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Abstract

Capacitated Caching (CC) Games are motivated by P2P and web caching applications, and involve nodes
on a network making strategic choices regarding the content to replicate in their caches. Caching games
were introduced by Chun et al [6], who analyzed the uncapacitated case leaving the capacitated version as
an open direction.

In this work, we study pure Nash equilibria of both fractional (FCC) and integral (ICC) versions of
CC games. Using erasure codes we present a compelling realization of FCC games in content distribution.
We show that every FCC game instance possesses an equilibrium. We also show, however, that finding an
equilibrium in an FCC game is PPAD-complete.

For ICC games we delineate the boundary between intractability and effective computability in terms
of the network structure, object preferences, and the total number of objects. A central result of this paper
is the existence (and poly-time computability) of equilibria for hierarchical networks. Using a potential
function argument, we also show the existence of equilibria for general symmetric networks when object
preferences are binary. For general ICC games, however, equilibria may not exist. In fact, we show that it
is NP-hard to determine whether equilibria exist, even when either the network is symmetric and there are
only three objects in the system, or the network is arbitrary and there are only two objects in the system.
Finally, we show that the existence of equilibria in strongly connected networks with two objects and binary
object preferences can be determined in polynomial time, via a reduction to the even-cycle problem.

A significant feature of our work is the development of the above results in a general framework of
natural preference orders, orders that are entirely arbitrary except for two benign constraints - “Nearer is
better” and “Irrelevance of alternatives”. A novel aspect of our framework is that the results apply even to
the situation where different nodes have utility functions of completely different functional forms (e.g. one
node’s utility could depend on the sum of distances to the objects of interest whereas another’s could depend
on the maximum distance).



1 Introduction

You have a computer with a limited amount of disk space at home. You need to decide what movies to store
on your hard drive. Your decision is influenced by your social network and their collections of movies as
well. If a friend who is nearby and has good connectivity to you is storing Avatar then you can borrow it
from him when needed; on the other hand if no proximate friend shares your interest in the classics then you
may be better off storing a local copy of Casablanca. Note that your decisions affect those of your friends,
who in turn take actions that affect you. A natural question arises: what is the prognosis for you and your
network of friends in terms of the stability of your movie collections and the contentment you will derive
from them?

In the brave new wireless world of 4G you will not only be a consumer of different apps you will also be
a provider of apps to others around you. Your personal computing device will not only act as an end-device
but also as an intermediate relay for others. You will pay others for the privilege of using apps hosted by
them while getting paid for apps that you host. Each of you will independently attempt to optimize your
utility function but could it lead to a situation of endless churn or could there be an equilibrium?

In this paper, we study Capacitated Caching (CC) Games, which provide an abstraction of the above
scenarios. These are games in which the strategic agents, or players, are nodes in a network. The nodes have
object preferences as well as bounded storage space – caches – in which they can store copies of the content.
Each node has a utility for each placement of objects in the caches based on where objects of interest have
been placed. As with the earlier works [6, 14, 20, 1], we focus on the case where all pieces of content have
the same size, for otherwise the problem is a generalization of the well-known knapsack problem and even
computing the best response of a player(node) is NP-hard.

Several variants of CC games can be formulated by considering different kinds of networks (e.g., di-
rected, symmetric, hierarchical) and various forms of object preferences (e.g., uniform or weighted). Our
paper subsumes all the earlier works in the capacitated case by developing a general framework that allows
us to characterize the computational complexity of the different variants of CC Games.

1.1 Our results

We consider two classes of CC games: integral (ICC) and fractional (FCC). In the integral case, nodes are
only allowed to store an object entirely or not at all, whereas in the fractional case we allow nodes to store
fractions of objects rather than entire objects.

• We define ICC and FCC games under a general framework of utility preference relations and node
preference orders. Rather than specifying a numerical utility assigned by each node to each placement
of objects, we only require that the preference order each node has on object placements satisfy
two natural constraints of Monotonicity (or “Nearer is Better”) and Consistency (or “Irrelevance of
Alternatives”). Section 2 presents a detailed description of our framework.

A node’s preference order among different placements may depend on the underlying network structure and
its preferences among different objects. We consider symmetric networks (where pairwise distances are
symmetric), hierarchical networks, and general networks. We consider general object preferences as well as
binary object preferences, where each node is interested in a subset of objects but is neutral between objects
in the subset. Our first set of results concerns ICC games.

• Table 1.1 completely characterizes the computational complexity of the different classes of ICC
games we study. We wish to highlight three results in the table: (1) the existence (and polynomial-time
computability) of equilibria for hierarchical networks, (2) the existence of equilibria for symmetric
networks when object preferences are binary, and (3) the equivalence of finding equilibria in ICC
games with two objects and binary object preferences to the even-cycle problem [22].
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Object preferences and count Symmetric networks General networks
Binary, two objects Yes, in P (4.3) No, in P (3.2)
Binary, three or more objects Yes, in PLS (4.2) No, NP-complete (3.1)
General, two objects Yes, in P (4.3) No, NP-complete (3.1)
General, three or more objects No, NP-complete (3.1) No, NP-complete (3.1)

Hierarchical: Yes, in P (4.1)

Table 1: Existence and computability of equilibria in ICC games . Each cell (other than in the first row or the
first column) first indicates whether equilibria always exist in the particular sub-class of ICC games. If equilibria
always exist, then the cell next indicates the complexity of determining an equilibrium; otherwise, the cell indicates
the complexity of determining whether equilibria exist for a given instance. The numbers in parentheses denote the
relevant subsection.

Our second set of results concerns FCC games, where each node is allowed to store fractions of objects.
In our framework, a node can satisfy an object access request by retrieving any set of fractions of the object
as long as these fractions sum to at least one. A natural implementation of this framework is via erasure
codes; in fact, the Digital Fountain approach to data dissemination provides precisely this property [4, 24]
(see Section 5 for more details).

• We show that FCC games always have equilibria, and the problem of finding an equilibrium is in
PPAD. We also show, however, finding equilibria is PPAD-hard even when using a simple numer-
ical sum-of-distances utility function. Our reduction is from the PPAD-hard problem Preference
Games [11].

1.2 Related work

In the last decade there has been a tremendous flowering of research at the intersection of game theory and
computer science [17]. In a seminal paper [19] Papadimitriou laid the groundwork for algorithmic game
theory by defining syntactically defined subclasses of FP with complete problems, PPAD being a notable
such subclass. Recently, in a major breakthrough 2-player Nash Equilibrium was shown to be PPAD-
complete [7, 5]. The term PPAD-complete is coming to occupy a role in algorithmic game theory analogous
to the term NP-complete in combinatorial optimization [8].

Selfish caching games were introduced in [6] who considered the uncapacitated case where nodes could
store more pieces of content by paying for the additional storage. We believe that limits on cache-capacity
model an important real-world restriction and hence our focus on the capacitated version which was left as
an open direction by [6]. Special cases of the integral version of CC Caching Games have been studied.
In [14], Nash equilibria were shown to exist for weight-based object preferences where nodes are equidistant
from one another and a special server holds all objects. [20] slightly extends [14] to the case where special
servers for different objects are at different distances. Our results generalize and completely subsume all
these prior cases of CC Games. The Market sharing games defined by[9] also consider caches with capacity,
but are of a very special kind; unlike CC games, market sharing games are a special case of congestion
games.

There has been considerable research on capacitated caching, viewed as an optimization problem. Vari-
ous centralized and distributed algorithms have been presented for different classes of networks in [1, 2, 15,
12, 25].
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2 Framework for CC games

We consider a network consisting of a set V of nodes labeled 1 through n = |V | sharing a collection O of
unit-size objects. Each node i has a total preorder ≥i among all the nodes in V 1; ≥i further satisfies i ≥i j
for all i, j ∈ V . We say that a node i prefers j over k if j ≥i k, and call a node j most i-preferred in a set S
of nodes if j ≥i k for all k in S. We also use the notation j =i k if j ≥i k and k ≥i j, and j >i k if j ≥i k
and it is not the case that k ≥i j.

Each node i has a cache to store a certain number of objects. The placement at a node i is simply the
set of objects stored at i. The strategy set of a given node is the set of all feasible placements at the node.
A global placement is any tuple (Pi : i ∈ V ), where Pi ⊆ O represents a feasible placement at node
i. For notational convenience, we use P−i to denote the collection (Pj : j ∈ V \ {i}), thus often using
P = (Pi, P−i) to refer to a global placement. We also assume that V includes a (server) node that has the
capacity to store all objects. This ensures that at least one copy of every object is present in the system; also,
this assumption can be made without loss of generality since the transformation of setting this server as the
minimum element in each node’s preference order leaves the problem unchanged.

Utility preference relations. In our game-theoretic model, each node attaches a utility to each global
placement. We present a general definition that allows us to consider a large class of utility functions
simultaneously. Rather than define a numerical utility function, we present the utility at each node i as a
total preorder �i among the set of all global placements. (The notation �i and =i over global placements
are defined analogously.) We require that �i, for each i ∈ V , satisfies the following two basic conditions.

• Monotonicity: Let P and Q be two global placements such that for each object α and any node q
with α ∈ Qq, there exists a node p with α ∈ Pp and p ≥i q. Then P �i Q.

• Consistency: Let (Pi, P−i) and (Qi, Q−i) denote two global placements such that for each object
α ∈ Pi ∪Qi, if p (resp., q) is the most i-preferred node in V \ {i} for which α ∈ Pp (resp., α ∈ Qq),
then p =i q. If (Pi, P−i) �i (Qi, P−i), then (Pi, Q−i) �i (Qi, Q−i).

In words, the monotonicity condition says that for any node, if all the objects in a placement are placed at
nodes that are at least as preferred as in another placement, then the node prefers the former placement at
least as much as the latter. The consistency condition says that the preference for a node to store one set of
objects instead of another is only a function of the set of most preferred other nodes that are together holding
these objects. Thus, for instance, if a node i prefers to store α over β in a scenario with the property that the
most i-preferred node (other than i) storing α (resp., β) is j (resp., k), then i prefers to store α at least as
much as β in any other situation with the same property.

