1. (4 + 4 + 6 = 14 points) Balanced parentheses in logspace

The set of balanced parentheses is the set generated by the context-free grammar

\[S \rightarrow (S)|SS|\varepsilon \]

For a given string \(x \), let \(\ell(x) \) (resp., \(r(x) \)) denote the number of left (resp., right) parenthesis symbols in \(x \).

(a) Show that a string \(x \) is balanced if and only if \(\ell(x) = r(x) \) and \(\ell(y) \geq r(y) \) for every prefix \(y \) of \(x \).

(b) Prove that the set of balanced parentheses is in \(L \).

Now consider the set of balanced parenthesis of two types, given by the following context-free grammar.

\[S \rightarrow (S)|[S]|SS|\varepsilon. \]

(c) Prove that the set of balanced parenthesis of two types is also in \(L \).

(Hint: Extend the claim of (a) to the case of two types.)

2. (10 points) The two-player game version of PUZZLE

Problem 8.14 from Sipser’s text.

3. (10 points) The cat-and-mouse game

Problem 8.15 from Sipser’s text.

4. (3 + 7 = 10 points) \(k \)-headed DFA

A \(k \)-headed DFA is a one-tape TM with \(k \) read-only input heads that can move left or right but cannot move off the input string.

(a) Give a formal definition of a \(k \)-headed DFA.

(b) Show that a language \(A \) is in \(L \) if and only if it is accepted by a \(k \)-headed DFA for some \(k \).
5. (10 points) The majority circuit

The majority of \(n \) boolean inputs \(x_i, 1 \leq i \leq n \) is 0 if \(\sum x_i < n/2 \) and 1 otherwise. Show that the majority can be computed with \(O(n) \) size circuits.

(Hint: Construct an \(O(m) \) size addition circuit that takes two \(m \) bit numbers and computes their \(m+1 \)-bit addition. Use recursion and this addition circuit to compute the majority. You may want to refer to Problems 9.24-9.26 in Sipser's text.)

6. (4 \times 4 = 16 points) Satisfiability and its variants

In class, we have discussed SAT, CIRCUIT-SAT, CVP, and the relationship among them. This problem explores other variants of boolean satisfiability. Define the SVP problem as follows: Given a SAT formula \(\phi \) and an assignment to the variables, determine the truth value of \(\phi \).

(a) What is the complexity of SVP?

(b) Define CNFSVP as the SVP problem in which \(\phi \) is given in conjunctive normal form. What is the complexity of CNFSVP?

A Boolean decision diagram (BDD) is a directed acyclic graph with a single source and two sinks, one labeled 0 and the other labeled 1. Each non-sink node has two outgoing edges, one labeled \(x \) and the other labeled \(\bar{x} \) for some Boolean variable \(x \). The value of a BDD on a truth assignment \(\sigma \) is the label of the sink node of the unique \(\sigma \)-enabled path from the source to a sink, where an edge with literal \(\ell \) is enabled if \(\sigma(\ell) = 1 \). For BDDs, what is the complexity of

(c) determining the value for a given \(\sigma \)?

(d) satisfiability?

(The part on BDDs is taken from Kozen’s text.)