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Abstract
From the publish-subscribe systems of the early days of the Internet to the recent emergence of
Web 3.0 and IoT (Internet of Things), new problems arise in the design of networks centered at
producers and consumers of constantly evolving information. In a typical problem, each terminal
is a source or sink of information and builds a physical network in the form of a tree or an overlay
network in the form of a star rooted at itself. Every pair of pub-sub terminals that need to be
coordinated (e.g. the source and sink of an important piece of control information) define an edge
in a bipartite demand graph; the solution must ensure that the corresponding networks rooted
at the endpoints of each demand edge overlap at some node. This simple overlap constraint, and
the requirement that each network is a tree or a star, leads to a variety of new questions on the
design of overlapping networks.

In this paper, for the general demand case of the problem, we show that a natural LP
formulation has a non-constant integrality gap; on the positive side, we present a logarithmic
approximation for the general demand case. When the demand graph is complete, however, we
design approximation algorithms with small constant performance ratios, irrespective of whether
the pub networks and sub networks are required to be trees or stars.
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1 Introduction

In large Internet publishing systems, a variety of sources of information constantly refresh
their content, while a set of subscribers continuously pull this updated information. The
recent widespread adoption of the “Internet of Things" and “Web 3.0" tools similarly involves
the constant real-time sharing of information between producers of relevant content and
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their corresponding consumers. Common examples include syndication systems as well as
distributed databases that contain information originating at sources with sinks interested in
the most up to date copies.

A natural approach to enable efficient information transfer in such systems is to build a
cost-effective collection of networks, one for each publisher and supplier: the publishers push
their updates to a set of locations via their respective networks, while the subscribers pull the
information, refreshed by multiple publishers, from these intermediate nodes using their own
networks. Note that each subscriber network needs only to overlap those publishers’ networks
that are of interest. Such interests are represented by an auxiliary bipartite demand graph
with publishers on one side, subscribers on the other, and edges (of interest) between the two.
Since the individual networks are being used for scatter/gather or push/pull operations (by
publishers/subscribers respectively) the two natural structures are trees and overlay stars.
Trees correspond to situations where the entity (e.g. a pusher, such as Facebook, or a puller,
such as the IRS) has sufficient network presence to employ multicast/reverse-multicast while
overlay stars correspond to point-to-point communication (e.g. a puller, such as a single user
who can’t share bandwidth, or has to pull directly from the source).

This basic framework gives rise to a class of problems we have christened DON or Design
of Overlapping Networks. Given their relevance to developments in the internet ecosystem,
these theoretical problems are significant from a practical perspective. Our central goal is
to settle the polynomial-time approximability for the most general DON problem, in which
we have an arbitrary demand graph, and arbitrary choice of tree or overlay star by each
publisher/subscriber. In this paper, we obtain a constant approximation for the special case
when all subscribers are interested in all publishers, and a logarithmic approximation for the
general case. The latter approximation is, in fact, with respect to the value of a natural linear
programming relaxation of the problem. In a contrasting result, we establish a non-constant
integrality gap for this linear program. However, the exact approximability status of the
general DON problem remains tantalizingly open.

1.1 Problem Definition
In the general DON problem we are given an undirected graph G = (V (G), E(G)) with non-
negative costs on the edges c : E → Z+, subsets of nodes P, S ⊆ V with P ∩S = ∅ (publishers
and subscribers respectively), the type of network to be installed for each publisher and
subscriber, Type : P ∪ S → {tree, star}, and an auxiliary demand graph D = (V (D), E(D))
where V (D) = P ∪ S and E(D) ⊆ P × S specifying (publisher, subscriber) pairs whose
networks are required to overlap (intersect). The goal is to build a collection of networks
where each node in P ∪ S builds a network rooted at it of the specified type, and for all
pairs (p, s) ∈ E(D) the network rooted at p and the network rooted at s share a node. The
objective is to minimize the sum of the costs of all the networks. We assume that the edge
costs form a metric: they are symmetric and satisfy the triangle inequality. Any instance of
the general DON problem can be split into four sub-instances; this subdivision only loses
a factor of 4 in the approximation algorithms. When the type requirement Type is tree
(resp., star) for all publishers and subscribers we refer to the problem as tree-tree DON (resp.
star-star DON). We also use tree-star DON to refer to the two problem variants where on
one side, say the publishers, we are required to build rooted trees while on the other, we are
required to build rooted stars. We use the prefixes general and complete to denote arbitrary
and complete demand graphs, respectively, as in general tree-tree DON or complete tree-star
DON, etc. Thus, the term general (complete) DON refers to the problem where the demand
graph is arbitrary (complete) and the type requirement may vary across terminals.
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We denote the installed network by N = (V,EN ); Pi denotes the network rooted at
publisher pi and Sj the network rooted at subscriber sj . Then, the multi-graph N =
(∪pi∈PPi) ∪ (∪sj∈SSj) is the (multi-set) union of all the installed networks. The cost of N is
the sum of the costs of all the constituent networks, with each edge counted as many times
as the number of individual networks they are present in. Recall that the installed networks
are operated autonomously by each publisher and subscriber, and thus the cost of an edge
needs to be multiplied by the number of such independent networks that build and utilize it
in their updates.