ICC Games. An ICC game is a tuple (V, O, {≥i}, {�i}). The focus of this paper is on the existence and
computation of pure Nash equilibrium (henceforth, referred to simply as equilibrium) of the CC games we
define. An equilibrium for an ICC game instance is a global placement P such that for each i ∈ V there is
no placement Qi such that (Qi, P−i) �i (Pi, P−i).
Generality of the conditions. We note that many standard utility functions defined for replica placement
problems [6, 13, 20] satisfy the monotonicity and consistency conditions. For instance, suppose there is a
cost function d such that dij is the cost incurred at i for accessing an object at j. Furthermore, suppose each
node i has a weight ri(α) for each object α. Consider the natural sum utility function Us(i) for each node i:
Us(i)(P ) =

∑
α∈O ri(α) · diσi(P,α), where σi(P, α) is the most i-preferred node holding α in P . Another

natural utility function is the max utility function Um(i) given by Um(i)(P ) = maxα∈O ri(α) · diσi(P,α).

1A total preorder is a binary relation that satisfies reflexivity, transitivity, and totality. Totality means that for any i, j, k, either
j ≥i k or k ≥i j.
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It is easy to verify that the above utility functions satisfy both the monotonicity and consistency condi-
tions. Indeed, any utility function that is an Lp norm, for any p, over the costs for the individual objects,
also satisfies the conditions. Furthermore, since the monotonicity and consistency conditions apply to the
individual utility functions, our model allows the different nodes to adopt different types of utilities, as long
as each separately satisfies the two conditions.

Binary object preferences. One class of utility preference relations that we would like to highlight is the
ones based on binary object preferences. Suppose each node i has a set Si of objects in which it is equally
interested, and it has no interest in the other objects. For any placement P , let σi(P, α) denote the most
i-preferred node holding α in P . Let τi(P ) denote the |Si|-length sequence consisting of the σi(P, α), for
α ∈ Si, in nonincreasing order according to the relation ≥i. Then, the consistency condition can be further
strengthened to the following.

• Binary Consistency: For any two placements P = (Pi, P−i) and Q = (Qi, Q−i) with P−i = Q−i,
P �i Q if for 1 ≤ k ≤ |Si|, the kth component of τi(P ) is at least as i-preferred as the kth component
of τi(Q), then P �i Q.

Symmetric networks and acyclic node preference collections. As the sum and max utility functions
suggest, node preference relations arise most naturally out of an underlying cost function d over ordered
pairs of nodes: j >i k if dij < dik, and j =i k if dij = dik. We say that d is symmetric if dij = dji for
all i, j in V . We refer to the network over V as symmetric if the node preference relations are defined by a
symmetric cost function. In the following lemma, whose proof is in Appendix A, we show that symmetric
networks are equivalent to acyclic node preference collections. Formally, the collection {≥i: i ∈ V } is an
acyclic node preference collection if there does not exist a sequence of nodes i0, i1, . . . , ik−1 for an integer
k ≥ 3 such that i(j−1) mod k >ij i(j+1) mod k for all 0 ≤ j < k.

Lemma 1. Any symmetric network yields an acyclic collection of node preferences. For any acyclic col-
lection of node preferences, we can define symmetric access cost functions that are consistent with the node
preferences.

Pair preference relations. Given any utility preference relation �i that satisfies the monotonicity and
consistency conditions, we now present a partial preorder wi on O × V \ {i}, for each i. These partial
preorders, referred to as pair preference relations, are very useful in our algorithm design and analyses.

1. For each object α and j, k 6= i, we have (α, j) Ai (α, k) whenever k >i j, and (α, j) =i (α, k)
whenever k =i j.

2. Consider distinct objects α, β and nodes i, j, k with j, k 6= i. If there exist global placements P =
(Pi, P−i) and Q = (Qi, Q−i) such that P �i Q, Pi = {α}, Qi = {β}, P−i = Q−i and the most
i-preferred node in V \{i} holding α (resp., β) in P−i is j (resp., k), then we have (α, j) Ai (β, k). If
for all global placements P = (Pi, P−i) and Q = (Qi, Q−i) such that P �i Q, Pi = {α}, Qi = {β},
P−i = Q−i and the most i-preferred node in V \ {i} holding α (resp., β) in P−i is j (resp., k), then
we have (α, j) Ai (β, k).

In words, item 1 says that i’s preference for keeping α in its cache increases as the most i-preferred
node holding α becomes less preferred (or “moves farther away”). In item 2, (α, j) Ai (β, k) means that if
i needs to place either α or β in its cache, and j and k are most i-preferred nodes in V \ {i} holding α and
β, respectively, then i prefers to have α over β.

Lemma 2. For each i, wi as given above, is a well-defined preorder.
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Proof. We need to ensure the well-definedness of part 2 of the above definition. That is, we need to show
that for any placements P−i and Q−i such that a most i-preferred node in P−i holding α (resp., β) is also a
most i-preferred node in Q−i, it is impossible that ({α}, P−i) �i ({β}, P−i) and ({β}, Q−i) �i ({α}, Q−i)
both hold. This directly follows from the consistency condition for utility preference relations.

The reflexivity and transitivity of wi are immediate from the definitions and the reflexivity and transi-
tivity of �i. To ensure the well-definedness of the strict preorder Ai, we also have to show that there is no
collection of pairs (αj , kj), 0 ≤ j < ` for some integer ` > 1, such that (αj , kj) Ai (αj+1 mod `, kj+1 mod `)
for 0 ≤ j < `. To see this, it is sufficient to note that if (α, k) Ai (α′, k′) then for all placements P and P ′

such that P−i = P ′
−i and the most i-preferred node in V \{i} that holds α (resp., α′) is k (resp., k′) we have

P �i P ′. So any cycle in the strict preorder Ai implies a cycle in �i, yielding a contradiction.

For many utility preference relations, the pair preference relations are easy to derive directly from input
parameters. For instance, for sum and max utilities, we have (α, j) Ai (β, k) if ri(α)dij > ri(β)dik, where
ri(α) is the weight of node i for object α. Note that this definition, in fact, extends wi to be a total preorder.

Using the pair preference relation, there is a natural way to describe the best response Pi of a node i in
response to a placement P−i of V \ {i}: Pi is simply the object α that maximizes (α, σi(P−i, α)) according
to wi (here σi(P−i, α) is a most i-preferred node holding α in P−i).

Unit cache capacity. In this paper, we assume that all objects are of identical size. Under this assumption,
we now argue that it is sufficient to consider the case where each node’s cache holds exactly one object.
Consider a set V of nodes in which the cache of node i can store ci objects. Let V ′ denote a new set
of nodes which contains, for each node i in V , new nodes i1, i2, . . . , ici . We set the node preferences as
follows: jk =ik j` for all i, j ∈ V , 1 ≤ k, ` ≤ ci; ik1 ≥jk

i′k2
whenever i ≥j i′.

We consider an obvious onto mapping f from placements in V ′ to those in V . Given placement P ′

for V ′, we set f(P ′) = P where Pi = ∪1≤k≤ci
P ′

ik
. This mapping naturally defines the utility preference

relations for the node set V ′. In particular, for any i ∈ V and 1 ≤ k ≤ ci, P ′ �ik Q′ whenever f(P ′) �i

f(Q′). It is easy to verify that the utility preference relation �ik for all ik ∈ V ′ satisfies the monotonicity
and consistency conditions. Furthermore, P ′ is an equilibrium for V ′ if and only if f(P ′) is an equilibrium
for V ; this together with the onto property of the mapping f gives us the desired reduction. Thus, in the
remainder of the paper, we assume that every node in the network stores at most one object in its cache.

3 Non-Existence of equilibria in ICC games and the associated decision
problem

It is relatively easy to show that general ICC games may not have equilibria. In this section, we identify the
most basic ICC games where equilibria may not exist, and study the complexity of the associated decision
problem (i.e. of determining the existence of equilibria).

3.1 NP-Completeness

The main result of this section is the following theorem, which establishes the NP-hardness of ICC games
even when the number of objects is small or the object preferences are binary. The hardness proofs are
by a polynomial-time reduction from 3SAT [8]. Each reduction is built on top of a gadget which has an
equilibrium if and only if a specified node holds a certain object. Several copies of these gadgets are then
put together so as to capture the given 3SAT formula. The full proof, which involves several case analyses,
is tedious and is deferred to Appendix B.

Theorem 3. The problem of determining whether a given ICC instance has an equilibrium is in NP. It
is NP-hard to determine whether an ICC intance has an equilibrium even if one of these three restrictions
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hold: (a) number of objects is two; (b) object preferences are binary and number of objects is three; (c)
network is symmetric and number of objects is three.

3.2 Binary preferences over two objects

Consider an arbitrary ICC game with two objects and binary preferences. The question is: given an instance
of such a game does it possess an equilibrium? Let us call this problem 2BIN. We prove by a series of
reductions that 2BIN is polynomial-time equivalent to the notorious EVEN-CYCLE problem [26]: does a
given digraph contain an even cycle? The proof is presented in a series of lemmas in Appendix C.

Theorem 4. EVEN-CYCLE on general digraphs is polynomial-time equivalent to 2BIN.

Despite intensive efforts over a long time the status of EVEN-CYCLE was in limbo [3] – it had neither
been shown to be in P nor NP-complete – until [16, 22] provided a tour de force polynomial-time algorithm.
This result thus also places 2BIN in P.

4 Existence and computation of equilibria in ICC games

In this section, we establish the existence of equilibria for several versions of ICC games. Our main result is
a polynomial time construction of equilibria for hierarchical networks (Section 4.1). We next show that for
symmetric networks and binary object preferences, the resulting ICC game is a potential game (Section 4.2).
Finally, when there are only two objects in the system, we give a polynomial-time construction of equilibria
for ICC games for symmetric networks (Section 4.3).

4.1 Hierarchical networks

In this section, we show that equilibria always exist for ICC games on hierarchical networks. Our proof is
by means of a polynomial-time construction of an equilibrium. In particular, this implies that if the distances
between nodes form an ultrametric (that is, dik ≤ max{dij , djk} for all i, j, k ∈ V ) then equilibria always
exist and can be found in polynomial time.

Hierarchical networks. We formally define hierarchical networks and associated node preference relations.
Let T denote a tree whose set of leaves is the node set V . The node preference relation ≥i is then given as
follows: j ≥i k if the least common ancestor of i and j is a descendant of the least common ancestor of i
and k. We use lca(i, j) to denote the least common ancestor of nodes i and j.

