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Introduction To Linear Programming

The following notes are adapted from lecture notes of an Advanced Algorithms course I taught
in Fall 1999; these notes were scribed by 3 students Mohsen Ghassemi, Clifford Bryant, Jr., and
Trevor Mendez. The material covered is based on Chapter 29 of the text and two other sources:
Michel Goemans’s lecture notes on linear programming [Goe94], and Howard Karloff’s text on
linear programming [Kar91].

1 Introduction

We define the linear programming (LP) problem of minimizing a linear function subject to linear
inequality constraints. We begin with a simple example of linear programming. Then, the general,
standard, and canonical forms of the linear programming problem are given in summation and
matrix form. A formal definition is given for a vertex of a polytope or polyhedron, and it is proved
that an LP always attains its optimum at a vertex. Then it is proved that the set of vectors
corresponding to the current basis of an LP are linearly independent if and only if the basic feasible
solution is a vertex point. Finally, we cover the simplex algorithm in detail.

2 The Diet Problem

Many linear programming formulations arise from situations where a decision maker wants to
minimize the cost of meeting a set of requirements. In the diet problem we would like to develop
a diet using n food items such that it satisfies the daily vitamin requirements. Let the food items
be numbered 1 through n and let the m vitamin mineral requirements be given by b1,..., by,.

From food item j, you get a;; units of mineral 4 per unit of j. If you decide to have x; units of
item j, you get z;a;; units of mineral 3.
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If the cost of food item j is ¢; per unit. Then the total cost incurred = }°, ¢;z;.

We would like to minimize ), c; T;
subject to:

n
E zia;; > by i=1,..,m
j=1



Alternatively, one can write the above optimization problem as:
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The above problem is of the form min ¢* z subject to: Az > b. Such that a problem is referenced

to as a linear program. This is because the objective function as well as the constraints are linear
combination of the variables.

We now consider some optimization problems that we have studied and see weather we can write
them down as a linear program.

2.1 Knapsack Problem

In the knapsack problem we are given n items of sizes w; through w, and profits p; through p,.
The goal is to build the items with total size < B such that the total profit is maximized.

The LP representation of the problem can be shown as:

mazimize ), T;p;
subject to Y i_; wjw; < B
zj € {0,1}

b1

Pn

Az[wl wz...wn]
b=[B]

Note that the constraint z; € {0,1} is not a linear constraint so that the above program is an
integer linear program.

2.2 Minimum Spanning Tree Problem

In the minimum spanning tree roblem, the set of instances is the set of all weighted undirected
graphs. For a given instance graph G, the set S(G) of solutions for G is the set of all trees that
span every vertex of G. Finally, the value of a solution tree T' is simply the sum of the weights of
the edges of T'.



One LP representation of the problem is:

minimize Y, Wele
subject to Y, ¢ ,xe>1  for all cut c
ze=0o0r1 for all edges e

Note that since there are an exponential number of cuts, the number of constraints is exponential.

3 Equivalent Forms

3.1 General Form

This is the general form of the linear programming problem. The ¢;’s can be interpreted as costs.
In this case, the objective is to minimize the total cost subject to the linear constraints.

n
Minimize Z CiT; (objective function) (1)
i=1
subject to Y77 ajz; > b ,i=1,...,m (inequality)
Z?:l aijz; = b ,i=mi+1,...,m1 +my (equality)
zj > 0 ,j=1,...,m (non — negativity)
zj § 0 ,7j=n1+1,...,n (unconstrained)

The general form of the LP can be written more compactly in matrix notation.

Minimize ¢”x (2)
subject to Ax; > b
A.IX2 == b’
X1 > 0
X9 <=> 0

where

c and x are n x 1 vectors,
A is an mj x n matrix,
A’ is an ms x n matrix,
b is an m; x 1 vector,

b’ is an mo x 1 vector,

X1 is an ny x 1 vector,

X2 is an no x 1 vector, and

x:{z }



3.2 Standard Form

This is the standard form of the linear programming problem. Here the constraints take the form
of linear inequality constraints, plus non-negativity constraints on the independent variables.

n

Minimize Z CiZ; (objective function) (3)
i=1

b; ,i=1,...,m (inequality)

0 ,7=1,...,n (non — negativity)

subject to  >77_ ) aj;z;
Zj

(AVARYS

Once more, the canonical form of the LP can be written more compactly in matrix notation.