1.2 Results and Techniques
We present new algorithms and results for several DON problems.
1. We conjecture that a polynomial-time constant-factor approximation for general DON is

not achievable. We present in Section 2.1 an Ω(log logn) integrality gap for a natural LP
relaxation of the general tree-tree DON; note that this result also extends to the general
DON problem. This integrality gap proof, which is our strongest technical contribution,
is based on a novel reduction from a well-studied LP relaxation for the group Steiner
problem, applied to a hypercube demand graph instance of DON.
On the positive side, we present an O(logn)-approximation algorithm for the general
DON problem in Section 2.2. The main ingredient of our result is a constant-factor
approximation algorithm for tree-star DON on tree metrics, by a careful determinis-
tic rounding of an LP relaxation of the problem. The logarithmic approximation for
general DON follows by extending to general metrics using the methods of Bartal and
Fakcharoenphol et. al [7, 2] and combining with previously known results for the star-star
and tree-tree variants [3].

2. We next study the complete DON variants where the demand graph is complete. We
give constant-factor approximation algorithms for all three variants— tree-tree, star-star
and tree-star— which together yield a constant-factor approximation for complete DON.
Unlike our algorithm for general DON, all of our algorithms for the complete demand case
are combinatorial; they combine structural characterizations of near-optimal solutions
with interesting connections to access network design and facility location problems.

a. Our approximation factor for complete tree-tree DON in Section 3.1 is 4.74 via a
reduction to asymmetric VPN. The 4.74 comes from the result by Eisenbrand and
Grandoni [5] on asymmetric VPN.

b. Our approximation factor for complete star-star DON in Section 3.2 is 4α, where
α is the best approximation factor achieved for uncapacitated facility location; this
improves upon the result in [3].

c. For the complete tree-star-DON problem, we get a 4ρTS-approximation in Section 3.3
where ρTS is the best known approximation for the tree-star Access Network Design
problem, which is generalized by the Connected Facility Location or CFL problem
(thus ρTS ≤ ρCFL ≤ 4 [6]).

1.3 Related Work
Data Dissemination Networks. Our formulation of DON generalizes network data
dissemination problems first studied in [3]. Using our terminology, the relevant results
of [3] are O(logn)-approximation algorithms for general tree-tree DON and general star-
star DON, and a 14.57-approximation for the complete star-star DON. Our work improves
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the approximation factor for complete star-star DON to under 6 (since the current best
approximation for uncapacitated facility location is 1.488 [14]), and presents new results
for many other DON problems. The star-star DON problem is also closely related to the
minimum-cost 2-spanner problem studied in [4, 13]. In particular, a greedy algorithm
essentially along the same lines as an algorithm of [4] yields an O(logn)-approximation for
the star-star-DON problem even when the underlying distances do not form a metric.
Network Design. There has been considerable work in network design, which is concerned
with the design of network structures that satisfy some connectivity properties and optimize
some underlying cost structure [22]. Well-known problems in this area include the minimum
Steiner tree, group Steiner tree [8], and general survivable networks [12]. One key distinction
between many of these network design problems and DON is that the desired solution in
DON is a collection of networks (as opposed to a single network), and each edge contributes
to the total cost of the solution as many times as it occurs in the network collection. On the
other hand, the goal in many classical network design problems is to build a single network.
Note that the problem of building a single minimum-cost network such that every pair of
nodes in a given demand graph is connected in the network is exactly the generalized Steiner
network problem, for which polynomial-time constant-factor approximations exist [1].
Multicommodity facility location. Another stream of work has addressed the extension
of facility location problems to reach clients with additional restrictions on the facility opening
costs, to reach facilities more robustly [21], or with the addition of services that facilities
open to satisfy the clients with various cost functions governing the installation of services
and facilities [17, 19]. The work in [15] arising from publisher-subscriber mechanisms is most
closely related to our work, and rather than use a network from each publisher, models the
publisher as a commodity that can be supplied at various nodes in the network by installing
“facilities" of appropriate costs; the subscribers build minimum-cost networks to reach these
facility installations of the appropriate publishers.
Access Networks and Connected Facility Location. Our algorithms for the complete
DON problem are connected to to the access network design and facility location problems.
In a version of the Access Network Design problem [16], we are given an undirected graph,
a root node and nonnegative metric costs on the edges, along with a subset of terminal
nodes. The goal is to design a backbone network in the form of a tree or tour which is
built with higher speed and higher quality cables, while the terminals access the backbone
using direct access edges. Thus the overall network is a backbone rooted Steiner tree (or
tour), with access networks that are stars arising from the terminals and ending at the nodes
of the backbone. We are given a cost multiplier µ that denotes the cost overhead factor
for the backbone compared to the access network and the objective to be minimized is the
total cost µ · c(backbone network T ) +

∑
stars s c(s). A ρAN = 3 + 2

√
2-approximation is

presented for this problem [16] when the backbone is a ring and the access network is a star.
Subsequent work [10, 20, 6] present constant-factor approximations for other generalizations
and variants of this problem as well using LP rounding and primal-dual methods. The
current best approximation factor for the CFL generalization is ρCFL ≤ 4 [6], which also
extends to tree-star access network design, i.e. ρAN ≤ ρCFL ≤ 4.
Virtual Private Network. The DON problems are also closely related to the VPN and
asymmetric VPN problems. The VPN problem can be solved exactly [9], while the asymmetric
VPN problem is NP-hard but has a constant approximation [18, 5]. The VPN problems differ
from DON as each VPN problem instance seeks only one network, while a DON instance
builds multiple networks. Nevertheless, we are able to decompose an approximate solution for
asymmetric VPN into multiple networks, and obtain a useful approximation for the complete
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tree-tree DON problem (Section 3.1). In Section 3.1, we also present a more direct approach
to the complete tree-tree DON problem that yields insights into the tree-star case at the
cost of a slightly worse approximation ratio (as opposed to the reduction to VPN for the
tree-tree case)."