Recall that for each node i, its node preference relation ≥i and placement preference relation �i induces
a preorder wi over object-node pairs. For the proof, it is more convenient to work with a preorder wi among
elements of O × I , where I is the set of internal nodes in T . Specifically, we define (α, v) Ai (β, w) if
there exist nodes j and k in V such that v is lca(i, j) and k is lca(i, k) and (α, j) Ai (β, k). Since j =i `
whenever lca(i, j) = lca(i, `), the preceding definition of wi is well-defined.

Auxiliary servers. In order to present our algorithm, we introduce the notion of an auxiliary server. For an
object α, an auxiliary α-server is a new node that will store α in every equilibrium; an auxiliary α-server
prefers storing α over any other object. Like the nodes in V , each auxiliary server is introduced as a leaf in
the hierarchy T . The node preference relations for all nodes in V are extended, using the hierarchy T , to
include the auxiliary servers.

We introduce a number of auxiliary servers at the start of the algorithm. At each step of the algorithm,
we maintain the invariant that the current global placement is an equilibrium in this enhanced hierarchy.
As the algorithm proceeds, the set of auxiliary servers and their locations changes as we remove existing
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auxiliary servers or add new ones. On termination, there are no auxiliary servers leaving us with a desired
equilibrium. Let Wt denote the set of auxiliary servers at the start of step t of the algorithm.
The algorithm. To distinguish between the placements on the nodes and the auxiliary servers, we represent
a global placement as a pair 〈P,Q〉, where P (resp., Q) denotes the collection of placements at the nodes
in V (resp., auxiliary servers). For any i (node in V or auxiliary server), placement 〈P,Q〉 and object α,
let σi(〈P,Q〉, α) denote lca(i, j) where j is a most i-preferred node holding α in 〈P,Q〉; in other words,
σi(〈P,Q〉, α) is the lowest node v in T such that i is a descendant of v and there exists another descendant
j of v that holds α in 〈P,Q〉. Let µi(〈P,Q〉) = (α, v) where α is the object held by i in 〈P,Q〉 and v is
σi(〈P,Q〉, α).
Initialization. We add, for each object α and for each internal node v of T , an auxiliary α-server as a leaf
child of v; this constitutes the set W0.
Step t of algorithm. Fix an equilibrium 〈P,Q〉 for the node set V ∪Wt. If Wt is empty, then we are done.
Otherwise, select a node j in Wt. Let Qj = {α}, and let µj(〈P,Q〉) = (α, v). Let S denote the set of all
nodes i ∈ V such that (α, v) Ai µi(〈P,Q〉). We now describe one step of the algorithm which computes
a new set of auxiliary servers Wt+1 and a new placement 〈P ′, Q′〉 such that 〈P ′, Q′〉 is an equilibrium for
V ∪Wt+1. We consider two cases.

• S is empty: In this case, we set P ′ to P . We remove the auxiliary server j from Wt and leave the
placement in the remaining auxiliary servers as before. Thus Wt+1 = Wt − {j} and Q′ is the same
as Q except that Q′

j is no longer defined.

• S is nonempty: Let i denote a node in S such that lca(i, j) is lowest among all nodes in S. We
set P ′

i = Qj and P ′
−i = P−i. We remove the auxiliary α-server j from Wt and instead add a new

auxiliary Pi-server k as a leaf sibling of i in T ; Wt+1 = Wt + {k} \ {j}.

Lemma 5. Consider step t of the algorithm. Let object α and node v be as defined above. If 〈P,Q〉 is an
equilibrium for V ∪Wt, then the following hold.

1. Every node plays their best response in 〈P ′, Q′〉; that is, 〈P ′, Q′〉 is an equilibrium for V ∪Wt+1.

2. For all i ∈ V , µi(〈P ′, Q′〉) wi µi(〈P,Q〉).

3. Either |Wt+1| < |Wt| or there exists a node i in V such that µi(〈P ′, Q′〉) Ai µi(〈P,Q〉).

Proof. We first note that for any node k not in subtree rooted at the child of v that has j as a descendant
P ′

k = Pk, and for every object α, σk(〈P ′, Q′〉, α) = σk(〈P,Q〉, α). This establishes statement 1 of the
lemma for the node. Furthermore, if Pk is a best response of k in 〈P,Q〉, then P ′

k is a best response of k in
〈P ′, Q′〉. This establishes statement 2 of the lemma for the node.

It remains to consider nodes rooted at the child of v that has j as a descendant. Let k be such a node.
Note that for any β 6= α, σk(〈P ′, Q′〉, β) = σk(〈P,Q〉, β), since there is no change in location of β. If
Pk = {β} and β 6= α, then we have P ′

k = {β} and µk(〈P ′, Q′〉) =i µk(〈P,Q〉) since there is no change in
location of β. Thus, statement 2 of the lemma holds for k.

We consider two cases, according to whether S is empty. If S is not empty and hence the node i exists,
let x denote lca(i, j). If k is not in the subtree rooted at the child of x that has j as descendant, the most
preferred node holding α has not changed. Then, σk(〈P ′, Q′〉, α) = σk(〈P,Q〉, α), implying that both
statements 1 and 2 of the lemma hold for k. If k is in the subtree rooted at the child of x that has j as
descendant, we have

µk(〈P,Q〉) wi (α, v) wi (α, x).

This implies that µk(〈P ′, Q′〉) wk µk(〈P,Q〉) and that k is playing its best response. Thus, 〈P ′, Q′〉 is an
equilibrium. Furthermore, for node i, µi(〈P ′, Q′〉) Ai µi(〈P,Q〉), establishing statement 3 of the lemma.
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If S is empty, then the placement on the nodes in V remains the same as before. Since there is no node i
such that (α, v) wi µi(〈P,Q〉) and the location of none of the objects has changed, other than the removal of
α from v, it follows that for all k ∈ V , µk(〈P ′, Q′〉) wk µk(〈P,Q〉), establishing statement 1 of the lemma.
Since 〈P,Q〉 is an equilibrium, so is 〈P ′, Q′〉, statement 2 of the lemma holds. Since |Wt+1| = |Wt| − 1,
the statement 3 of the lemma holds. This completes the proof of the lemma.

Theorem 6. For hierarchical node preferences, an equilibrium can be found in polynomial time.

Proof. It is immediate from the definition of the algorithm and Lemma 5 that at termination, the algorithm
returns a valid equilibrium. It remains to show that our algorithm terminates in polynomial time. Consider
the potential given by the sum of |Wt| and the sum, over all i, of the position of µi(〈P,Q, 〉) in the total
preorder wi. The term |W0| is at most nm, where n is |V | (which is at least the number of internal nodes)
and m is the number of objects. Furthermore, since |O× I| is at most nm, the initial potential is initially at
most nm + n2m. By Lemma 5, the potential decreases by at least one in each step of the algorithm. Thus,
the number of steps of the algorithm is at most nm + n2m. Furthermore, each step can be implemented in
time linear in nm. This completes the proof of the theorem.

4.2 Symmetric networks with binary object preferences

Let d be a symmetric cost function for a network over the node set V . Recall that for binary object pref-
erences, we are given, for each node i a set Si of objects in which i is equally interested. Our proof of
existence of equilibria is via a potential function argument. Given a placement P , let Φi(P ) = dij , where
j is the most i-preferred node in V − {i} holding the object in Pi. We introduce the following potential
function Φ:

Φ(P ) = (Φ0,Φi1(P ),Φi2(P ), . . . ,Φin(P ))

where Φ0 is the number of nodes i such that Pi ⊆ Si, and Φij (P ) ≤ Φij+1(P ), ∀j, where V = {i1, i2, . . . , in}.
We prove that Φ is an increasing potential function: after any better response step, Φ increases in lexico-
graphical order.

Let P = (Pi, P−i) be an arbitrary global placement. Assume that Pi = {α} and j is the most i-
preferred node in P−i holding α. Consider any better response step, from placement P to Q = (Qi, P−i),
where Qi = {β}. Clearly β ∈ Si.

We consider two cases. First, suppose α /∈ Si and β ∈ Si. Then, Φ0 increases, and so does the potential.
The second case is where α, β ∈ Si. Let k be the most i-preferred node in P−i holding β. In this case,
Φ0 does not change. However, since this is a better response step of i, j >i k, implying that dik > dij

and hence Φi(Q) > Φi(P ). Consider any other node j. If j holds any object γ other than β, since no
new copy of γ has been added, Φj(Q) ≥ Φj(P ). It remains to consider the case where j holds β. If S
is the set of nodes in V \ {j} holding β in P−j , then S ∪ {i} is the set of nodes in V \ {j} holding β.
Thus, Φj(Q) = min{Φj(P ), dji} ≥ min{Φj(P ),Φi(Q)}. This also means that Φj(P ) appears later in
the sorted order than Φi(P ) and Φj(Q) appears no earlier in the sorted order than Φi(Q). Hence, Φ(Q) is
lexicographically greater than Φ(P ).

This establishes that for symmetric networks with binary object preferences, the resulting ICC game is
a potential game, and hence also in PLS.

4.3 Symmetric networks with two objects

We give a polynomial-time algorithm for computing an equilibrium in any symmetric network with two
objects. Our algorithm starts by introducing auxiliary servers for both the objects in the network at zero
cost from each node. In each subsequent step, we move the auxiliary servers progressively “further” away,
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ensuring that each instant, we have an equilibrium. Finally, when the auxiliary servers are at least preferred
cost from all the nodes, they can be removed yielding an equilibrium for the original network. We refer to
Appendix D for details.

5 Fractional caching games

We introduce a new class of caching games where the nodes can store fractions of objects, as opposed to
whole objects, and a node can satisfy an object access request by retrieving enough fractions that make up
the whole object. Rather than associate different identities with different fractions of a given object, we view
each portion of an object as being fungible, thus allowing any set of fractions of an object to constitute the
whole object as long as the fractions add up to at least one. Such fractional caching scenarios naturally arise
when objects are encoded and potentially distributed within a network to permit both efficient and reliable
access.

Several implementations of fractional caching, in fact, already exist. For instance, fountain codes [4, 24]
and the information dispersal algorithm [21] present two ways of encoding an object as a number of smaller
pieces – of size, say 1/m fraction of the full object size, where m is an integer – such that the full object may
be reconstructed from any m of the pieces. A natural formalization is to view each object as a polynomial
of high degree, and consider each piece of the object as the evaluation of the polynomial on a random point
in a suitable large field. Then, accessing an object is equivalent (with very high probability) to accessing a
sufficient number of pieces of the object.

