
Bluetooth and Mobile IP

Bluetooth

- ☐ Consortium: Ericsson, Intel, IBM, Nokia, Toshiba...
- ☐ Scenarios:
 - o connection of peripheral devices
 - loudspeaker, joystick, headset
 - o support of ad-hoc networking
 - small devices, low-cost
 - o bridging of networks
 - e.g., GSM via mobile phone Bluetooth laptop

- o Worldwide operation: 2.4 GHz
- o Resistance to jamming and selective frequency fading:
 - FHSS over 79 channels (of 1MHz each), 1600hops/s
- o Coexistence of multiple piconets: like CDMA
- o Links: synchronous connections and asynchronous connectionless
- o Interoperability: protocol stack supporting TCP/IP, OBEX, SDP
- o Range: 10 meters, can be extended to 100 meters
- ☐ Documentation: over 1000 pages specification: <u>www.bluetooth.com</u>

Bluetooth Application Areas

- ☐ Data and voice access points
 - o Real-time voice and data transmissions
- ☐ Cable replacement
 - Eliminates need for numerous cable attachments for connection
- \Box Low cost < \$5
- Ad hoc networking
 - o Device with Bluetooth radio can establish connection with another when in range

Protocol Architecture

- ☐ Bluetooth is a layered protocol architecture
 - o Core protocols
 - o Cable replacement and telephony control protocols
 - o Adopted protocols
- ☐ Core protocols
 - o Radio
 - o Baseband
 - o Link manager protocol (LMP)
 - o Logical link control and adaptation protocol (L2CAP)
 - o Service discovery protocol (SDP)

Protocol Architecture

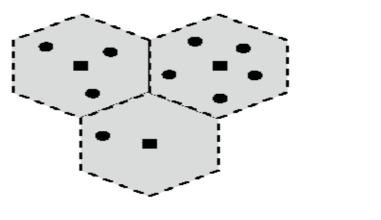
- ☐ Cable replacement protocol
 - o RFCOMM
- ☐ Telephony control protocol
 - o Telephony control specification binary (TCS BIN)
- ☐ Adopted protocols
 - o PPP
 - o TCP/UDP/IP
 - o OBEX
 - o WAE/WAP

Protocol Architecture

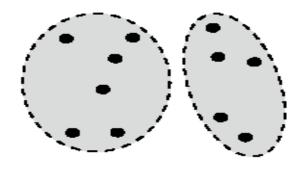
(RS232). Upto 60 connections

BT **Radio** (2.4 GHZ Freq. Band): **Application** Modulation: Gaussian Frequency Shift Keying **Baseband**: FH-SS (79 carriers), CDMA (hopping TCP/UDP Commands OB sequence from the node MAC address) **Audio**: interfaces directly with the baseband. Each $\tilde{\mathbb{R}}$ PPP voice connection is over a 64Kbps SCO link. The voice coding scheme is the Continuous Variable Slope Delta (CVSD) Link Manager Protocol (LMP): link setup and **RFCOMM TCS SDP** control, authentication and encryption Host Controller Interface: provides a uniform L2CAP method of access to the baseband, control HC registers, etc through USB, PCI, or UART □ Logical Link Control and Adaptation Layer (**L2CAP**): Audio Link Manager (LMP) higher protocols multiplexing, packet segmentation/reassembly, QoS Baseband Service Discover Protocol (**SDP**): protocol of locating services provided by a Bluetooth device Bluetooth Radio Telephony Control Specification (**TCS**): defines the call control signaling for the establishment of speech and data calls between Bluetooth devices **OBEX**: OBject EXchange (e.g., vCard) **RFCOMM**: provides emulation of serial links

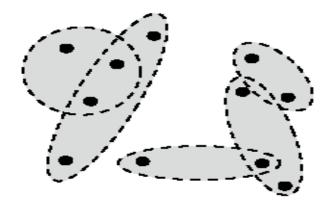
Wireless Networks Fall 2007


Usage Models

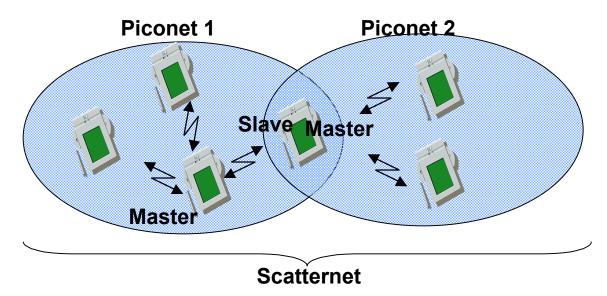
- ☐ File transfer
- ☐ Internet bridge
- □ LAN access
- □ Synchronization
- ☐ Three-in-one phone
- □Headset