2 DON with General Demands

In this section, we consider approximation algorithms for the general DON problem. We
present in Section 2.1 an Ω(log logn) integrality gap for a natural LP relaxation of the general
tree-tree DON problem. In Section 2.2, we present an O(logn)-approximation algorithm for
general DON.

2.1 Integrality Gap for Tree-Tree DON
In this section, we show that a natural LP formulation for the general tree-tree DON problem
has super-constant integrality gap. We note that the same lower bound on integrality gap
extends to the appropriate LP for general DON. A natural integer program, IPDON for the
tree-tree DON problem is as follows (all variables are 0 − 1): we let r ∈ P ∪ S denote a
publisher or subscriber node, and denote its tree Nr; zre is an indicator variable that is 1 iff
edge e ∈ E(G) is in tree Nr; yrh is an indicator variable that is 1 iff vertex h is in tree Nr;
xr,sh is an indicator variable that is 1 iff vertex h is in both trees, Nr and Ns. X will refer
to a cut which is a subset of vertices of V (G) and δ(X) will denote the edges between X
and its complement V (G) \X. The integer program IPDON for the tree-tree DON has the
following nontrivial constraints.

min
∑

r∈V (D),e∈E(G)

cez
r
e∑

e∈δ(X)

zre ≥ yrh ∀X, r ∈ X,h ∈ V (G) \X

xr,sh ≤ yrh ∀r, s ∈ V (D), h ∈ V (G)
xr,sh ≤ ysh ∀r, s ∈ V (D), h ∈ V (G)∑

h∈V (G)

xr,sh ≥ 1 ∀(r, s) ∈ E(D)

xr,sh , yrh, z
r
e ≥ 0 ∀r, s ∈ V (D), e ∈ E(G), h ∈ V (G)

xr,sh , yrh, z
r
e are integers ∀r, s ∈ V (D), e ∈ E(G), h ∈ V (G)

(IPDON)

The first set of cut covering constraints enforce that the tree rooted at r is connected with
all nodes h for which yrh is set to one. The fourth set enforces all pairs of terminals r, s in
the demand graph must meet in some hub vertex h. The second and third sets enforce that
if a node h is used as a hub for a pair, it is required to occur in both these trees. Relaxing
the above integer program by dropping the integrality constraints gives us the natural linear
program LPDON. Observe that the feasible integral solutions of the linear program are
exactly the solutions to the integer program.

I Theorem 1. For every sufficiently large n, there exist instances of tree-tree DON with
n = |V (G)| for which LPDON has an Ω(log logn) integrality ratio.
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Proof. Recall that the integrality ratio of a (minimizing) linear program is the minimum
ratio between any feasible integral point and the optimum fractional solution. Our proof will
proceed by a reduction from a linear program for the Group Steiner Tree (GST) problem.

Given a tree T with edge costs and a collection of k groups of leaves, g1, g2, . . . gk, the
Group Steiner Tree problem is to find a minimum cost subtree such that at least one vertex
from every group is connected to the root. In [11] it was shown that a natural linear program
for the GST problem has an Ω(log2 n) integrality ratio even when the input metric costs c
arise from an underlying tree. Similar to the linear program for the tree-tree DON problem
we present the linear program LPGST as the relaxation of an integer program IPGST with
0− 1 variables.

min
∑

e∈E(T )

xece

∑
e∈δ(X)

xe ≥ 1 ∀X, gi : gi ∩X = ∅, r ∈ X

xe ≥ 0 ∀e
xe integer ∀e

(IPGST)

Here we give an explanation of what the variables in IPGST represent: xe is an indicator
variable that is 1 iff edge e ∈ E(T ) is in the solution subtree; and X is a subset of vertices
of V (G) referring to a cut and δ(X) will denote the edges between X and its complement
V (G) \X. The main cut covering constraints enforce that each group is connected to the
root node r. As before, dropping the integrality constraints gives us LPGST.

As stated before Halperin et.al [11] show that LPGST has an integrality ratio of Ω(log2 n)
even on tree metrics when k, the number of groups, is Ω(n) where n = |V (T )|.

Given an instance, TGST of LPGST with n = V (T ) vertices and k groups, we transform
it into an instance of Tree-Tree DON, LPDON, with N = 2kn = |V (G)| vertices in the host
graph such that

corresponding to every fractional solution, of value fGST , of LPGST there is a fractional
solution of value fDON ≤ 2kfGST to LPDON, and
corresponding to every feasible integral point, of value IDON , of LPDON there is a feasible
integral point of value IGST ≤ IDON (1+log k)

2k to LPGST.

The transformation is intuitive: we take a “graph product” of the Group Steiner Tree
instance with a hypercube of dimension k, where k is the number of groups. We will make 2k
copies of the tree T . Each root r of a copy of T will be either a publisher or subscriber. The
demand graph D is a hypercube of dimension k. Now let Tr denote the copy of T rooted at
r. Now consider s such that there is an edge (r, s) in the ith dimension in D, and v ∈ gi.
We will connect the copy of v in Tr to the copy of v in Ts with a zero cost edge.