We now present fractional capacitated caching (FCC) games, which are an adaptation of the game-
theoretic framework developed in Section 2 to fractional caching. We have a set V of nodes sharing a set O
of objects. In the fractional caching game, the strategies are fractional placements; a fractional placement
P̃ is a |V |-tuple {P̃i : i ∈ V } where P̃i : O → < under the constraint that sum of P̃i(α) · size(α), over all α
in O, is at most the cache size of i (here size(α) is the size of object α).

We begin by presenting FCC games in the special case of sum utilities, where the generalization from
the integral to the fractional setting is most natural. For sum utilities, recall that we are given a cost function
d and a node-object weights ri(α), i ∈ V , α ∈ O. Given a fractional global placement P̃ , we define the cost
incurred by i for accessing object α as the minimum value of xjdij subject to the constraints that

∑
j xj = 1

and xj ≤ P̃j(α) for all j. Then, the total cost incurred by i is the sum, over all objects α, of ri(α) times the
cost incurred by i for accessing α. For a given fractional global placement P̃ , the utility of i is the negative
of the total cost incurred by i under P̃ .

We now consider FCC games under the more general setting of utility preference relations. As before,
each node i has a node preference relation ≥i and a preference relation �i among global (integral) place-
ments. Recall that the node and placement preference relations of each node i induce a preorder wi among
the elements of O×(V \{i}) (see Section 2). For FCC games, we require the existence of a total preorderwi,
for all i. We now specify the best response function for each player for a given fractional global placement
P̃ . For each node i and object α, we determine the assignment µ

i, eP ,α
: V \ {i} → < that is lexicographi-

cally minimal under the node preference relation ≥i subject to the condition that µ
i, eP ,α

≤ P̃k(α) for each
k and

∑
k µ

i, eP ,α
(k) = 1. We next compute b

i, eP : O × (V \ {i}) → < to be the lexicographically maximal
assignment under wi subject to the condition that b

i, eP (α, k) ≤ µ
i, eP ,α

(k) for all k and
∑

α,k b
i, eP (α, k) is at

most the size of i’s cache. The best response of a player i is then to store
∑

k b
i, eP (α, k) of α in their cache.

This completes the definition of FCC games.
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5.1 Existence of equilibria in FCC games

Using standard fixed-point machinery, we show that every FCC game has an equilibrium (Theorem 20). We
also show that finding equilibria in FCC games is in PPAD (Theorem 21). Our proof is by a reduction to
the Fractional Stable Paths Problem (FSPP) which was introduced in [10] and shown to be PPAD-complete
in [11]. Due to space constraints, both these proofs have been placed in Appendix E.

5.2 PPAD-Hardness

We now show that finding an equilibrium in FCC games is PPAD-hard even when the underlying cost
function d is a metric; our proof is by a reduction from preference games, introduced in [11]. Given a
preference game G with n players 1, 2, . . . , n and their preferences given by ≥i, we construct a fractional
caching game Ĝ as follows. The game Ĝ has a set V of n2 + 3n players numbered 1 through n2 + 3n, and
a set O of 2n objects α1, . . . , α2n. We set the utility function for each node to be the sum utility function,
thus ensuring that the desired monotonicity and consistency conditions are satisfied.

We next present the metric cost function d over the nodes. We group the players into four sets V1 =
{i : 1 ≤ i ≤ n}, V2 = {i · n + j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}, V3 = {n2 + n + i : 1 ≤ i ≤ n}, and
V4 = {n2 + 2n + i : 1 ≤ i ≤ n}. For each node i in V1 and j in V3, we set dii = 2 and dij = 4. We
set dn2+n+i,n2+2n+i = 3. For each node i in V1 and k = i · n + j, we set dik as follows: if j >i i then
dij equals 6 − `/n when j is the `th most preferred player for i; if i ≥i j, then dij equals 1. All the other
distances are obtained by using metric properties.

We finally specify the object weights. For k ∈ V1, we set rk(αi) = 1 for all i 6= k such that i ≥k k; we
set rk(αk) = 2.5 such that 4 < 2rk(αk) ≤ 5. For node k = i · n + j in V2, we set rk(αj) = 1. For node
k = n2 + n + i in V3, we set rk(αi) = rk(αi+n) = 1. Finally, for node k = n2 + 2n + i in V4, we set
rk(αi+n) = 1.

Given a placement P for Ĝ, we define a solution ω(P ) = {wij} for the preference game G: wij =
Pi(αj). We refer to Appendix E for a proof of the following lemma.

Lemma 7. A placement P is an equilibrium for Ĝ if and only if ω(P ) is a equilibrium for G and every node
not in V1 plays their best response in P .

The construction of Ĝ from G is clearly polynomial time. Furthermore, given any equilibrium for Ĝ,
an equilibrium for G can be constructed in linear time. We thus have a reduction from a PPAD-complete
problem to FCC implying that the latter is PPAD-hard.

6 Concluding remarks

In this paper we have defined integral and fractional caching games in networks, where the cache capacity of
each node is bounded. Under the assumption that all objects are of uniform size, we have almost completely
characterized the complexity of integral capacitated caching games: For what classes of games do equilibria
exist? Can we determine efficiently whether they exist? When they do exist, can we efficiently find them?
One complexity question that is still open is the case of symmetric networks with binary preferences. We
conjecture that finding equilbria in such games (which we prove are potential games) is PLS-hard.

We showed that fractional capacitated caching games always have equilibria, though they may be hard
to find. It is not hard to argue that an equilibrium in the corresponding integral variant is an equilibrium
in the fractional instance. So whenever an “integral” equilibrium can be determined efficiently, so can a
“fractional” equilibrium. An interesting direction of research is to identify other special cases of fractional
games where equilibria may be efficiently determined.
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A Proof for model formulation

Proof of Lemma 1: Let d denote a symmetric access cost function over the set V of nodes. For a given node
i ∈ V , we have j ≥i k iff dij ≤ dik. We now argue that the collection {≥i: i ∈ V } is acyclic. Suppose,
for the sake of contradiction, that there exists a sequence of nodes i0, i1, . . . , ik−1 for an integer k ≥ 3 such
that i(j−1) mod k >ij i(j+1) mod k for all 0 ≤ j < k. It then follows that:

diji(j−1) mod k
> diji(j+1) mod k

for 0 ≤ j < k.

Since d is symmetric, we obtain

diji(j−1) mod k
> di(j+1) mod kij for 0 ≤ j < k,

which is a contradiction.
Given an acyclic collection of node preferences, we construct a directed graph G over the set U of all

unordered pairs (i, j) : i, j ∈ V , i 6= j. There is a directed edge from node (i, j) to (i, k) if and only if
k ≥i j. Since the collection {≥i: i ∈ V } is acyclic, G is a dag. We compute the topological ordering
π : U → Z; thus, we have π((i, j)) < π((k, `)) whenever there is a directed path from (i, j) to (k, `).
Setting dij to be π((i, j)) gives us the desired symmetric network.

12



B NP-hardness proofs

Theorem 8. The problem of determining whether a given ICC instance has an equilibrium is in NP. It
is NP-hard to determine whether an ICC intance has an equilibrium even if one of these three restrictions
hold: (a) number of objects is two; (b) object preferences are binary and number of objects is three; (c)
network is symmetric and number of objects is three.

The membership in NP is immediate, since one can determine in polynomial time whether a given global
placement is an equilibrium. The remainder of the proof focuses on the hardness reduction from 3SAT.

Given a 3SAT formula φ with n variables x1, x2, . . . , xn and k clauses c1, c2, . . . , ck, we construct an
ICC instance as follows. For each variable xi in φ, we introduce two variable nodes: node Xi and X̄i. We
set dXi,X̄i

and dX̄i,Xi
to be 0.5. For each clause cj , we introduce a clause node Cj . Assuming that `j,r,

for r ∈ {1, 2, 3} are the three literals of clause cj in formula φ, we set dCj ,Lj,r and dLj,r,Cj to be 1 for
r ∈ {1, 2, 3}. Note that each Lj,s, for j ∈ [1, k], and s ∈ {1, 2, 3} is in fact some variable node Xh or X̄h

for some h ∈ [1, n]. We also introduce a gadget G illustrated in Figure 2, consisting of nodes S, A, B, and
C. We set the distances dS,Ci and the symmetric dCi,S , for all 1 ≤ i ≤ k between node S and all clause
nodes to be 2. The general construction is illustrated in Figure 1.
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Figure 1: Instance of the construction for the metric case
proof of NP-Hardness, where φ = (x1 ∨ x̄3 ∨ x4) ∧ . . . ∧
(xn−3 ∨ xn−1 ∨ x̄n)
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Figure 2: Gadget for the non-metric (left) and the metric
(right) case

Asymmetric networks with two objects. We set dA,S , dA,B , dB,C , dC,A to be 1. The server node at access
cost dsrv = 10 from all nodes in V , stores a fixed copy of two objects α and β. We set the weights rxi(α),
rx̄i(α), rxi(β), rx̄i(β) of each variable node on objects α and β, to be 1. For each clause node we set the
weight rCi(α) on object α to be 1, and the weight rCi(β) on object β to be 0.7, for all 1 ≤ i ≤ k. We set
the weight rS(α) on object α to be 1, and the weight rS(β) on object β to be 0.7. We set the weight rA(α)
of node A on object α to be 0.7 and the weight rA(β) of node A on object β to be 1. Finally, we set the
weight of nodes B and C on both objects α, and β to be 1. We refer to this ICC instance as I1.
Symmetric networks with three objects. For the metric case, we set dA,S and dB,S to be 3, dA,B to be
3.1, dB,C to be 3.05, and dC,A to be 2; while symmetry holds. The server node, which is at access cost
dsrv = 5 from all nodes in V , stores a fixed copy of three objects α, β, and γ. We set the weights rxi(α),
rx̄i(α), rxi(β), rx̄i(β) of each variable node on objects α and β, to be 1. Also, for each clause node we set
the weight rCi(α) on object α to be 0.85, and the weight rCi(β) on object β to be 1, for all 1 ≤ i ≤ k.
We set the weight rS(α) on object α to be 0.85, and the weight rS(β) on object β to be 1. Also we set the
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weight rA(α) = 1, rA(γ) = 2, rB(β) = 1, rB(γ) = 0.9837, rC(β) = 1, and rC(γ) = 1.6. We set all the
remaining weights to be 0. We refer to this ICC instance as I2.