Piconets and Scatternets

- ☐ Piconet
 - o Basic unit of Bluetooth networking
 - o Master and one to seven slave devices
 - o Master determines channel and phase
- Scatternet
 - o Device in one piconet may exist as master or slave in another piconet
 - o Allows many devices to share same area
 - o Makes efficient use of bandwidth

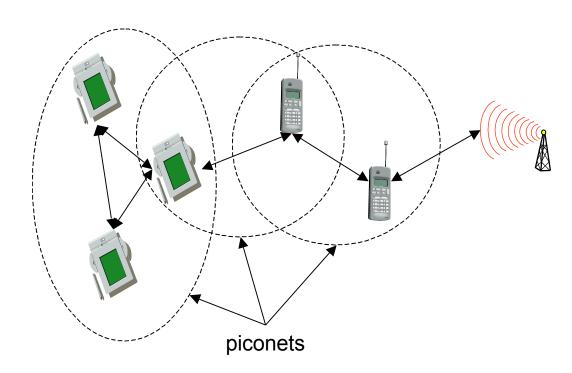

Wireless Network Configurations

(a) Cellular system (squares represent stationary base stations)


(b) Conventional ad hoc systems

(c) Scatternets

Figure 15.5 Wireless Network Configurations


Network Topology

- ☐ Piconet = set of Bluetooth nodes synchronized to a master node
 - o The piconet hopping sequence is derived from the master MAC address (BD_ADDR IEEE802 48 bits compatible address)
- ☐ Scatternet = set of piconet
- Master-Slaves can switch roles
- A node can only be master of one piconet. Why?

Scatternets

- ☐ Each piconet has one master and up to 7 slaves
- Master determines hopping sequence, slaves have to synchronize
- ☐ Participation in a piconet = synchronization to hopping sequence
- ☐ Communication between piconets = devices jumping back and forth between the piconets

Wireless Networks Fall 2007

Radio Specification

- ☐ Classes of transmitters
 - o Class 1: Outputs 100 mW for maximum range
 - Power control mandatory
 - Provides greatest distance
 - o Class 2: Outputs 2.4 mW at maximum
 - Power control optional
 - o Class 3: Nominal output is 1 mW
 - Lowest power
- ☐ Frequency Hopping in Bluetooth
 - o Provides resistance to interference and multipath effects
 - o Provides a form of multiple access among co-located devices in different piconets

Frequency Hopping

- ☐ Total bandwidth divided into 1MHz physical channels
- ☐ FH occurs by jumping from one channel to another in pseudorandom sequence
- □ Hopping sequence shared with all devices on piconet
- ☐ Piconet access:
 - o Bluetooth devices use time division duplex (TDD)
 - o Access technique is TDMA
 - o FH-TDD-TDMA

Frequency Hopping

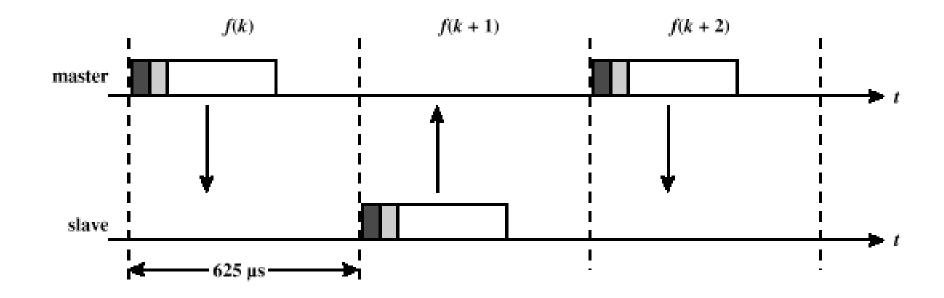
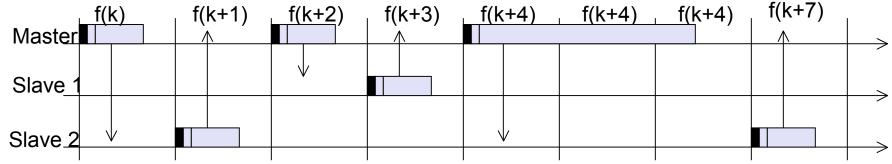