It is easy to see that fDON ≤ 2kfGST for the above transformation - observe that
replicating the fractional solution to LPGST in each of the 2k copies of T is a valid fractional
solution to LPDON.

For the other direction, i.e., to see IGST ≤ IDON (1+log k)
2k first observe that for edge (r, s)

in dimension i of the demand hypercube, at least one of the trees corresponding to r or s must
cross dimension i and the only way to cross dimension i is along a 0-cost edge connecting
two corresponding group gi leaves. Now note that any tree Nr (the network that r builds) in
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a solution to IPDON can be transformed into a subtree of T by keeping an edge in T if Nr
contains the corresponding edge in any copy of T in G. Let the subtree of T so obtained
be called the retract of Nr. It is easy to see that if Nr ever crosses dimension j then a leaf
in group gj is connected to the root of T in its retract and that the cost of a retract is
never more than the cost of the original Nr. By our earlier observation for any edge (r, s) in
dimension i at least one of the two retracts of Nr, Ns must connect a node in group gi to the
root. Hence if we select a node in D at random and take its retract then any given group is
connected with probability at least 1/2 and it has expected cost IDON

2k . Thus if we take the
union of 1 + log k retracts chosen uniformly at random then the resulting subgraph of T has
expected cost IDON (1+log k)

2k and the probability any given group is not connected to the root
is less than 1

k . Since there are k groups this means there exists a subgraph of T , connecting
the root to every group, of cost at most IDON (1+log k)

2k , i.e., IGST ≤ IDON (1+log k)
2k .

From fDON ≤ 2kfGST and IGST ≤ IDON (1+log k)
2k it follows that IDON

fDON
≥ IGST

fGST
(1 + log k).

By [11], when k = θ(n) we have that IGST

fGST
= Ω(log2 n) from which it follows that IDON

fDON
=

Ω( log2 n
log k ) = Ω(logn) but the size of the transformed instance is N = 2kn, i.e., n = Ω( logN

log logN ).
In other words, the integrality gap is IDON

fDON
= Ω(logn) = Ω(log( logN

log logN )) = Ω(log logN) J

2.2 O(log n) approximation

We next show that the general DON problem can be approximated to within an O(logn)
factor in polynomial time. As discussed in Section 1, the general DON problem can be
split into three problems: tree-tree DON, star-star DON, and tree-star DON. In previous
work, O(logn)-approximation algorithms have been developed for tree-tree DON and star-
star DON [3]. We now present an O(logn)-approximation for tree-star DON, implying an
O(logn)-approximation for general DON.

Our O(logn)-approximation for tree-star DON is obtained by deriving a constant-factor
approximation for the special case of tree metrics, and invoking the standard reduction from
general metrics to tree metrics [7]. Our constant-factor approximation algorithm, which
rounds an LP relaxation, essentially generalizes a result of [15] on multicommodity facility
location from a uniform facility cost case to the case where the facility costs form a tree
metric.

I Theorem 2. The tree-star DON problem with general demands on tree metrics can be
approximated to within a constant factor in polynomial time. This implies an O(logn)-
approximation algorithm for general DON on general metrics.

We first present a linear programming relaxation for the problem. Let T denote the
given tree which is our metric. For a publisher j and an edge e of T , let zje represent the
extent to which j’s tree uses e. For a subscriber i and leaf node v, let yiv denote the extent
to which i’s star visits v. For leaf node u, subscriber i and publisher j such that (i, j) is in
the demand graph, let xi,ju denote the extent to which j meets i at u. Let d(u, v) denote the
distance between u and v under the tree metric; abusing notation somewhat, let d(e) denote
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the distance between the two endpoints of the edge e. Then, we have the following LP.

min
∑
j,e

zjed(e) +
∑
i,u

yiud(i, u)

zje ≥
∑
u:e∈Pju

xi,ju for all i, j, e∑
u x

i,j
u ≥ 1 for all (i, j) in demand graph

yiu ≥ xi,ju for all i, j, u
xi,ju , y

i
u, z

j
e ≥ 0 for all i, j, u, e

(LPTS)

The first set of constraints guarantees that every edge, e, in j’s tree can support the
extent that j meets any other node below e. The second set of constraints guarantees that
all demands are satisfied. The third set of constraints guarantee that i’s star supports how
much i must meet with other nodes.

We now present our algorithm. We introduce some useful notation first. Let Y iv denote
the sum of yiw, over all leaves w in the subtree rooted at v. Similarly, let Xi,j

v denote the
sum of xi,jw , over all leaves w in the subtree rooted at v.

We will identify three different types of hubs in the tree to which a subscriber will build
it’s star. These different types of hubs are paid for by different parts of the LP and guarantee
a connection to the publisher trees in different ways.
1. Solve LPTS to obtain a fractional solution (x, y, z).
2. For every subscriber i:

For every node v such that Y iv ≥ 1/3 and there is no child c of v such that Y ic ≥ 2/3:
we mark node v.
For each marked node v such that no ancestor of v is marked, we add v to σ(v); we
refer to v as a type-C hub for i.
For every node v such that (a) there is no ancestor of v that is a type-C hub for i, and
(b) there are two children c1 and c2 of v such that Y ic1

≥ 1/3 and Y ic2
≥ 1/3, we add v

to σ(v); we refer to v as a type-A hub for i.
For every node v that is an ancestor of a type-C hub, we define W i

v to be sum, over
every child c of v that is not an ancestor of a type-C hub, of Y ic .
For every path p from the root or a type-A hub node to a descendant type-A hub or
type-C hub node: we divide p into minimal contiguous segments such that the sum
of W i

v, over all v in the segment, is at least 1/3; for each such segment, we create a
type-B hub for i at the lowest node in the segment.
The star network for i connects i to each type-A, -B, and -C hub.