Claim 1. A variable node Xi holds object α (resp., β) if and only if node X̄i holds object β (resp., α).

Proof. The proof is immediate, since X̄i (resp., Xi) is the most Xi-preferred (resp., X̄i-preferred) node, and
both Xi and X̄i are interested equally in α and β.

Claim 2. Clause node Ci holds object α if and only if its variable nodes Li,j , for j ∈ {1, 2, 3} hold object
β.

Proof. First, assume that Li,j , for j ∈ {1, 2, 3} hold β. These nodes are the most Ci-preferred nodes
holding β. By Claim 1 we know that nodes L̄i,j , for j ∈ {1, 2, 3} hold α, and they are the most Ci-
preferred nodes holding α. Node’s Ci cost for holding α and accessing β from Li,j , for j ∈ {1, 2, 3}, is
rCi(β)dCi,Li,j = 1 × 1 = 1; while the cost for holding β and accessing α from L̄i,j , for j ∈ {1, 2, 3}, is
rS(α)dCi,L̄ij

= 0.85 · 1.5 = 1.275. Obviously, node Ci prefers to replicate α.
Now assume that at least one of the nodes L̄i,j , for j ∈ {1, 2, 3} holds α. These nodes are the most Ci-

preferred nodes holding α. Also, by Claim 1, the most Ci-preferred nodes holding β are all the remaining
nodes from the set Li,j , L̄i,j , for j ∈ {1, 2, 3}, that don’t hold α. Node’s Ci cost for holding β and accessing
α from Li,j , for j ∈ {1, 2, 3}, is rCi(α)dCi,Li,j = 0.85 · 1 = 0.85; while the cost for holding α and
accessing β from node L̄i,j (resp., Li,j), is rCi(β)dCi, ¯Li,j

= 1 ·1.5 = 1.5 (resp., rCi(β)dCi,Li,j = 1 ·1 = 1).
Obviously, in any case node Ci prefers to replicate β.

Claim 3. Node S holds object α if and only if all clause nodes C1, . . . , Ck hold object β.

Proof. First, assume that C1, . . . , Ck are holding β. These nodes are the most S-preferred nodes holding β.
Also by Claim 2, the most S-preferred node holding α is at least one of Li,j nodes, where i ∈ [1, k], j ∈
{1, 2, 3}. The cost for S holding α and accessing β from a node Ci, i ∈ [1, k], is rS(β)dS,Ci = 1 · 2 = 2;
while the cost for holding β and accessing α from Li,j , where i ∈ [1, k], j ∈ {1, 2, 3}, is rS(α)dS,Li,j =
0.85 · 3 = 2.55. Obviously, node S prefers to replicate α.

Now assume that at least one of C1, . . . , Ck holds α. These nodes are the most S-preferred node holding
α. Also the most S-preferred node holding β, due to Claim 2 is one of Li,j , where i ∈ [1, k], j ∈ {1, 2, 3}.
The cost for holding β and accessing α from a node Ci, is rS(α)dS,Ci = 0.85 · 2 =; while the cost for
holding α and accessing β from a node Lij , where j ∈ {1, 2, 3}, is rS(β)dS,Li,j = 1 · 3 = 3. Obviously, in
any case node S prefers to replicate β.

Theorem 9. The ICC instance I1 has an equilibrium if and only if node S holds object α.

Proof. First, assume that S is holding α. By Claim 3 nodes C1, . . . , Ck hold object β, and by Claim 2 at
least one of nodes Li,j , for j ∈ {1, 2, 3} for each node Ci, i ∈ [1, k], holds object α, and the corresponding
L̄i,j is holding object β. We claim that the placement where A holds β, B holds β, and C holds α, is a pure
Nash equilibrium. We prove this by showing that none of these nodes wants to deviate from their strategy.

Node A does not want to deviate since its cost for holding object β and accessing α from the most A-
preferred node S, is rA(α)dA,S = 0.7 ·1 = 0.7; while the cost for holding object α and accessing β from the
most A-preferred node B, is rA(α)dA,B = 1·1 = 1. Node B does not want to deviate since its cost for hold-
ing object β and accessing α from the most B-preferred node C, is rB(α)dB,C = 1 · 1 = 1; while the cost
for holding object α and accessing β from the most B-preferred node A, is rB(β)dB,A = 1 ·2 = 2. Node C
does not want to deviate since its cost for holding object α and accessing β from the most C-preferred node
A, is rC(β)dC,A = 1 ·1 = 1; while the cost for holding object β and accessing α from the most C-preferred
node S, is rC(α)dC,S = 1 ·2 = 2. Also note that none of S, C1, . . . , Ck, Lij , L̄ij for i ∈ [1, k], j ∈ {1, 2, 3}
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is getting affected of the objects been holded by the gadget nodes.

Now assume that node S holds object β. We are going to prove that for every possible placement over
nodes A, B, and C, at least one node wants to deviate from its strategy. Consider the following cases:

• Nodes A, B, and C hold object α: Node B (resp., C) wants to deviate, since the cost for holding object
α and accessing β from the most B-preferred (resp., C-preferred) node S, is rB(β)dB,S = 1 · 3 = 3
(resp., rC(β)dC,S = 1 · 2 = 2); while the cost for holding object β and accessing α from the most
B-preferred node A, is rB(β)dB,A = 1 · 2 = 2 (resp., rC(β)dC,A = 1 · 1 = 1).

• Two nodes hold object α and the third holds β: In the case where A and B hold α, A wants
to deviate since the cost while holding α and accessing β from the most A-preferred node S is
rA(β)dA,S = 1·1 = 1; while the cost for holding β and accessing α from the most A-preferred node B
is rA(α)dA,B = 0.7·1 = 0.7. In the case where A and C hold α, then C wants to deviate since the cost
while holding α and accessing β from the most C-preferred node B is rC(β)dC,B = 1 · 2 = 2; while
the cost for holding β and accessing α from the most C-preferred node A is rC(α)dC,A = 1 · 1 = 1.
In the case where B and C hold α, B wants to deviate since the cost while holding α and accessing
β from the most B-preferred node A is rB(β)dB,A = 1 · 2 = 2; while the cost for holding β and
accessing α from the most B-preferred node C is rB(α)dB,C = 1 · 1 = 1.

• One node holds α: If A (resp., B, or C) holds α, B (resp., C, A) wants to deviate since the cost while
holding β and accessing α from the most B-preferred (resp., C-preferred, or A-preferred) node A
(resp., B, or C) is rB(α)dB,A = 1 · 2 = 2 (resp., rC(α)dC,B = 1 · 2 = 2, or rA(α)dA,C = 0.7 · 2 =
1.4); while the cost for holding α and accessing β from the most B-preferred (resp., C-preferred, or
A-preferred) node C (resp., A, or B), is rB(β)dB,C = 1 · 1 = 1 (resp., rC(β)dC,A = 1 · 1 = 1, or
rA(β)dA,B = 1 · 1 = 1).

• Nodes A, B, and C hold β: All of them want to deviate. Node A wants to deviate since the cost while
holding β and accessing α from the most A-preferred node Ci, for some i ∈ [1, k], is rA(β)dA,Ci = 1·
3 = 3; while the cost for holding β and accessing α from the most A-preferred node S is rA(α)dA,S =
0.7 · 1 = 0.7. Similar proof holds for nodes B and C.

Obviously the system does not have a pure Nash equilibrium, which completes the proof.

Theorem 10. The ICC instance I2 has an equilibrium if and only if node S holds object α.

Proof. First, assume that S is holding α. By Claim 3 nodes C1, . . . , Ck hold object β, and by Claim 2 at
least one of nodes Li,j , for j ∈ {1, 2, 3} for each node Ci, i ∈ [1, k], holds object α, and the corresponding
L̄i,j is holding object β. We claim that the placement where A holds γ, node B holds β, and C holds
γ is a pure Nash equilibrium. We prove this by showing that none of these nodes wants to deviate from
their strategy. Node A doesn’t want to deviate since the cost for holding object γ and accessing object α
from node S is rA(α)dA,S = 3; while the cost for holding α and accessing γ from node C increases to
rA(γ)dA,C = 4. Node B doesn’t want to deviate since the cost for holding object β and accessing object γ
from node C is rB(γ)dB,C = 0.9837 ·3.05 = 3.000285; while the cost for holding object β and accessing γ
from the server increases to rB(γ)dsrv = 5. Node C doesn’t want to deviate since the cost for holding object
γ and accessing β from node B is rC(β)dC,B = 3.05; while the cost for holding object β and accessing γ
from node A increases to rC(β)dC,A = 3.2.

Now assume that node S holds object β. We are going to prove that for every possible placement over
nodes A, B, and C, at least one node wants to deviate from its strategy. Consider the following cases:
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• Node A holds α, node B holds γ, and node C holds β: Node A wants to deviate since the cost while
it is holding object α and accessing object γ from node B is (rA(γ)dA,B = 6.2); while the cost for
holding object γ and accessing α from the server decreases to rA(α)dsrv = 5.

• Node A holds γ, node B holds γ, and node C holds β: Node B wants to deviate since the cost while
it is holding object γ and accessing object β from node C is (rB(β)dB,C = 3.05); while the cost for
holding object β and accessing γ from node A decreases to rB(γ)dB,A = 3.04947.

• Node A holds γ, node B holds β, and node C holds β: Node C wants to deviate since the cost while
it is holding object β and accessing object γ from node A is (rC(γ)dC,A = 3.2); while the cost for
holding object γ and accessing β from node B decreases to rC(β)dC,B = 3.05.

• Node A holds γ, node B holds β, and node C holds γ: Node A wants to deviate since the cost while
it is holding object γ and accessing object α from the server is (rA(α)dsrv = 5); while the cost for
holding object α and accessing γ from node C decreases to rA(γ)dA,C = 4.

• Node A holds α, node B holds β, and node C holds γ: Node B wants to deviate since the cost while
it is holding object β and accessing object γ from node C is (rB(γ)dB,C = 3.000285); while the cost
for holding object γ and accessing β from node S decreases to rB(β)dB,S = 3.