Figure 15.6 Frequency-Hop Time-Division Duplex

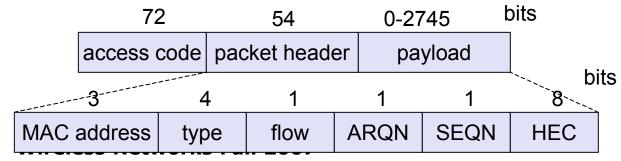

Wireless Networks Fall 2007

Physical Links

- ☐ Synchronous connection oriented (SCO)
 - o Allocates fixed bandwidth between point-to-point connection of master and slave
 - o Master maintains link using reserved slots
 - o Master can support three simultaneous links
- ☐ Asynchronous connectionless (ACL)
 - o Point-to-multipoint link between master and all slaves
 - o Only single ACL link can exist

Bluetooth Piconet MAC

□ Each node has a Bluetooth Device Address (BD_ADDR). The master BD_ADDR determines the sequence of frequency hops



☐ Types of connections:

Synchronous Connection-Oriented link (**SCO**) (symmetrical, circuit switched, point-to-point) Asynchronous Connectionless Link (**ACL**): (packet switched, point-to-multipoint, masterpolls)

□ Packet Format:

- o Access code: synchronization, when piconet active derived from master
- Packet header (for ACL): 1/3-FEC, MAC address (1 master, 7 slaves), link type, alternating bit ARQ/SEQ, checksum

Types of Access Codes

- □ Channel access code (CAC) identifies a piconet
- □ Device access code (DAC) used for paging and subsequent responses
- □Inquiry access code (IAC) used for inquiry purposes
- □ Preamble+sync+trailer

Packet Header Fields

- □ AM_ADDR contains "active mode" address of one of the slaves
- ☐ Type identifies type of packet
 - o ACL: Data Medium (DM) or Data High (DH), with different slot lengths (DM1, DM3, DM5, DH1, DH3, DH5)
 - o SCO: Data Voice (DV) and High-quality voice (HV)
- ☐ Flow 1-bit flow control
- □ ARQN 1-bit acknowledgment
- □ SEQN 1-bit sequential numbering schemes
- □ Header error control (HEC) 8-bit error detection code

Payload Format

- ☐ Payload header
 - o L_CH field identifies logical channel
 - o Flow field used to control flow at L2CAP level
 - o Length field number of bytes of data
- □ Payload body contains user data
- □CRC 16-bit CRC code

Error Correction Schemes

- □ 1/3 rate FEC (forward error correction)
 - o Used on 18-bit packet header, voice field in HV1 packet
- □ 2/3 rate FEC
 - o Used in DM packets, data fields of DV packet, FHS packet and HV2 packet
- **□**ARQ
 - o Used with DM and DH packets

ARQ Scheme Elements

- □ Error detection destination detects errors, discards packets
- □ Positive acknowledgment destination returns positive acknowledgment
- □ Retransmission after timeout source retransmits if packet unacknowledged
- □ Negative acknowledgment and retransmission destination returns negative acknowledgement for packets with errors, source retransmits
- □ Bluetooth uses ACKs, NAKs, and a form of stopand-wait ARQ

Types of packets

□ SCO packets: Do not have a CRC (except for the data part of DV) and are never retransmitted. Intended for High-quality Voice

(HV).

Type	Payload (bytes)	FEC	CRC	max-rate kbps
HV1	10	1/3	No	64
HV2	20	2/3	No	64
HV3	30	No	No	64
DV	10+(1-10)D	2/3D	Yes D	64+57.6D

□ ACL packets: Data Medium-rate (DM) and Data High-rate (DH)

Type	Payload (bytes)	FEC	CR C	Sym. max-rate	Asymm. max-rate (DL/UL)
DM1	0-17	2/3	Yes	108.8	108.8/108.9
DM3	0-121	2/3	Yes	258.1	387.2/54.4
DM5	0-224	2/3	Yes	286.7	477.8/36.3
DH1	0-27	No	Yes	172.8	172.8/172.8
DH3	0-183	No	Yes	390.4	585.6/86.4
DH5	0-339	No	Yes	433.9	723.2/185.6

Wireless Networks Fall 2007

Channel Control

- Major states
 - o Standby default state
 - o Connection device connected
- ☐ Interim substates for adding new slaves
 - o Page device issued a page (used by master)
 - o Page scan device is listening for a page
 - Master response master receives a page response from slave
 - o Slave response slave responds to a page from master
 - Inquiry device has issued an inquiry for identity of devices within range
 - o Inquiry scan device is listening for an inquiry
 - o Inquiry response device receives an inquiry response

Inquiry Procedure

- □ Potential master identifies devices in range that wish to participate
 - o Transmits ID packet with inquiry access code (IAC)
 - o Occurs in Inquiry state
- ☐ Device receives inquiry
 - o Enter Inquiry Response state
 - o Returns FHS (Frequency Hop Synchronization) packet with address and timing information
 - o Moves to page scan state