Minimize ¢?x (4)
subject to Ax > b
x > 0

where

c and x are n x 1 vectors,
A is an m x n matrix, and

b is an m x 1 vector.

3.3 Slack Form

This is the slack form of the linear programming problem. Here the constraints take the form of
linear equality constraints, plus non-negativity constraints on the independent variables.

n
Minimize Z CiT; (objective function) (5)
i=1
subject to Y77, ai;; b, ,i=1,...,m (equality)

zj > 0 ,j7=1,...,n (non— negativity)

The standard form of the LP can also be written more compactly in matrix notation.

Minimize ¢’'x (6)
subject to Ax = b
x > 0

where

c and x are n x 1 vectors,
A is an m x n matrix, and

b is an m x 1 vector.

Definition 1. If z satisfies Ax = b, x > 0, then z is feasible.



3.4 Constraint Conversion

It is possible to convert between equality and inequality constraints by the following method.

1. To convert a less than or equal inequality constraint,
Az <b
to an equality constraint, add the vector of slack variables, s.

Az +s=b, s>0

2. To convert a greater than or equal inequality constraint,
Az >b
to an equality constraint, add the vector of surplus variables, t.
Az —t=5b, t>0
3. Finally, to convert an equality constraint,
Az =D
to an inequality constraint, add two inequality constraints.

Ax <b, —Azxz < -b

4 Example

Example 1. Consider the following linear program:

Minimize T
subject to T > 2
3.’171 - ) Z 0
1 + x2 > 6
—z1 + 229 > 0
I Z 0
i) Z 0

The optimal solution is (4, 2) of cost 2 (See Figure 1). If we were maximizing z9, instead of
minimizing under the same feasible region, the resulting linear program would be unbounded,
since o can increase arbitrarily. From this picture, the reader should be convinced that, for any
objective function for which the linear program is bounded, there exists an optimal solution which
is a “corner” of the feasible region. This notion will be formalized in the next section.
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Figure 1: Feasible Region

5 The Geometry of LP

Definition 2. A polytope is the analogue in n-dimensional space of point, segment, polygon, and
polyhedron in spaces of dimensions 0, 1, 2, and 3. A convex polytope in n-space is the convex
span of a finite set of points that do not all lie in the same hyperplane; thus a convex polytope is
a bounded convex subset enclosed by a finite number of hyperplanes.

Definition 3. A set is convex if it contains the line segment joining any two of its points; in a
vector space, a set such that rz + (1 — r)y is in the set for 0 < r < 1, if z and y are in the set.

Definition 4. A point z is a vertex of P if Ay # 0 such that x +y, z —y € P.

Theorem 1. If the optimal solution to an LP in canonical form is bounded (from below), then
given any © € P, 3 a vertex v such that c'v < c’'z.

Corollary 1. If the LP is bounded, then 3 a vertex that yields the optimal solution.

Proof: (of theorem) Given z € P. If z is a vertex, we are done. Otherwise, Jy # 0 such that
z+y € P and z —y € P. By feasibility of z + y and z — y, A(x +y) = b, A(x —y) = b. But this
implies that Ay = 0. Furthermore, since  +y > 0 and z —y > 0, y; = 0 whenever z; = 0.

Without loss of generality, choose y such that ¢’y < 0. Then ¢’ (z + \y) = Tz + ATy < Tz

Case 1. dj such that y; < 0.
We need to ensure that x + Ay > 0 to maintain feasibility. We know that whenever z; = 0,
we have y; = 0. Hence set A = min{j:yj<0}{_z—;j}. Then it is clear that z + Ay > 0. Then
 + Ay has at least one more zero component than z.



