College of Computer & Information Science Northeastern University CSG714: Theory of Computation

Problem Set 4 (due Tuesday, March 11)

1. (4 + 4 + 6 = 14 points) Balanced parentheses in logspace

The set of balanced parentheses is the set generated by the context-free grammar

$$S \to (S)|SS|\varepsilon$$

For a given string x, let $\ell(x)$ (resp., r(x)) denote the number of left (resp., right) parenthesis symbols in x.

- (a) Show that a string x is balanced if and only if $\ell(x) = r(x)$ and $\ell(y) \ge r(y)$ for every prefix y of x.
- (b) Prove that the set of balanced parantheses is in L.

Now consider the set of balanced parenthesis of two types, given by the following context-free grammar.

$$S \to (S)|[S]|SS|\varepsilon.$$

(c) Prove that the set of balanced parenthesis of two types is also in L.

(*Hint:* Extend the claim of (a) to the case of two types.)

2. (10 points) The two-player game version of PUZZLE

Problem 8.14 from Sipser's text.

3. (10 points) The cat-and-mouse game

Problem 8.15 from Sipser's text.

4. (3 + 7 = 10 points) k-headed DFA

A k-headed DFA is a one-tape TM with k read-only input heads that can move left or right but cannot move off the input string.

- (a) Give a formal definition of a k-headed DFA.
- (b) Show that a language A is in L if and only if it is accepted by a k-headed DFA for some k.

5. (10 points) The majority circuit

The majority of n boolean inputs x_i , $1 \le i \le n$ is 0 if $\sum x_i < n/2$ and 1 otherwise. Show that the majority can be computed with O(n) size circuits.

(*Hint:* Construct an O(m) size addition circuit that takes two m bit numbers and computes their m+1-bit addition. Use recursion and this addition circuit to compute the majority. You may want to refer to Problems 9.24-9.26 in Sipser's text.)

6. $(4 \times 4 = 16 \text{ points})$ Satisfiability and its variants

In class, we have discussed SAT, CIRCUIT-SAT, CVP, and the relationship among them. This problem explores other variants of boolean satisfiability. Define the SVP problem as follows: Given a SAT formula ϕ and an assignment to the variables, determine the truth value of ϕ .

- (a) What is the complexity of SVP?
- (b) Define CNFSVP as the SVP problem in which ϕ is given in conjunctive normal form. What is the complexity of CNFSVP?

A Boolean decision diagram (BDD) is a directed acyclic graph with a single source and two sinks, one labeled 0 and the other labeled 1. Each non-sink node has two outgoing edges, one labeled x and the other labeled \overline{x} for some Boolean variable x. The value of a BDD on a truth assignment σ is the label of the sink node of the unique σ -enabled path from the source to a sink, where an edge with literal ℓ is enabled if $\sigma(\ell) = 1$. For BDDs, what is the complexity of

- (c) determining the value for a given σ ?
- (d) satisfiability?

(The part on BDDs is taken from Kozen's text.)