Inquiry Procedure Details

- ☐ Goal: aims at discovering other neighboring devices
- Inquiring node:
 - o Sends an inquiry message (packet with only the access code: General Inquiry Access Code: GIAC or Dedicated IAC: DIAC). This message is sent over a subset of all possible frequencies.
 - o The inquiry frequencies are divided into two hopping sets of 16 frequencies each.
 - o In inquiry state the node will send up to $N_{INQUIRY}$ sequences on one set of 16 frequencies before switching to the other set of 16 frequencies. Upto 3 switches can be executed. Thus the inquiry may last upto 10.24 seconds.
- ☐ To be discovered node:
 - o Enters an inquiry_scan mode
 - When hearing the inquiry_message (and after a backoff procedure) enter an inquiry_response mode: send a Frequency Hop Sync (FHS) packet (BD_ADDR, native clock)
- After discovering the neighbors and collecting information on their address and clock, the inquiring node can start a page routine to setup a piconet

Page Procedure

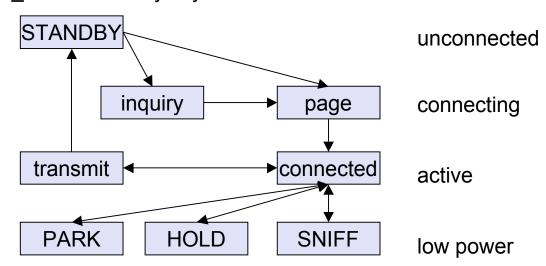
- Master uses devices address to calculate a page frequency-hopping sequence
- Master pages with ID packet and device access code (DAC) of specific slave
- ☐ Slave responds with DAC ID packet
- ☐ Master responds with its FHS packet
- ☐ Slave confirms receipt with DAC ID
- Slaves moves to Connection state

Page Procedure Details

- ☐ Goal: e.g., setup a piconet after an inquiry
- ☐ Paging node (master):
 - o Sends a page message (i.e., packet with only Device Access Code of paged node) over 32 frequency hops (from DAC and split into 2*16 freq.)
 - o Repeated until a response is received
 - o When a response is received send a FHS message to allow the paged node to synchronize
- ☐ Paged node (slave):
 - o Listens on its hopping sequence
 - o When receiving a page message, send a page_response and wait for the FHS of the pager

Slave Connection State Modes

- □ Active participates in piconet
 - o Listens, transmits and receives packets
- □Sniff only listens on specified slots
- □ Hold does not support ACL packets
 - o Reduced power status
 - o May still participate in SCO exchanges
- □ Park does not participate on piconet
 - o Still retained as part of piconet


States of a Bluetooth Device

ACTIVE (connected/transmit): the device is uniquely identified by a 3bits AM_ADDR and is fully participating

SNIFF state: participates in the piconet only within the SNIFF interval

HOLD state: keeps only the SCO links

PARK state (low-power): releases AM ADDR but stays synchronized with master

BT device addressing:

- BD_ADDR (48 bits)
- AM_ADDR (3bits): ACTIVE, HOLD, or SNIFF
- PM_ADDR (8 bits): PARK Mode address (exchanged with the AM_ADDR when entering PARK mode)
- AR_ADDR (8 bits): not unique used to come back from PARK to ACTIVE state

Wireless Networks Fall 2007

Bluetooth Audio

- □ Voice encoding schemes:
 - o Pulse code modulation (PCM)
 - o Continuously variable slope delta (CVSD) modulation
- ☐ Choice of scheme made by link manager
 - o Negotiates most appropriate scheme for application

Bluetooth Link Security

- ☐ Elements:
 - o Authentication verify claimed identity
 - o Encryption privacy
 - o Key management and usage
- ☐ Security algorithm parameters:
 - o Unit address
 - o Secret authentication key (128 bits key)
 - o Secret privacy key (4-128 bits secret key)
 - o Random number

Link Management

- Manages master-slave radio link
- ☐ Security Service: authentication, encryption, and key distribution
- □ Clock synchronization
- Exchange station capability information
- Mode management:
 - o switch master/slave role
 - o change hold, sniff, park modes
 - o QoS