Case 2. y; > 0, Vj.
In this case, if ¢’y = 0, then we can negate every component of y and switch to case 1 (note
that y # 0). It remains to consider the subcase ¢!y < 0. Clearly, z + Ay > 0 for A > 0.
Hence, ¢’ (z + Ay) = ¢’z + Ac’'y. Then A can be chosen arbitrarily large, and the objective
function is unbounded. Contradiction.

Case 1 can happen at most n times, since z has n components. By induction on the number of
non-zero components of z, we obtain a vertex v. |

Remark 1. Linear Programming was developed during World War II to solve logistics problems
for military resources. The simplex method for solving linear programming problems was developed
in 1947 by George Dantzig, an American mathematician. Although the simplex method performs
well in practice, in 1972 Klee and Minty demonstrated an example in which the simplex method
takes an exponential number of steps. In 1979, L. G. Khachian produced the ellipsoidal method,
which was shown to solve any linear program in polynomial time. However, when implemented, his
method was not competitive with the simplex method, and lost favor. Then, in 1984, Narinder K.
Karmarkar presented a method based on the projective transformation of a simplex. Karmarkar
showed his method solves any linear program in time that is a polynomial function of the data
of the problem. In contrast to Khachian’s method, implementations of various generalizations of
Karmarkar’s method are very competitive with the simplex method, and generally outperform it
for large problems.

Theorem 2. Let z be a point in P. The submatriz Ay = { columns corresponding to z; > 0} is
linearly independent if and only if x is a vertez.

Proof:

(<) Suppose A; has linearly dependent columns. Then Jy such that A,y =0, y # 0. Extend y
to R” by adding zero-valued components. Then Jy € R” such that Ay = 0, y # 0. Consider
z + Ay for small A > 0. Then we can chose A such that x + Ay, x — Ay € P, by an argument
analogous to that in Case 1 of the proof of Theorem 1, above. Hence, z is not a vertex.

(=) Assume z is not a vertex. Then, by definition, Jy # 0 such that z+y, z —y € P. Let A, be
the submatrix corresponding to the non-zero components of 4. As in the proof of Theorem 1,

Az + Ay =10 _
Az — Ay =b }éAy—O.

Therefore, A, has dependent columns, since y # 0. Moreover,

z+y>0

r—y>0 }:>yj:OWhenever$j=0.

Therefore, A, is a submatrix of A,. Since A, is a submatrix of A;, A, has linearly dependent
columns.



6 Simplex Algorithm

The Simplex Algorithm is based on the fact that the optimal solution to a feasible LP (linear
program) can be found at one of the vertices of the polytope defined by the set of constraints. The
algorithm starts from an arbitrary vertex represented by a basic feasible solution (bfs), and at each
iteration uses a technique called pivoting to search for an adjacent vertex with an improved cost
to the solution to move to. If no adjacent vertex has an improved cost, then it can be proved that
the current vertex represents the optimal solution. The algorithm must search through a set of
potentially exponentially many vertices, and as a result is not polynomial in the worst-case. Even
S0, it performs very well in practice, and was the algorithm of choice for several decades.

T

(Throughout this section, all LP’s are given by: minimize ¢’ z subject to Az = b and z > 0, unless

explicitly defined otherwise.)

6.1 Pivoting

Pivoting is the mechanism used to manipulate the basis corresponding to a vertex v’s bfs, to find
the basis that corresponds to an adjacent vertex. To perform a pivot step we replace one of the
m linearly independent columns of the basis corresponding to v with one of the nonbasic columns
from A in such a way that we still have m linearly independent columns. This produces the basis
of an adjacent vertex, v'. The Simplex Algorithm uses pivoting to examine the neighbors of v until
a neighbor is found that corresponds to a feasible (non-negative) solution which is an improvement
over the bfs for v. We illustrate how pivoting is done with an example.