3. For every publisher j, the tree network consists of all edges e such that zje ≥ 1/3.

We prove Theorem 2 by establishing the following two lemmas.

I Lemma 3. For any edge (i, j) in the demand graph, the tree of publisher j overlaps with
the star of subscriber i at least one node.

Proof. Fix publisher j and subscriber i such that (i, j) is an edge in the demand graph.
Consider some subtree rooted at a node r0 such Xi,j

r0
is at least 1/3 in the LP solution, while

for any child c of r0, Xi,j
c < 1/3. Suppose (r0, r1, . . . , rf ) denote the path from r0 to the root

of the tree.
We first show that if there is a type-C hub at a node rk, then the tree of publisher

j includes node rk. By our algorithm’s choice of locating type-C hubs, it follows that
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Y irk−1
< 2/3. Therefore, publisher j meets subscriber i to an extent less than 2/3 in the

subtree rooted at rk−1. We consider two cases. If j is in the subtree rooted at rk−1, then
for the edge e = (rk−1, rk), zje ≥ 1/3. Otherwise, since Xi,j

rk−1
≥ Xi,j

r0
≥ 1/3, again we have

zje ≥ 1/3. Thus, in both cases, we ensure that the tree for publisher j contains rk.
We next show that if there is a type-A or type-B hub for i at a node rk and there are no

hubs for i at any rg, 0 ≤ g < k, then the tree for j must include rk. Since there is no type-A
hub at any rg, 0 ≤ g < k, each rg has at most one child that has a descendant with a type-C
hub; if there were two such children, then rg would have a type-A hub. Furthermore, there
must be a type-C hub in the subtree rooted at r0; if not, then the first ancestor of r0 to have
a hub would have a type-C hub, which would contradict our assumption. So suppose there is
a type-C hub in the subtree rooted at r0, say under the child r−1 of r0. Then, it must be
the case that the sum of W i

rg
, over 0 ≤ g < k, is at most 1/3, since otherwise we would have

a type-B hub at rg. Furthermore, by the definition of r0, Xi,j
r−1

< 1/3. This implies that j
meets i to an extent of 1/3 outside the subtree rooted at rk−1 and at least 1/3 inside the
subtree rooted at rk−1. Thus, regardless of where j is located for edge e = (rk−1, rk), we
will have zje ≥ 1/3, ensuring that the tree for publisher j contains rk. J

I Lemma 4. The total cost of the tree and star networks is at most twelve times the LP
optimal.

Proof. An edge e is added to the tree of publisher j exactly when zje ≥ 1/3. Therefore, the
cost of the tree network of j is within three times the cost for j in the LP.

We next consider the costs of the subscriber stars. There are three parts to it. The first is
the distance to the type-A hubs. If a type-A hub for i is created at a node r, then there exist
two children c1 and c2 of r such that Y ic1

and Y ic2
are both at least 1/3. Clearly, i is either

not in the subtree rooted at c1 or not in the subtree rooted at c2. In either case, the cost for
i in the LP solution for reaching the fractional hubs in one of c1 or c2 is at least d(i, r)/3.
Adding this over all the type-A hubs yields a cost that is at most 3 times the LP cost for i.

If a type-C hub is created at a node r, then we consider two cases: r is a strict ancestor
of i and r is not an ancestor of i or r = i. When r is not an ancestor of i or r = i, then we
know that Y ir ≥ 1/3 and all the distances from i to r’s subtree are at least d(i, r) so these
type-C hub yield a cost that is at most 3 times the LP cost for i. Now if r is a strict ancestor
of i, then let c be the child of r whose subtree contains i. We know that Y ic ≤ 2/3. So, we
know at least 1/3 of the LP cost associated with i travels distances d(i, r). There is only one
C-hub who is a strict ancestor of i. Therefore the type-C hubs yield a cost that is at most 6
times the LP cost for i.

If a type-B hub is created at a node r, then consider the sequence of ancestors a of r,
whose W i

a add up to 1/3. The cost of i reaching the fractional hubs in the LP that contribute
to these W i

a is at least d(i, r)/3.
The fractional hubs against which we have charged the type-C and type-B hubs are

different, so the cost for the type-B and type-C hubs is at most 3 times the LP cost for i,
yielding an O(1)-approximation for the overall total cost. J

3 DON with Complete Demands

In this section, we present constant factor approximation algorithms for the DON problem
when the demand graph is complete. We obtain this result by deriving constant-factor
approximations for the three variants—tree-tree, star-star and tree-star— in the following
subsections.
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3.1 Complete tree-tree DON
The complete tree-tree DON problem has an interesting connection to the asymmetric VPN
problem [18, 5], which we can exploit to obtain a constant-factor approximation.

