Problem Set 1 (due Wednesday, January 19)

1. (6 points) Twenty questions

A friend challenges you to find out a positive integer number n that she has on her mind. For any guess you make, she is willing to tell you which of the following three possibilities is true: n is less than, greater than, or equal to your guess. You have no clue as to how large n is and would like to determine n with the smallest number of guesses.

Describe a guessing procedure for determining n. What is the number of guesses your procedure makes, as a function of n? You must aim at keeping this function as small as possible.

2. (1+5+5+3=14 points) Bubblesort

Problem 2-2, page 38.

3. (1 + 3 + 6 = 10 points) Inversions and insertion sort

Parts (a) through (c), Problem 2-4, pages 39-40.

Hint for part (c): If T(A) is the running time of insertion sort on input A and I(A) is the number of inversions in A, then prove that T(A) is $\Theta(I(A) + n)$.

4. (10 points) Ordering functions

Arrange the following functions in order from the slowest growing function to the fastest growing function. Briefly justify your answers. (*Hint:* It may help to plot the functions and obtain an estimate of their relative growth rates. It may also help to express each function as a power of 2 and then compare.)

$$n^{1/2}$$
 $n^2 + \lg n$ $n(\lg n)^5$ $(\lg \lg n)^2$ $\lg n$

5. (3 + 3 + 4 = 10 points) Properties of asymptotic notation

Let f(n), g(n), and h(n) be asymptotically positive and monotonically increasing functions. Prove or disprove each of the following conjectures.

(a)
$$f(n) + g(n) = \Theta(\min\{f(n), g(n)\}).$$

(b) If
$$f(n) = O(h(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = O(g(n))$.

(c)
$$f(n^2) = \Omega((f(n))^2)$$
.