Example 2. Assume that in LP,

5 2 -3 16 4
A=12 3 1 3 1
17 6 -1 2
8
b= 8
25
and we have determined a basis,
B =1{1,3,5}.

(B is specified here by identifying the basic columns. In other words, zo = x4 = 0.) This gives
us the following three linearly independent equations, which can be solved to find the corresponding

bfs:
521 — 3xo +4x5 =

2x1 + x2 + x5
x1 + 6x3 + 25 = 25



The solution, x1 =1, x3 = 3, x5 = 3; can also be written as:

[a——y

bfs =

w o w o

We now perform a pivot to find another basis, by adding a nonbasic column to B, and removing
one of the basic columns from B. Assume that we choose to add column As. We can express Ay
as a linear combination of the columns that are in B as follows:

Ay = adr+ BA3+ 745
16 = 5a— 38+ 4y

3 = 2a0+8+7y
-1 = a+68+2y

The solution is: a« =1, B = —1, v = 2. Therefore, Ay = Ay — A3 + 2A5. Since we want to find a
new basis, B', with a feasible solution, we must find a basic column to remove, such that:

[ ] AleBl = b}

e Ip > 0;

e and zo = 0.

where Ap: refers to the basic columns of A. We have already solved
Al.’L'l + A3.’L‘3 + A5.’L'5 = b
and want to modify that solution to include A4 in the basis so that:

Al.’l,‘ll + Ag:blg + A40 + A5:EI5 = b

', 2'3,5's > 0
Since we know that Ay = A1 — Az + 245, we simply need to find © > 0 such that,
A(z'y +0O) + A3(2'3 — ©) + A5(2'5 +20) = b.
But we know that:

Al.’L'l + A3.’L‘3 + A5.’L'5 = b

so we have:
T = :L"l + 0= 1, = 0<1
T3 = 33’3 -0 = 3, = 0>-3
5 = .'L"5 +20 = 3, = o< %

We simply choose the smallest non-negative © that satisfies these conditions, namely © = 1 =
z1 = 0. Thus our new basis is B' = {4,3,5}, and our bfs has 'y = 1,2'3 = 4,2'5 = 1, and we have
completed a pivot. O



Let us review the steps involved in pivoting. The idea is to start from a basis, B = {1,2,...,m} and
then find a suitable nonbasic column j € {1,2,...,m} to replace a basic column [ ¢ {1,2,...,m}
in order to arrive at an adjacent basis, B’. This is achieved using the following steps:

1. Assume that the starting basis B = {1,2,...,m}, is known.

B contains m linearly independent columns of the n columns in A. We have already found
the bfs for B, bfsp which satisfies:

Em Az = b (7)
i=1
z > 0 (8)

2. Choose a nonbasic column j ¢ {1,2,...,m} to add to B.
(In the Simplex Algorithm, each j ¢ {1,2,...,m} can be tried in turn until one is found that
results in a bfs with an improved cost.)

3. Find the linear dependence of column j on the basic columns, by finding «; ; such that:
m
A = ) i A (9)
=1
4. Find our options for z’; = ©, so that

m
Z Az’ + ijlj = b (10)

=1

We can find the feasible range of values for © as follows:

Z Aizi + (A’ ; — Ajx'y) = b (based on Equation 7)
=1

Z Az + ijlj -0 Z;il o; ;A
i=1
= b (based on Equation 9)
m
Y Ailzi — ©aij) + Aja, = b
i=1

So z'; = £; — O« j, and in order for z’; > 0, we must have © < i,
1,7

5. Choose the basic column to [ € {1,2,...,m} to remove from B.
We want to choose the smallest value of © that will result in a feasible solution, so we take
© to be the
. g
min .
T
Va; ;>0

[ is the value of 7 associated with our choice of ©.
(N.B. If Ve ; < 0, then the solution is unbounded.)

10



6.2 Tableau Method

The Tableau Method provides an efficient means of performing the pivots required for the Simplex
Algorithm. The idea is to manipulate A and b so that the basic columns of A become the identity
matrix. When this happens, Step 3 of the pivoting process (above)—finding the «; ; coefficients
for Aj—becomes trivial, because (based on Equation 9) «; ; = a; ; (where a;; is the (i, ) entry of
A—the member in the ith row of A;).