First we introduce the VPN problem. Given a graph G, with edge costs c, and marginals
for each vertex, the VPN problem is to build a network of minimum cost such that for any
set of pairwise demands which obey the marginals, the flow can be routed on our network. A
set of pairwise demands obeys the marginals if the demands a vertex is involved in does not
exceed its marginal. One crucial distinction between VPN and the DON problems is that
while the VPN problem seeks the design of a single network, DON problems seek networks
for every node involved.

Now we define asymmetric VPN. Here the flows are directed, and each vertex has two
marginals, one for how much can flow out of the node, and one for how much can flow into
the node. We restrict to the case where the terminals allow 1 flow out of the node and no
flow in (sources), or they allow 1 flow into the node, and no flow out (sinks).

It turns out that for asymmetric VPN, there is always a tree solution which is within a
constant factor of an optimal solution [18]. We now use this tree solution to get a solution
for complete tree-tree DON.

I Lemma 5. Given a complete tree-tree DON problem, consider an asymmetric VPN problem
with the same input as the DON problem, with the subscribers as sources, and the publishers
as sinks. Then, any tree solution for the asymmetric VPN problem can be transformed into a
solution of the same cost for the complete tree-tree DON problem.

Proof. Let T be the tree which is a solution to asymmetric VPN. Since our solution to
asymmetric VPN is a tree which is adjacent to all the publishers and subscribers, then every
edge in the tree induces a partition of the terminal nodes.

Consider any edge e ∈ T ; we decide which trees use e. Let S1, P1 be the subscribers
and publishers respectively on one side of the partition; likewise let S2, P2 be the remaining
subscribers and publishers respectively. Now let a = min(|S1|, |P2|) and b = min(|P1|, |S2|).
Now a valid demand matrix would be to require a unit flow from a elements of S1 to a
elements of P2 and to require a unit flow from b elements of S2 to b elements of P1. These
a+ b flows must all cross e since T is a tree, therefore e has multiplicity at least a+ b.

Now if |S1| ≤ |P2|, then we assign e to be in the trees for the elements of S1, otherwise e
is in the trees for the elements of P2. Likewise if |S2| ≤ |P1| we assign e to be in the trees for
the elements of S2, otherwise e is in the trees for the elements of P1. The number of times
we use e is

min(|S1|, |P2|) + min(|S2|, |P1|) = a+ b

So, we don’t overuse e.
We next need to show that the edges assigned to a node form a tree. Since the original

structure was a tree, we only need to show that the edges assigned to a terminal t are
connected. Without loss of generality, suppose that a copy of e was assigned to be in Ts for
s ∈ S1. Let Q be the path in the tree T from e to s. Let e′ ∈ Q. Let V ′ be the vertices on
the same side as s of the partition formed by removing e′ from T . We know that S ∩V ′ ⊆ S1.
Likewise we know that P2 ⊆ P ∩ V ′C . Since |S1| ≤ |P2| (because e ∈ Ts), then we know
|S ∩ V ′| ≤ |P ∩ V ′C | where V ′C = V \ V ′. So, e′ is assigned to be in the tree for nodes in
S ∩ V ′. Therefore we have that Q ⊆ Ts. Therefore e is connected to s. Hence the graphs
formed by our assignment scheme are connected.
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Lastly, we must show that for every s ∈ S and p ∈ P then Ts and Tp intersect. Consider
s ∈ S and p ∈ P . Let Q be the path in T from p to s and e be an edge in Q. When we
look at the S1, S2, P1, P2 formed by removing e, then either s ∈ S1 and p ∈ P2, or s ∈ S2
or p ∈ P1. Without loss of generality, assume s ∈ S1 and p ∈ P2. Then e is assigned to be
in either the tree for all elements of S1 or for all elements in P2. So e is in either Ts or Tp.
Since Ts and Tp are connected subtrees of the same tree, and Q ⊆ TS ∪ Tp then Ts and Tp
meet at some vertex in Q. Therefore, all demands are satisfied and this is a valid solution to
the complete tree-tree DON problem. J

Using the current best results on asymmetric VPN which generates a tree solution [5],
this provides an 4.74 approximation algorithm for the complete tree-tree DON problem.

Next, we present a direct approximation algorithm which we build on for the tree-star
case. This approach has a worse approximation factor than the reduction from asymmetric
VPN, but the techniques used are what give us the insight into the tree-star case.

I Theorem 6. There is a 4ρTS-approximation algorithm for complete tree-tree DON, where
ρTS is the best factor for the tree-star access network design problem.

In the rest of this subsection, we give a proof of Theorem 6. Given N∗, an optimal solution,
let us denote the publisher and subscriber networks by P1, P2, . . . , Pk and S1, S2, . . . , Sl where
we index the nodes so that we have c(P1) ≤ c(P2) ≤ · · · ≤ c(Pk) and c(S1) ≤ c(S2) ≤ · · · ≤
c(Sl). Let c∗P and c∗S denote the total cost of the publisher and subscriber trees. Let sj be the
subscriber whose network is Sj and let pi be the publisher whose network is Pi. Note that
feasibility requires that Pi ∩ Sj 6= ∅ for all i, j. Let us also assume without loss of generality
that c(P1) ≤ c(S1).

The key transformation of the optimal solution is a reconfiguration of the subscriber
networks where we replace each tree Sj for j 6= 1 by the direct edge from subscriber node
j to subscriber node 1 concatenated with the subscriber tree S1. In other words, we set
S′j = {(sj , s1)} ∪ S1 for every subscriber sj 6= s1. Let us assign Sj = S′j .

