Coding and Error Control

Coping with Transmission Errors

- ☐ Error detection codes
 - o Detects the presence of an error
- □ Error correction codes, or forward correction codes (FEC)
 - o Designed to detect and correct errors
 - o Widely used in wireless networks
- □ Automatic repeat request (ARQ) protocols
 - o Used in combination with error detection/correction
 - o Block of data with error is discarded
 - o Transmitter retransmits that block of data

Error Detection Probabilities

- □ Probability of single bit error (BER)
- □ Probability that a frame arrives with no bit errors = (1 - BER)^F
- □ Probability that a frame arrives with undetected errors (residual error rate)
- Probability that a frame arrives with one or more detected bit errors

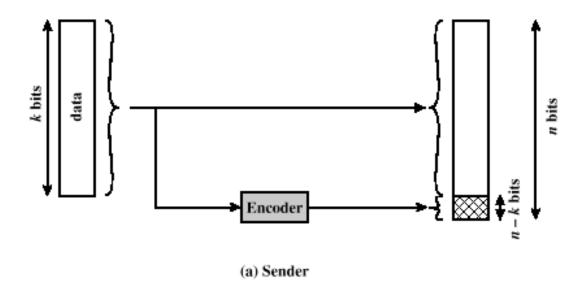
Error Detection Process

☐ Transmitter

- o For a given frame, an error-detecting code (check bits) is calculated from data bits
- o Check bits are appended to data bits

☐ Receiver

- o Separates incoming frame into data bits and check bits
- o Calculates check bits from received data bits
- o Compares calculated check bits against received check bits
- o Detected error occurs if mismatch



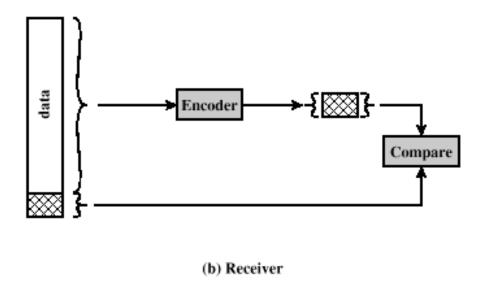


Figure 8.1 Error Detection Process

Parity Check

- ☐ Parity bit appended to a block of data
- □ Even parity
 - o Added bit ensures an even number of 1s
- □Odd parity
 - o Added bit ensures an odd number of 1s
- □Example, 7-bit character [1110001]
 - o Even parity [11100010]
 - o Odd parity [11100011]

Cyclic Redundancy Check (CRC)

- □ Transmitter
 - o For a k-bit block, transmitter generates an (n-k)-bit frame check sequence (FCS)
 - o Resulting frame of *n* bits is exactly divisible by predetermined number
- □ Receiver
 - o Divides incoming frame by predetermined number
 - o If no remainder, assumes no error

CRC using Modulo 2 Arithmetic

- □ Exclusive-OR (XOR) operation
- ☐ Parameters:
 - T = n-bit frame to be transmitted
 - *D* = *k*-bit block of data; the first *k* bits of *T*
 - F = (n k)-bit FCS; the last (n k) bits of T
 - P = pattern of n-k+1 bits; this is the predetermined divisor
 - Q = Quotient
 - R = Remainder

CRC using Modulo 2 Arithmetic

 \Box For T/P to have no remainder, start with

$$T = 2^{n-k}D + F$$

□ Divide $2^{n-k}D$ by P gives quotient and remainder

remainder
$$\frac{2^{n-k}D}{P} = Q + \frac{R}{P}$$

☐ Use remainder as FCS

$$T = 2^{n-k}D + R$$

CRC using Modulo 2 Arithmetic

 \square Does R cause T/P to have no remainder?

$$\frac{T}{P} = \frac{2^{n-k}D + R}{P} = \frac{2^{n-k}D}{P} + \frac{R}{P}$$

□ Substituting,

$$\frac{T}{P} = Q + \frac{R}{P} + \frac{R}{P} = Q + \frac{R+R}{P} = Q$$

o No remainder, so T is exactly divisible by P

CRC using Polynomials

□ All values expressed as polynomials o Dummy variable *X* with binary coefficients

$$\frac{X^{n-k}D(X)}{P(X)} = Q(X) + \frac{R(X)}{P(X)}$$
$$T(X) = X^{n-k}D(X) + R(X)$$

Error Detection using CRC

- □ All single bit errors, if P(X) has more than one non-zero term
- □ All double bit errors, as long as P(X) has a factor with at least 3 terms
- □ All odd errors, as long as P(X) contains X+1 as a factor
- ☐ Any burst error of length at most n-k