Example 3. Consider LP, defined by

6 = x1+x9+4xg

14 = —2z1+2x9+ 23 — T4+ Tg
—11 = x1 — 229 + x4 + 224

7 = x1—3x4+ x5 — bz

for which we have determined that a basis, B = {2,3,4,5}. We can represent LP, by an m x (n+1)
matriz, a tableau, as follows:

b | AL | Ay | A3 | A, | A5 | Ag
6 | 1| 1]0]0]0]4
14 |2 1]-1]0] 1
1] 1]-2[01]0]2
7 | 1]0]0|-3]1]-5

By performing row operations on the tableau, we can transfrom the columns that represent B into
the identity matriz, without affecting the solution space. This transformation yields,

b | A | Ay | As | Ay | A5 | Ag
6 1]1]0]0]0]4
3(-1]0]1]0]0]3
1300 1]0]10
101000012

There are two possible nonbasic columns that we may consider adding to our basis as part of a
pivot. Assume that we choose column 1, so that j = 1. Then we have,

Aj=A; = 1Ay — 145+ 34, + 1045

© is determined by

. x; 1

®= min —* =_—.

~~ a; 3
Va;1>0

(since a;j = a; j), so that | = 4, and the new basis, B', is {2,3,1,5}.

Row operations are once again performed in order to convert B' to the identity matriz (and update

11



b to the new bfs V'), yielding

bl 14I1 14[2 14[3 14I4 A15 AI6
17 —1 2
O O I R
Flofol s oy
It ==
310 J0]JO0 5|1 |5

The cost function, cLx, is what actually determines which of the nonbasic columns gets chosen to

include in the new basis—we must find one which results in decrease in the cost. For any proposed
replacement of some column [ by some column j, we must simply check that the cost of the new
solution is less that the cost of the previous solution. The cost of new solution is given by:

m
! !
new cost = E Tic; + X ¢
=1

m
= Z(acZ — O, ;) + Oc¢;
i=1
m m
= Z zic; +O [Cj — E am'ci]
=1 =1

——
old cost modified cost, ¢;

So if the modified cost, c;, is negative, then the new cost will be reduced. O

Let us review how pivoting is performed using the Tableau Method. A tableau, constructed as
follows, is used to perform pivots:

* C1 Co cen Cp,
by | Ain | A | ... | Aig
by Ag’l A2’2 . Ag’n
bm Am,l Am,2 - Am,n

in which the basic columns of A form the identity matrix, and the each nonbasic column, j, contains
the coefficients, «; j. (An additional row, row 0, is used to store the modified costs.)

A pivot is made with the following steps:

1. Find a column j such that ¢; < 0, by examining row 0.

(If no such column exists, we have found the optimal solution.)

2. Find column ! with oz ; > 0, that minimizes ©

(If all «;; < 0 then either the solution is unbounded—unless we didn’t have a basis to begin
with.)
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3. Replace [ by j

We have yet to specify how the starting basis is found for an LP. Suppose we are given LPj:
minimize ¢!z subject to Az < b, and z > 0. Then we can add one surplus variable per constraint,
such that:

Zaz‘,ﬂ?ﬂrsz' =b;, 1€{1,2,...,m}
j

Then our bfs is: {z; =0,s; = b;}. If instead of Az < b we have Az = b, then we can similarly add
artificial variables, such that:

Zai,jwj+yi =bii € {1,2,...,m}
j

to form LPp (for which we can easily construct a basis) for which we minimize ) y;, for y; > 0.
LP, will be feasible iff the optimal solution for LPg is 0. To get a bfs for LP4 we solve LPp using
the Simplex Algorithm by starting with the bfs, {z; = 0,y; = b;}, and if the optimal solution for
LPp is 0, then all y;s are 0 and the z form a bfs for LP4.
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