Note that the modified subscriber trees are still feasible since the original subscriber
tree S1 intersects every publisher tree. We now bound the cost of the additional edge from
subscriber j to the subscriber 1, the root of S1.

I Lemma 7. For every subscriber j 6= 1, we have ci1 ≤ 3c(Sj).

p1

s1

si

Figure 1 The solid lines show the trees Si and S1 and the dashed lines show the tree P1. The
dotted line here is the path from si to s1 through the trees Si, P1, and S1.

Proof. To see this, note that by taking the path from j in Sj to its intersection with P1 and
following it to the intersection of P1 and S1 and continuing along S1 to the subscriber node
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1, we have found a path from j to 1 of cost no more than the sum of the costs of Sj , P1 and
S1. However, since c(Sj) ≥ c(S1) ≥ c(P1), the length of this path is at most 3c(Sj). J

Given that every subscriber contains the tree S1, it is particularly simple to design the
publisher network P ′i (for publisher pi) that needs to reach this tree: it will simply be a direct
edge that represents the shortest path from the publisher pi to the tree S1. The union of all
such direct edges gives a collection of stars that end at the subscriber tree S1. Furthermore
since the subscriber tree S1 is going to be used by every subscriber node, its cost must be
counted |S| = l times in the objective.

The resulting problem of finding the best tree for S1 is exactly the tree-star access
network design problem [16] with the root being subscriber 1, the multiplier M = |S| and the
terminals being R = P , the publisher nodes. Given an optimal solution N∗ for the complete
tree-tree DON problem, we thus have a solution to the tree-star access network instance of
cost at most c∗P + |S| · c(S1). We thus have the following lemma.

I Lemma 8. For the correct choice of the subscriber node 1 as the root with multiplier |S|
and terminals P , there is a solution to the tree-star access network design problem of cost at
most c∗P + |S| · c(S1). J

Proof of Theorem 6: The approximation algorithm tries every subscriber node as the
root of the tree-star access network problem formulated above. By adding the direct edge
from each other subscriber to this root, and extending the backbone tree with each such edge,
we get a solution to the complete tree-tree DON problem. The algorithm keeps the solution
of smallest total cost among all choices of the root subscriber node. The total cost of the
solution is the sum of the cost of the tree-star access network design problem and the sum of
the costs of the direct edges from the subscribers to the root. By Lemma 7, the latter cost
is no more than three times the cost of the tree (with the multiplier of |S|) in the solution
to the tree-star access network design problem. By Lemma 8 and the ρTS-approximation
factor for the tree-star access network design problem, we thus obtain a total cost of at most
4ρTS(c∗P + |S| · c(S1)) which is at most 4ρTS times the cost of N∗. J

It is not hard to extend the above methods to the case when the input terminals are
partitioned into more than two subsets, say R = P1 ∪ P2 ∪ . . . ∪ Pk and the demand graph
is the complete k-partite graph between these k subsets. By considering the partition that
has the cheapest tree network in the optimal solution to be in P1, the above argument can
be adapted to give a constant-factor approximation. We omit the details in this extended
abstract.

3.2 Complete star-star DON
In this section, we present a constant-factor approximation for complete star-star DON.

I Theorem 9. There is a 4α-algorithm for complete star-star DON, where α is the best
approximation achievable for metric uncapacitated facility location.

Our algorithm and the proof of Theorem 9 are based on an argument that there exists
a constant-factor approximate solution that has a special structure; our algorithm then
computes a constant-factor approximate solution with this special structure.

Given a solution where the publisher network is P1, P2, . . . , Pk and subscriber network
is S1, S2, . . . Sl, let P1 be the publisher network of smallest cost and S1 be the subscriber
network of smallest cost without loss of generality. Also, let σ(pi) denote the set of nodes
(which we refer to as hubs for pi) in the star for the ith publisher. Likewise, let σ(sj) be
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the set of nodes in the star for the jth subscriber. Thus, we can refer to solutions using the
maps defined by σ and denote the optimal one by σ∗. We let c(σ) be the cost of the solution
defined by σ, and c(σ(x)) denotes the cost of x’s star. The next lemma shows a near-optimal
solution with a very simple structure.

I Lemma 10. There exists a solution σ such that c(σ) ≤ 4c(σ∗)), and either σ(si) = σ(sj)
for all pairs of subscribers si, sj and |σ(pi)| = 1 for each publisher pi or σ(pi) = σ(pj) for
all pairs of publishers pi, pj and |σ(si)| = 1 for each subscriber si.

Proof. Let σ∗ be an optimal solution with publisher networks P1, P2, . . . , Pk and subscriber
networks S1, S2, . . . Sl. Without loss of generality, let c(P1) ≤ c(S1). Since each subscriber
star intersects all publisher stars, we have d(si, s1) ≤ c(Si) + c(P1) + c(S1) ≤ 3c(Si). Let
C1 denote the set of publishers that share any hub with p1. Let p2 denote the least-cost
publisher not in C1. Let C2 be the set of all publishers not in C1 that share any hub with p2.
In general, let pj+1 be the least-cost publisher not in

⋃
1≤i≤j Ci. Let Cj+1 denote the set

of all publishers not in
⋃

1≤i≤j Ci that share any hub with pj+1. Let hj denote any hub in
σ∗(s1) ∩ σ∗(pj).

pi

s1

σ(pi)

Ci

Figure 2 Here is an example of a Pi. We have shown all it’s hubs, σ(pi). Ci consists of all those
pj ’s not in a previous Ck connecting to one of the hubs. Here hi can be chosen to be either of the
top two hubs in σ(Pi).

