Problem of the Week – 1

HALF-PATHS-NFA

Define a **HALF-PATHS-NFA** M as a tuple $(Q, \Sigma, \delta, q_0, F)$ with the following properties: Q is a finite set of states, Σ is the (finite) input alphabet, δ is a function from $Q \times \Sigma$ to the set $P(Q) - \{\emptyset\}$, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is a set of final states. (Recall that $P(q)$ is the power set of Q.) Thus, the transition function of M is the same as that of an NFA in which there are no ε-transitions and at least one transition is defined for every state and every symbol of the input alphabet.

We now define what it means for M to accept an input string w. A **computation of M on input string** $w = w_1w_2\cdots w_n$, where $w_i \in \Sigma$ for all i, is a sequence of states q_0, q_1, \ldots, q_n such that $q_i \in \delta(q_{i-1}, w_i)$ for $1 \leq i \leq n$; the computation is said to be an **accepting** computation if $q_n \in F$. The **HALF-PATHS-NFA** M is said to **accept** a string w if and only if at least half of the computations of M on w are accepting.

Put another way, a **HALF-PATHS-NFA** is an NFA with transitions for every state and input symbol and with no ε-transitions, that accepts only those strings for which at least half of the computation paths lead to a final state.

Compare the power of **HALF-PATHS-NFAs** with that of NFAs. That is, determine which of the following four cases is true: the class of languages recognized by **HALF-PATHS-NFAs** is the **same as**, or a **subset of**, or a **superset of**, or **incomparable with** the class of regular languages.