p’ in particular is therefore exactly

ﬁmi!<n—|—1—

=1

E]>Zm]> H l (n+1- Z]>zm])‘

m; n—i—l—z Ejzzmj)!

=1
n—1

(n+1—1-=> my)
=1 >

=2=mn)B=mp—mn_1)...(n =D my)

7j>2

To obtain an upper bound M which is independent of the choice of p/, the
previous expression is maximized by setting m,, = 0, m,, ; = 0, and so on as
far as possible subject to the constraint that -7 ; m; = n, and that for all

7, mj < 8cy/n. Recall that the latter constraint merely expresses in concrete

17

terms our assumption for hard permutations that for all j, m; is O(y/n). Let
¢ = 8c. We therefore obtain m; = &,/n for j < \/n/¢ and m; = 0 otherwise.

We can rewrite the previous expression as

n—2 n
M:H(i+2_ Z m;)
=0 j=n—1i
n—2 Vn/ec
=1]G+2- Z m;)
=0 j=n—i
n—y/i/e-1 Ve n—2 Vn/e
= i+2— > my) [(+2- 3 my)
=0 j=n—i i=n—/n/c j=n—i
n—y/n/c-1 n—2 Vn/e
= (i+2) [G+2- 3 my)
1=0 i=n—+/n/c Jj=n—1i
n—2 vnje
=(n—+vnfe+1)! I @+2-= > my)
i=n—y/njc Jj=n—i
n—2
=(n—+vn/ec+1)! J] (G+2-(G+1-n++n/c)eyn)
i=n—/n/c
n—2—(n—/n/e)
=(n—+vnj/e+1)! II G+2+n—vnje—(i+n—+/njc+1—n++/n/c)cy/n)
=0
Vn/e=2
=(n—+vn/e+1)! I (n—+vnjc+2+i— (i+1)cy/n)
=0

4.6 Lower Bounding the Space Requirement

With these lemmas we complete the proof of Theorem 4.1 by proving that
log,(N/M) is Q(y/n). This means that the worst case number of bits required
in a single node for dealing with 7 (the set of trees with n leaves) is Q(y/n),
or equivalently, that at least one permutation requires a routing table of size

Q(4/n) in some node.

18

Proof of Theorem 4.1: For our purposes we do not need the full strength of
Lemma 4.3. Instead we simply note that for any given compact routing algo-
rithm A, more than half of the permutations are hard — there is no algorithm
that can “substantially” compress half the set of all possible permutations. A
lower bound for the required number of distinct premapping functions p' is
therefore given by dividing a lower bound for the number of hard permuta-
tions by an upper bound for the number of hard permutations that a single

premapping function can be used for, as follows:

S i n!/2
T (n—nje+ DI 2 (n— /nfe+2+i— (i + 1)ey/n)
_1 n(n—1)(n—-2)...(n—+/n/c+2)
21V 2 (n — /nje+ 2+ — (i + 1)&y/n)
_lﬁﬁ_z (n — /n/e+2+1)
2 oy (m—+/njc+24i—(i+1)cyn)

<|=

Now discarding some factors (for smaller values of i) whose ratios are at least

1, we get

lﬁﬁQ (n—/nje+2+1i)
2 J (n—vnje+2+i— (i+1)cy/n)

%

and substituting the smallest value 7 = — % in the numerator and denom-

(2

3]
~

inator to obtain a ratio lower bound, we get

lﬁﬁ_Q (n—Vnfe+2+ %5 - 1)
2 n 1

|2 (n—Vnje+2+ 45— 5 — (45 + 3)ev/n)

which simplifies to

19

The last step is justified because each factor of the preceding iterated product

is at least 2: dividing the numerator term by 2 we get 5 — % + %. It can easily

be shown that this is greater than the denominator term:

n n 3 n 1 c 3 26 + 1
————— 42|z |+ = = >3
(G-t5+1)= (5 [mg+s)vied) (%) vi=

which is certainly true for ¢,n > 1. Therefore we obtain that the number of
distinct premapping functions required is at least 9192 =311 Tt follows that the
number of bits required to represent all these distinct premapping functions

in the root r is at least 10g2(2L2£;_%J_1) = Q(y/n). O

5 Conclusions

We have introduced the topological port model, which is strictly more general
than the fixed-port model and strictly less general than the designer port
model. For the class of trees used for our lower bound, a stretch-1 compact
routing scheme with polylogarithmic space can be implemented in the designer

port model, while the result of this paper is that on the same class of trees a

20

stretch of three requires 2(1/n) space in the topological port model. A further
distinction is that for another class of trees defined by Abraham et al., the
space lower bound for achieving any stretch < 5 in the fixed-port model is
Q(y/n) [2], while a stretch 4 scheme with O(1) space can easily be implemented
in the topological port model, thus separating the topological port model from

the fixed-port model.