Let pj′ be an arbitrary publisher in Cj . We first obtain the following equation d(pj′ , pj) ≤
2c(Pj′) (owing to a shared hub and the fact that c(Pj) ≤ c(Pj′)). By construction, for any
two distinct pi and pj , we have σ∗(pi) ∩ σ∗(pj) = ∅; i.e., pi and pj do not share any hubs.
Note that this may not be true of all pairs of publishers in Ci × Cj .

We now consider two cases. In the first case when c(Pj) ≤ d(s1, hj), we have all subscribers
meet all the publishers in cluster Cj at pj . Consider any subscriber si. It meets pj at some
hub, say hij . Its increase in cost for meeting pj now is at most c(Pj) ≤ d(s1, hj), which equals
one leg of s1’s star. Since two different pj ’s do not share any hubs, the hij ’s (for a given i)
are all different. Hence, the total increase in cost for si is at most

∑
j d(s1, hj), which is at

most c(S1).
If c(Pj) > d(s1, hj), then we will have all publishers in Cj , go to s1. Fix a publisher p′j in

Cj . Its total cost is at most d(p′j , pj)+c(Pj)+d(s1, hj) ≤ d(p′j , pj)+2c(Pj) ≤ 4c(P ′j). All the
subscribers also go to s1 to handle this case. We have d(si, s1) ≤ c(Si)+c(P1)+c(S1) ≤ 3c(Si).

So overall, we obtain a blowup of at most 4 in the cost for each publisher and each
subscriber. We have proved that there exists a solution of cost at most 4 · OPT in which
every subscriber’s star connects to exactly the same set of hubs and every publisher’s star is
just a line to one of the hubs. J
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Proof of Theorem 9: Using Lemma 10, we now give a polynomial-time 4α-algorithm
where α is the best approximation achievable for the uncapacitated facility location problem.

Our algorithm considers all possible choices for s1, a linear number (where by symmetry
s1 could be on either side). For a given choice of s1, we formulate an uncapacitated facility
location problem, with the set of publishers as the clients, and the potential facility locations
being the publishers and s1. The cost of opening a facility at any of these nodes is the
sum of the distances of all the subscribers to that node. Given a solution to this facility
location problem, we obtain a solution to the complete star-star DON problem as follows:
each publisher’s star is a singleton edge to the facility it is assigned to; each subscriber’s star
consists of edges to all the open facilities, paid for by the facility costs.

We solve all the linear number of facility location problems, and then the corresponding
problems with the roles of subscribers and publishers reversed, and take the best solution.
This yields the desired approximation. J

3.3 Complete tree-star DON
We now present a constant factor approximation for complete tree-star DON. Without loss
of generality, let us suppose that the publishers will build trees, and the subscribers will
build stars. The main idea is to show that either the appropriately defined complete star-star
DON solution or complete tree-tree DON solution is within a constant factor of optimal.

Let N∗ be an optimal solution. Let the trees be indexed P1, P2, . . . Pk and the stars
S1, . . . S` such that c(P1) ≤ · · · ≤ c(Pk) and c(S1) ≤ · · · ≤ c(Sk).

First consider the case where c(P1) ≥ c(S1). Note that every Pi and Sj must have a
non-empty intersection. Now for every tree Pj we can redirect it to P1 and then make a copy
of P1. So we will let: P ′j = {(pj , p1)} ∪ P1.

This solution is feasible because P1 must intersect all the stars. These additions to the
solution cost at most 3c(N∗), as seen in Lemma 7. Now all the stars can simply take an edge
which is the shortest edge to the tree.

The approximation algorithm from this point follows the tree-tree case exactly. In this
case, we get that the final solution has cost at most 4ρTSc(N∗). Where ρTS is the best
constant approximation for the tree-star access problem.

Next consider the case that c(S1) ≥ c(P1). We will now choose pi’s in a similar fashion
to the complete star-star DON problem. Let p1 be the publisher with the smallest cost tree.
Let C1 be all the publishers whose trees meet p1’s tree. Now let p2 be the smallest tree
which does not intersect p1’s tree. Let C2 be all the publishers not in C1 who meet p2’s tree.
Likewise pj+1 will be the smallest tree not in ∪1≤i≤jCi. Let Cj+1 be all the publishers which
intersect pj+1’s tree not in ∪1≤i≤jCi.

Now from hereon, the proof follows that for the complete star-star DON case. Hence
we have a solution within a constant factor of optimal where all the stars go to s1 (the
subscriber with star S1), and some of the publishers: Popen. Each tree goes to the nearest
node in S1 ∪ Popen. This establishes the following lemma.

I Lemma 11. The complete tree-star DON has an O(1)-approximate solution in which either
all the subscribers go to some hubs and each tree goes to the nearest hub among a set of
one subscriber and some publishers, or where all the publisher trees are identical and all the
subscribers go to the closest node in that tree. J

For solving the complete tree-star DON problem, we apply our constant-factor approxi-
mation algorithm for the complete tree-tree DON instance, together with our constant-factor
algorithm for the complete star-star DON instance, and take the better of the two. This
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completes our argument showing that complete tree-star DON can be approximated to within
a constant factor.
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