• Node A holds α, node B holds γ, and node C holds γ: Node C wants to deviate since the cost while
it is holding object γ and accessing object β from the server is (rC(β)dsrv = 5); while the cost for
holding object β and accessing γ from B decreases to rC(γ)dB,C = 4.88.

• Node A holds α, node B holds β, and node C holds β: Node C wants to deviate since the cost while
it is holding object β and accessing object γ from the server is (rC(γ)dsrv = 4.9185); while the cost
for holding object γ and accessing β from node B decreases to rB(β)dC,B = 3.05.

• Node A holds γ, node B holds γ, and node C holds γ: Node A wants to deviate since the cost while
it is holding object γ and accessing object α from the server is (rA(α)dsrv = 5); while the cost for
holding object α and accessing γ from C decreases to rA(γ)dA,C = 4.

The remaining placements where A holds α, B holds α, and C holds α, obviously are not stable since none
of the nodes are interested in these objects. Since there does not exist a stable placement, an equilibrium
does not exist.

Binary object preferences over three objects.. For the binary object preferences, we introduce two extra
nodes K and L. We set dCi,K , for i ∈ [1, k], between clause nodes and K to be 1.4, dS,L to be 2.1, and
dA,S , dA,B , dB,C , dC,A to be 1. The server node, which is at access cost dsrv = 10 from all nodes in V ,
stores a fixed copy of three objects α, β, and γ. Each node i has a set Si of objects in which it is equally
interested. For nodes Xi, X̄i, for i ∈ [1, n], we set S(Xi) = {α, β} and SX̄i

= {α, β}. For nodes Ci, for
i ∈ [1, k], we set SCi = {α, γ}. For node K we set SK = {γ}; while for node L we set SL = {β}. For
node S we set SS = {α, β}. For nodes A, B, and C we set SA, SB , and SC correspondingly to be the set
{α, γ}. For our utility function Us(i), equally interested means weight 1 for all objects in Si, and 0 for the
remaining. We refer to this instance as I3.

Claim 1 holds as it is for the binary object preferences non-metric case.

Claim 4. Clause node Ci holds object α if and only if its variable nodes Li,j , for j ∈ {1, 2, 3} hold object
β.
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Proof. First, assume that Li,j , for j ∈ {1, 2, 3} hold β. By Claim 1 we know that nodes L̄i,j , for j ∈
{1, 2, 3} hold α, and they are the most Ci-preferred nodes holding α; while the most Ci-preferred node
holding γ is node K. Node’s Ci cost for holding α and accessing γ from K is dCi,K = 1.4; while the cost
for holding γ and accessing α from L̄i,j , for j ∈ {1, 2, 3}, is dCi,L̄ij

= 1.5. Obviously, node Ci prefers to
replicate α.

Now assume that at least one of the nodes L̄i,j , for j ∈ {1, 2, 3} holds α. These nodes are the most
Ci-preferred nodes holding α; while again the most Ci-preferred node holding γ is node K. Node’s Ci cost
for holding γ and accessing α from Li,j , for j ∈ {1, 2, 3}, is dCi,Li,j = 1; while the cost for holding α and
accessing γ from node K is dCi,K = 1.4. Obviously, node Ci prefers to replicate γ.

Claim 5. Node S holds object α if and only if all clause nodes C1, . . . , Ck hold object γ.

Proof. First, assume that C1, . . . , Ck are holding γ. By Claim 4, the most S-preferred node holding α is at
least one of Li,j nodes, where i ∈ [1, k], j ∈ {1, 2, 3}; while the most S-preferred nodes holding β is node
L. The cost for S holding α and accessing β from node L, is dS,L = 2.1; while the cost for holding β and
accessing α from Li,j , where i ∈ [1, k], j ∈ {1, 2, 3}, is dS,Li,j = 3. Obviously, node S prefers to replicate
α.

Now assume that at least one of C1, . . . , Ck holds α. These nodes are the most S-preferred node holding
α; while again the most S-preferred node holding β is L. The cost for holding β and accessing α from a
node Ci, is dS,Ci = 2; while the cost for holding α and accessing β from a node L is dS,L = 2.1. Obviously,
node S prefers to replicate β.

Theorem 11. There exists an equilibrium for the ICC instance I3 if and only if node S holds object α.

Proof. First, assume that S is holding α. By Claim 5 nodes C1, . . . , Ck hold object γ, and by Claim 4 at
least one of nodes Li,j , for j ∈ {1, 2, 3} for each node Ci, i ∈ [1, k], holds object α, and the corresponding
L̄i,j is holding object β. We claim that the placement where A holds γ, B holds γ, and C holds α, is a pure
Nash equilibrium. We prove this by showing that none of these nodes wants to deviate from their strategy.

Node A does not want to deviate since its cost for holding object γ and accessing α from the most
A-preferred node S, is dA,S = 1; while the cost for holding object α and accessing γ from the most A-
preferred node B, is still dA,B = 1. Node B does not want to deviate since its cost for holding object γ
and accessing α from the most B-preferred node C, is dB,C = 1; while the cost for holding object α and
accessing γ from the most B-preferred node A, is still dB,A = 1. Node C does not want to deviate since its
cost for holding object α and accessing γ from the most C-preferred node A, is dC,A = 1; while the cost for
holding object γ and accessing α from the most C-preferred node S, is still dC,S = 1. Also note that none
of S, C1, . . . , Ck, Lij , L̄ij for i ∈ [1, k], j ∈ {1, 2, 3} is getting affected of the objects been holded by the
gadget nodes.

Now assume that node S holds object β. We are going to prove that for every possible placement over
nodes A, B, and C, at least one node wants to deviate from its strategy. Consider the following cases:

• Nodes A, B, and C hold object α: Node B (resp., C) wants to deviate, since the cost for holding
object α and accessing γ from the most B-preferred (resp., C-preferred) node Ci, for some i ∈ [1, k]
or from node K, is dB,Ci = 5 or dB,K = 6.4 (resp., dC,Ci = 4 or dC,K = 5.4); while the cost for
holding object γ and accessing α from the most B-preferred node A, is dB,A = 2 (resp., dC,A = 1).

• Two nodes hold object α and the third holds γ: In the case where A and B hold α, A wants to deviate
since the cost while holding α and accessing γ from the most A-preferred node C is dA,C = 2; while
the cost for holding γ and accessing α from the most A-preferred node B is dA,B = 1. The other
cases are symmetric.
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• One node holds α: If A holds α, B wants to deviate since the cost while holding γ and accessing α
from the most B-preferred node A is dB,A = 2; while the cost for holding α and accessing γ from
the most B-preferred node C, is dB,C = 1. The other cases are symmetric.

• Nodes A, B, and C hold γ: All of them want to deviate. Node A wants to deviate since the cost while
holding γ and accessing α from the most A-preferred node Ci, for some i ∈ [1, k], is dA,Ci = 3;
while the cost for holding α and accessing γ from the most A-preferred node B is dA,B = 1. The
other cases are symmetric.

Obviously the system does not have a pure Nash equilibrium, which completes the proof.

We now show that φ is satisfiable if and only if the above ICC games (both metric and non-metric cases)
(resp., for the binary object preferences, non-metric case) has a pure Nash equilibrium. Suppose that φ is
satisfiable and consider a satisfying assignment for φ. If the assignment of a variable xi is True, then we
replicate object α in cache of variable node Xi; otherwise, we replicate object β. By Claim 1 we know that
a variable node Xi holds object α (resp., β) if and only if node X̄i holds object β (resp., α). In this way we
keep the consistency between truth assignment of a variable and its negation. By Claim 2 (resp., Claim 4)
we know that a clause node Ci, will replicate object β (resp., γ) if and only if at least one of its variable
nodes, holds object α. From above, any clause node Ci will hold object β (resp., γ) only if at least one of
clause ci literals is True. By Claim 3 (resp., Claim 5), we know that node S, will replicate object α if and
only if all clause nodes C1, . . . , Ck are holding object β (resp., γ). Thus, node S replicates object α only
if all clauses c1, . . . , ck are True. By Theorems 9 and 10 (resp., 11), we know that there exists a pure Nash
Equilibrium if and only if object β is stored to node S; thus, there exists a pure Nash Equilibrium if and
only if all clauses are True. This gives our proof.

C Binary object preferences over two objects

We prove the polynomial-time equivalence of 2BIN and EVEN-CYCLE by a series of reductions. We first
show the equivalence between 2BIN and 2DIR-BIN, which is the sub-class of 2BIN instances in which
the node preferences are specified by an unweighted directed graph (henceforth digraph); in a 2DIR-BIN
instance, we are given a digraph, and the preference of a node for the other nodes increases with decreasing
distance in the graph.

Lemma 12. 2BIN is polynomial-time equivalent to 2DIR-BIN.

Proof. Given a 2BIN instance I with node set V , two objects, node preference relations {≥i: i ∈ V },
and interest sets {Si : i ∈ V }, we construct a 2DIR-BIN instance I ′ with the same node set, objects, and
interest sets, but with the node preference relations specified by an unweighted digraph G. Our construction
will ensure that any equilibrium in I is an equilibrium in I ′ and vice-versa. For distinct nodes i and j, we
have an edge from i to j if and only if j is a most i-preferred node in V \ {i}. We now argue that I has
an equilibrium if and only if I ′ has an equilibrium. A placement for I is an equilibrium if and only if the
following holds for each node i: (a) if |Si| = 1, then i holds the lone object in Si; (b) if |Si| = 2, then the
object not held by i is at an i-most preferred node. Similarly, any equilibrium placement for I ′ satisfies the
following condition for each i: (a) if |Si| = 1, then i holds the lone object in Si; (b) if |Si| = 2, then the
object not held by i is at a neighbor of i. By our construction of the instances, equilibria of I are equilibria
of I ′ and vice-versa.

We next define EXACT-2DIR-BIN, which is the subclass of 2DIR-BIN games where each node is
interested in both objects; thus, an EXACT-2DIR-BIN instance is completely specified by a digraph G.
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We say that a node i is stable in a given placement P if Pi is a best response to P−i. We say that an
EXACT-2DIR-BIN instance G is stable (resp., 1-critical) if there exists a placement in which all nodes
(resp., all nodes except at most one) are stable. Since each node has unit cache capacity, each placement is a
2-coloring of the nodes: think of a node as colored by the object it holds in its cache. Given a placement, an
arc is said to be bichromatic if its head and tail have different colors. Note that for any EXACT-2DIR-BIN
instance, a node is stable in a placement iff it has a bichromatic outgoing arc.