L2CAP

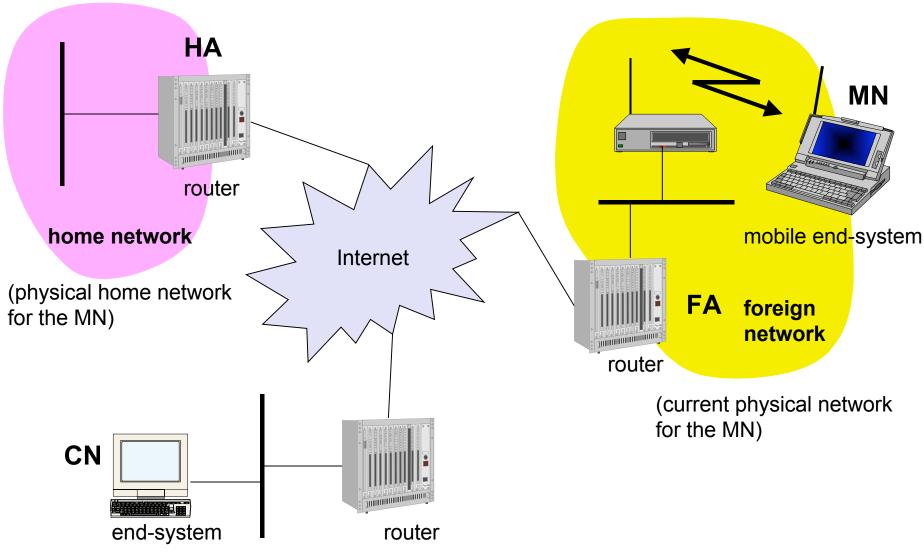
- □ Provides a link-layer protocol between entities with a number of services
- ☐ Relies on lower layer for flow and error control
- Makes use of ACL links, does not support SCO links
- □ Provides two alternative services to upper-layer protocols
 - o Connectionless service
 - o Connection-oriented service: A QoS flow specification is assigned in each direction
- □ Exchange of signaling messages to establish and configure connection parameters

Mobile IP

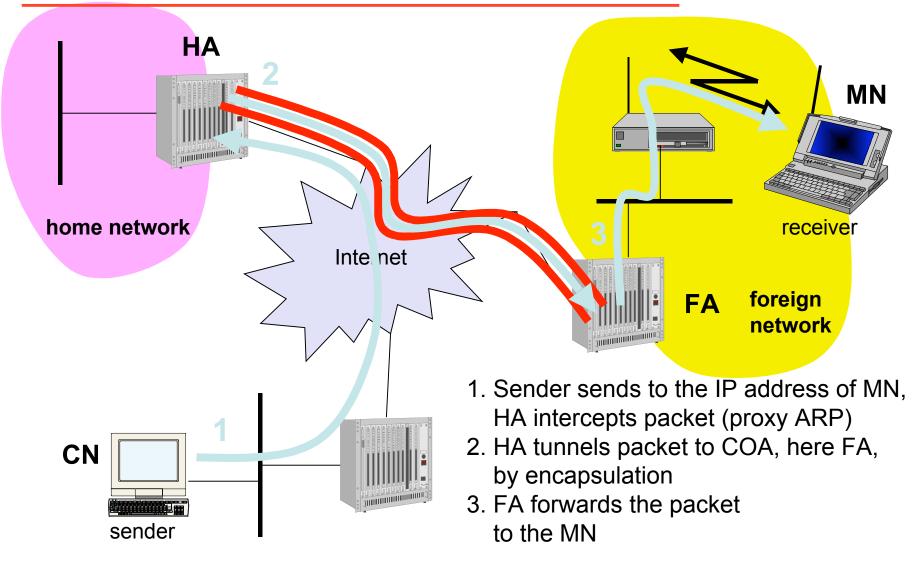
Motivation for Mobile IP

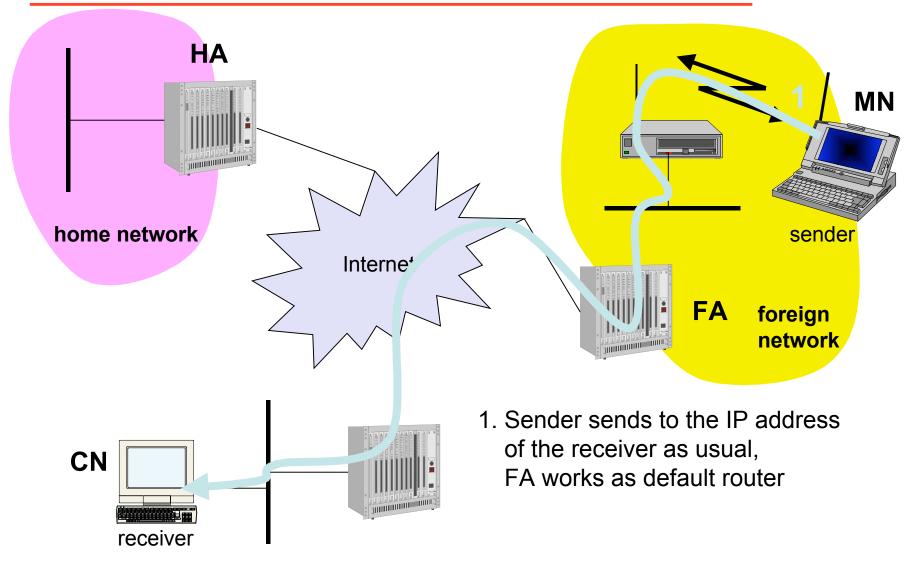
- Routing
 - o based on IP destination address, network prefix (e.g. 129.13.42) determines physical subnet
 - o change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables
- ☐ Specific routes to end-systems?
 - o change of all routing table entries to forward packets to the right destination
 - o does not scale with the number of mobile hosts and frequent changes in the location, security problems
- ☐ Changing the IP-address?
 - o adjust the host IP address depending on the current location
 - o almost impossible to find a mobile system, DNS updates take too much time
 - o TCP connections break, security problems