CRC using Polynomials

- \square Widely used versions of P(X)
 - o CRC-12

$$\bullet$$
 X¹² + X¹¹ + X³ + X² + X + 1

- o CRC-16
 - $X^{16} + X^{15} + X^2 + 1$
- o CRC CCITT
 - \bullet $X^{16} + X^{12} + X^{5} + 1$
- o CRC 32
 - $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

CRC using Digital Logic

- □ Dividing circuit consisting of:
 - o XOR gates
 - Up to n − k XOR gates
 - Presence of a gate corresponds to the presence of a term in the divisor polynomial P(X)
 - o A shift register
 - String of 1-bit storage devices
 - Register contains n k bits, equal to the length of the FCS

Digital Logic CRC

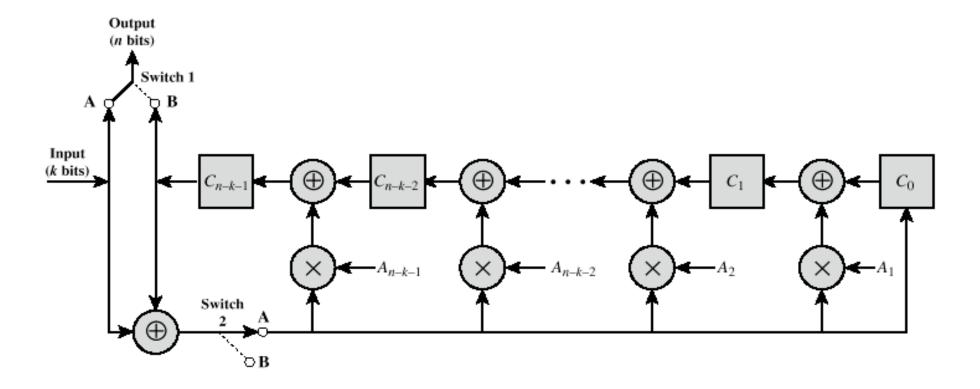


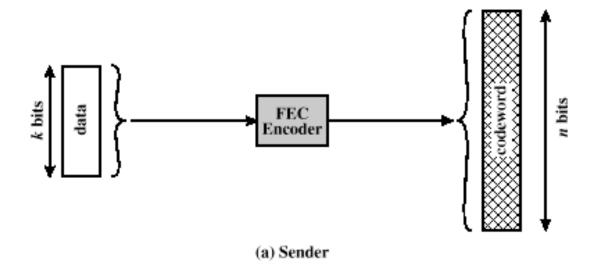
Figure 8.4 General CRC Architecture to Implement Divisor $1 + A_1X + A_2X^2 + ... + A_{n-1}X^{n-k-1} + X^{n-k}$

Wireless Transmission Errors

- ☐ Error detection requires retransmission
- Detection inadequate for wireless applications
 - o Error rate on wireless link can be high, results in a large number of retransmissions
 - o Long propagation delay compared to transmission time

Block Error Correction Codes

- □ Transmitter
 - o Forward error correction (FEC) encoder maps each k-bit block into an n-bit block codeword
 - o Codeword is transmitted; analog for wireless transmission
- □ Receiver
 - o Incoming signal is demodulated
 - o Block passed through an FEC decoder



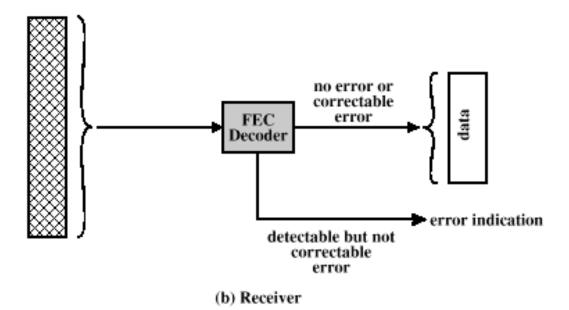


Figure 8.5 Forward Error Correction Process

FEC Decoder Outcomes

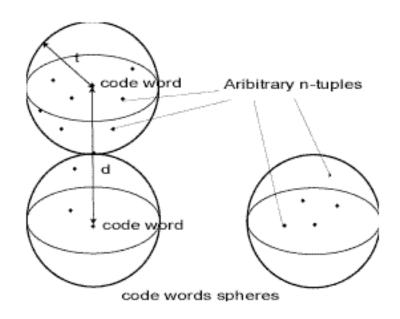
- □ No errors present
 - o Codeword produced by decoder matches original codeword
- Decoder detects and corrects bit errors
- □ Decoder detects but cannot correct bit errors; reports uncorrectable error
- □ Decoder detects no bit errors, though errors are present