Lemma 13. 2DIR-BIN and EXACT-2DIR-BIN are polynomial-time equivalent on general digraphs.

Proof. Since EXACT-2DIR-BIN games are a special subclass of 2DIR-BIN games, we only need to show
that 2DIR-BIN games reduce to EXACT-2DIR-BIN games. Given an instance of a 2DIR-BIN game,
we need to handle the nodes that are interested in at most one object. First, note that we can remove the
outgoing arcs from all such nodes. Let V0 consist of the nodes with no objects of interest. For each node
u in V0 we add a new node u0 to V0 along with arcs (u, u0) and (u0, u). Let red and blue denote the two
objects. Let Vr and Vb denote the set of nodes interested in red and blue, respectively. Without loss of
generality, let |Vr| ≥ |Vb|. Add |Vr| − |Vb| additional nodes to the set Vb (so that |Vr| = |Vb|) and connect
all the nodes in Vr

⋃
Vb with a directed cycle that alternates strictly between Vr nodes and Vb nodes. The

rest of the network is kept the same and all the nodes are set to have interest in both objects. Now, if the
original instance is stable then we can stabilize the new instance by having each node in Vr (resp., Vb) cache
the red (resp., blue) object, the nodes in V0 cache any object (so long as an original node u and its associated
node u0 store complementary objects) and the other nodes cache the same object as in the placement that
made the original instance stable. And in the other direction, if the transformed instance is stable then in an
equilibrium placement, the nodes in Vr must each store an object of one color while each node in Vb stores
the object of the other color. By renaming the colors, if necessary, we get a stable coloring (placement) for
the original instance.

For completeness, we next present some standard graph-theoretic terminology that we will use in our
proof. A digraph is said to be weakly connected if it is possible to get from a node to any other by following
arcs without paying heed to the direction of the arcs. A digraph is said to be strongly connected if it is
possible to get from a node to any other by a directed path. We will use the following well-known structure
result about digraphs: a general digraph that is weakly connected is a directed acyclic graph on the unique
set of maximal strongly connected (node-disjoint) components. We will also use the following strengthening
of the folklore ear-decomposition of strongly connected digraphs [23]:

Lemma 14. An ear-decomposition can be obtained starting with any cycle of a strongly connected digraph.

Proof. The proof is by contradiction. Suppose not, then consider a subgraph with a maximal ear-decomposition
obtainable from the cycle in question. If it is not the entire digraph then consider any arc leaving the sub-
graph. Note that the digraph is strongly connected and hence such an arc must exist. Further, note that every
arc in a digraph is contained in a cycle since there is a directed path from the head of the arc to the tail.
Starting from the arc follow this cycle until it intersects the subgraph again, as it must because it ends at the
tail which lies in the subgraph. This forms an ear that contradicts the maximality of the decomposition.

Lemma 15. EVEN-CYCLE on strongly connected digraphs and EVEN-CYCLE on general digraphs
are polynomial-time equivalent.

Proof. Since strongly connected digraphs are a special subclass of general digraphs it suffices to show that
EVEN-CYCLE on general digraphs can be reduced to EVEN-CYCLE on strongly connected digraphs.
Remember that a general digraph has a unique set of maximal strongly connected components that are dis-
joint and computable in polynomial-time. Further any cycle, including even cycles, must lie entirely within
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a strongly connected component. Thus a digraph possesses an even cycle iff one of its strongly connected
components does. Hence it follows that EVEN-CYCLE on general digraphs reduces to EVEN-CYCLE
on strongly connected digraphs.

Lemma 16. EVEN-CYCLE and EXACT-2DIR-BIN games are polynomial-time equivalent on strongly
connected digraphs.

Proof. To show the polynomial-time equivalence, we show that a strongly connected digraph is stable iff
it has an even cycle. One direction is easy. If the digraph is stable then consider the placement in which
every node is stable. So every node has a bichromatic outgoing arc; by starting at any node and following
outgoing bichromatic edges we will eventually loop back on ourselves. The loop so obtained is the required
even cycle; it is even because it is composed of bichromatic arcs. In the other direction, if there is an
even cycle then we take the ear-decomposition starting with that cycle (Lemma 14), stabilize that cycle
(by making each arc bichromatic since it is of even cardinality) and then stabilize each node in each ear by
working backwards along the ear.

Lemma 17. Any EXACT-2DIR-BIN game on a strongly connected digraph is 1-critical.

Proof. Consider an ear-decomposition of the strongly connected digraph starting with a cycle. Observe that
all but at most one node of the cycle can be stabilized by arbitrarily assigning one color to a node, and then
assigning alternate colors to the nodes as we progress along the cycle. Every node in the cycle, other than
possibly the initial node, is stable. The rest of the digraph can be stabilized ear by ear, stabilizing each
ear by working backwards from the point of attachment. Hence, all but one node of the digraph can be
stabilized.

Lemma 18. EXACT-2DIR-BIN on general digraphs is polynomial-time equivalent to EXACT-2DIR-BIN
on strongly connected digraphs.

Proof. Since strongly connected digraphs are a subclass of general digraphs we need only show that the
problem EXACT-2DIR-BIN on general digraphs reduces to EXACT-2DIR-BIN on strongly connected
digraphs. A general digraph is stable iff all of its weakly connected components are. A weakly connected
component is a directed acyclic graph (dag) on the strongly connected components. It is clear that a weakly
connected component cannot be stabilized if any one of the strongly connected components that is a minimal
element of the directed acyclic graph cannot be stabilized. Interestingly, the converse is also true. If all of
the strongly connected components that are minimal elements of the dag can be stabilized then the entire
weakly connected component can be stabilized because each of the other strongly connected components
has at least one outgoing arc which is used to stabilize its tail while the rest of the strongly connected
component can be stabilized because strongly connected components are 1-critical by Lemma 17. We can
determine such a stabel placement by processing the strongly connected components in topologically sorted
order (according to the dag) starting from the minimal elements. Thus a digraph is stable iff every strongly
connected component that is a minimal element is stable. Hence, EXACT-2DIR-BIN on general digraphs
is reducible in polynomial-time to strongly connected digraphs.

D Proof for symmetric networks with two objects

Suppose we are given a symmetric network with access cost function d. Also letD be the set {0, `1, `2, . . . , `r}
of all access costs between nodes in the system in increasing order; that is, `1 = mini,j dij and `r =
maxi,j dij and `i < `i+1 for all 1 ≤ i < r. In order to present our algorithm, we use the notion of the
auxiliary server introduced in Section 4.1.
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Auxiliary servers. For an object α, an auxiliary α-server is a new node that will store α in every equilibrium;
an auxiliary α-server prefers storing α over any other object. We denote by srvα(`) the auxiliary α-server
which is at access cost ` from every node in V .

The algorithm.
Initialization. Assuming that there are two objects α and β in the system, we initially set up an auxiliary
α-server srvα(0) and β-server srvβ(0) at access cost 0 from each node in V . We let nodes replicate their
most preferred object and access the other without any access cost from the corresponding auxiliary server.
This placement is obviously an equilibrium.

Step t of algorithm. Fix an equilibrium P for the node set V ∪ {srvα(`t)} ∪ {srvβ(`t)}. We describe one
step of the algorithm which computes a new set of auxiliary servers srvα(`t+1) and srvβ(`t+1) and a new
placement P ′ such that P ′ is an equilibrium for the node set V ∪ {srvα(`t+1)} ∪ {srvβ(`t+1)}. We first
remove the auxiliary α-server srvα(`t) from the system and instead we add srvα(`t+1). If there do not exist
nodes that want to deviate we are done. Otherwise, assume that there exists a node i that wants to deviate
from its strategy. Since the most i-preferred node holding β in V ∪ {srvα(`t)} ∪ {srvβ(`t)} remains the
same in V ∪ srvα(`t+1)∪ srvβ(`t), i is not holding object α. Thus the only nodes that may want to deviate
are those that are holding object β. We argue that if we let i to deviate from β ∈ Pi to α ∈ P ′

i , there is no
node j ∈ V \ {i} that gets affected by i’s deviation. Consider the following two cases:

• If a node j has access cost at most `t from i, then β ∈ Pj . Otherwise, if α ∈ Pj , srvα(`t) whould not
be the most i-preferred node holding α and thus i would not be affected by any change of auxiliary
α-server. Thus there does not exist any node j ∈ V \ {i} with access cost at most `t from i, such that
α ∈ Pj , and as we showed above α ∈ P ′

j .

• If a node j has access cost at least `t+1 from i, then Pj = P ′
j . Because of the auxiliary α-server

srvα(`t+1) and the auxiliary β-server srvβ(`t), i whould never be the j-most preferred node in P ′.

We then remove the auxiliary β-server srvβ(`t) from the system and instead we add srvβ(`t+1). Using
a similar argument as above, we obtain a new equilibrium at the end of this step.

Theorem 19. For symmetric networks with two objects, an equilibrium can be found in polynomial time.

Proof. An initial placement P , where we have the set of auxiliary servers srvα(0) and srvβ(0) in the system,
is obviously an equilibrium. It is immediate from our argument above that at termination the algorithm
returns a valid equilibrium.

The size of the set D is at most
(
n
2

)
which is at most n2. In each step t at most n nodes may want to

deviate from their strategy, since we showed above that if a node deviates once in a step, it will not deviate
again during the same step . Thus, the total number of deviations in the algorithm is at most n3.

E Proofs for FCC games

Theorem 20. Every FCC instance has a pure Nash equilibrium.

Proof. By [18], a game has a pure Nash equilibrium if the strategy space of each player is a compact, non-
empty, convex space, and the payoff function of each player is continuous on the strategy space of all players
and quasi-concave in the strategy space of the player. In an FCC instance, the strategy space of each player
i is simply the set of all its fractional placements: that is, the set of functions f : O → [0, 1] subject to
condition that

∑
α∈O f(α) ≤ ci, where ci is the cache size of the node (player). The strategy set thus is
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clearly convex, non-empty, and compact. Furthermore, as defined above, the payoff for any player i under
fractional placement P̃ is simply the solution to the following linear program:

max−
∑
α∈O

ri(α)(
∑
j∈V

xij(α)dij)∑
j∈V

xij(α) = 1 for all i ∈ V, α ∈ O

xij(α) ≤ P̃j(α) for all i, j ∈ V, α ∈ O

xij(α) ≥ 0 for all i, j ∈ V, α ∈ O

It is easy to see that the payoff function is both continuous in the placements of all players, and quasi-concave
in the strategy space of player i, thus completing the proof of the theorem.