We have shown that every deterministic single-source name-independent topo-
logical port compact routing algorithm that achieves stretch 3 must use at least
Q(y/n) space in at least one node of at least one input tree. This particular
lower bound establishes that the single-source algorithm for trees presented
by Arias et al.[4] with stretch 3 is optimal in its use of space, up to a polyloga-
rithmic factor. That single-source algorithm is generalized in [17,18]. The gap
between upper bounds [18] and lower bounds for space required to achieve
a stretch of 2k — 1 has been closed [2], but a gap remains for the case of
all-pairs routing in trees — all known fully-combinatorial algorithms to date
for the name-independent compact routing, including the case of trees [4,18],
have only achieved exponential stretch for O(n'/*) space. It would also be

interesting to extend our lower bound to bounded degree trees.

Acknowledgements: The authors would like to thank Ittai Abraham, Cyril
Gavoille and Dahlia Malkhi for pointing out an error in an earlier version of

the paper.

21

References

[1]

[2]

[6]

8]

I. Abraham, C. Gavoille, and D. Malkhi. Routing with improved
communication-space trade-off. In Proc. 18th Int’l. Symp. on Distrib.

Computing (DISC), Oct 2004.

I. Abraham, C. Gavoille, and D. Malkhi. On space-stretch trade-offs for
compact routing schemes. Research Report RR-1374-05, LaBRI, University
of Bordeaux 1, 351, cours de la Libération, 33405 Talence Cedex, France, Nov.

2005.

I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-
independent routing with minimum stretch. In Proceedings of the 16th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2004), pages

20-24. ACM Press, June 2004.

M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka. Compact routing
with name independence. In Proceedings of the 15th Annual ACM Symposium

on Parallel Algorithms and Architectures, pages 184-192, June 2003.

B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data
structures for adaptive network routing. In Proc. 21st ACM Symp. on Theory

of Computing, pages 479-489, May 1989.

B. Awerbuch and D. Peleg. Routing with polynomial communication - space

trade-off. SIAM J. Disc. Math, 5(2):151-162, 1992.

H. Buhrman, J.-H. Hoepman, and P. Vitdnyi. Space-efficient routing tables
for almost all networks and the incompressibility method. SIAM Journal on

Computing, 28(4):1414-1432, 1999.

H. Buhrman, J.-H. Hoepman, and P. M. B. Vitanyi. Optimal routing tables.

In Symposium on Principles of Distributed Computing, pages 134-142, 1996.

22

[9] T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch
factor. In 17th Annual ACM Symposium on Principles of Distributed Computing

(PODC), pages 11-20, 1998.

[10] P. Erdds. Extremal problems in graph theory. In Theory of Graphs and Its
Applications, pages 29-36. Publ. House Czechoslovak Acad. Sci., Prague 1964,

1963.

[11] P. Fraigniaud and C. Gavoille. Memory requirement for universal routing
schemes. In Proc. 14th ACM Symp. on Principles of Distrib. Computing, pages

223-230. ACM, Aug. 1995.

[12] P. Fraigniaud and C. Gavoille. Routing in trees. In F. Orejas, P. G. Spirakis, and
J. van Leeuwen, editors, 28" International Colloguium on Automata, Languages

and Programming (ICALP), volume 2076 of Lecture Notes in Computer Science,
pages 757-772. Springer, 2001.

[13] P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In
19" Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 2285 of Lecture Notes in Computer Science, pages 65-75. Springer, Mar.

2002.

[14] C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch
factor three. In 4th International Colloguium on Structural Information and

Communication Complexity (SIROCCO), pages 162-175, July 1997.

[15] C. Gavoille and D. Peleg. The compactness of interval routing. SIAM Journal
of Discrete Math, 12(4):459-473, 1999.

[16] D. Krioukov, K. Fall, and X. Yang. Compact routing on internet-like graphs.

In Proceedings of Infocom, 2004.

[17] K. A. Laing. Name-independent compact routing in trees. Technical Report

2003-02, Tufts University Department of Computer Science, Sept. 2003.

23

[18] K. A. Laing. Brief announcement: Name-independent compact routing in trees.
In Proc. 23rd ACM Symp. on Principles of Distrib. Computing, page 382. ACM,

2004.

[19] K. A. Laing and R. Rajaraman. Brief announcement: A space lower bound
for name-independent compact routing in trees. In Proc. 17th Ann. ACM
Symposium on Parallelism in Algorithms and Architectures, page 216. ACM,

July 2005.

[20] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complezity and its

Applications. Springer-Verlag, 1997.

[21] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 83rd ACM

Symp. on Theory of Computing, pages 183-192, May 2001.

[22] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the
13th Annual ACM Symposium on Parallel Algorithms and Architectures, pages

1-10. ACM, July 2001.

24