Block Code Principles

- ☐ Hamming distance for 2 *n*-bit binary sequences, the number of different bits
 - o E.g., $v_1=011011$; $v_2=110001$; $d(v1, v_2)=3$
- □ Redundancy ratio of redundant bits to data bits
- □ Code rate ratio of data bits to total bits
- \square Coding gain the reduction in the required E_b/N_0 to achieve a specified BER of an error-correcting coded system
 - o BER refers to rate of uncorrected errors

Block Codes

- ☐ The Hamming distance d of a Block code is the minimum distance between two code words
- □ Error Detection: o Up to *d*-1 errors
- ☐ Error Correction: o Up to $\left| \frac{d-1}{2} \right|$



Coding Gain

- □ Definition:
 - o The coding gain is the amount of additional SNR or E_b/N_0 that would be required to provide the same BER performance for an uncoded signal
- ☐ If the code is capable of correcting at $\underline{most}\ \underline{t}$ \underline{errors} and P_{UC} is the BER of the channel without coding, then the probability that a bit is in error using coding is:

$$P_{CB} \cong \frac{1}{n} \sum_{i=t+1}^{n} i \binom{n}{i} P_{UC}^{i} (1 - P_{UC})^{n-i}$$

Hamming Code

- ☐ Designed to correct single bit errors
- □ Family of (n, k) block error-correcting codes with parameters:
 - o Block length: $n = 2^m 1$
 - o Number of data bits: $k = 2^m m 1$
 - o Number of check bits: n k = m
 - o Minimum distance: $d_{min} = 3$
- ☐ Single-error-correcting (SEC) code
 - o SEC double-error-detecting (SEC-DED) code

Hamming Code Process

- \square Encoding: k data bits + (n k) check bits
- □ Decoding: compares received (n k) bits with calculated (n k) bits using XOR
 - o Resulting (n k) bits called syndrome word
 - o Syndrome range is between 0 and $2^{(n-k)}-1$
 - o Each bit of syndrome indicates a match (0) or conflict (1) in that bit position

Cyclic Block Codes

□ Definition:

- o An (n, k) linear code C is called a *cyclic code* if every cyclic shift of a code vector in C is also a code vector
- o Codewords can be represented as polynomials of degree n. For a cyclic code all codewords are multiple of some polynomial g(X) modulo X^n+1 such that g(X) divides X^n+1 . g(X) is called the generator polynomial.

☐ Examples:

- o Hamming codes, Golay Codes, BCH codes, RS codes
- o BCH codes were independently discovered by Hocquenghem (1959) and by Bose and Chaudhuri (1960)
- o Reed-Solomon codes (non-binary BCH codes) were independently introduced by Reed-Solomon

Cyclic Codes

- ☐ Can be encoded and decoded using linear feedback shift registers (LFSRs)
- □ For cyclic codes, a valid codeword $(c_0, c_1, ..., c_{n-1})$, shifted right one bit, is also a valid codeword $(c_{n-1}, c_0, ..., c_{n-2})$
- \square Takes fixed-length input (k) and produces fixed-length check code (n-k)
 - o In contrast, CRC error-detecting code accepts arbitrary length input for fixed-length check code

Cyclic Block Codes

- \square A cyclic Hamming code of length 2^m -1 with m>2 is generated by a primitive polynomial p(X) of degree m
- ☐ Hamming code (31, 26)

o
$$g(X) = 1 + X^2 + X^5$$
, $I = 3$

- ☐ Golay Code:
 - o cyclic code (23, 12)
 - o minimum distance 7
 - o generator polynomials: either $g_1(X)$ or $g_2(X)$