Theorem 21. Finding an equilibrium in an FCC game is in PPAD.

Proof. Our proof is by a reduction from FSPP (Fractional Stable Paths Problem), which is defined as
follows [11]. Let G be a graph with a distinguished destination node d. Each node v 6= d has a list
π(v) of simple paths from v to d and a preference relation ≥v among the paths in π(v). For a path S, we
also define π(v, S) to be the set of paths in π(v) that have S as a suffix. A proper suffix S of P is a suffix
of P such that S 6= P and S 6= ∅. A feasible fractional paths solution is a set w = {wv : v 6= d} of
assignments wv : π(v) → [0, 1] satisfying: (1) Unity condition: for each node v,

∑
P∈π(v) wv(P ) ≤ 1, and

(2) Tree condition: for each node v, and each path S with start node u,
∑

P∈π(v,S) wv(P ) ≤ wu(S).
In other words, a feasible solution is one in which each node chooses at most 1 unit of flow to d such

that no suffix is filled by more than the amount of flow placed on that suffix by its starting node. A fea-
sible solution w is stable if for any node v and path Q starting at v, one of the following holds: (S1)∑

P∈π(v) wv(P ) = 1, and for each P in π(v) with wv(P ) > 0, P ≥v Q; or (S2) There exists a proper suffix
S of Q such that

∑
P∈π(v,S) wv(P ) = wu(S), where u is the start node of S, and for each P ∈ π(v, S) with

wv(P ) > 0, P ≥v Q.
Given a fractional caching game G with node set V , object set O, node preference relations≥i for i ∈ V ,

and utility preference relations �i for i ∈ V , we construct an instance I of FSPP as follows. For nodes
i, j ∈ V and object α ∈ O, we introduce the following FSPP vertices.

• hold(i, α) representing the amount of α that node i will store in its cache.

• serve(i, j, α) representing the amount of α that node j will serve for i given a placement for V \ {i}.

• serve’(i, j, α), an auxiliary vertex needed for serve(i, j, α).

• serve(i, α), representing the amount of α that other nodes will serve for i given a placement for V \{i}.

• hold(i), representing the best response of i give the placement of other nodes.

• hold’(i, α), an auxiliary vertex needed for hold(i, α).

We now present the path sets and preferences for each vertex of the FSPP instance.

• serve(i, α): the path set includes all paths of the form 〈serve(i, α), hold(j, α), d〉, and serve(i, α)
prefers 〈serve(i, α), hold(j, α), d〉 over 〈serve(i, α), hold(k, α), d〉 if j ≥i k.

• serve’(i, j, α): the path set includes all paths of the form 〈serve’(i, j, α), serve(i, α), hold(j, α), d〉
and the direct path 〈serve’(i, j, α), d〉. For the preference order, serve’(i, j, α) prefers all paths
〈serve’(i, j, α), serve(i, α), hold(j, α), d〉 equally, and all of them over the direct path.
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• serve(i, j, α): the path set includes the path 〈serve’(i, j, α), d〉 and the direct path 〈serve(i, j, α), d〉
with a higher preference for the former path.

• hold(i): the path set includes paths of the form 〈hold(i), serve(i, j, α), d〉, and hold(i) prefers the path
〈hold(i), serve(i, j, α), d〉 over 〈hold(i), serve(i, k, β), d〉 if (j, α) wi (k, β).

• hold’(i, α): the path set includes paths of the form 〈hold’(i, α), hold(i), serve(i, j, α), d〉 all of which
are preferred equally, and the direct path 〈hold’(i, α), d〉 which is preferred the least.

• hold(i, α): the path set includes two paths 〈hold’(i, α), d〉 and the direct path with a higher preference
for the former path.

We now show that the FCC instance has an equilibrium if and only if the FSPP instance has an equilib-
rium. Our proof is by giving a mapping f from global fractional placements in the FCC instance to feasible
solutions in the FSPP instance such that (a) if P̃ is an equilibrium for the FCC instance, then f(P̃ ) is an
equilibrium for the FSPP instance, and (b) if w is an equilibrium for the FSPP instance, then f−1(w) is an
equilibrium for the FCC instance.

Let P̃ denote any fractional placement of the FCC instance. We now define the solution f(P̃ ) of the
FSPP instance. In f(P̃ ) vertex hold(i, α) plays P̃i(α) on the direct path and 1− P̃i(α) on the other path in
its path set, for every i in V and α in O. The remaining vertices play their best responses, considered in the
following order. First, consider vertices of the form serve(i, α). In the best response, the amount played by
serve(i, α) on the path 〈serve(i, α), hold(j, α), d〉, equals µ

i, eP ,α
(j); recall that µ

i, eP ,α
(j) is is the assignment

that is lexicographically minimal under the node preference relation≥i subject to the condition that µ
i, eP ,α

≤
P̃k(α) for each k and

∑
k µ

i, eP ,α
(k) = 1. We next consider the vertices of the form serve’(i, j, α). In its best

response, vertex serve’(i, j, α) plays µ
i, eP ,α

(j) on the path 〈serve’(i, j, α), serve(i, α), hold(j, α), d〉. Next,
in its best response, vertex serve(i, j, α) plays µ

i, eP ,α
(j) on its direct path and 1−µ

i, eP ,α
(j) on its remaining

path. We now consider the best response of vertex hold(i); it distributes its unit among paths of the form
〈hold(i), serve(i, j, α), d〉 (for all j in V \ {i} and α in O) lexicographically maximally under the total
preorder wi over node-object pairs. That is, hold(i) plays b

i, eP (α, j) on the path 〈hold(i), serve(i, j, α), d〉.
We next consider the best response of the vertex hold’(i, α); it plays 1−

∑
j b

i, eP (α, j) on its direct path and
b
i, eP (α, j) on the path 〈hold’(i, α), hold(i), serve(i, j, α), d〉. This completes the definition of the solution

f(P̃ ).
We now argue that if P̃ is an equilibrium so is f(P̃ ). By construction, every vertex other than of the

form hold(i, α) play their best responses in f(P̃ ). We next show that i plays a best response in P̃ if and
only if the vertices hold(i, α) play their best response in f(P̃ ). The best response of hold(i, α) is to play
1 −

∑
j b

i, eP (α, j) on the path 〈hold(i, α), hold’(i, α), d〉 and the
∑

j b
i, eP (α, j) on its direct path. The best

response of i in P̃ is to set P̃i(α) to
∑

j b
i, eP (α, j). Thus if P̃ is an equilibrium, then so is f(P̃ ). Furthermore,

if w is an equilibrium, by definition of f , P̃ = f−1(w) is well-defined. Since the best responses of i and
the vertices hold(i, α) are consistent, P̃ is also an equilibrium. This completes the reduction from FCC to
FSPP, placing FCC in PPAD.

Lemma 22 is immediate.

Lemma 22. The following statements hold for any placement P for Ĝ.

• For k = i · n + j, 1 ≤ j ≤ n, Pk is a best response to P−k if and only if Pk(αj) = 1.

• For k = n2 + n + i, 1 ≤ i ≤ n, Pk is a best response to P−k if and only if Pk(αn+i) = 1.
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• For k = n2 + n + i, Pk is a best response to P−k if and only if Pk(αi) = 1− Pi(αi) and Pk(αn+i =
Pi(αi).

Lemma 23. Let P be a placement for Ĝ in which every node not in V1 plays their best response. Then, the
best response of a node i in V1 is the lexicographically maximum (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where
j1 ≥i j2 ≥i · · · ≥i jn, subject to the constraint that Pi(αj) ≤ Pj(αj) for j 6= i.

Proof. Fix a node i in V1. By Lemma 22, node i ·n+ j holds object j, for 1 ≤ j ≤ n; each of these nodes is
at distance at least 5 and at most 6 away from i. By Lemma 22, for every node k = n2 + n + j, 1 ≤ j ≤ n,
Pk(αj) = 1− Pj(αj) and Pk(αn+j) = Pj(αj).

We now consider the best response of node i. We first note that for any j ∈ {1, . . . , n} \ {i} such that
i ≥i j, Pi(αj) = 0 since the nearest full copy of αj is nearer than the nearest node holding any fraction
of object αi. Let S denote the set of j such that j ≥i i. For any j in S \ {i}, Pi(αj) ≤ Pj(αj) since
node n2 + n + j at distance 5 holds 1 − Pj(αj) fraction of αj , the nearest node holding any fraction of
αi is at distance 4, and 4ri(αi) > 5ri(αj). Furthermore, for any j, k in S if j >i k, then the farthest
Pj(αj) fraction of αj is farther than the farthest Pk(αk) fraction of αk, implying that in the best response, if
Pi(αj) < Pj(αj) then Pi(αk) = 0. Thus, the best response of i is the unique lexicographically maximum
solution (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where j1 ≥i j2 ≥i · · · ≥i jn, subject to the constraint that
Pi(αj) ≤ Pj(αj) for j 6= i.

Proof of Lemma 7: Consider an equilibrium placement P for Ĝ Clearly, every node plays their best
response. We now prove that ω(P ) is an equilibrium for G. Fix a node i in V1. By Lemma 23, the best
response of i is the unique lexicographically maximum solution (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where
j1 ≥i j2 ≥i · · · ≥i jn, subject to the constraint that Pi(αj) ≤ Pj(αj) for j 6= i. Since this applies to every
node i, it is immediate from the definitions of ω(P ) and preference games that if P is an equilibrium for Ĝ
then ω(P ) is an equilibrium for G.

We now consider the reverse direction. Suppose we have a placement P in which every player not in
V1 plays their best response and ω(P ) is an equilibrium for the preference game G. By Lemma 23 and the
definition of ω(P ), the best response of i in G matches that in the caching game; hence every player in V1

also plays their best response in P , implying that P is an equilibrium for Ĝ.
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