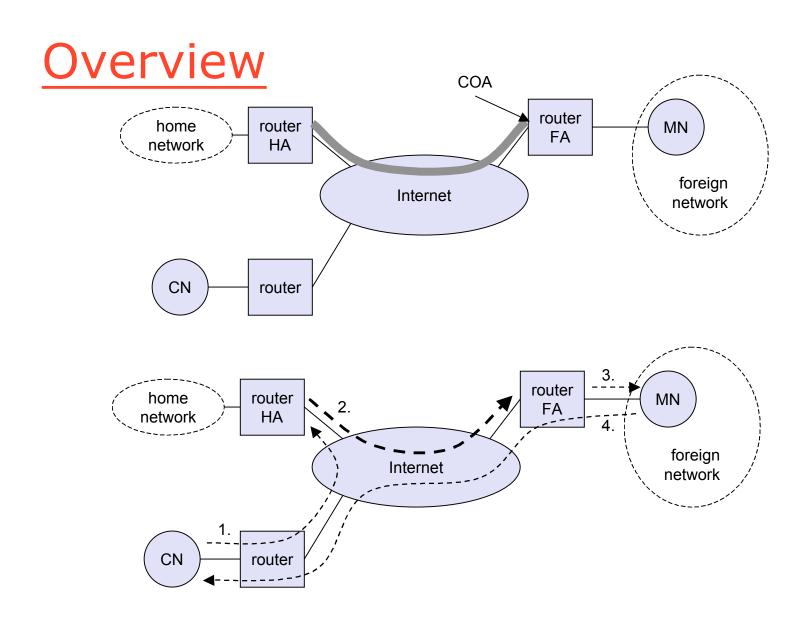
Mobile IP Requirements


- ☐ Transparency
 - o mobile end-systems keep their IP address
 - o continuation of communication after interruption of link possible
 - o point of connection to the fixed network can be changed
- Compatibility
 - o support of the same layer 2 protocols as IP
 - o no changes to current end-systems and routers required
 - o mobile end-systems can communicate with fixed systems
- □ Security
 - o authentication of all registration messages
- ☐ Efficiency and scalability
 - o only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
 - o world-wide support of a large number of mobile systems in the whole Internet

Terminology


- Mobile Node (MN)
 - o system (node) that can change the point of connection to the network without changing its IP address
- □ Home Agent (HA)
 - o system in the home network of the MN, typically a router
 - o registers the location of the MN, tunnels IP datagrams to the COA
- ☐ Foreign Agent (FA)
 - o system in the current foreign network of the MN, typically a router
 - o forwards the tunneled datagrams to the MN, typically also the default router for the MN
- ☐ Care-of Address (COA)
 - o address of the current tunnel end-point for the MN (at FA or MN)
 - o actual location of the MN from an IP point of view
 - o can be chosen, e.g., via DHCP
- ☐ Correspondent Node (CN)
 - o communication partner


Example network



Data transfer to the mobile

Data transfer from the mobile

Wireless Networks Fall 2007

Network integration

- ☐ Agent Advertisement
 - o HA and FA periodically send advertisement messages into their physical subnets
 - o MN listens to these messages and detects, if it is in the home or a foreign network (standard case for home network)
 - o MN reads a COA from the FA advertisement messages
- ☐ Registration (always limited lifetime!)
 - o MN signals COA to the HA via the FA, HA acknowledges via FA to MN
 - o these actions have to be secured by authentication
- Advertisement
 - o HA advertises the IP address of the MN (as for fixed systems), i.e. standard routing information
 - o routers adjust their entries, these are stable for a longer time (HA responsible for a MN over a longer period of time)
 - o packets to the MN are sent to the HA,
 - o independent of changes in COA/FA

Agent advertisement

0 7	8	15	16	23 24	31		
type	cod	de		checksum			
#addresses	addr.	size	lifetime				
router address 1							
preference level 1							
router address 2							
preference level 2							

. . .