$$g_1(X) = 1 + X^2 + X^4 + X^5 + X^6 + X^{10} + X^{11}$$

 $g_2(X) = 1 + X + X^5 + X^6 + X^7 + X^9 + X^{11}$

BCH Codes

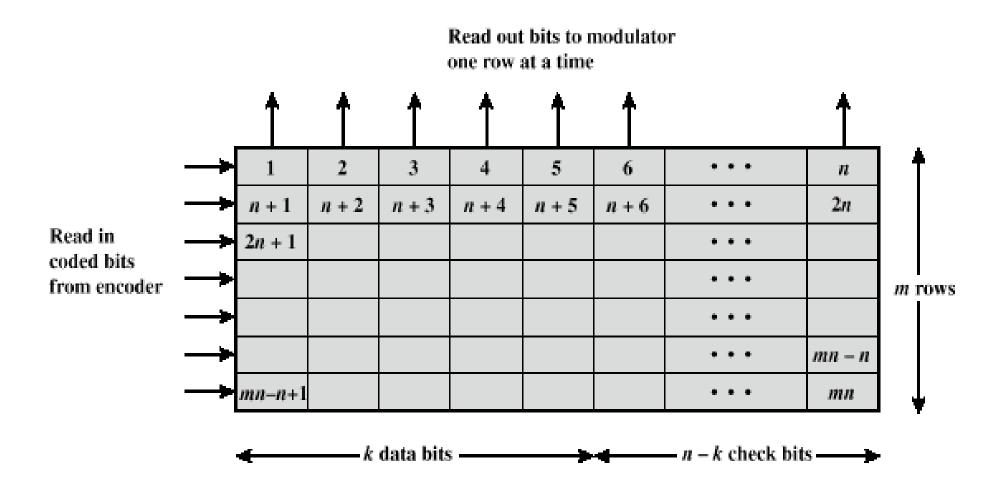
- □ For positive pair of integers m and t, a (n, k)k) BCH code has parameters:
 - o Block length: $n = 2^m 1$
 - o Number of check bits: $n k \le mt$
 - o Minimum distance: $d_{min} >= 2t + 1$
- □ Correct combinations of t or fewer errors
- ☐ Flexibility in choice of parameters
 - o Block length, code rate

Reed-Solomon Codes

- ☐ Subclass of non-binary BCH codes
- □ Data processed in chunks of *m* bits, called symbols
- \square An (n, k) RS code has parameters:
 - o Symbol length: m bits per symbol
 - o Block length: $n = 2^m 1$ symbols = $m(2^m 1)$ bits
 - o Data length: k symbols
 - o Size of check code: n k = 2t symbols = m(2t) bits
 - o Minimum distance: $d_{min} = 2t + 1$ symbols

Block Interleaving

- □ Data written to and read from memory in different orders
- □ Data bits and corresponding check bits are interspersed with bits from other blocks
- □ At receiver, data are deinterleaved to recover original order
- □ A burst error that may occur is spread out over a number of blocks, making error correction possible

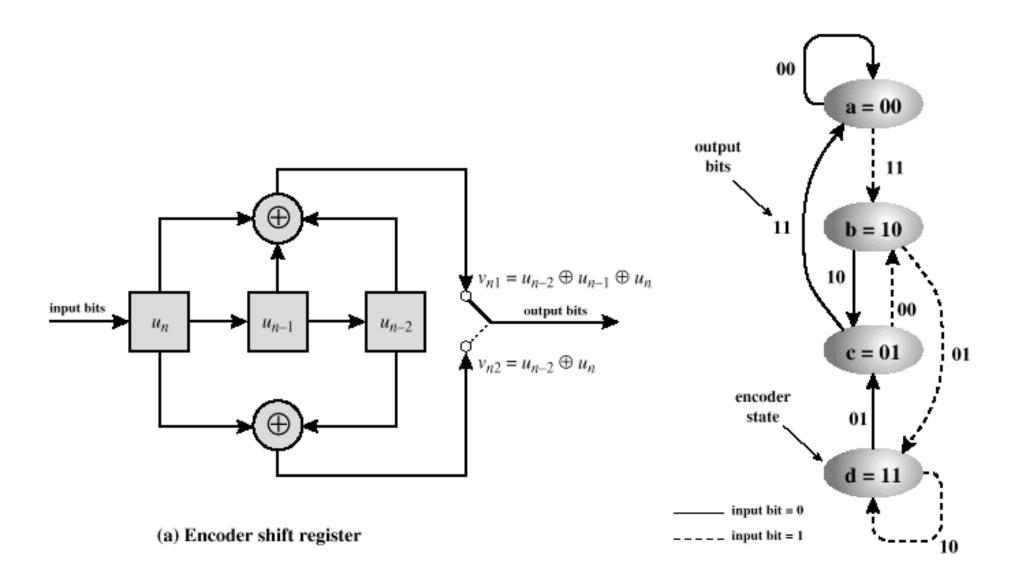


Note: The numbers in the matrix indicate the order in which bits are read in. Interleaver output sequence: 1, n + 1, 2n + 1, ...

Figure 8.8 Block Interleaving

Convolutional Codes

- ☐ Generates redundant bits continuously
- □ Error checking and correcting carried out continuously
 - o (*n*, *k*, *K*) code
 - Input processes k bits at a time
 - Output produces n bits for every k input bits
 - *K* = constraint factor
 - k and n generally very small
 - o n-bit output of (n, k, K) code depends on:
 - Current block of k input bits
 - Previous *K*-1 blocks of *k* input bits



(b) Encoder state diagram

Figure 8.9 Convolutional Encoder with (n, k, K) = (2, 1, 3)

Decoding

- ☐ Trellis diagram expanded encoder diagram
- □ Viterbi code error correction algorithm
 - o Compares received sequence with all possible transmitted sequences
 - o Algorithm chooses path through trellis whose coded sequence differs from received sequence in the fewest number of places
 - o Once a valid path is selected as the correct path, the decoder can recover the input data bits from the output code bits

Automatic Repeat Request

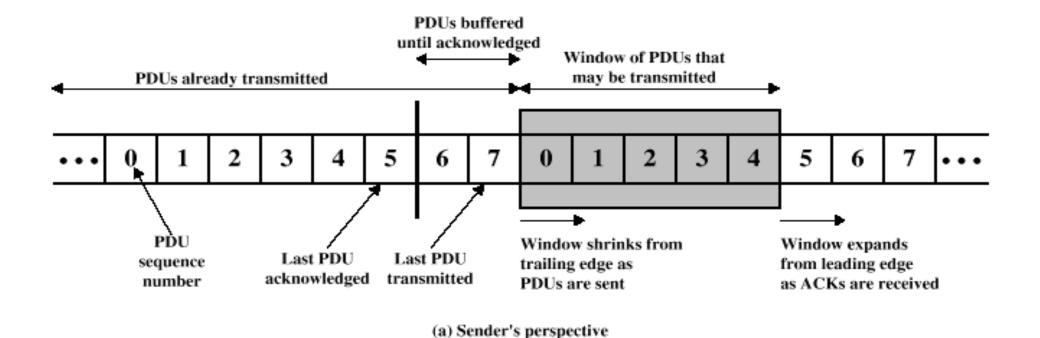
- Mechanism used in data link control and transport protocols
- □ Relies on use of an error detection code (such as CRC)
- ☐ Flow Control
- ☐ Error Control

Flow Control

- □ Assures that transmitting entity does not overwhelm a receiving entity with data
- ☐ Protocols with flow control mechanism allow multiple PDUs in transit at the same time
- ☐ PDUs arrive in same order they're sent
- ☐ Sliding-window flow control
 - o Transmitter maintains list (window) of sequence numbers allowed to send
 - o Receiver maintains list allowed to receive

Flow Control

- □ Reasons for breaking up a block of data before transmitting:
 - o Limited buffer size of receiver
 - o Retransmission of PDU due to error requires smaller amounts of data to be retransmitted
 - On shared medium, larger PDUs occupy medium for extended period, causing delays at other sending stations



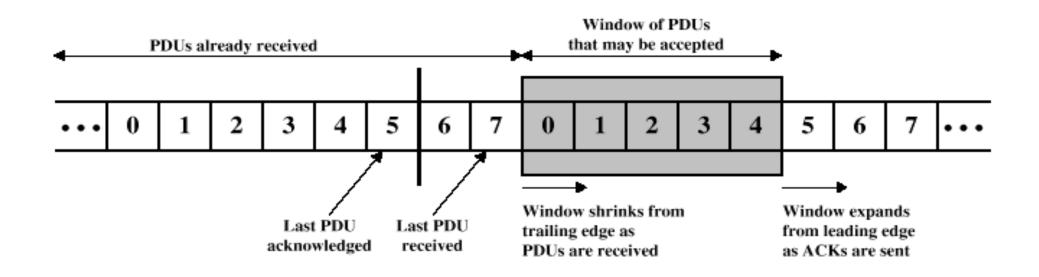


Figure 8.17 Sliding-Window Depiction

(b) Receiver's perspective

Error Control

- ☐ Mechanisms to detect and correct transmission errors
- □Types of errors:
 - o Lost PDU: a PDU fails to arrive
 - o Damaged PDU: PDU arrives with errors
- ☐ Techniques:
 - o Timeouts
 - o Acknowledgments
 - o Negative acknowledgments

Hybrid ARQ

- Combining error correction and error detection
 - o Chase combining
 - o Incremental redundancy
- ☐ Chase combining (Type I)
 - o At receiver, decoding done by combining retransmitted packets
- ☐ Incremental redundancy (Type II/III)
 - o First packet contains information and selected check bits
 - o Subsequent packets contain selected check bits
 - o Receiver decodes by combining all received bits
- ☐ Commonly used in wireless networks