		_								
type	e length			sequence number						
registration lifetime			В	Н	F	Μ	G	٧		reserved
COA 1										
COA 2										

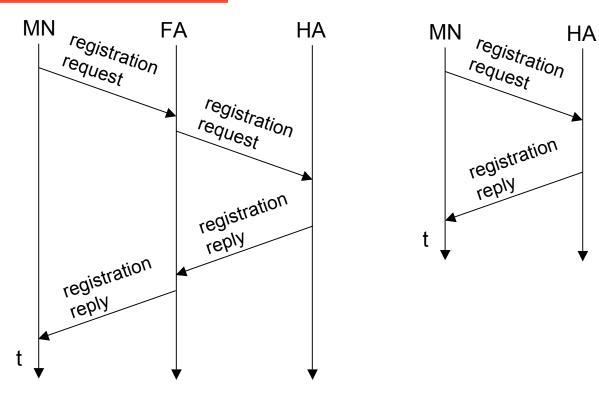
R: registration required

B: busy

H: home agent

F: foreign agent

M: minimal encapsulation G: generic encapsulation


V: header compression

. . .

ICMP-Type = 0; Code = 0/16; Extension Type = 16

TTL = 1 Dest-Adr = 224.0.0.1 (multicast on link) or 255.255.255.255 (broadcast)

Registration

Goal: inform the home agent of current location of MN (COA-FA or co-located COA)

Registration expires automatically (lifetime) Uses UDP port 434

Mobile IP registration request

0		7 8	15	16	23 24	31	
	type	SBDN	//GVrsv		lifetime		
home address							
	home agent						
COA							
identification							
extensions							

UDP packet on port 343

Type = 1 for registration request

S: retain prior mobility bindings

B: forward broadcast packets

D: co-located address=> MN decapsulates packets

Encapsulation

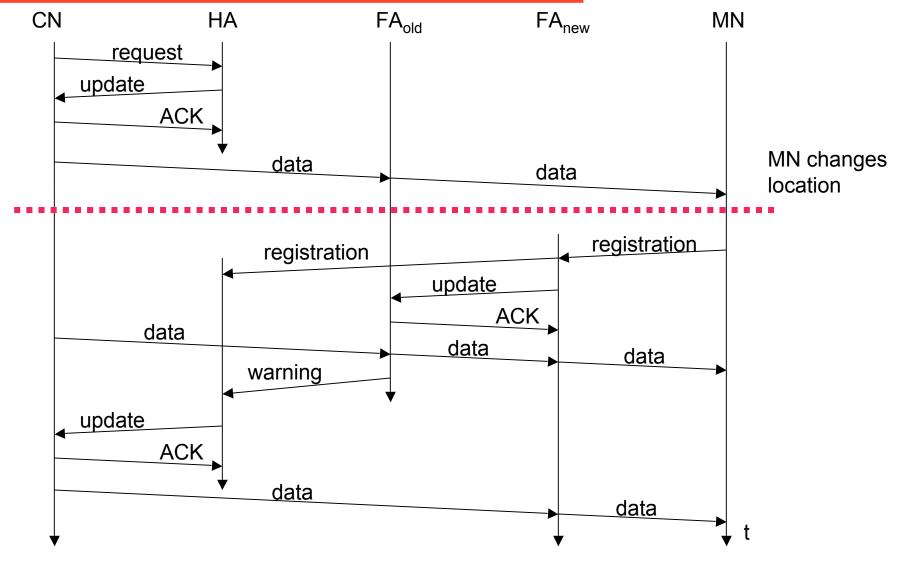
	original IP header	original data				
new IP header	new data					
outer header	inner header	original data				

Encapsulation I

- ☐ Encapsulation of one packet into another as payload
 - o e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)
 - o here: e.g. IP-in-IP-encapsulation, minimal encapsulation or GRE (Generic Record Encapsulation)
- ☐ IP-in-IP-encapsulation (mandatory in RFC 2003)
 - o tunnel between HA and COA

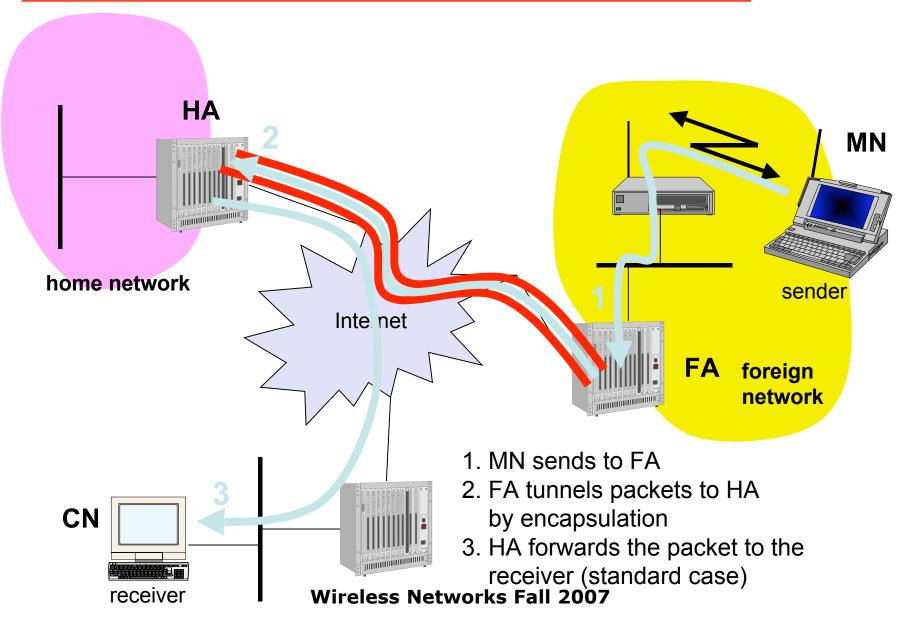
ver.	IHL	TOS		length			
	P ident	ification	flags fragment offset				
T	TTL IP-in-IP			IP checksum			
	IP address of HA						
Care-of address COA							
ver.	IHL	TOS	length				
	P ident	ification	flags fragment offset				
T	TTL lay. 4 prot. IP checksum						
IP address of CN							
IP address of MN							
TCP/UDP/ payload							

Encapsulation II


- ☐ Minimal encapsulation (optional) [RFC2004]
 - o avoids repetition of identical fields
 - o e.g. TTL, IHL, version, TOS
 - o only applicable for unfragmented packets, no space left for fragment identification

ver.	IHL		TOS		length		
	IP identification		flags	fragment offset			
T	TTL min. encap.		IP checksum				
	IP address of HA						
	care-of address COA						
lay. 4	orotoc.	S	reserved	IP checksum			
IP address of MN							
original sender IP address (if S=1)							
	TCP/UDP/ payload						

Optimization of packet forwarding


- ☐ Triangular Routing
 - o sender sends all packets via HA to MN
 - o higher latency and network load
- ☐ "Solutions"
 - o sender learns the current location of MN
 - o direct tunneling to this location
 - o HA informs a sender about the location of MN
 - o big security problems!
- ☐ Change of FA
 - o packets on-the-fly during the change can be lost
 - o new FA informs old FA to avoid packet loss, old FA now forwards remaining packets to new FA
 - o this information also enables the old FA to release resources for the MN

Change of foreign agent

Wireless Networks Fall 2007

Reverse tunneling (RFC 2344)

Mobile IP with reverse tunneling

- □ Routers accept often only "topological correct" addresses (firewall)
 - o a packet from the MN encapsulated by the FA is now topological correct
 - o furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is to far away from the receiver)
- □ Reverse tunneling does not solve
 - o problems with *firewalls*, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
 - o optimization of data paths, i.e. packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)
- ☐ The new standard is backwards compatible
 - o the extensions can be implemented easily and cooperate with current implementations without these extensions

Mobile IP and IPv6

- security is integrated and not an add-on, authentication of registration is included
- □ COA can be assigned via auto-configuration (DHCPv6 is one candidate), every node has address autoconfiguration
- □ no need for a separate FA, **all** routers perform router advertisement which can be used instead of the special agent advertisement
- ☐ MN can signal a sender directly the COA, sending via HA not needed in this case (automatic path optimization)
- □ "soft" hand-over, i.e. without packet loss, between two subnets is supported
 - o MN sends the new COA to its old router
 - o the old router encapsulates all incoming packets for the MN and forwards them to the new COA
 - o authentication is always granted

Problems with Mobile IP

- □ Security
 - o authentication with FA problematic, for the FA typically belongs to another organization
 - o no protocol for key management and key distribution has been standardized in the Internet
 - o patent and export restrictions
- □ Firewalls
 - o typically mobile IP cannot be used together with firewalls, special set-ups are needed (such as reverse tunneling)
- ☐ QoS
 - o many new reservations in case of RSVP
 - o tunneling makes it hard to give a flow of packets a special treatment needed for the QoS
- ☐ Security, firewalls, QoS etc. are topics of current research and discussions!